
PR
EP

RIN
T

PHOTONAI-Graph - A Python Toolbox for
Graph Machine Learning

Jan Ernsting*1, 2, 3, Vincent Holstein*2,�, Nils R. Winter2, Kelvin Sarink2, Ramona Leenings2, 3, Marius Gruber2, 4, Jonathan,
Repple2, 4, Benjamin Risse1, 3, Udo Dannlowski2, and Tim Hahn2

1Institute for Geoinformatics, University of Münster, Germany
2Institute for Translational Psychiatry, University of Münster, Germany

3Faculty of Mathematics and Computer Science, University of Münster, Germany
4Department of Psychiatry, Psychosomatics and Psychotherapy, University of Frankfurt, Germany

*These authors contributed equally: Jan Ernsting, Vincent Holstein

Graph data is an omnipresent way to represent information in ma-
chine learning. Especially, in neuroscience research, data from
Diffusion-Tensor Imaging (DTI) and functional Magnetic Reso-
nance Imaging (fMRI) is commonly represented as graphs. Ex-
ploiting the graph structure of these modalities using graph-specific
machine learning applications is currently hampered by the lack of
easy-to-use software. PHOTONAI Graph aims to close the gap be-
tween domain experts of machine learning, graph experts and neu-
roscientists. Leveraging the rapid machine learning model devel-
opment features of the Python machine learning API PHOTONAI,
PHOTONAI Graph enables the design, optimization, and evalua-
tion of reliable graph machine learning models for practitioners.
As such, it provides easy access to custom graph machine learn-
ing pipelines including , hyperparameter optimization and algo-
rithm evaluation ensuring reproducibility and valid performance es-
timates. Integrating established algorithms such as graph neural net-
works, graph embeddings and graph kernels, it allows researchers
without significant coding experience to build and optimize com-
plex graph machine learning models within a few lines of code. We
showcase the versatility of this toolbox by building pipelines for
both resting–state fMRI and DTI data in the hope that it will in-
crease the adoption of graph-specific machine learning algorithms
in neuroscience research.

Graph Machine Learning | Network Neuroscience | Graph Neural Networks |
Auto-ML

Correspondence: v_hols01@uni-muenster.de

Introduction

Graph data is ubiquitous throughout biomedical research and
can be found in many different fields. In neuroscience, graph
representations are of particular interest as the neuronal con-
nections within the brain are a naturally occurring graph
structure. These graphs arise both on the microscopic level in
cellular connection networks and the macroscopic level such
as higher-order brain circuits. Functional connectivity and
diffusion tensor imaging (DTI) are the two most commonly
used modalities for studying these circuits in vivo. The two
modalities allow for the construction of brain connectivity
graphs, which can then be studied using graph theoretical ap-
proaches. Different established toolboxes allow neuroscien-
tists to apply classical graph theoretical approaches using sta-
tistical analysis. However, multivariate graph analyses such
as graph machine learning pipelines are mostly limited to a
domain expert group, limiting the accessibility for many neu-

roscientists.
In classical graph analysis graph properties are calculated,
sometimes referred to as graph measures, which are then
analyzed using statistical analysis tools such as general lin-
ear models (GLMs). This approach has been increasingly
adopted in neuroimaging, which is in part due to the avail-
ability of toolboxes, that support these analyses [1, 2]. These
toolboxes are usually geared towards neuroimaging often
specializing in one type of connectivity modality. One pop-
ular toolbox is Brain Connectivity Tools which offers a
graphical user interface and implements the most important
graph analysis methods based on graph measures [3]. Other
frequently used toolboxes for analyzing brain connectivity
graphs using graph measures include but are not limited to,
Network-based Statistics, eConnectome, CONN, GAT, GTG,
BASCO, GRETNA or BRAPH [4–11].
These neuroimaging-specific toolboxes support basic graph
analysis, but not graph machine learning analyses. As one
of the first toolboxes, the GraphVar 2.0 toolbox expands
this framework to the area of machine learning by allow-
ing users to perform machine learning on extracted measures
[12]. This represents a novel approach towards creating low-
dimensional graph representations that capture important in-
formation about the inherent graph structure which are then
used for machine learning. However, this represents only a
small area of the field of graph machine learning which has
exponentially grown in recent years.
The approach of creating lower-dimensional graph represen-
tations is at the core of the field of graph machine learning.
In this new machine learning subfield the main directions
of research are graph embeddings, graph kernels and graph
neural networks [13]. Graph embeddings project to a lower
dimensional representation that leverages graph information
and makes it accessible in Euclidean space [14]. Graph ker-
nels are functions that either extract feature representations
or calculate similarity measures between graphs, which can
be leveraged using kernel methods [15]. Significant overlap
exists between the two fields of research. Lastly, there are
graph neural networks, which are a form of neural networks
that leverage graph information, by performing neural mes-
sage passing. Here information flows between nodes and is
updated using neural network functions [16, 17].
In neuroimaging, most research uses graph measures to pre-

Jan Ernsting, Vincent Holstein et al. | medRχiv | June 22, 2023 | 1–10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.22.23291748doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.06.22.23291748
http://creativecommons.org/licenses/by-nc-nd/4.0/


dict outcomes of interest. Recently researchers have begun to
use graph machine learning in neuroimaging and even built
graph neural networks specifically targeting brain connectiv-
ity matrices [18, 19]. These approaches however are still
much less common than classic graph analysis, partly be-
cause they require require significant technical knowledge.
While the neuroimaging community has developed pack-
ages for graph measure analysis on brain-derived graphs, the
graph machine learning community has developed special-
ized packages for graph machine learning. However, these
require advanced coding experience and usually cover only
one particular (sub-)field. Examples include gem for graph
embeddings, grakel for graph kernels and deep graph library
(dgl) for graph neural networks [20–23]. All of these tool-
boxes require programming expertise and technical knowl-
edge for their usage, which bars many scientists without such
background from routinely using these for their analyses.
This causes an accessibility gap for many neuroscience re-
searchers, which is not addressed by any of these toolboxes.
Therefore there is currently no toolbox that implements a
wide array of graph machine algorithms in an accessible
manner. Existing toolboxes in neuroimaging focus on classi-
cal graph analysis or graph measure-derived machine learn-
ing, while graph machine learning toolboxes focus on one
type of algorithm and require significant computational ex-
pertise. Among the computational challenges are the incom-
patibility of different graph libraries, varying data structures
and error-proneness of such conversions. To address this
gap we developed our graph machine learning toolbox called
“PHOTONAI Graph”.
The integration of this toolbox into the PHOTONAI package
provides increased accessibility of complex algorithms via
pre-defined keywords, extended pipeline functionality such
as stacking operations, a high degree of automation with vari-
able hyperparameter optimization and cross-validation strate-
gies, easy visualization and model sharing options ([24]).
This provides neuroscientists with access to best practices in
machine learning and rapid prototyping capabilities, which
will strongly improve model building without the need to
learn and code a large body of graph algorithms.

