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1. ZUSAMMENFASSUNG 
Rezeptor-Tyrosinkinasen (RTKs) sind essentielle Bestandteile der inter- und 

intrazellulären Kommunikation und der Signaltransduktion in Metazoen. Sie sind involviert in 

die Steuerung wichtiger zellulärer Prozesse wie Zellteilung, Zellwachstum, Zelldifferen-

zierung und Zelltod (Hubbard and Miller, 2007). RTKs gehören zu der Enzymfamilie der 

Protein-Tyrosinkinasen, die den Transfer einer Phosphatgruppe von ATP auf Tyrosinreste des 

Substrates katalysieren. Im menschlichen Genom sind 58 RTKs und 32 nicht-Rezeptor 

Protein-Tyrosinkinasen kodiert. Die Rezeptoren sind Typ I Transmembranproteine mit einer 

extrazellulären Liganden-Bindungsdomäne und einer intrazellulären Tyrosinkinasedomäne. 

Der extrazelluläre Bereich ist mit der intrazellulären Kinasedomäne durch eine einfache 

Transmembranhelix verbunden (Schlessinger, 2000).  

Generell werden RTKs durch Liganden-induzierte Dimerisierung aktiviert, die die 

intrazellulären Kinasendomänen nahe genug zueinander bringt um eine Autophospho-

rylierung in trans zu ermöglichen. Die phosphorylierten Proteinsequenzen rekrutieren 

Proteinsubstrate, die eine Signalkaskade in das Zellinnere und in den Zellkern initiieren. 

Letztendlich werden so Transkriptionsfaktoren reguliert, die in Prozesse involviert sind wie 

zum Beispiel die Zelldifferenzierung oder das Zellüberleben (Hunter, 2000). 

Ausgehend von ersten Untersuchungen in den 1980er Jahren zeigte sich, dass viele RTKs 

an der Entstehung verschiedener Neoplasien beteiligt sind und sogar Malignome hervorrufen 

können, wenn Störungen in der normalen Regulation der Rezeptoren vorliegen. 

Missregulierungen dieser Art können u.a. durch Genamplifikationen oder durch Mutationen 

verursacht werden, die eine konstitutive Aktivierung der Rezeptoren zur Folge haben 

(Weinberg, 2007).  

In der Klinik werden verschiedene Therapieansätze gegen Neoplasien, die durch RTKs 

hervorgerufen werden, genutzt (Mendelsohn and Baselga, 2006). Unter anderem können 

einerseits Tyrosinkinase-Inhibitoren intrazellulär die Signaltransduktionskaskaden blockieren, 

die zu einer weiteren Zellteilung und –amplifikation führen würden. Andererseits werden 

monoklonale Antikörper eingesetzt, die die Rezeptoren extrazellulär binden. Hierdurch wird 

das Immunsystem des Körpers gegen Zellen aktiviert, die eine große Anzahl der Rezeptoren 

an der Oberfläche tragen. Zusätzlich können Antikörper die Aktivierung der RKTs 

verhindern, indem sie das Binden von Liganden oder die Rezeptordimerisierung blockieren.  
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Verschiedene Studien über die Anwendung von monoklonalen Antikörpern in der 

Krebstherapie haben gezeigt, dass aktivierende Mutationen in Mediatoren der Signalkaskaden 

(zum Beispiel K-ras), Kompensationsmechanismen bzw. Resistenzen der Zelle und sich 

gegenseitig beeinflussende Signaltransduktionswege von verschiedenen RTKs Einfluss auf 

die Wirksamkeit der Therapie haben (Dempke and Heinemann, 2009). Eine für jeden 

Patienten individuell angepasste Kombination von Chemotherapie, Strahlentherapie und 

Antikörpern bzw. Inhibitoren könnte ein Weg sein um die Effektivität der Behandlung zu 

steigern und Nebenwirkungen zu minimieren (Friedman et al., 2005). 

 

In dieser Arbeit wurde mit zwei verschiedenen RTKs gearbeitet: der Epidermale 

Wachstumsfaktorrezeptor EGFR und der Insulin-ähnliche Wachstumsfaktorrezeptor 1 IGF-

1R. Beide Rezeptoren können bei Missregulation Tumoren hervorrufen, u.a. epitheliale 

Neoplasien wie Bronchialkarzinome oder Kolonkarzinome. Eine ansteigende Anzahl von 

Antikörpern gegen EGFR and IGF-1R ist in der klinischen Untersuchungsphase oder schon in 

der Klinik in Anwendung. Gegen EGFR sind die Antikörper Cetuximab/Erbitux® und 

Panitumumab/Vectibix® seit 2004 beziehungsweise 2006 zugelassen. Des Weiteren ist der 

monoklonalen Antikörper Trastuzumab/Herceptin® seit 1998 in der klinischen Anwendung 

gegen Mammkarzinome, die das zweite Familienmitglied der EGFR Familie ErbB2 

überexprimieren.  

 

Das Ziel dieser Arbeit war die Charakterisierung der Interaktionen von löslichen RTK 

extrazellulären Domänen mit Antikörper Fab-Fragmenten sowie der Inhibitionsmechanismen 

von verschiedenen Antikörpern. Ein besseres Verständnis der Epitope der Antikörper, ihrer 

Affinitäten und Liganden-Kompetitionscharakteristiken könnte dazu beitragen die klinische 

Anwendung der Antikörper in der Krebstherapie zu verbessern. Es wurden die folgenden 

Fragestellungen untersucht: 

1. an welcher Stelle der extrazellulären Domäne bindet der Antikörper? 

2. welche Affinität hat der Antikörper zum löslichen Rezeptor? 

3. wie beeinflusst die Bindung des Antikörpers die Aktivierung des Rezeptors? 

4. ist es den natürlichen Liganden des Rezeptors noch möglich zu binden, wenn der 

Antikörper vorhanden ist? 

5. welchen Effekt hat der gebundene Antikörper auf die Rezeptordimerisierung? 

6. ist die strukturelle Reorganisation, die Voraussetzung für die Rezeptoraktivierung ist, 

noch möglich mit gebundenem Antikörper? 
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Die Arbeit wurde in drei Abschnitte gegliedert. Im ersten Abschnitt (Kapitel 5) werden 

die Interaktionen von EGFR mit dem monoklonalen Antikörper Matuzumab (EMD72000) 

beschrieben. Der zweite Abschnitt (Kapitel 6) zeigt Untersuchungen zu einer EGFR Mutante 

(EGFR Variante III oder EGFRvIII), die bisher ausschließlich auf neoplastischen Zellen 

nachgewiesen werden konnte. Im dritten Abschnitt wird die Bindung des monoklonalen 

Antikörpers EMD1159476 an den Insulin-ähnlichen Wachstumsfaktor-rezeptor 1 IGF-1R 

beschrieben (Kapitel 7).  

 

(1) EGFR – Antikörper Interaktionen (Kapitel 5) 

In diesem Teil der Arbeit wurden die Eigenschaften des gegen EGFR gerichteten 

monoklonalen Antikörpers Matuzumab (EMD72000) untersucht. Matuzumab ist die 

humanisiert Form des murinen anti-EGFR Antikörpers 425 und hat die Phase II der klinischen 

Studien erreicht. Es konnte die Komplexkristallstruktur des Matuzumab Fab-Fragments mit 

der Domäne III des Rezeptors gelöst und so erstmals das Epitop des Antikörpers identifiziert 

werden. Das Epitop wurde durch Rezeptor-Mutationsstudien in Lösung bestätigt. 

Interessanterweise überlappt die Matuzumab Bindestelle nicht mit dem Epitop des natürlichen 

Liganden EGF. Das Gegenteil wurde zuvor für den bereits in der Klinik eingesetzten 

Antikörper Cetuximab beobachtet, dessen Bindungsstelle sich mit dem Epitop von EGF 

überschneidet. Zudem sind die Epitope der beiden Antikörper Matuzumab und Cetuximab 

unterschiedlich und nicht überlappend. Während Cetuximab direkt das Binden des 

aktivierenden Liganden an EGFR verhindert, konnte für Matuzumab in dieser Arbeit ein 

anderer indirekter Inhibitionsmechanismus vorgeschlagen werden: Matuzumab verhindert 

sterisch die Konformationsänderungen des Rezeptors, die für die Dimerisierung der 

Rezeptormonomeren stattfinden müssen. Ein solcher nicht-kompetitiver Inhibitions-

mechanismus eines Antikörpers gegen EGFR konnte in dieser Arbeit erstmals beschrieben 

werden.  
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Basierend auf den Rezeptor-Antikörper Komplex-Strukturmodellen erscheint eine 

simultane Bindung beider Antikörper an EGFR möglich. Tatsächlich konnte in vitro eine 

parallele Binding beider Antikörper an Zelloberflächen-EGFR beobachtet werden. Diese 

Ergebnisse haben wichtige Konsequenzen für den klinischen Einsatz der Antikörper in der 

Krebstherapie, da sie implizieren, dass eine Kombinationstherapie mit beiden Antikörpern 

möglich ist. Präklinisch konnte bereits ein synergistischer Effekt von Cetuximab und 

Matuzumab in Kombination nachgewiesen werden (Dechant et al., 2008; Kamat et al., 2008). 

Ob eine solche Therapie allerdings für Patienten Vorteile bringt, müsste erst noch gezeigt 

werden. 