Methods & Software
PHOTONAI-Graph is a scikit-learn-compatible Python pack-
age that is an extension to the PHOTONAI toolbox [24],
which provides a high degree of automation of the repeti-
tive steps during model development. As an extension to the
PHOTONAI framework, it uses the functionality of the PHO-
TONAI toolbox in the context of graph machine learning.
This allows an out-of-the-box usage of graph algorithms with
fully automated hyperparameter optimization, model evalu-
ation and algorithm selection procedures. This integration
also enables seamless access to PHOTONAI’s convenience
features such as result visualization and model sharing and
integrates within PHOTONAI’s structured and easy-to-learn
syntax, condensing machine learning analysis to a few lines
of code.
The PHOTONAI-Graph toolbox consists of multiple modules

which correspond to different types of data transformations,
learning algorithms, and utilities. In the following sections,
we explain each of the different toolbox modules, and our
testing strategy to ensure functionality, public access, docu-
mentation and software dependencies.

Organisation. The toolbox is designed to adapt to various
types of graph data, with a focus on connectivity data. It
is modality-agnostic however, as graph machine learning
pipelines can be built for other types of graph data, as long
as it is imported in a compatible format. For various types of
graph data, the toolbox supports the development of whole
graph classification or regression pipelines.
Pipeline development is supported by 8 main modules:
Graph Constructors, Graph Measures, Graph Kernels,
Graph Embeddings, Graph Neural Networks, Controllabil-
ity, Graph Conversions and Graph Utilities. These modules
cover key areas of current graph machine learning research
and allow for the use of state-of-the-art graph machine learn-
ing in a few lines of code.
Neuroscientific graph data, such as connectivity matrices,
can be transformed using Graph Constructors, to ensure ad-
equate graph representation via adjacency matrices. These
can be further transformed with graph-specific dimensional-
ity reduction techniques using Graph Kernels, Graph Em-
beddings, Graph Measures or Controllability functions. The
transformed data can then be passed to an estimator. Alter-
natively, graph properties can directly be estimated using a
Graph Neural Network.
Conversions between different graph formats are handled by
the Graph Conversions module, while the Graph Utilities
module supplies different utilities such as drawing functions.
Each module will be described in brief below.

Graph Constructors. The Graph construction module im-
plements graph construction techniques that transform con-
nectivity matrices into adjacency matrices to reduce noise
and complexity, speed up computation and increase the
signal-to-noise ratio. This transformation is especially im-
portant when working with highly dense data (i.e. fully con-
nected graphs) such as resting-state connectivity.
Implemented techniques include thresholding based on cut-
off values, the percentile rank, a window of cutoff values
or percentile ranks, kNN-based adjacency formation, spatial
proximity-based adjacency formation and random walks on
kNN graphs. These transformations are applied individually
to each graph. It is also possible to use the PopulationAver-
agingTransform class to build an average graph across each
fold as described by Ktena et al. [25].
Users can also decide to apply different encodings for node
features, such as a one-hot encoding, similar to indicator vari-
able encodings or they can use the unfiltered connectivity ma-
trix as a feature matrix. This way the feature matrix, which
can later be used to define node and edge features, contains
all the original information before any transformation was
performed.

2 | medRχiv Jan Ernsting, Vincent Holstein et al. | PHOTONAI-Graph

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.22.23291748doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.22.23291748
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. Modules of PHOTONAI-Graph. The PHOTONAI-Graph package features multiple modules for transforming and predicting from graph data. Starting from connectivity
matrices, the graph constructor module allows for graph construction with a range of established and novel thresholding and edge selection strategies. The derived graph
data can be used by either transforming it with graph measures, network controllability measures, graph embeddings or graph kernels to acquire graph property-preserving
representations that can then be used in concordance with classical machine learning estimators. Alternatively, users can directly use the graph data by feeding it to a graph
neural network.

Graph Measures. The Graph Measure Transform mod-
ule implements the NetworkxMeasureTransform and Igraph-
MeasureTransform class which calculate graph measures
based on the networkx or igraph python package and con-
catenates them into a feature vector [26, 27]. Whole graph,
node and edge measures can be combined to provide a low-
dimensional feature representation of the graph. These fea-
ture vectors can then be analyzed using machine learning es-
timators. The choice of desired graph measures is a hyperpa-
rameter during model development.
To reduce runtime these calculations can be parallelized
based on tqdm [28]. The GraphMeasureTransform class can
also be used to extract graph measures into a CSV file for
further statistical analysis outside of graph machine learning
pipelines.

Graph Embeddings. The graph embedding module imple-
ments graph embeddings, based on a modified version of
the gem python package [21]. These include the Asym-
metric Transitivity Preserving Graph Embedding, Laplacian
Eigenmaps and a locally linear embedding. As graph em-
beddings are not calculated between graphs but are a direct
low-dimensional representation of the graph, they do not re-
quire the use of kernel methods.
To ensure the correct functioning of the gem software and
avoid dependency conflicts we have developed a modified
version of the gem python package which is publicly avail-
able (https://github.com/jernsting/nxt_gem) for this project.

Graph Kernels. The Graph Kernel module implements
Graph Kernels based on the grakel python package, allowing
for the usage of kernels currently available in grakel [22]. All
available grakel kernels can be optimized with respect to their
hyperparameters via the GrakelTransformer class. These ker-
nels can then be used in a pipeline in combination with kernel
methods such as support vector machines.

To ensure the correct conversion of input graph data into the
required grakel format as part of a machine learning pipeline
the module also contains the GrakelAdapter class, a trans-
former that handles these conversions. This adapter also al-
lows the user to select different feature construction options
if the graphs are converted from connectivity matrices.

Graph Neural Networks. The graph neural networks mod-
ule currently implements six different Graph Neural Net-
work (GNN) architectures, based on the deep graph library
(dgl) python package and the pytorch library [23, 29]. These
GNNs allow the user to use different architectures for both
whole graph classification and regression tasks. As GNNs
combine both graph representation learning and feature es-
timation, they do not require an additional estimator in the
pipeline.
The GNN module consists of a dgl_base class that handles
training and conversion steps shared between the different
architectures, a set of graph neural network-specific utilities
and architecture wrappers for graph convolutional networks,
simple graph convolutional networks and graph attention net-
works. Each GNN architecture allows for wide-ranging hy-
perparameter optimization including layer size, depth, learn-
ing rate and the number of training epochs.

Controllability. The controllability module implements the
modal and average controllability on graphs which can
be used as a low-dimensional representation of the
graph. These function are adapted from nctpy ([30–
32] (https://github.com/BassettLab/nctpy). These low-
dimensional representations can then be combined with es-
timators for regression or classification tasks. They can also
be used outside of graph pipelines to calculate the modal and
average controllability for further statistical analysis.

Graph Conversions. Graph Conversions are a collection of
different conversion functions that handle conversions be-

Jan Ernsting, Vincent Holstein et al. | PHOTONAI-Graph medRχiv | 3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.22.23291748doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.22.23291748
http://creativecommons.org/licenses/by-nc-nd/4.0/


tween different graph formats, namely: networkx graphs,
numpy arrays, scipy sparse arrays, dgl graphs and grakel
graphs. This facilitates the data flow between the available
modules. It also implements the check_dgl function that en-
sures that incoming data is converted into the dgl format for
graph neural networks.

Graph Utilities. The graph utilities module is a collection
of helper functions that allow for the plotting of graphs
in different formats, checking certain properties on graphs,
fisher- and z-transformations and the generation of random
data. The plotting functions allow the user to visually inspect
the input data, both for connectivity matrices and networkx
graphs.

Toolbox documentation and installation. The entire
software is made publicly accessible as a repository
on GitHub (https://github.com/wwu-mmll/photonai_graph)
and is published under an MIT License. To facili-
tate public use and allow easier use by researchers with-
out a computer science background, we created a docu-
mentation website hosted on GitHub Pages (https://wwu-
mmll.github.io/photonai_graph/). Here we give a detailed
description of the different classes and functions, along with
their parameters and arguments. Current installation instruc-
tions can also be found on the website or in the GitHub repos-
itory.
To ensure the correct functioning of our code the software
was unit tested with >90% coverage. Additionally, scenario
tests ensure the correct integration of the different modules.

Analysis Data. For all analysis demonstrations, we used two
publicly available imaging datasets. 10Kin1Day and the Hu-
man Connectome Project Young Adult (HCP-YA) dataset
[33, 34].
The 10KIn1Day dataset contains >8000 participants pro-
cessed with the Cammoun Desikan-Killiany atlas parcella-
tion containing 128 regions resulting in 16384 edges [33].
For each participant five measures of connection strength are
available as edge weights: 1) Number of streamlines (NOS),
2) average fractional anisotropy (FA), 3) average mean dif-
fusivity (MD), 4) average length of reconstructed stream-
lines and 5) streamline density. We used all 8163 partici-
pants (4339 male, 3824 female) for which sex information
and DTI matrices with number of streamlines was available
in our analysis. Further information can be found in van den
Heuvel et al, 2019 [].
The HCP-YA dataset is a dataset of >1000 young adults with
resting-state fMRI (rs-fMRI) and preprocessed parcellations
available [34]. Resting-state fMRI scans were preprocessed
running a spatial ICA with 15, 25, 50, 100, 200 and 300
numbers of components from FSL’s MELODIC tool. Net-
work matrices were derived using the FSLNets toolbox on
the node time series. We selected all preprocessed matrices
with 50 components and available sex or strength information
for our analysis resulting in 1003 individuals being included
in sex prediction and 1002 individuals being included in our
grip strength regression pipeline. The sex analysis contained

469 males and 534 females. Grip strength was measured by
the NIH Toolbox Grip Strength Test using dynamometry and
is provided as part of the HCP-YA data release. It is mea-
sured in pounds and adjusted for age with a sample range of
45.41 to 154.59.
All analysis scripts are available on GitHub
(https://github.com/wwu-mmll/photonai_graph_usecases/)
in a dedicated repository with data handling scripts for
convenient handling of the datasets.

Results
To demonstrate the versatility of our toolbox, we conducted
three different analyses on two publicly available datasets to
show both the versatility of the toolbox and potential use
cases for it. It is important to note that for each of these
demonstrations, we aim not at constructing the best available
model, but rather showcase the versatility of our toolbox and
the potential analyses that could be conducted with it.

Predicting Sex from DTI. First, we build a sex classification
model on the 10KIn1Day dataset to show the application of
the toolbox to DTI data. The pipeline used a threshold con-
structor with a fixed threshold of 0.1, a stack of controllability
transformation with average and modal controllability and a
Support Vector Classifier as a predictor. Optimizable hyper-
parameters were the number of components in the PCA, the C
parameters and the kernel of SVM. The C parameter was al-
lowed to vary between 0.1, 1, 2.5 or 10. The potential kernels
were either linear or rbf. We used 10x10 K-fold nested cross-
validation with random grid search and 50 configurations for
hyperparameter selection selecting configurations based on
accuracy. We also calculated balanced accuracy, recall and
precision.

Metric Test Mean ± Standard Deviation
Accuracy 0.642 ± 0.024

Balanced Accuracy 0.623 ± 0.031
Precision 0.617 ± 0.101

Recall 0.511 ± 0.151

Table 1. Predictive performance for sex classification of the best pipeline trained
on the 10KIn1Day DTI dataset.

The overall best pipeline configuration was able to classify
sex with an accuracy of 0.64, balanced accuracy of 0.62, a
recall of 0.51 and a precision of 0.61. It used 100 PCA com-
ponents, a C parameter of 1 and an rbf kernel.

A. Predicting Sex from resting-state fMRI. Next, we
build a sex classification model from the HCP-YA dataset to
show an application to fMRI data. The pipeline consisted of
a percentage constructor with a threshold of either 50, 75 or
90 and a Graph Convolutional Neural Net Classifier with 1
to 3 hidden convolutional layers, hidden dimensions of 32,
64, 128 or 256 and training epochs of either 50, 100, 250 or
500. We used a 10x10-fold nested cross-validation for hy-
perparameter optimization with the best configuration being
selected based on accuracy. We used a Bayesian hyperparam-
eter optimization strategy provided by sk_opt with the lower

4 | medRχiv Jan Ernsting, Vincent Holstein et al. | PHOTONAI-Graph

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.22.23291748doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.22.23291748
http://creativecommons.org/licenses/by-nc-nd/4.0/


A Predicting Sex from resting-state fMRI

Fig. 2. Predicting sex from DTI. We built a sex classification model from the 10KIn1Day dataset (N=8163; 4339 male, 3824) using connectivity matrices with the number of
streamlines derived from the Cammoun Desikan Killiany parcellation to showcase a pipeline for DTI derived connectivity. The pipeline consisted of threshold graph
constructor, a stack of a controllability and igraph measure transform, a PCA and an SVM as an estimator. The best model was selected using a 10x10 K-Fold nested
cross-validation with the best model selected on accuracy. The best pipeline configuration classified sex with an accuracy of 0.64, a balanced accuracy of 0.62, recall of 0.51
and a precision of 0.61. The model used 100 PCA components, a C parameter of 1 and an rbf kernel.

confidence bound as the acquisition strategy and a quasiran-
dom Sobol vector point generator with 15 initial points and
25 configurations. We again calculated balanced accuracy,
recall and precision.
The overall best pipeline configuration was able to classify
sex with an accuracy of 0.74, balanced accuracy of 0.74, pre-
cision of 0.72 and recall of 0.74. The selected percentage
threshold was 90, while the Graph Convolutional Classifier
with the best performance used 50 training epochs, 2 hidden
layers, and a hidden layer size of 256.