 

(2) EGFRvIII (Kapitel 6) 

Im zweiten Teil dieser Arbeit wurde eine Mutation des EGF Rezeptors untersucht, die 

durch die Deletion eines Teils der extrazellulären Domäne entsteht: die EGFR Variante III 

(EGFRvIII). Diese Mutante wurde bisher nur auf neoplastischen Zelllen nachgewiesen und 

tritt gehäuft auf Gliomazellen auf. EGFRvIII ist konstitutiv aktiv and hat eine reduzierte 

Abbaurate im Vergleich zum Wildtyp-Rezeptor. Es ist bisher nicht klar, auf welche Weise die 

konstitutive Aktivierung der Rezeptormutante hervorgerufen wird. Daher wurde in dieser 

Arbeit erstmals die lösliche extrazelluläre Domäne von EGFRvIII strukturell und auf ihre 

Dimerisierungseigenschaften hin untersucht. Es konnte gezeigt werden, dass die Domänen III 

und IV des extrazellulären Bereichs strukturell durch die Deletion nicht beeinträchtigt sind 

und denen des Wildtyp-Rezeptors entsprechen. Des Weiteren konnte nachgewiesen werden, 

dass die monoklonalen Antikörper Matuzumab und Cetuximab mit einer ähnlichen Affinität 

an die löslichen extrazellulären Domänen der EGFRvIII und des Wildtyp-Rezeptors binden. 

Es ist bereits bekannt, dass die Ektodomänen des Wildtyp-Rezeptors bei Zugabe des 

natürlichen Liganden EGF dimerisieren (Ferguson et al., 2000). In dieser Arbeit konnte 

erstmals nachgewiesen werden, dass EGF zwar an die Domäne III-Bindungsstelle von 

EGFRvIII bindet, aber keine Dimerisierung des mutierten Rezeptors hervorruft. Diese 

Ergebnisse beantworten Teilfragen der EGFRvIII Biologie unter anderem zur Struktur der 

Ektodomäne, können allerdings nicht die transformierenden Eigenschaften der Mutante an der 

Zelloberfläche erklären. Dies unterstreicht die Notwendigkeit in diesem Fall den gesamten 

Transmembran-Rezeptor in zellulären Experimenten zu untersuchen. 
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(3) IGF-1R – Antikörper Interaktionen (Kapitel 7) 

Im dritten Teil dieser Arbeit wurde die Bindung eines weiteren monoklonalen Antikörpers 

EMD1159476 an den Insulin-ähnlichen Wachstumsfaktorrezeptor 1 IGF-1R untersucht. 

EMD1159476 hat die letzte Phase der präklinischen Entwicklung erreicht. Ein transientes 

Säugerzellexpressionssystem wurde für verschiedene Konstrukte der extrazellulären IGF-1R 

Domäne etabliert. Die Struktur des Fab-Fragments wurde gelöst; eine Komplexstruktur von 

Rezeptor und Fab-Fragment konnte jedoch trotz intensiven Screenings von 

Kristallisationsbedingungen bisher noch nicht erhalten werden. Die Bindung des Fab-

Fragments an die verschiedenen Konstrukte der lösliche Ektodomäne konnte erstmals 

biophysikalisch nachgewiesen und die Affinität bestimmt werden. Es konnte gezeigt werden, 

dass das Epitop von EMD1159476 innerhalb der Domäne II von IGF-1R liegt und dass der 

gebundene Antikörper die Bindung des natürlichen Liganden IGF-1 beeinträchtigt. Diese 

Ergebnisse könnten die präklinische Entwicklung unterstützen. 

 

.
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2. AIM OF THE THESIS 
Cancer patients often suffer from serious side effects of chemo- and radiotherapy treatment to 

fight the uncontrolled proliferation in malignant tumors. Targeted therapy, such as therapeutic 

antibodies against specific cancer related cell surface proteins, might offer a more efficient 

treatment. An increasing number of therapeutic antibodies targeting tumors that express cell 

surface receptor tyrosine kinases (RTKs) are in clinical use or late stages of clinical 

development. The aim of this thesis is to investigate the molecular basis of inhibition of two 

receptor tyrosine kinases – the epidermal growth factor receptor EGFR and the insulin-like 

growth factor receptor IGF-1R - by therapeutic antibodies.  

The thesis covers investigations about the interactions between antibody Fab fragments and 

soluble receptor extracellular domains. Several biophysical methods were applied to analyze 

the mode of receptor inhibition and to address the following questions: 

7. which part of the receptor extracellular domain does the antibody bind to? 

8. what affinity does the antibody have to the receptor? 

9. how does antibody binding influence receptor activation? 

10. are the natural ligands that are involved in receptor activation still able to bind to the 

receptor? 

11. which effects does antibody binding have on receptor dimerization? 

12. is the structural reorganization of the receptor required for activation still possible with 

antibody bound? 

 

Based on the results of the biophysical assays questions can be answered about 

allosteric/competitive receptor inhibition, the antibody epitope and implications of antibody 

binding on normal receptor activation. Cell surface assays and clinical investigations were 

beyond the scope of this thesis and results are discussed based on literature. 

 

The thesis is structured in three separate parts representing the receptor types that were 

investigated.  

1. EGFR – antibody interactions (chapter 5) 

2. the cancer related mutant variant III of EGFR (EGFRvIII) (chapter 6) 

3. IGF-1R – antibody interactions (chapter 7) 
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3. RECEPTOR TYROSINE KINASES 

3.1.  Introduction 

Receptor tyrosine kinases (RTKs) are essential components of the signal transduction 

pathways in inter- and intracellular communication in metazoans (Hubbard and Miller, 2007). 

They belong to the enzyme family of protein tyrosine kinases, which catalyze phosphoryl 

transfer to tyrosine residues in protein substrates, using ATP as a phosphate donor (Hunter, 

1998). The human genome encodes 58 RTKs and 32 non-receptor protein tyrosine kinases 

(Robinson et al., 2000). The receptor kinases are type I transmembrane-spanning proteins (N-

terminus in the extracellular region, C-terminus intracellular) and contain an extracellular 

ligand binding domain that is usually glycosylated. The extracellular domain is connected to 

the intracellular kinase domain via a single transmembrane helix (Schlessinger, 2000). The 

kinase domain contains additional regulatory sequences that are controlled by 

autophosphorylation or phosphorylation by heterologous protein kinases (Hubbard et al., 

1998). RTKs play an important role in the control of most fundamental cellular processes 

such as cell cycle regulation, cell migration and survival as well as cell proliferation and 

differentiation (Hubbard and Miller, 2007).  

The family of RTKs (Fig. 1) includes, among others, the epidermal growth factor receptor 

(EGFR), platelet-derived growth factor receptors (PDGFRs), fibroblast growth factor 

receptors (FGFRs), vascular endothelial growth factor receptors (VEGFRs), Met (hepatocyte 

growth factor/scatter factor [HGF/SF] receptor), Ephrin receptors (Ephs) as well as insulin 

receptor (IR) and insulin-like growth factor receptor (IGFR) (Schlessinger, 2000; Blume-

Jensen and Hunter, 2001).  
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Fig. 1: Human receptor tyrosine kinases 

The prototype of each receptor family is shown with the known members listed below. The symbols α and β 
denote distinct receptor subunits. Members in bold and italic type are implicated in human cancers. An asterisk 
indicates that the member is devoid of intrinsic kinase activity. Abbreviations: EGFR, epidermal growth factor 
receptor; InsR, insulin receptor; PDGFR, platelet-derived growth factor receptor; VEGFR, vascular endothelial 
growth factor receptor; FGFR, fibroblast growth factor receptor; KLG/CCK, colon carcinoma kinase; NGFR, 
nerve growth factor receptor; HGFR, hepatocyte growth factor receptor; EphR, ephrin receptor; Axl, a Tyro3 
protein tyrosine kinase, TIE, tyrosine kinase receptor in endothelial cells; RYK, receptor related to tyrosine 
kinases; DDR, discoidin domain receptor; Ret, rearranged during transfection; ROS, receptor tyrosine kinase 
expressed in some epithelial cell types; LTK, leukocyte tyrosine kinase; ROR, receptor orphan; MuSK, muscle-
specific kinase; LMR, Lemur; AB, acidic box; CadhD, cadherin-like domain; CRD, cysteine-rich domain; 
DiscD, discoidin-like domain; EGFD, epidermal growth factor-like domain; FNIII, fibronectin type III-like 
domain; IgD, immunoglobulin-like domain; KinD, kringle-like domain; LRD, leucine-rich domain (figure taken 
from Blume-Jensen and Hunter, 2001). 
 