Metric Test Mean ± Standard Deviation
Accuracy 0.749 ± 0.026

Balanced Accuracy 0.747 ± 0.026
Precision 0.727 ± 0.035

Recall 0.740 ± 0.053

Table 2. Predictive performance for sex classification of the best pipeline
configuration trained on the HCP-YA dataset.

Predicting grip strength from resting-state fMRI. Lastly,
we build a strength prediction model to showcase the building
of a regression model using the HCP-YA dataset to showcase
the application of our toolbox to a regression problem.
We constructed a pipeline consisting of a threshold construc-
tor with a threshold between 0 and 1, and a Graph Attention
Neural Net Classifier with 1 to 3 hidden convolutional lay-
ers, hidden dimensions of 32, 64, 128 or 256 and training
epochs of either 50, 100, 250 or 500. We used 10x10-fold
nested cross-validation for hyperparameter optimization with
the best configuration being selected based on Pearson corre-
lation. We also calculated mean absolute error and explained
variance. For hyperparameter optimization, we used the same
sk_opt strategy as previously in the resting-state fMRI sex
prediction.
The overall best pipeline configuration achieved a Pearson
correlation of 0.36, a mean absolute error of 16.58 and a

variance explained of 0.135. The threshold value for the con-
structor was 0.877, and the Graph Convolutional Net Regres-
sor used 250 training epochs with 3 hidden layers and a hid-
den layer size of 32.

Metric Test Mean ± Standard Deviation
Pearson Correlation 0.361 ± 0.068

Mean Absolute Error 16.584 ± 0.814
Variance Explained 0.135 ± 0.049

Table 3. Predictive performance for grip strength prediction of the best pipeline
configuration trained on the HCP-YA dataset.

Discussion
The previous sections showcase how our toolbox can be ap-
plied to different types of imaging-derived connectivity data
to perform graph machine learning within a few lines of code.
Having established the utility of the tool, we discuss the util-
ity and value of this toolbox within the framework of existing
toolboxes for different types of graph analyses.

A new toolbox for graph machine learning. Graph ma-
chine learning is an important subfield of machine learn-
ing, due to the common occurrence of graph data [35]. Yet,
despite their ubiquitous occurrence, machine learning that
leverages the information by graph structures has only re-
cently come into focus. While packages for specific types
of graph machine learning exist (e.g. gem for graph embed-
dings), no package makes it possible to use these various ap-
proaches in an easy end-to-end framework. This is where
PHOTONAI-Graph fills a gap.
Through integration with PHOTONAI the PHOTONAI-
Graph toolbox allows scientists to set up graph complicated
machine learning pipelines with minimal coding expertise,
providing access to automated pipeline selection, best prac-
tices such as nested cross-validation, advanced hyperparam-

Jan Ernsting, Vincent Holstein et al. | PHOTONAI-Graph medRχiv | 5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.22.23291748doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.22.23291748
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 3. Predicting sex from fMRI. We build a sex classification model on the HCP-YA dataset (N=1003; 469 males, 534 females) using functional connectivity matrices based
on an spatial ICA with 50 components to showcase an application with functional connectivity data. The pipeline contained a percentage constructor and a Graph
Convolutional Neural Net Classifier. The best model was selected based on accuracy within a 10x10 K-fold nested cross-validation using a bayesian hyperparameter
optimization strategy. The best model classified sex with an accuracy of 0.74, balanced accuracy of 0.74, precision of 0.72 and recall of 0.74 with percentage threshold of 90
and a Graph Convolutional Classifier with 50 training epochs, 2 hidden layers, and a hidden layer size of 256.

Fig. 4. Predicting grip strength from fMRI. We built a grip strength regression model on the HCP-YA dataset (N=1002) using functional connectivity matrices derived using a
spatial ICA with 50 components to showcase an application to regression data. The pipeline contained a threshold constructor and a Graph Convolutional Network
Classifier. The best model was selected on mean absolute error with a bayesian hyperparameter optimization strategy within a 10x10 K-Fold cross-validation. The best
model predicted grip strength with a mean absolute error of 15.58, a pearson correlation of 0.36 and a variance explained of 0.13 using a threshold value of 0.877 and a
Graph Convolutional Net Regressor with 250 training epochs, hidden layers and a hidden layer size of 32.

eter optimization strategies and model visualization. This al-
lows researchers without strong coding expertise to use graph
machine learning with correct algorithm evaluation. Further-
more, it significantly decreases development time, allowing
for rapid prototyping while safeguarding against conceptual
errors such as information leakage between, training, valida-
tion and test folds.

Software for graph machine learning. Major fields in
graph machine learning are graph embeddings, graph ker-
nels and graph neural networks [13, 36]. Network control-
lability and graph analysis are not part of classical graph ma-
chine learning but can be used to reduce dimensionality while
preserving graph information. Different packages exist for
these approaches, many of which have been integrated into
the PHOTONAI-Graph toolbox.
The gem package is a python package that implements graph
embeddings. It covers static graph embeddings and dynamic
graph embeddings are currently under development [21]. It
is to our knowledge the only package that specifically cov-
ers graph embeddings in python. By integrating gem into
the PHOTONAI-Graph toolbox, we provide users with easy
access to graph embedding techniques and make these em-
beddings available for scikit-learn-based machine learning

pipelines.

For graph kernels, the grakel package has been developed as a
python package that implements 18 different graph kernels as
scikit-learn-compatible transformer classes [22]. While the
scikit-learn-based API grakel kernels can easily be used in
machine learning pipelines, grakel requires a specific grakel
graph object, which requires additional coding for format
conversion. Integrating grakel into our toolbox allows for au-
tomatic graph conversion and hyperparameter optimization
as part of machine learning pipelines, which lowers the en-
try bar for graph kernel-based analyses. Alternative packages
for graph kernels such as graphkernels [37] or graphkit-learn
[38] were not selected for integration as grakel provides the
largest amount of available graph kernels with an active com-
munity and regular package maintenance.

For graph neural networks different packages exist, mostly
written in python. Among the most widely used packages
are stellargraph, spektral, Pytorch Geometric, graphnets and
dgl [23, 39–41]. All of these packages provide frameworks
for the creation of graph neural networks, with different neu-
ral network dependencies. Of these, dgl provides the highest
amount of flexibility as it is backend-agnostic and supports
PyTorch, TensorFlow and MxNet [23, 29, 42, 43]. It is regu-
larly updated and supported by an active developer commu-

6 | medRχiv Jan Ernsting, Vincent Holstein et al. | PHOTONAI-Graph

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.22.23291748doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.22.23291748
http://creativecommons.org/licenses/by-nc-nd/4.0/


A Predicting Sex from resting-state fMRI

nity. dgl models in PHOTONAI-Graph use a pytorch back-
end. As graph neural networks rapidly develop, dgl allows
for an easy switch to another backend in the future.
Next to graph machine learning, classical graph analysis has
gained increasing popularity in the area of neuroimaging and
this is reflected by a range of toolboxes that offer the ex-
traction of different graph measures from DTI and rs-fMRI
data. Notable examples include GAT, Brain Connectivity
Toolbox, GRETNA, Dynamic Graph Metrics and NeuroPy-
con [3, 10, 44–46]. All these toolboxes implement the ex-
traction of graph measures from brain connectivity networks
and often provide full pipelines for brain connectivity anal-
yses. These toolboxes however are focused on brain con-
nectivity and are not written to be applied to other forms
of graph data. For this reason, we chose the networkx and
igraph python package for our graph GraphMeasureTrans-
form module which is agnostic to the data source as long as
graphs can be transformed into the networkx or igraph graph
format. This allows us to adapt the toolbox to other types of
graph data, outside of neuroimaging. Providing both graph
measure transformations, users are able to choose between
networkx for breadth and igraph for speed when needed.
Network control theory has recently been introduced to brain
connectivity networks [30]. As network controllability mea-
sures relate to psychiatric disease we have included two es-
tablished measures of brain controllability in our controlla-
bility module [47–49]. Here we use our own implementa-
tion of average and modal controllability based on Tang et al
[50]. As research in this area expands and network control-
lability toolboxes emerge, we plan to include these as part of
PHOTONAI-Graph.

Software for graph machine learning in neuroimaging.
In the area of neuroimaging, a python package that incorpo-
rates existing neuroimaging toolboxes into a unified frame-
work is the NeuroPyCon package [46]. NeuropyCon com-
bines various toolboxes that allow connectivity-based analy-
ses and incorporates them into a single python framework,
which is an extension of NiPype [51]. It includes share-
able parameters to facilitate reproduction in neuroimaging
pipelines and can work with source data from fMRI, MEG
and EEG. It specializes in graph analysis using the tools of
existing toolboxes like CONN or Network-Based Statistics
(NBS) but does not cover graph machine learning. As our
toolbox does not focus on deriving graph measures but on
graph machine learning it does not stand in competition with
existing graph analysis toolboxes for neuroimaging.
A toolbox that specializes in graph-specific machine learn-
ing is GraphVar 2.0. It is a neuroimaging-specific tool-
box, that addresses machine learning based on graphs us-
ing graph measures. It is based on MATLAB and is ex-
tended to SPM, to allow easy integration with existing ma-
chine learning tools. Like PHOTONAI-Graph, it allows for
nested cross-validation, hyperparameter optimization, model
selection and evaluation [12]. It does not support model shar-
ing however and machine learning methods are limited to ex-
tracting graph measures in order to perform classical machine
learning analyses. Furthermore, it is not agnostic to the type

of input data, as it only supports brain connectivity analyses.
Here PHOTONAI-Graph widely expands the space of usable
algorithms, covering state-of-the-art graph machine learning
techniques from multiple subfields.

Limitations and future developments. One key limitation
of PHOTONAI-Graph is that despite strongly increasing ac-
cessibility of state-of-the-art graph machine learning tech-
niques it still requires a certain degree of technical knowledge
for preprocessing and preparation of the input data. It is not
constructed as a front-to-end pipeline tool, which means that
technical knowledge is still required for the construction of
connectivity matrices. This can be done using established
tools such as CONN, NeuroPycon or CATO which some-
times offer GUI support [6, 46, 52].
It also requires basic familiarity with numpy array nota-
tion, for input data to have the required form: Individu-
als x nodes x nodes x matrix types (adjacency, features).
GUI support is currently not available and basic coding
skills are required for setting up pipelines. We plan to
introduce PHOTONAI-Graph to the PHOTONAI Wizard
(https://photon-ai.com/wizard) in the near future to allow
users to construct PHOTONAI-Graph pipelines using a GUI.
Another limitation is the focus on brain connectivity matri-
ces. While it is possible to perform other types of graph anal-
yses with PHOTONAI-Graph, the input data requires con-
version into an appropriate format. This requires a higher
degree of technical knowledge. For future updates, we plan
to expand the number of supported data structures, expand
import and conversion functions, include sparse support and
develop an internal data structure that can accommodate large
and sparse graph structures.
Furthermore, we plan to include support node classification
and link prediction pipelines in the future. These are two vital
areas of graph machine learning, which can also be applied to
brain connectivity graphs. While most applications of graph
machine learning to brain connectivity focus on whole graph
prediction, the application of methods to brain graphs could
enable researchers to answer new questions about brain con-
nectivity. We plan to introduce these changes along with
sparse support for giant single graphs.

Conclusion. Our toolbox incorporates various graph ma-
chine learning packages and makes their algorithms avail-
able via a scikit-learn-compatible API that could be used
with the PHOTONAI package or outside of it. It offers a
unified framework for graph machine learning, without the
need for manually converting graph data from one format
to the other. This eases model building and hyperparameter
optimization, allowing researchers from different biomedical
research fields to use graph machine learning for their own
analyses. Furthermore, the toolbox delivers a set of func-
tions that can be specifically used with connectivity matrices,
such as the graph constructor classes. They include estab-
lished and novel approaches geared toward machine learn-
ing on neuroimaging data [53]. Through integration with
the PHOTONAI environment, it also offers the functional-
ity provided by the PHOTONAI toolbox, like model sharing,

Jan Ernsting, Vincent Holstein et al. | PHOTONAI-Graph medRχiv | 7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.22.23291748doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.22.23291748
http://creativecommons.org/licenses/by-nc-nd/4.0/


pipeline evaluation and model interpretation.
In conclusion we present a novel toolbox that allows neu-
roimaging researchers to construct graph machine learning
pipelines within a few lines of code. With this toolbox, re-
searchers can now easily apply graph-based machine learn-
ing methods to their data and extract valuable insights that
were previously difficult to access. We hope this will further
the utilization of graph machine learning in neuroimaging.

ACKNOWLEDGEMENTS
Data were provided in part by the Human Connectome Project, MGH-USC Consor-
tium (Principal Investigators: Bruce R. Rosen, Arthur W. Toga and Van Wedeen;
U01MH093765) funded by the NIH Blueprint Initiative for Neuroscience Research
grant; the National Institutes of Health grant P41EB015896; and the Instrumentation
Grants S10RR023043, 1S10RR023401, 1S10RR019307.