3.2.  Structures of RTKs 

During the last 10 years crystal structures of the extracellular domains of most RTK 

family members were solved (Table 1). These include structures of all human EGFR family 

members without ligand and EGFR with bound ligand (see 5.1.2). In the IR family structures 

of IR domain I-III and the whole IR ectodomain as well as IGF-1R domain I-III are available 

(see 7.1.1).  
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Table 1: Overview structural information of RTK extracellular domains 
Structural information available 

Receptor Structures of parts or the full extracellular domain solved 

EGFR 

all family members, EGFR with ligands EGF and TGF-α (Cho and Leahy, 

2002; Ogiso et al., 2002; Garrett et al., 2002; Ferguson et al., 2003; Cho et 

al., 2003; Garrett et al., 2003; Franklin et al., 2004; Bouyain et al., 2005) 

IR family 
IR domain I-III and IR ectodomain, IGF-1R domain I-III (Garrett et al., 

1998; McKern et al., 2006; Lou et al., 2006) 

PDGFR KIT with and without ligand (Yuzawa et al., 2007) 

VEGFR1 domain II (Christinger et al., 2004) 

FGFR 

parts of the extracellular domain in complex with different ligands 

(Plotnikov et al., 1999; Stauber et al., 2000; Plotnikov et al., 2000; Yeh et 

al., 2003; Olsen et al., 2004; Olsen et al., 2006) 

NGFR 

full and fragmented ectodomains with and without ligand (Wiesmann et al., 

1999; Ultsch et al., 1999; Robertson et al., 2001; Banfield et al., 2001; 

Wehrman et al., 2007) 

HGFR partial ectodomain with ligand bound (Stamos et al., 2004) 

EPHR 

several extracellular domains with and without ligand (Himanen et al., 

2001; Himanen et al., 2004; Chrencik et al., 2006; Qin et al., 2008; 

Goldgur et al., 2009) 

AXL 
two family members alone and in complex with ligand (Heiring et al., 

2004; Sasaki et al., 2006) 

TIE partial ectodomain alone and in complex with ligand (Barton et al., 2006) 

DDR discoidin domain of DDR2 (Ichikawa et al., 2007) 

MuSK first and second immunoglobulin-like domain (Stiegler et al., 2006) 

No structural information available 

KLG/CCK, RYK, RET, ROS, LTK, ROR 
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3.3.  RTK activation 

Generally, RTKs are activated through ligand induced receptor dimerization, which brings 

the tyrosine kinase domains into close proximity promoting the allosteric activation of the 

kinase domains (Zhang et al., 2006a; Hubbard and Miller, 2007). The phosphorylated tyrosine 

residues are located in the kinase activation loop or juxtamembrane region, inducing 

conformational changes that stabilize the active state of the kinase (Hubbard, 2004). Induced 

by the phosphorylation event, the activated kinase domains recruit downstream substrate 

molecules which initiate an intracellular signal cascade (see 3.4). The signaling pathways 

regulate transcription factors involved in cell survival or cell differentiation (Blume-Jensen 

and Hunter, 2001; Murphy and Blenis, 2006). 

Within the RTK family different ligands employ varying modes for inducing the active 

dimeric state of the receptors. The following mechanisms have been described: 

1. The simplest mechanism is represented by bivalent ligands, binding simultaneously to 

two receptor molecules (1:2 ligand:receptor complex). This binding mode has been 

observed e.g. in structural studies investigating the growth hormone receptor (GHR, 

not included in Fig. 1) in complex with growth hormone (GH) (Kossiakoff and de 

Vos, 1998).  

2. A 2:2 ligand:receptor complex was described for homodimeric growth factors, e.g. 

VEGF, FGF or PDGF (Wiesmann et al., 1997; Plotnikov et al., 1999). Using electron 

microscopy and small-angle x-ray scattering also the RTK Met was described to be 

activated in a similar 2:2 ligand:receptor mode with no direct receptor contact in the 

complex (Gherardi et al., 2006). In case of FGF receptor activation it was shown in 

crystallographic studies that the receptor requires heparin sulfate proteoglycans in 

addition to the ligands to stabilize the dimeric complex (Mohammadi et al., 2005).  

3. The structures of complexes of EGFR and its ligands EGF and TGF-α (Ogiso et al., 

2002; Garrett et al., 2002) also showed a 2:2 ligand:receptor complex. But in contrast 

to the complexes mentioned above the dimer interface is entirely receptor mediated 

and the ligands do not touch each other (see 5.1 and Fig. 6).  

4. Unlike the majority of RTKs the insulin receptor family is not a single-chain receptor, 

but a α2β2 homodimer (see 7.1). Recently, the structure of the entire disulfide-linked 

ectodomain of the insulin receptor has been solved (McKern et al., 2006) (Fig. 34). 

The current activation model suggests a 2:1 ligand:receptor dimer complex with the 

ligands mediating the contact between the two halfes of the homodimer. 
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5. A subset of RTKs, including Ret (rearranged during transfection) and MuSK (muscle-

specific kinase), do not bind their ligands directly, but require co-receptors for ligand-

induced activation. Ret dimerizes as 1:2:2 ligand:receptor:co-receptor complex 

(Schlee et al., 2006). Ligand and co-receptor of MuSK were recently identified as the 

heparan sulfate proteoglycan agrin and the low density lipoprotein receptor (LDLR) 

family member Lrp4 (Stiegler et al., 2006; Kim et al., 2008). 

 

3.4.  Signaling mechanisms downstream of activated RTKs 

The phosphotyrosine residues in RTKs are bound by cytoplasmic enzymes and 

adapter/scaffolding proteins containing SRC homology-2 (SH2) or phosphotyrosine-binding 

(PTB) domains (Hubbard and Miller, 2007). SH2 domain-containing enzymes (SHC) are e.g. 

protein tyrosine kinases (SRC kinases), protein tyrosine phosphatases (SHP2), phospholipase 

C (PLCγ) or guanine exchange factors (Ras-GAP). With their SH2 and SH3 domains adapter 

proteins (e.g. GRB2, NCK, CRK, SHC) form scaffolds that link different proteins involved in 

signal transduction.  

Simplified, there are three main intracellular signal transduction pathways that are 

activated through RTK phosphorylation (Fig. 2). 

1. The Ras/MAP kinase (mitogen-activated protein kinase) signaling cascade 

(Schlessinger, 2000). The adapter protein GRB2 forms a complex with the guanine 

nucleotide exchange factor mSOS (mammalian son of sevenless). The GRB2:SOS 

complex binds to RTK phosphotyrosine residues thus translocating SOS to the plasma 

membrane and close to Ras. Here it stimulates the exchange of GTP for GDP 

(Gureasko et al., 2008). Once in the active GTP-bound state, Ras interacts with several 

effector proteins such as Raf and phosphatidylinositol 3-kinase (PI-3K) to trigger 

numerous intracellular processes. Activated Ras stimulates MAP-kinase-kinase 

(MAPKK, MEK1); wich in turn phosphorylates MAP-kinase (MAPK, extracellular 

signal-regulated kinase ERK). MAPK is rapidly translocated into the nucleus where it 

activates transcription factors (Hunter, 2000; Papin et al., 2005; Murphy and Blenis, 

2006; Weinberg, 2007). 

2. Activation of PLCγ with subsequent release of the second messengers diacylglycerol 

(DAG) and inositol-3,4,5-trisphosphate (IP3). Further downstream events comprise 

Ca2+ release, Ca2+/calmodulin-dependent protein kinase and protein kinase C (PKC) 

activation and finally transcription factor phosphorylation (Hunter, 2000).  
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3. The phospholipid kinase PI-3K pathway. PI-3K is activated by virtually all RTKs. It 

generates the second messengers phosphatidylinositol-3,4-bisphosphate 

(PtdIns(3,4)P2) and PtdIns-3,4,5-P3, which lead to the activation of Akt (PKB) and 

PDK1, two kinases that regulate various metabolic processes including activation of 

mTOR (mammalian target of rapamycin) and prevent apoptotic death (Baselga, 2008; 

Maira et al., 2009). 

 

 
Fig. 2: Simplified RTK intracellular signaling pathway overview 

Upon extracellular ligand binding and receptor dimerization, tyrosine trans-autophosphorylation occurs. This 
triggers the binding of downstream effectors, such as Grb2. Subsequently the recruitment of son-of-sevenless 
(SOS) and Ras, Raf, MEK leads to the activation of the entire mitogen-activated protein kinase (MAPK) cascade 
(MEK stands for ‘MAPK and extracellular signal-regulated kinase (ERK) kinase’). Other signaling pathways 
include the activation of phosphatidylinositol 3-kinase (PI-3K) and Akt or phospholipase C (PLCγ). RTK 
signaling leads to enhanced cell survival, growth and differentiation through the activation of transcription 
factors (e.g. ELK, FOS, STAT, not shown here). 
 

The phosphorylation events downstream of RTK activation involve many proteins and 

expand quickly in the cell. Phosphotyrosine studies in the EGFR signaling network showed 

significant changes in the phosphorylation state of 81 proteins within 20 min after EGF 

stimulation (Blagoev et al., 2004; Zhang et al., 2005).  

The signaling pathways are subjected to multiple negative feedback mechanisms at the 

level of the receptor itself by inhibitory protein tyrosine phosphatases and by receptor 

endocytosis and degradation (Schlessinger, 2000; Le Roy and Wrana, 2005). In addition, the 

specific activity of downstream effector proteins can be negatively regulated by inhibitory 

signals, e.g. through MAPK specific phosphatases. The strength and duration of the signals 

that are transmitted through the networks of signaling cascades are modulated through factors 

such as cell-surface receptor density, expression levels of scaffolding proteins, the 
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surrounding extracellular matrix and the balance between kinases and phosphatases (Murphy 

and Blenis, 2006). 

Taken together, the downstream signaling pathways are not linear but consist of 

multilayered and cross-connected networks. This allows for horizontal interactions and 

permits multiple combinatorial and integrated responses (Mendelsohn and Baselga, 2006). 

The complexity of this network makes it especially difficult to treat RTK misregulation in 

cancer (see next section). 

3.5.  RTKs and cancer 

When mutated or altered structurally, RKTs can become potent oncoproteins. More than 

half of the known receptors tyrosine kinases (marked in bold in Fig. 1) have been repeatedly 

found to be either mutated or overexpressed in human malignancies (Blume-Jensen and 

Hunter, 2001). Once their normal tight regulation is impaired, RTKs can cause deregulated 

autonomous cell growth and support the capacity to invade other tissues.  

This oncogenic transformation can be induced by four main principles: retroviral 

transduction of a proto-oncogene corresponding to a RTK with deregulating structural 

changes (commonly found in rodents and chicken); genomic re-arrangement, i.e. 

chromosomal translocations, resulting in oncogenic fusion proteins; gain-of-function 

mutations or small deletions; or receptor/ligand overexpression resulting from gene 

amplification. In general, the transforming effects are based upon enhanced or constitutive 

kinase activity with quantitatively or qualitatively altered downstream signaling (Murphy and 

Blenis, 2006; Weinberg, 2007). 