Bibliography
1. Ed Bullmore and Olaf Sporns. Complex brain networks: Graph theoretical analysis of struc-

tural and functional systems, 2009. ISSN 1471003X.
2. Alex Fornito, Andrew Zalesky, and Michael Breakspear. Graph analysis of the human con-

nectome: Promise, progress, and pitfalls. NeuroImage, 80, 2013. ISSN 10538119. doi:
10.1016/j.neuroimage.2013.04.087.

3. Mikail Rubinov and Olaf Sporns. Complex network measures of brain connectivity: Uses
and interpretations. NeuroImage, 52(3), 2010. ISSN 10538119. doi: 10.1016/j.neuroimage.
2009.10.003.

4. Andrew Zalesky, Alex Fornito, and Edward T. Bullmore. Network-based statistic: Identifying
differences in brain networks. NeuroImage, 53(4), 2010. ISSN 10538119. doi: 10.1016/j.
neuroimage.2010.06.041.

5. Bin He, Yakang Dai, Laura Astolfi, Fabio Babiloni, Han Yuan, and Lin Yang. EConnectome:
A MATLAB toolbox for mapping and imaging of brain functional connectivity. Journal of
Neuroscience Methods, 195(2), 2011. ISSN 01650270. doi: 10.1016/j.jneumeth.2010.11.
015.

6. Susan Whitfield-Gabrieli and Alfonso Nieto-Castanon. Conn: A Functional Connectivity
Toolbox for Correlated and Anticorrelated Brain Networks. Brain Connectivity, 2(3), 2012.
ISSN 21580022. doi: 10.1089/brain.2012.0073.

7. S. M.Hadi Hosseini, Fumiko Hoeft, and Shelli R. Kesler. Gat: A graph-theoretical analy-
sis toolbox for analyzing between-group differences in large-scale structural and functional
brain networks. PLoS ONE, 7(7), 2012. ISSN 19326203. doi: 10.1371/journal.pone.0040709.

8. Jeffrey M. Spielberg, Regina E. McGlinchey, William P. Milberg, and David H. Salat. Brain
network disturbance related to posttraumatic stress and traumatic brain injury in veterans.
Biological Psychiatry, 78(3), 2015. ISSN 18732402. doi: 10.1016/j.biopsych.2015.02.013.

9. Martin Göttlich, Frederike Beyer, and Ulrike M. Krämer. Basco: A toolbox for task-related
functional connectivity. Frontiers in Systems Neuroscience, 9(September), 2015. ISSN
16625137. doi: 10.3389/fnsys.2015.00126.

10. Jinhui Wang, Xindi Wang, Mingrui Xia, Xuhong Liao, Alan Evans, and Yong He. GRETNA:
A graph theoretical network analysis toolbox for imaging connectomics. Frontiers in Human
Neuroscience, 9(JUNE), 2015. ISSN 16625161. doi: 10.3389/fnhum.2015.00386.

11. Mite Mijalkov, Ehsan Kakaei, Joana B. Pereira, Eric Westman, and Giovanni Volpe. BRAPH:
A graph theory software for the analysis of brain connectivity. PLoS ONE, 12(8), 2017. ISSN
19326203. doi: 10.1371/journal.pone.0178798.

12. L. Waller, A. Brovkin, L. Dorfschmidt, D. Bzdok, H. Walter, and J. D. Kruschwitz. Graph-
Var 2.0: A user-friendly toolbox for machine learning on functional connectivity mea-
sures. Journal of Neuroscience Methods, 308:21–33, 10 2018. ISSN 1872678X. doi:
10.1016/j.jneumeth.2018.07.001.

13. William L Hamilton. Graph Representation Learning. Technical Report 3, 2020.
14. Hongyun Cai, Vincent W. Zheng, and Kevin Chen Chuan Chang. A Comprehensive Sur-

vey of Graph Embedding: Problems, Techniques, and Applications. IEEE Transactions on
Knowledge and Data Engineering, 30(9), 2018. ISSN 15582191. doi: 10.1109/TKDE.2018.
2807452.

15. Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. A survey on graph kernels,
2020. ISSN 23648228.

16. Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep Learning on Graphs: A Survey. IEEE
Transactions on Knowledge and Data Engineering, 2020. ISSN 1041-4347. doi: 10.1109/
tkde.2020.2981333.

17. Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S.
Yu. A Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural
Networks and Learning Systems, 2020. ISSN 2162-237X. doi: 10.1109/tnnls.2020.2978386.

18. Byung Hoon Kim and Jong Chul Ye. Understanding Graph Isomorphism Network for rs-fMRI
Functional Connectivity Analysis. Frontiers in Neuroscience, 14, 2020. ISSN 1662453X.
doi: 10.3389/fnins.2020.00630.

19. Tzu An Song, Samadrita Roy Chowdhury, Fan Yang, Heidi Jacobs, Georges El Fakhri,
Quanzheng Li, Keith Johnson, and Joyita Dutta. Graph convolutional neural networks for
Alzheimer’s disease classification. In Proceedings - International Symposium on Biomedical
Imaging, volume 2019-April, 2019. doi: 10.1109/ISBI.2019.8759531.

20. Palash Goyal and Emilio Ferrara. Graph Embedding Techniques, Applications, and Perfor-
mance: A Survey. 5 2017. doi: 10.1016/j.knosys.2018.03.022.

21. Palash Goyal and Emilio Ferrara. GEM: A Python package for graph embedding methods.
Journal of Open Source Software, 3(29), 2018. ISSN 2475-9066. doi: 10.21105/joss.00876.

22. Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos Skia-

nis, and Michalis Vazirgiannis. Grakel: A graph kernel library in python. Journal of Machine
Learning Research, 21, 2020. ISSN 15337928.

23. Da Zheng, Minjie Wang, Quan Gan, Zheng Zhang, and Geroge Karypis. Scalable Graph
Neural Networks with Deep Graph Library. In Proceedings of the ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, 2020. doi: 10.1145/3394486.
3406712.

24. Ramona Leenings, Nils Ralf Winter, Lucas Plagwitz, Vincent Holstein, Jan Ernsting, Jakob
Steenweg, Julian Gebker, Kelvin Sarink, Daniel Emden, Dominik Grotegerd, Nils Opel, Ben-
jamin Risse, Xiaoyi Jiang, Udo Dannlowski, and Tim Hahn. PHOTON – A Python API for
Rapid Machine Learning Model Development. 2 2020.

25. Sofia Ira Ktena, Sarah Parisot, Enzo Ferrante, Martin Rajchl, Matthew Lee, Ben Glocker,
and Daniel Rueckert. Distance metric learning using graph convolutional networks: Appli-
cation to functional brain networks. In Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
10433 LNCS, 2017. doi: 10.1007/978-3-319-66182-7{\_}54.