In consequence much effort has gone into designing and identifying potent and specific 

RTK inhibitors. Targeted therapeutics were developed both to the extracellular regions of 

RTKs using e.g. monoclonal antibodies, and to the cytoplasmic (kinase) domains using small-

molecule inhibitors (Mendelsohn and Baselga, 2006). 
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4. MATERIALS & METHODS 

4.1.  Molecular Biology 

4.1.1. EGFR 

The vector constructs of the full length extracellular domain of the epidermal growth 

factor receptor sEGFR (pFastBac_sEGFR_His6) and the isolated domain III with the amino 

acids 310-500 of mature sEGFR (sEGFRd3, pFastBac_sEGFRd3_His6) were provided by K. 

M. Ferguson, University of Pennsylvania. These constructs were used for all experiments 

presented in section 5 beside the mutational studies. The same construct sEGFR 

(pFastBac_sEGFR_His6) was cloned by standard PCR and molecular biology procedures for 

the experiments described in section 6 (primer, DNA and protein sequences in the Appendix 

in 11.1 and 11.2). Human EGFR cDNA was provided by Merck KGaA, Germany. 

 

Site-directed mutagenesis to introduce alanine mutation into sEGFR was carried out using 

the QuikChange Kit (Stratagene) following a two-stage PCR protocol (Wang and Malcolm, 

2002). To generate the mutant sEGFR K454A the primers K454 up and K454 rev were used, 

for the mutant sEGFR K463A the primers K463 up and K463 rev were used and for the 

double mutant sEGFR T459A/S460A the primers T459A/S460A up and T459A/S460A rev 

were used (sequences in 11.1). 

The residues K454 or K463 for the triple mutants are sequentially close to the double 

mutant residues T459A and S460A. To prevent back-mutation of already introduced 

alterations the mutagenesis was carried out in two PCR stages: a first round with the primers 

of the T459A/S460A mutation (see above) and a second stage performed with the primers 

tripleK454A up and tripleK454A rev to generate the mutant sEGFR T459A/S460A/K454A or 

the primers tripleK463A up and tripleK463A rev for the mutant sEGFR 

T459A/S460A/K463A (sequences in 11.1). The successful introduction of the mutations was 

verified by DNA sequencing of the respective pFastBac constructs. 

 

Protein of the mutant sEGFR D355T/F357A was provided by K. M. Ferguson, University 

of Pennsylvania. Protein of the mutant sEGFR Y251A/R285S was a donation of J. Dawson, 

University of Pennsylvania. 
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4.1.2. sEGFRvIII 

The deletion mutant sEGFR variant III (sEGFRvIII) was amplified by PCR in two 

fragments from EGFR cDNA (provided by Merck KGaA, Germany). Both fragments were 

generated with a complementary base pair overlap resulting in a novel glycine residue at the 

fusion junction (Fig. 3). 

 

 
Fig. 3: Cloning scheme of sEGFRvIII 

sEGFR variant III consists of two fragments of the wild type EGFR gene, which are fused by a complementary 
overlap at the fusion junction introduced by the primers. Thus residue 5 of domain I is directly connected to 
residue 274 of domain II via a novel glycine residue. 

 

The DNA of sEGFRvIII was amplified and purified using standard PCR and molecular 

biology procedures. The construct was cloned with the N-terminal native secretion signal 

peptide and a C-terminal hexa-histidine tag. In addition attB-sequences were introduced at the 

start and the end of the PCR product to enable the fusion of the gene into a Gateway® entry 

vector (Invitrogen, 2003). The primers sEGFRvIII f1 up and sEGFRvIII f1 rev were used to 

generate the sEGFRvIII_His6 N-terminal fragment and the primers sEGFRvIII f2 up and 

sEGFRvIII f2 rev for the C-terminal fragment (sequences in 11.1). The sequence of the 

construct sEGFRvIII_His6 was confirmed by DNA sequencing (DNA and protein sequences 

in 11.2). 
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4.1.3. sIGF-1R 

Based on IGF-1R cDNA provided by Merck KGaA, Germany the domains I-III of the 

extracellular domain (amino acids 31-492 of mature IGF-1R) as well as the isolated domain II 

(amino acids 180-329 of mature IGF-1R) were amplified by standard PCR techniques. Both 

constructs were cloned with the N-terminal native secretion signal peptide and a C-terminal 

hexa-histidine tag. The constructs were transferred into the expression vectors of the 

respective insect cell or mammalian expression system using the Gateway® technology 

(Invitrogen, 2003). The native secretion signal peptide was directly fused to the domain II by 

blunt end ligation. The primers sIGF-1Rd1-3 up and sIGF-1Rd1-3 rev were used for the 

generation of the sIGF-1Rd1-3 entry vector, the primers sIGF-1Rd2 blunt up and sIGF-1Rd2 

blunt rev for the sIGF-1Rd2 blunt end ligation construct and the primers sIGF-1Rd2 up and 

sIGF-1Rd2 rev for the sIGF-1Rd2 amplification (sequences in 11.1). The sequences of the 

constructs were confirmed by DNA sequencing (DNA and protein sequences in 11.2). 

 

4.1.4. Generation of recombinant baculovirus 

Recombinant baculoviruses for the expression of sEGFR, sEGFR domain III, sEGFRvIII, 

the sEGFR mutants, sIGF-1R domain I-III and sIGF-1R domain II were produced as 

described (Invitrogen, 2009). 

 

4.2.  Protein expression 

4.2.1. sEGFR and sEGFRvIII 

The soluble extracellular part of the EGFR wild type (sEGFR), the isolated domain III of 

the receptor (sEGFRd3) and the sEGFR mutants (see 4.1.1) were expressed in Sf9 insect cells 

infected by recombinant baculovirus exactly as described (Ferguson et al., 2000) (see 4.1.4). 

Briefly, 5-10 L insect cell culture was infected with freshly amplified baculovirus at a density 

of 2.0 x 106 c/ml (viability > 98%) and incubated for 96 h at 27°C in multiple 1 L spinner 

flasks that each contained <500 ml (to ensure adequate aeration) The cells were separated 

from the protein containing medium by centrifugation. 
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4.2.2. sIGF-1R 

Insect cell expression. The isolated domains 1-3 and domain 2 of the IGF-1R 

extracellular part (sIGF-1Rd1-3 and sIGF-1Rd2, respectively) were expressed both in Sf9 and 

Hi5 insect cells infected by recombinant baculovirus (see 4.1.4). The cells grew at 27°C in 

500 ml shaking flasks in Sf-900 II serum free medium (Invitrogen) or Express Five serum free 

medium (Invitrogen), respectively,. They were infected with recombinant baculovirus at a 

density of 2x106 cells/ml and incubated for 24-96h at 27°C. The highest yield was obtained 

with a multiplicity of infection (MOI) 4 and an expression for 48 h, after which protein 

degradation started to occur. The cells were separated from the protein containing medium by 

centrifugation.  

 

Mammalian cell expression. Both sIGF-1R constructs sIGF-1Rd1-3 and sIGF-1Rd2 

were transiently expressed in human kidney HEK293 Ebna cells. The cells were cultured in 

suspension in Ex-Cell VPRO Serum Free Medium (SAFC, Sigma Aldrich) with 4 mM 

glutamine (Invitrogen) and 0.1% Pluronic (Invitrogen) at 37°C, 25% O2, 75 rpm in a 8 L 

fermenter. For transfection, cells harvested after 24h cells at 2.5 x106 cells/ml were 

resuspended in transfection medium consisting of DMEM F-12 1:1 (Invitrogen) with 8 mM 

glutamine, 0.2 % glucose, 10mM HEPES (PAN), 0.4 % Insulin-Transferin-Selenium-

Supplement (Invitrogen) and 0.1% Pluronic (Invitrogen). The respective DNA (3 µg/ml) (see 

4.1.3) dissolved in transfection medium was added with the addition of PEI 25 after 10 min 

(0.02 mg/ml in transfection medium). The cells were incubated for 2.5h at 37°C and 

subsequently diluted with FreeStyle 293 Expression Medium (Invitrogen) with 0.1% Pluronic 

(Invitrogen) in a 1:3 ratio. After 24h at 37°C the fermenter was cooled down to 31°C and 

incubated for another 96h prior to harvesting the supernatant.  
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4.3.  Protein purification 

4.3.1. sEGFR 

Purification of the soluble receptor proteins sEGFR wild type, sEGFR domain III and the 

sEGFR mutants from Sf9 cell culture supernatants (see 4.3.1) was carried out by immobilized 

metal-ion affinity chromatography (IMAC) and gel filtration exactly as described (Ferguson 

et al., 2000). The overall yield of sEGFR wild type was about 1 mg/L cell culture and about 

0.6 mg/L cell culture of sEGFRd3 depending on the age and condition of the Sf9 cells. For the 

sEGFR alanine mutants the overall yield was about 0.5 mg/L cell culture.  

All proteins were stored in 10 mM HEPES, 50 mM NaCl (pH 7.5) at ~5 mg/ml at 4°C. 

 

4.3.2. sEGFRvIII, sIGF-1R domain I-III and domain II 

After centrifugation of the cell culture (see 4.2.1and 4.2.2) the supernatant was directly 

applied to a 5 ml HiTrapTM sepharose column (GE Healthcare) and eluted with an imidazole 

step gradient (each 5 column volumes [CV] 50 mM, 75 mM, 100 mM and 500 mM 

imidazole). Subsequently the receptor protein containing fractions were pooled, desalted with 

a HiPrepTM 26/10 column (GE Healthcare) and further purified by a second IMAC step (1 ml 

HiTrapTM sepharose column) with a imidazole gradient 100 – 500 mM in 50 mM steps each 

with 7 CV. As a final step the target protein containing fractions were purified by gel filtration 

using a HiLoadTM Superdex200 16/60 preparation grade column (GE Healthcare) pre-

equilibrated with 20 mM HEPES, 100 mM NaCl (pH 7.5). The overall yield was 0.2 mg/L 

cell culture for sEGFRvIII and 0.5 mg/L cell culture and 1 mg/L cell culture for sIGF-1R 

domain I-III and domain II, respectively.  

All proteins were stored in 10 mM HEPES, 50 mM NaCl (pH 7.5) at ~5 mg/ml at 4°C. 

 

4.3.3. Fab fragments 

Antibody cleavage. The antibodies EMD72000 (matuzumab), C225 (cetuximab) and 

EMD1159476 were provided by Merck KGaA. They were enzymatically cleaved by papain 

digestion to generate Fab fragments Fab72000, FabC225 and Fab1159476, respectively. The 

ImmunoPure® Fab Preparation Kit (Pierce) was used according the manufacturer’s 

instructions. 
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Fab fragment purification. The Fab fragments were purified by protein A affinity 

chromatography and gel filtration using a Superose6 column (GE Healthcare) or a HiLoadTM 

Superdex200 16/60 preparation grade column (GE Healthcare) both pre-equilibrated with 20 

mM HEPES, 100 mM NaCl (pH 7.5). Preparations of 50 mg yielded about 9 mg pure Fab 

fragments. Purified Fab fragments were stored in the purification buffer at ~10 mg/ml at 4°C. 

 

4.3.4. Receptor:Fab complexes 

The receptor:Fab complexes were generated by mixing purified receptor protein (see 4.3) 

with purified Fab fragments (see 4.3.3). To ensure a saturation of the receptor constructs with 

the antibody the respective smaller complex component was added in a 1.2 molar excess.The 

complexes of each receptor constructs (sEGFR, sEGFRd3, sIGF-1Rd1-3, sIGF-1Rd2) and the 

Fab fragments of the respective antibodies were purified by size exclusion chromatography 

(SEC) using a Bio-Silect® SEC 250-5 column (Bio-Rad) or a Superdex75 HR column (GE 

Healthcare) pre-equilibrated with 20 mM HEPES, 100 mM NaCl (pH 7.5).  
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4.4.  Molecular interactions and biophysics 

4.4.1. Dynamic light scattering 

Dynamic light scattering (DLS) measurements were conducted to investigate the 

polydispersity of the soluble receptor samples before crystallization. Samples at a 

concentration of 2 mg/ml were analyzed using a DynaPro Titan instrument (Wyatt 

Technologies) at 25°C in 10 mM HEPES, 50 mM NaCl (pH 7.5) and evaluated by the 

Dynamics 6.7.6 software (Wyatt Technologies). 

 

4.4.2. Static light scattering 

Analytical SEC/static light scattering (SLS) studies were performed to investigate the 

homogeneity in samples intended to crystallize or to determine the oligomeric state in 

receptor samples with and without ligand. 30-40 µl protein solution were injected onto a 

Superdex75 HR analytical SEC column (GE Healthcare) or TSK SuperSW3000 4.6/30 

column (Tosoh Bioscience) equilibrated with 20 mM HEPES, 100 mM NaCl (pH 7.5) using 

an Agilent 1200 HPLC system. Light scattering data for protein eluting from the SEC column 

were collected using a DAWN-HELEOS-II static light scattering detector coupled to an in-

line refractive index meter (Wyatt Technologies). The data were analyzed using the Astra V 

software (Wyatt Technologies). 

 

4.4.3. Surface plasmon resonance 

Surface Plasmon Resonance (SPR)/Biacore studies were carried out to investigate the 

binding affinities of the antibody Fab fragments or natural ligands to the soluble receptor 

constructs. The samples were investigated using a Biacore 3000 instrument at 25°C in 10 mM 

HEPES, 150 mM NaCl, 3 mM EDTA and 0.005% Tween-20 (pH 8.0). All data were 

analyzed using Prism 4 (GraphPad Software, Inc.). 
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Fab surface preparation. Fab antibody fragments (see 4.3.3) were immobilized on a 

CM5-chip as follows: the CM-dextran matrix was activated with N-ethyl-N’-

(dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide 

(NHS). After Fab immobilization the remaining reactive sites were blocked with 1 M 

ethanolamine-HCl (pH 8.5). Fab72000 (5 µg/ml) was immobilized in 10 mM sodium acetate 

(pH 5.0) at a flow rate of 5 µl/min for 20 min with a final immobilization level of 1400 

response units (RU). FabC225 (10 µg/ml) was immobilized in 10 mM sodium acetate (pH 

5.5) at a flow rate of 10 µl/min for 5 min with a final immobilization level of 1300 RU. 

Fab1159476 (Fab EMD1159476) (5 µg/ml) was immobilized in 10 mM sodium acetate (pH 

4.5) at a flow rate of 10 µl/min for 10 min. The final immobilization level for Fab1159476 

was 1400 RU.  

The Fab72000 surfaces used in the experiments presented in section 5 were regenerated 

with 1 M NaCl in 10 mM glycine (pH 2.5). The Fab surfaces used in experiments presented in 

section 6 and 7 (Fab72000, FabC225, Fab1159476) were regenerated with 1 M NaCl in  

10 mM NaOH (pH 11.3).  

 

EGF surface preparation. EGF (200 µg/ml) (R&D Systems) in sodium acetate (pH 4.0) 

was immobilized at a flow rate of 5 µl/min for 10 min on an activated CM5 chip surface 

(Ferguson et al., 2000; Li et al., 2005). The final immobilization level was 250 RU. 

Regeneration of the EGF surface was carried out with 1 M NaCl in 10 mM sodium acetate 

(pH 5.0).  

 

Titration and competition experiments. sEGFR, sEGFR domain III and sEGFRvIII 

were flown as twofold serial dilutions covering a concentration range of 0-1000 nM over the 

Fab72000 or FabC225 surface. sEGFR wild type, sEGFR mutants and EGFRvIII binding to 

the immobilized ligand EGF was observed with twofold serial dilutions covering a 

concentration range of 0-20 µM. sIGF-1R domain I-III and domain II binding to immobilized 

Fab1159476 was observed with twofold serial dilutions in the range of 0-1000 nM.  

Competition experiments were carried out with a constant concentration of the receptor 

protein (600 nM). The binding to a ligand surface was monitored while increasing amounts of 

Fab fragments ranging from 0-30 µM were added to the receptor sample. 
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4.4.4. Analytical ultracentrifugation 

Analytical ultracentrifugation sedimentation equilibrium (AUC SE) experiments were 

performed to investigate the dimerization state of sEGFR in the presence of ligand and 

Fab72000 using an XL-A analytical ultracentrifuge (Beckman, USA). Samples (4 µM) of 

wild type or mutated sEGFR protein were analyzed both in the presence and in the absence of 

a 1.5-fold molar excess of EGF. As control the molecular weight of a dimerization 

incompetent sEGFR in complex with Fab was obtained with and without EGF. The 

dimerization incompetent receptor was provided by Jessica Dawson, University of 

Pennsylvania. Each sample contained 4µM of the relevant protein or sEGFR:Fab72000 

complex in 20 mM HEPES, 100 mM NaCl (pH 7.5). Samples were loaded in six-channel 

charcoal-Epon cells with quartz windows at both ends. Radial scans were performed at 20°C 

at 6,000, 9,000, and 12,000 rpm in an An Ti 60 rotor, with detection over a wavelength range 

of 236 to 285 nm. Equilibrium was reached in each speed step within 18h. The partial specific 

volume of sEGFR proteins was estimated as 0.71 ml/g as described before (Ferguson et al., 

2000), and solvent density was taken as 1.003 g/ml. Molecular masses were determined by 

fitting multiple data sets to a simple model for a single species in Sedfit version 9.4c and 

Sedphat version 4.4b. 

 

4.4.5. Isothermal titration calorimetry 

Isothermal titration calorimetry (ITC) was carried out to investigate the binding affinity of 

the receptor ectodomains to the antibody Fab fragments and the thermodynamics of the 

interaction. The experiments were carried out using a VP-ITC microcalorimeter (Microcal 

LLC) and evaluated with the Origin 7 calorimetry sofware (MicroCal LLC) to calculate the 

binding constant (KA) and the binding affinity (KD=1/KA), the observed binding enthalpy 

(ΔHobs) as well as the stoichiometry (N) of the formed complex. For all receptor Fab binding 

experiments a model of one binding site was assumed. ΔHobs values were calculated based on 

the difference between the heat liberated during the binding phase of the injections and the 

average heat of dilution found once the receptor was saturated with antibody.  

10 µl Fab solution (16.7-50 µM) (see 4.3.3) was titrated to 2 ml receptor in the cell (1.7-5 

µM) (see 4.3). More precisely, Fab72000 (20 µM) in 10 mM HEPES, 50 mM NaCl (pH 7.5) 

was injected in 10 µl steps into a cell containing 2 µM sEGFR. Fab1159476 (16.7 µM) in 

PBS was injected in 11 µl steps into a cell containing 1.7 µM sIGF-1R domain I-III (sIGF-

1Rd1-3). In addition Fab1159476 was investigated for sIGF-1R domain II (sIGF-1Rd2) 
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binding and was injected at 50 µM in PBS in 11 µl steps into a cell containing 5 µM sIGF-

1Rd2. All binding experiments were carried out at 25°C with a spacing time between the 

injections of 320 sec.  