26. A A Hagberg, D A Schult, and P J Swart. Exploring network structure, dynamics, and
function using NetworkX. In 7th Python in Science Conference (SciPy 2008), 2008.

27. Gabor Csardi and Tamas Nepusz. The igraph software package for complex network re-
search. InterJournal Complex Systems, Complex Sy(1695), 2006.

28. Casper O. da Costa-Luis. tqdm: A Fast, Extensible Progress Meter for Python and CLI.
Journal of Open Source Software, 4(37), 2019. doi: 10.21105/joss.01277.

29. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An im-
perative style, high-performance deep learning library. In Advances in Neural Information
Processing Systems, volume 32, 2019.

30. Shi Gu, Fabio Pasqualetti, Matthew Cieslak, Qawi K. Telesford, Alfred B. Yu, Ari E. Kahn,
John D. Medaglia, Jean M. Vettel, Michael B. Miller, Scott T. Grafton, and Danielle S. Bas-
sett. Controllability of structural brain networks. Nature Communications, 6, 2015. ISSN
20411723. doi: 10.1038/ncomms9414.

31. Shi Gu, Richard F. Betzel, Marcelo G. Mattar, Matthew Cieslak, Philip R. Delio, Scott T.
Grafton, Fabio Pasqualetti, and Danielle S. Bassett. Optimal trajectories of brain state tran-
sitions. NeuroImage, 148, 2017. ISSN 10959572. doi: 10.1016/j.neuroimage.2017.01.003.

32. Teresa M. Karrer, Jason Z. Kim, Jennifer Stiso, Ari E. Kahn, Fabio Pasqualetti, Ute Habel,
and Danielle S. Bassett. A practical guide to methodological considerations in the con-
trollability of structural brain networks. Journal of Neural Engineering, 17(2), 2020. ISSN
17412552. doi: 10.1088/1741-2552/ab6e8b.

33. Martijn P. Van Den Heuvel, Lianne H. Scholtens, Hannelore K. Van Der Burgh, Federica
Agosta, Clara Alloza, Celso Arango, Bonnie Auyeung, Simon Baron-Cohen, Silvia Ba-
saia, Manon J.N.L. Benders, Frauke Beyer, Linda Booij, Kees P.J. Braun, Geraldo Busatto
Filho, Wiepke Cahn, Dara M. Cannon, Tiffany M. Chaim-Avancini, Sandra S.M. Chan,
Eric Y.H. Chen, Benedicto Crespo-Facorro, Eveline A. Crone, Udo Dannlowski, Sonja M.C.
De Zwarte, Bruno Dietsche, Gary Donohoe, Stefan Du Plessis, Sarah Durston, Cov-
adonga M. Díaz-Caneja, Ana M. Díaz-Zuluaga, Robin Emsley, Massimo Filippi, Thomas
Frodl, Martin Gorges, Beata Graff, Dominik Grotegerd, Dariusz Ga̧secki, Julie M. Hall,
Laurena Holleran, Rosemary Holt, Helene J. Hopman, Andreas Jansen, Joost Janssen,
Krzysztof Jodzio, Lutz Jäncke, Vasiliy G. Kaleda, Jan Kassubek, Shahrzad Kharabian Ma-
souleh, Tilo Kircher, Martijn G.J.C. Koevoets, Vladimir S. Kostic, Axel Krug, Stephen M.
Lawrie, Irina S. Lebedeva, Edwin H.M. Lee, Tristram A. Lett, Simon J.G. Lewis, Franziskus
Liem, Michael V. Lombardo, Carlos Lopez-Jaramillo, Daniel S. Margulies, Sebastian Mar-
kett, Paulo Marques, Ignacio Martínez-Zalacaín, Colm McDonald, Andrew M. McIntosh,
Genevieve McPhilemy, Susanne L. Meinert, José M. Menchón, Christian Montag, Pedro S.
Moreira, Pedro Morgado, David O. Mothersill, Susan Mérillat, Hans Peter Müller, Leila
Nabulsi, Pablo Najt, Krzysztof Narkiewicz, Patrycja Naumczyk, Bob Oranje, Victor Ortiz Gar-
cia De la Foz, Jiska S. Peper, Julian A. Pineda, Paul E. Rasser, Ronny Redlich, Jonathan
Repple, Martin Reuter, Pedro G.P. Rosa, Amber N.V. Ruigrok, Agnieszka Sabisz, Ulrich
Schall, Soraya Seedat, Mauricio H. Serpa, Stavros Skouras, Carles Soriano-Mas, Nuno
Sousa, Edyta Szurowska, Alexander S. Tomyshev, Diana Tordesillas-Gutierrez, Sofie L.
Valk, Leonard H. Van Den Berg, Theo G.M. Van Erp, Neeltje E.M. Van Haren, Judith M.C.
Van Leeuwen, Arno Villringer, Christiaan H. Vinkers, Christian Vollmar, Lea Waller, Henrik
Walter, Heather C. Whalley, Marta Witkowska, A. Veronica Witte, Marcus V. Zanetti, Rui
Zhang, and Siemon C. De Lange. 10kin1day: A bottom-up neuroimaging initiative, 2019.
ISSN 16642295.

34. David C. Van Essen, Stephen M. Smith, Deanna M. Barch, Timothy E.J. Behrens, Essa
Yacoub, and Kamil Ugurbil. The WU-Minn Human Connectome Project: An overview. Neu-
roImage, 80, 2013. ISSN 10538119. doi: 10.1016/j.neuroimage.2013.05.041.

35. Georgios A. Pavlopoulos, Maria Secrier, Charalampos N. Moschopoulos, Theodoros G.
Soldatos, Sophia Kossida, Jan Aerts, Reinhard Schneider, and Pantelis G. Bagos. Using
graph theory to analyze biological networks, 2011. ISSN 17560381.

36. William L Hamilton, Rex Ying, and Jure Leskovec. Representation Learning on Graphs:
Methods and Applications. Technical report, 2017.

37. Mahito Sugiyama, M. Elisabetta Ghisu, Felipe Llinares-López, and Karsten Borgwardt.
Graphkernels: R and Python packages for graph comparison. Bioinformatics, 34(3), 2018.
ISSN 14602059. doi: 10.1093/bioinformatics/btx602.

38. Linlin Jia, Benoit Gaüzère, and Paul Honeine. graphkit-learn: A Python library for graph
kernels based on linear patterns. Pattern Recognition Letters, 143, 2021. ISSN 01678655.
doi: 10.1016/j.patrec.2021.01.003.

39. Daniele Grattarola and Cesare Alippi. Graph Neural Networks in TensorFlow and Keras with
Spektral. 6 2020.

40. Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch
Geometric. 3 2019.

41. Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl,
Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess,

8 | medRχiv Jan Ernsting, Vincent Holstein et al. | PHOTONAI-Graph

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.22.23291748doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.22.23291748
http://creativecommons.org/licenses/by-nc-nd/4.0/


A Predicting Sex from resting-state fMRI

Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pas-
canu. Relational inductive biases, deep learning, and graph networks. 6 2018.

42. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh
Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vi-
jay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A
system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2016, 2016.

43. Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. MXNet: A Flexible and Efficient Machine Learning
Library for Heterogeneous Distributed Systems. 12 2015.

44. Einar A. Høgestøl, Tobias Kaufmann, Gro O. Nygaard, Mona K. Beyer, Piotr Sowa, Jan E.
Nordvik, Knut Kolskår, Geneviève Richard, Ole A. Andreassen, Hanne F. Harbo, and Lars T.
Westlye. Cross-sectional and longitudinal MRI brain scans reveal accelerated brain aging
in multiple sclerosis. Frontiers in Neurology, 10(APR), 2019. ISSN 16642295. doi: 10.3389/
fneur.2019.00450.

45. Ann E. Sizemore and Danielle S. Bassett. Dynamic graph metrics: Tutorial, toolbox, and
tale, 10 2018. ISSN 10959572.

46. David Meunier, Annalisa Pascarella, Dmitrii Altukhov, Mainak Jas, Etienne Combrisson,
Tarek Lajnef, Daphné Bertrand-Dubois, Vanessa Hadid, Golnoush Alamian, Jordan Alves,
Fanny Barlaam, Anne Lise Saive, Arthur Dehgan, and Karim Jerbi. NeuroPycon: An open-
source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
NeuroImage, 219, 2020. ISSN 10959572. doi: 10.1016/j.neuroimage.2020.117020.

47. Tim Hahn, Hamidreza Jamalabadi, Daniel Emden, Janik Goltermann, Jan Ernsting, Nils R
Winter, Lukas Fisch, Ramona Leenings, Kelvin Sarink, Vincent Holstein, Marius Gruber, Do-
minik Grotegerd, Susanne Meinert, Katharina Dohm, Elisabeth J Leehr, Maike Richter, Lisa
Sindermann, Verena Enneking, Hannah Lemke, Stephanie Witt, Marcella Rietschel, Katha-
rina Brosch, Julia-Katharina Pfarr, Tina Meller, Kai Gustav Ringwald, Simon Schmitt, Fred-
erike Stein, Igor Nenadic, Tilo Kircher, Bertram Müller-Myhsok, Till FM Andlauer, Jonathan
Repple, Udo Dannlowski, and Nils Opel. A Network Control Theory Approach to Longitudi-
nal Symptom Dynamics in Major Depressive Disorder. Technical report, 2021.

48. Tim Hahn, Hamidreza Jamalabadi, Erfan Nozari, Nils R Winter, Jan Ernsting, Marius Gru-
ber, Marco J Mauritz, Pascal Grumbach, Lukas Fisch, Ramona Leenings, Kelvin Sarink,
Julian Blanke, Leon Kleine Vennekate, Daniel Emden, Nils Opel, Dominik Grotegerd, Ver-
ena Enneking, Susanne Meinert, Tiana Borgers, Melissa Klug, Elisabeth J Leehr, Katharina
Dohm, Walter Heindel, Joachim Gross, Udo Dannlowski, Ronny Redlich, and Jonathan
Repple. Towards a network control theory of electroconvulsive therapy response. PNAS
Nexus, 2(2), 2023. doi: 10.1093/pnasnexus/pgad032.

49. Tim Hahn, Nils R. Winter, Jan Ernsting, Marius Gruber, Marco J. Mauritz, Lukas Fisch, Ra-
mona Leenings, Kelvin Sarink, Julian Blanke, Vincent Holstein, Daniel Emden, Marie Beise-
mann, Nils Opel, Dominik Grotegerd, Susanne Meinert, Walter Heindel, Stephanie Witt,
Marcella Rietschel, Markus M. Nöthen, Andreas J. Forstner, Tilo Kircher, Igor Nenadic, An-
dreas Jansen, Bertram Müller-Myhsok, Till F.M. Andlauer, Martin Walter, Martijn P. van den
Heuvel, Hamidreza Jamalabadi, Udo Dannlowski, and Jonathan Repple. Genetic, individ-
ual, and familial risk correlates of brain network controllability in major depressive disorder.
Molecular Psychiatry, 28(3), 2023. ISSN 14765578. doi: 10.1038/s41380-022-01936-6.

50. Evelyn Tang, Chad Giusti, Graham L. Baum, Shi Gu, Eli Pollock, Ari E. Kahn, David R. Roalf,
Tyler M. Moore, Kosha Ruparel, Ruben C. Gur, Raquel E. Gur, Theodore D. Satterthwaite,
and Danielle S. Bassett. Developmental increases in white matter network controllability
support a growing diversity of brain dynamics. Nature Communications, 8(1), 2017. ISSN
20411723. doi: 10.1038/s41467-017-01254-4.

51. Krzysztof Gorgolewski, Christopher D. Burns, Cindee Madison, Dav Clark, Yaroslav O.
Halchenko, Michael L. Waskom, and Satrajit S. Ghosh. Nipype: A flexible, lightweight and
extensible neuroimaging data processing framework in Python. Frontiers in Neuroinformat-
ics, 5, 2011. ISSN 16625196. doi: 10.3389/fninf.2011.00013.

52. Siemon C. de Lange, Koen Helwegen, and Martijn P. van den Heuvel. Structural and func-
tional connectivity reconstruction with CATO - A Connectivity Analysis TOolbox. NeuroIm-
age, 273:120108, 6 2023. ISSN 10538119. doi: 10.1016/j.neuroimage.2023.120108.

53. Guixiang Ma, Dipanjan Sengupta, Nesreen K. Ahmed, Michael W. Cole, Philip S. Yu,
Theodore L. Willke, and Nicholas B. Turk-Browne. Deep graph similarity learning for brain
data analysis. In International Conference on Information and Knowledge Management,
Proceedings, 2019. doi: 10.1145/3357384.3357815.

Supplementary Material

Jan Ernsting, Vincent Holstein et al. | PHOTONAI-Graph medRχiv | 9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.22.23291748doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.22.23291748
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 5. Prediction Script. The HCP-YA Sex Prediction pipeline can be built in 43 lines of code. Line 19-43 define and fit the pipeline, meaning that the entire pipeline
optimization strategy, optimizer parameters, validation metrics, Graph Constructor, Graph Neural Network and pipeline fitting can be defined within 24 lines of code. This
significantly decreases development time and increases accessibility.

10 | medRχiv Jan Ernsting, Vincent Holstein et al. | PHOTONAI-Graph

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.22.23291748doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.22.23291748
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Predicting Sex from resting-state fMRI