 

4.4.6. Small angle X-ray scattering 

Small angle X-ray scattering (SAXS) experiments were carried out to determine a low 

resolution shape (Koch et al., 2003) of sEGFRvIII in solution. The scattering data from 

sEGFRvIII samples (see 4.3.2) were collected at the SAXS beamline EMBL, DESY, 

Germany. Using a MAR345 image plate detector at a sample-detector distance of 2.7 m and a 

wavelength of λ = 1.5 Å a range of 0.01<s<0.5 Å-1 was covered (s = 4π sinθ/λ, where 2θ is the 

scattering angle and λ the X-ray wavelength). 100 µl samples of three different concentrations 

(1 mg/ml, 5 mg/ml and 10 mg/ml in 20 mM HEPES, 100 mM NaCl, pH 7.5) were measured 

at 10°C for 120 sec. To monitor for radiation damage two successive measurements of protein 

solutions were compared and no significant changes were observed. The scattering intensities 

of buffer backgrounds were measured both before and after the sample and the averaged 

background scattering was subtracted from the scattering of the sample. 

The low angle data measured at lower protein concentrations were extrapolated to infinite 

dilution and merged with the higher concentration data to yield the final composite scattering 

curve. Data processing was performed using the program PRIMUS (Konarev et al., 2003). 

The radius of gyration Rg was calculated using the Guinier approximation (Guinier, 1939) 

and the program GNOM (Svergun, 1992), which also provided the distance distribution 

function of the particle p(r) and the maximum particle size Dmax. The molecular mass of the 

solute was estimated based on the excluded (Porod) volume (Porod, 1982). For globular 

proteins, the Porod volume in nm3 is about twice the molecular mass in kDa. 

 

Molecular modeling. The theoretical scattering from the low resolution crystal structure 

of sEGFRvIII (see 4.5.4) was calculated using the program CRYSOL (Svergun et al., 1995). 

Given the atomic coordinates, the program uses the scattering amplitudes to calculate the 

spherically averaged scattering pattern and takes into account the hydration shell of the 

protein.  

Domain I and II of sEGFRvIII, which are disordered in the crystal structure (see 6.2.4), 

were modeled using the program BUNCH (Petoukhov and Svergun, 2005). The program 

combines rigid body and ab initio modeling of proteins consisting of domains linked by 
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flexible loops of unknown structure. A simulated annealing protocol is employed to model the 

probable conformation of the flexible linkers with the structurally known domains kept as 

rigid bodies. The ab initio modeled loops are represented as interconnected chains of dummy 

residues (Petoukhov et al., 2002). Domain/loop arrangements with steric clashes, dummy 

residue loops with improper distribution of bond or dihedral angles as well as too extended 

loops are penalized. 

 

Ab initio shape determination. The scattering curve of sEGFRvIII was further used to 

model the low resolution ab initio shape of solution sEGFRvIII by the program DAMMIN 

(Svergun, 1999). This program represents the particle shape by a densely packed bead model, 

which is fitted through simulated annealing procudures to the experimental data Iexp(s). The 

models of 10 DAMMIN runs were averaged to determine common structural features using 

the programs DAMAVER (Volkov and Svergun, 2003) and SUPCOMB (Kozin and Svergun, 

2001).  



  Materials & Methods 

 32

4.5.  Protein Crystallography 

4.5.1. sEGFR:Fab72000 

sEGFR in complex with Fab72000 (see 4.3.4) was concentrated and buffer exchanged by 

gel filtration into 10 mM HEPES, 50 mM NaCl (pH 7.5) and crystallized using the hanging 

drop vapor diffusion method. The polydispersity of sEGFR:Fab72000 samples as determined 

by dynamic light scattering was 15.7%. The complex crystallized in several conditions with a 

low pH value [0.1 M sodium acetate, 1.7 M ammonium sulfate (pH 4.5) at 4°C; 50 mM 

citrate, 17% PEG-3350, 1.6 M NaCl, 3% ethylene glycol (pH 5.0) at 20°C; 0.1 M phosphate-

citrate, 20% PEG-1000, 0.25 M lithium sulfate (pH 4.2) at 20°C], but the crystals proved to 

be unstable and/or with low diffraction quality. 

 

4.5.2. Fab72000 

Freshly purified protein (see 4.3.3) was concentrated and buffer exchanged by gel 

filtration into 10 mM HEPES, 50 mM NaCl (pH 7.5) and crystallized using the hanging drop 

vapor diffusion method. Single crystals of Fab72000 (0.1x0.5x0.1 mm) were obtained by 

mixing equal volumes (1:1) of the Fab (13 mg/ml) with a solution containing 1.8 M 

ammonium sulfate, 0.1 M MES (pH 6.5) and equilibrating over a reservoir of this buffer at 

20°C. Crystals were flash frozen in reservoir solution that was supplemented with 9% 

sucrose, 2% glucose, 8% glycerol, 8% ethylene glycol. X-ray diffraction data were collected 

at the Cornell High Energy Synchrotron Source (CHESS) beamline F1, using an ADSC 

Quantum-210 CCD detector. The data were processed with HKL2000 (Otwinowski and 

Minor, 1997). Data collection statistics are summarized in Table 2 (see 4.5.3).  

The structure of Fab72000 was solved by the method of molecular replacement using the 

program PHASER (CCP4, 1994). The coordinates for Fab2C4 (PDB ID 1L7I) (Vajdos et al., 

2002) were selected as the initial search model based on the sequence identity between 

Fab2C4 and Fab72000. Coordinates were manually rebuilt in COOT (Emsley and Cowtan, 

2004) and refined using CNS (Brünger et al., 1998) and Refmac (CCP4, 1994). New maps 

were calculated following each iteration of refinement, including solvent flattened maps with 

minimized model bias calculated using the program DM (CCP4, 1994). Refinement statistics 

are summarized in Table 2 (see 4.5.3).  

Coordinates of the Fab72000 structures have been deposited with the PDB ID code 3C08.  
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4.5.3. sEGFRd3:Fab72000 

Freshly purified sEGFRd3:Fab72000 (see 4.3.4) was crystallized by mixing equal parts  

(1 μl) of the SEC purified complex (14 mg/ml) with 1 M NaCl, 16% PEG 3350, 50 mM MES 

(pH 6.0) and equilibrating over a reservoir of the same buffer at 20°C. Streak seeding was 

used to produce large single crystals (0.5x0.1x0.15 mm) (Fig. 4) that were cryostabilized by 

serial transfer to solutions of reservoir containing increasing concentrations of ethylene 

glycol. 

 

A 

 

B 

Fig. 4: Crystals of the complex sEGFRd3:Fab72000 
The crystals of sEGFRd3:Fab72000 grow after one week at 20°C in 50 mM MES pH 6.0, 1 M NaCl, 16% PEG-
3350. 
 

Following transfer to the final cryostabilizer of reservoir plus 15% ethylene glycol, 

crystals were flash frozen in liquid nitrogen. Data were collected at the Swiss Light Source 

(SLS) beamline X06SA, using a Mar225 CCD detector. The data were processed with 

HKL2000 (Otwinowski and Minor, 1997). Data collection statistics are summarized in Table 

2. 

The structure of sEGFRd3:Fab72000 was solved by methods of molecular replacement 

using the program PHASER (CCP4, 1994). The Fab fragments in the asymmetric unit were 

located using the refined Fab72000 coordinates (see 4.5.2) as search model. With the position 

of the first Fab fragment fixed, a second search using the coordinates of domain III of sEGFR 

(amino acids 310-500 from PDB ID 1YY9) located one of the sEGFRd3 molecules. 

Subsequently the second sEGFRd3:Fab72000 complex in the asymmetric unit was found. 

Refinement was carried out as described in 4.5.2. Refinement statistics are summarized in 

Table 2. 

100 µm 100 µm 
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Coordinates of the sEGFRd3:Fab72000 structures have been deposited with the PDB ID 

code 3C09. 

 
Table 2: Data collection and refinement statistics Fab72000 and sEGFRd3:Fab72000 

Data collection statisticsa 
 Fab72000 sEGFRd3:Fab72000 
Space group P212121 C2 

Unique cell  
dimensions 

a = 56.8 Å, b = 61.4 Å,  
c = 102.7Å 

a = 141.1 Å, b = 205.0 Å,  
c = 81.6Åβ = 117.5° 

X-ray source CHESS F1 SLS X06SA 
Resolution limit 2.15 Å 3.2 Å 
Observed/unique 107,297 / 20,191 120,206 / 33,886 
Completeness (%) 99.9 (99.9) 99.7 (98.7) 
Rsym

b 0.10 (0.42) 0.12 (0.35) 
<I/σ> 20.7 (3.6) 11.4 (3.4) 
Refinement statistics  
Resolution limits 50 – 2.15 Å 50 – 3.2 Å 
No. of reflections/no. 
test set 

19,098 / 1,029 32,028 / 1,709 

R factor (Rfree)c 0.22 (0.26) 0.24 (0.29) 
Asymmetric unit One Fab72000 molecule Two sEGFRd3:Fab72000 complexes
Protein aa 4-211 of light chain;  

aa 1-224 of heavy chain 
aa 310-500 of mature sEGFR with 
13 saccharide units;  
aa 1-211 of Fab light chain;  
aa 1-135, 142-222 of Fab heavy 
chaind 

Water/ions 99 water molecules;  
2 sulfates 

- 

Total number of atoms 3,209 8,517 
RMSD bond length (Å) 0.012 0.015 
RMSD bond angles (°) 1.35 1.6 
aNumbers in parentheses refer to highest resolution shell. 
bRsym=Σ|Ih-<Ih>|/ΣIh, where <Ih>=average intensity over symmetry equivalent measurements. 
cR factor=Σ|Fo-Fc|/ΣFo, where summation is over data used in the refinement; Rfree includes 5% of the data 
excluded from the refinement. 
dThe number of missing amino acids in the heavy and light chains differs in the two complexes 
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4.5.4. sEGFRvIII 

Freshly purified sEGFRvIII (see 4.3.2) was crystallized using the hanging drop vapor 

diffusion method. Initial crystals were obtained by mixing equal volumes (1:1) of sEGFRvIII 

concentrated to 4.5 mg/ml with a solution containing 50 mM acetate (pH 4.8), 22% PEG3350, 

10 mM EDTA and equilibrating over a reservoir of this buffer at 20°C. Streak seeding 

techniques were used to obtain large single crystals that were cryostabilized in reservoir 

solution supplemented with 25% glycerol. X-ray diffraction data were collected at the Swiss 

Light Source (SLS) beamline X06SA using a PILATUS 6M detector. The data were 

processed with XDS (Kabsch, 1993). Data collection statistics are summarized in Table 3.  

The structure of sEGFRvIII was solved by molecular replacment using the program 

PHASER (CCP4, 1994). As search models the domain III and domain IV of sEGFR (amino 

acids 310-500 and 501-614 from PDB ID 1YY9) were used. Coordinates were manually 

rebuilt in COOT (Emsley and Cowtan, 2004) and refined with Refmac (CCP4, 1994). Current 

refinement statistics are summarized in Table 3. 

 
Table 3: Data collection and refinement statistics sEGFRvIII 

Data collection statisticsa 
Space group P65 

Unique cell  
dimensions 

a = 150 Å, b = 150 Å, c = 44 Å  
α = 90°, β = 90°, γ = 120°  

X-ray source SLS X06SA 
Resolution limit 3.9 Å 
Observed/unique 53,719 / 5515 
Completeness (%) 99.2 (95.7) 
Rsym

b 0.096 (0.701) 
<I/σ> 20.2 (3.4) 
Refinement statistics 
Resolution limits 50 – 3.9 Å 
R factor (Rfree)c 28.4 (37.6) 
Asymmetric unit One sEGFRvIII molecule  
Protein aa 300 - 501 of sEGFR wild type with 

three saccharide units 
Water/ions - 
Total number of atoms 2,382 
RMSD bond length (Å) 0.032 
RMSD bond angles (°) 3.2 
aNumbers in parentheses refer to highest resolution shell. 
bRsym=Σ|Ih-<Ih>|/ΣIh, where <Ih>=average intensity over symmetry equivalent 
measurements. 
cR factor=Σ|Fo-Fc|/ΣFo, where summation is over data used in the refinement; Rfree includes 
5% of the data excluded from the refinement. 
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4.5.5. Fab1159476 

Crystals of Fab EMD1159476 (Fab1159476) (see 4.3.3) were obtained by mixing equal 

volumes (1 µl) of the Fab (19 mg/ml) with a solution containing 0.1 M Tris, 25% PEG-3350 

(pH 8.8) and equilibrating over a reservoir of this buffer at 20°C. Streak seeding was used to 

produce single crystals. The crystals were flash frozen in reservoir solution that was 

supplemented with 25% glycerol. X-ray diffraction data were collected at the Swiss Light 

Source (SLS) beamline X06SA, using a PILATUS 6M detector. The data were processed with 

XDS (Kabsch, 1993). Data collection statistics are summarized in Table 4.  

The structure of the Fab1159476 was solved by molecular replacement using the program 

PHASER (CCP4, 1994). As initial search model the coordinates of an anti- steroid Fab (PDB 

ID 1DBA) (Arevalo et al., 1993) was chosen based on similarity of the elbow angle (Stanfield 

et al., 2006). Refinement was carried out exactly as described in 4.5.2. Data collection and 

refinement statistics of the EMD1159476 Fab fragment structure are given in Table 4.  

 
Table 4: Data collection and refinement statistics Fab1159476 

Data collection statisticsa 
Space group P1211 
Unique cell  
dimensions 

a = 40.3 Å, b = 140.1 Å, c = 74.3 Å  
β = 96.7° 

X-ray source SLS X06SA 
Resolution limit 1.7 Å 
Observed/unique 287,820 / 85,024 
Completeness (%) 94.4 (89.4) 
Rsym

b 0.07 (0.41) 
<I/σ> 12.8 (2.9) 
Refinement statistics 
Resolution limits 50 – 1.7 Å 
R factor (Rfree)c 0.19 (0.23) 
Asymmetric unit One Fab1159476 molecule 
Protein aa 1-212 of light chain; aa 1-219 of heavy 

chain 
Water/ions 655 water molecules 
Total number of atoms 7,045 
RMSD bond length (Å) 0.014 
RMSD bond angles (°) 1.42 
aNumbers in parentheses refer to highest resolution shell. 
bRsym=Σ|Ih-<Ih>|/ΣIh, where <Ih>=average intensity over symmetry equivalent 
measurements. 
cR factor=Σ|Fo-Fc|/ΣFo, where summation is over data used in the refinement; Rfree includes 
5% of the data excluded from the refinement. 
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5. Matuzumab binding to EGFR prevents the 

conformational rearrangement required for 

dimerization* 

5.1.  Introduction 

The epidermal growth factor receptor (EGFR) belongs to the best studied receptor 

tyrosine kinases (RTKs). In mammals, EGFR is one of a family of four RTKs collectively 

known as the ErbB or HER receptors (Holbro and Hynes, 2004) that is involved in critical 

cellular processes such as proliferation, differentiation and apoptosis (Schlessinger, 2000; 

Hubbard and Miller, 2007). Beside EGFR (ErbB1), the family includes ErbB2/HER2/Neu 

(Citri et al., 2003) as well as the neuregulin receptors ErbB3/HER3 (Citri et al., 2003) and 

ErbB4/HER4 (Carpenter, 2003). Each has a large extracellular ligand-binding domain (~620 

amino acids), a single transmembrane α-helix, and an intracellular region that contains a 

juxtamembrane region (~45 amino acids), a tyrosine kinase domain (~270 amino acids) and a 

C-terminal regulatory sequence (~230 amino acids) (Fig. 5).  

 

                                                 
* The work described in this part of the thesis has been published in Schmiedel et al. (2008) 

Cancer Cell 13, 365-373 and commented in Leahy (2008) Cancer Cell 13, 291-293 (see 

Appendix 11.3). 
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Fig. 5: Domain organization of ErbB receptors 

ErbB receptors comprise an extracellular region consisting of domains I-IV, a transmembrane helix and an 
intracellular region with a juxtamembrane domain, a tyrosine kinase and a regulatory region. Residue numbers of 
domain boundaries refer to EGFR. L domain, large domain; CR domain, cysteine-rich domain (figure taken from 
Burgess et al., 2003). 
 

The extracellular region of the ErbB receptors comprises four distinct domains of two 

different types. There are two homologous large (L) domains (red in Fig. 5), and two 

cysteine-rich (CR) domains (green in Fig. 5), which occur in the order L1 (I) -CR1 (II) -L2 

(III) -CR2 (IV) (Ward et al., 1995). Domains I and III share 37% sequence identity in EGFR 

(Burgess et al., 2003).  

EGFR was one of the first RTKs for which ligand-induced dimerization was described as 

initial event in transmembrane signaling (Yarden and Schlessinger, 1987a; Yarden and 

Schlessinger, 1987b; Jorissen et al., 2003). Binding of ligand shifts a monomer-dimer 

equilibrium to favor the dimeric state (Schlessinger, 2000; Carpenter, 2003). EGFR is 

regulated by a family of at least seven distinct peptide ligands (Harris et al., 2003), including 

EGF, transforming growth factor-α (TGF-α), amphiregulin, betacellulin, epigen, epiregulin, 

and heparin binding EGF-like growth factor (HB-EGF). ErbB2 has no known direct activating 

ligand (Citri et al., 2003), while ErbB3 and ErbB4 are bound by the four known neuregulins 

(NRGs) (Falls, 2003). 
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Upon ligand binding and receptor dimerization the intracellular tyrosine kinase activity is 

stimulated. In EGFR and ErbB4 homodimers, this occurs through an allosteric mechanism 

(Zhang et al., 2006b). Kinase autophosphorylation leads to the stimulation of a complex 

intracellular signaling network (Oda et al., 2005) (see 3.4 and Fig. 2). 

 

5.1.1. Ligand-induced EGFR activation 

From 2002 onwards, x-ray crystal structures of the extracellular regions of all human 

EGFR family members in the absence of ligand were solved (Cho and Leahy, 2002; Ferguson 

et al., 2003; Cho et al., 2003; Garrett et al., 2003; Franklin et al., 2004; Bouyain et al., 2005). 

In addition, structures of a large part of the EGFR extracellular region in ligand-induced 

dimers were published (Ogiso et al., 2002; Garrett et al., 2002). Based on these structures, a 

model for ligand dependent dimerization and activation of the ErbB receptors has been 

proposed (Burgess et al., 2003) (Fig. 6). 

 

 
Fig. 6: Ligand induced EGF receptor dimerization 

The extracellular region of the EGF receptor (sEGFR) is shown in cartoon representation with domain I in red, 
domain II in green and domains III and IV in gray with the secondary structure elements highlighted in red and 
green, respectively. The inactive receptor (left hand view) exists in a tethered, autoinhibited conformation with 
an intramolecular interaction between the domains II and IV. Upon ligand binding the receptor adopts a very 
different domain arrangement (right hand view). Ligand (here EGF, shown in purple cartoon) binds between 
domains I and III of a single EGFR molecule, stabilizing the precise, extended configuration of EGFR that can 
dimerize. All contacts between the two molecules in the dimer are receptor mediated with domain II providing 
the primary dimerization contacts. EGF receptor dimerization is ligand induced, but entirely receptor mediated. 
The colors on the right hand molecule in the sEGFR dimer have been muted for contrast. Coordinates from PDB 
IDs 1IVO and 1NQL were used to generate this figure. Domain IV in the sEGFR dimer was modeled as 
previously described (Ferguson et al., 2003). 
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In a dimer of the EGFR extracellular domains, all intermolecular interactions are 

contributed by the receptor (Ogiso et al., 2002; Garrett et al., 2002). This entirely receptor 

mediated dimerization is unique among the RTKs with known ligand-bound structures. In all 

other ligand RTK complex structures the ligand is located in between the two monomers 

mediating the dimerization (see 0).  

The majority of interactions in the dimer of the EGFR extracellular domains (sEGFR) is 

contributed by domain II. A ‘dimerization arm’ (Ogiso et al., 2002) protrudes into the dimer 

interface directly contacting the other receptor monomer. However, it was shown through 

mutation and deletion studies that simply exposing the dimerization arm is not sufficient to 

promote sEGFR dimerization in the absence of ligand (Elleman et al., 2001; Ferguson et al., 

2003). Additional conformational changes induced by the ligand are required to stabilize the 

precise conformation of domain II (Dawson et al., 2005; Lemmon, 2009). Further interactions 

in the sEGFR dimer are contributed by parts of domain IV that are close to or contacting each 

other as suggested by modeled structures (Ferguson et al., 2003) and biochemical and 

biophysical data (Berezov et al., 2002; Dawson et al., 2007; Mi et al., 2008).  

In the unliganded state the receptor adopts a very different conformation that occludes 

much of the domain II dimerization interface in an intramolecular interaction or tether with 

domain IV (Cho and Leahy, 2002; Ferguson et al., 2003) (left hand in Fig. 6). This 

conformation is thought to be autoinhibited (Burgess et al., 2003). Upon ligand binding both 

the domain I and domain III are contacting the ligand, which exposes the domain II and 

domain IV dimerization interface. Thus, promoted by ligand binding the extracellular region 

of EGFR must undergo a dramatic domain rearrangement to be able to dimerize. 

 

5.1.2. Structures of ErbB receptor family extracellular domains 

Interestingly, the EGFR family includes an orphan receptor that nonetheless shows 

tyrosine kinase activity (ErbB2) and an NRG binding receptor (ErbB3) that lacks tyrosine 

kinase activity (Burgess et al., 2003). As shown in Fig. 7, the unliganded extracellular regions 

of EGFR (Ferguson et al., 2003), ErbB3 (Cho and Leahy, 2002) and ErbB4 (Bouyain et al., 

2005) adopt the tethered, autoinhibited conformation. Based on solution scattering studies, 

binding of neuregulins is thought to promote a similar structural reorganization of the receptor 

as seen for EGF (Dawson et al., 2007). In contrast, structures of the ErbB2 extracellular 

domain (Cho et al., 2003; Garrett et al., 2003; Franklin et al., 2004) revealed a conformation 

that is similar to the extended, dimerization competent receptor form. ErbB2 has no known 

ligand (Citri et al., 2003). Nevertheless this receptor is able to transform cells just by 
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overexpression (Di Fiore et al., 1987). It was shown that these impaired receptors are 

signaling at the cell surface through heterodimerization (Wada et al., 1990). 

 

 
Fig. 7: ErbB family extracellular domain structures without ligand 

The structures of the extracellular domains of each ErbB receptor family member in the absence of ligand are 
shown in cartoon presentation. The coloring is the same as in Fig. 6. EGFR, ErbB3 and ErbB4 adopt the 
autoinhibited conformation with an intramolecular tether between domain II and IV. ErbB2 in contrast adopts an 
extended conformation that resembles the ligand-induced dimerization-competent form described in Fig. 6 
(structures from Lemmon, 2009).  

 

5.1.3. ErbB receptor dimerization at the cell surface 

The model of ligand-induced dimerization (Fig. 6) is in accordance with results for EGFR 

and ErbB4 receptor homodimerization both at the cell surface and in solution (Lemmon, 

2009). However, it fails to answer all questions about ErbB receptor heterodimerization at the 

cell surface. It is e.g. not clear, why ErbB2 forms heterodimers with all other EGF receptor 

family members at the cell surface (Graus-Porta et al., 1997; Berger et al., 2004; Wehrman et 

al., 2006), while it remains monomeric in solution (Horan et al., 1995; Ferguson et al., 2000).  

Furthermore, the dimerization model can not explain results from EGF binding studies at 

the cell surface. Scatchard plots showing a characteristic curvilinear (concave-up) form and 

ligand competition assays at the cell surface indicate heterogenic ligand binding sites and a 

negative cooperativity of EGF receptor binding (Shoyab et al., 1979; Magun et al., 1980; 

Macdonald and Pike, 2008). These findings resulted in the proposal of two different receptor 

affinity classes at the cell surface, with 2%–5% of receptors binding EGF with high affinity 

(KD < 0.1 nM) and 92%–95% binding with lower affinity (KD 6–12 nM) (Hunter et al., 1984; 

Livneh et al., 1986; Defize et al., 1989; Ullrich and Schlessinger, 1990; Bellot et al., 1990; 

Burgess et al., 2003). However, the two states can not just be equalized with the tethered and 

extended conformations of the extracellular domains (Fig. 6). Such a model would lead to 

positive cooperativity and concave-down Scatchard plots (Wofsy et al., 1992; Lemmon et al., 

1997; Özcan et al., 2006). Negative cooperativity requires that the binding of a second EGF to 

a dimer plus one EGF would need to have a substantially lower affinity than the first EGF 
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binding event. At the cell surface the receptor dimer with a single EGF bound would be the 

major species at subsaturating ligand concentrations. This was indeed seen in studies with 

excess ligand binding to high affinity EGFR and interestingly also for the insulin receptor 

(Wofsy et al., 1992; Lemmon, 2009). To further complicate interpretation, there is evidence 

for EGF binding to higher oligomeric EGFR states beside the dimer (Pråhl et al., 1991; De 

Meyts, 1994; Macdonald and Pike, 2008; De Meyts, 2008). 

 

These results imply that additional factors beside the extracellular receptor domains that 

are responsible for negative cooperativity and heterodimerization at the cell surface (Clayton 

et al., 2005; Saffarian et al., 2007). It was shown that the transmembrane domains (Holbrook 

et al., 2000; Domagala et al., 2000; Klein et al., 2004; Mayawala et al., 2005; Lemmon, 2009) 

as well as the intracellular domains (Mendrola et al., 2002; Duneau et al., 2007) are triggering 

dimerization and could be crucial for regulating the association of two ErbB receptors. Thus, 

for a complete picture of ErbB receptor regulation it seems to be necessary to consider the 

intact EGFR structure and to combine cellular and structural data. This is especially important 

for the development of anti-cancer drugs that inhibit misregulated ErbB receptors.  

 

5.1.4. EGFR and cancer 

In the 1980s EGFR was the first cell-surface receptor to be linked directly to cancer as 

described in fibroblasts infected with oncogenic viruses (De Larco and Todaro, 1987). It was 

found that the neu oncogene encodes a protein related to EGFR (Schechter et al., 1984; 

Coussens et al., 1985) and that the product of the v-erbB oncogene from avian 

erythroblastoma virus is a truncated form of EGFR (Downward et al., 1984). These findings 

revolutionized both the field of growth factors and of cancer biology. It is now known that 

EGFR is aberrantly activated in a variety of epithelial tumors e.g. metastatic non-small-cell 

lung cancer, colorectal cancer, squamous-cell carcinoma of head and neck and pancreatic 

cancer (Mendelsohn and Baselga, 2006). ErbB2/HER2 overexpression is connected to breast 

cancer (Park et al., 2008). Malignant transformation of the cell in these cancers can be caused 

through EGFR overexpression or mutation, which leads to constitutive activity or impaired 

receptor down-regulation (Mendelsohn and Baselga, 2006). Anti-EGFR agents are now 

approved since the late 1990s in the therapy of non-small cell lung cancer (NSCLC), colon 

cancer and head and neck cancer, pancreatic cancer and breast cancer, in which they provide 

significant clinical benefit (Baselga, 2008). The next step in targeted therapy will be the 

development of predictive markers of response to anti-EGFR agents to identify suitable 
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patients that will benefit from the treatment. Such markers are downstream effector proteins 

of the signaling cascade, e.g. Ras and PTEN (phosphatase and tensin homologue) (Nagata et 

al., 2004; Khambata-Ford et al., 2007; Benvenuti et al., 2007). Increased response rates might 

be achieved by combination of inhibitors against several members of the same signaling 

pathway (Zhang et al., 2007; Baselga, 2008) (see also 3.4). 

The ErbB regulation mechanism (see 5.1.1 and 5.1.3) suggests a number of ways to 

inhibit EGFR activation (Baselga, 2002). Intracellularly the kinase domain can be blocked 

with low molecular weight ATP-competitive tyrosine kinase inhibitors (TKIs), e.g. gefitinib 

(Iressa®), erlotinib (Tarceva®) or lapatinib (Tykerp®) (Zhang et al., 2007). Gefitinib 

(AstraZeneca) was approved in 2003 by the US American Food and Drug administration 

(FDA) for NSCLC; erlotinib (OSI Pharmaceuticals) was approved in 2004 for NSCLC and 

pancreatic cancer. In 2005 gefitinib failed to show an advantage for patients with NSCLC and 

was withdrawn from the market (Singer, 2005). After retrospectively studying lung cancer 

samples from patients enrolled in that studies (Shepherd et al., 2005; Thatcher et al., 2005) it 

became clear that a part of these patients did not express EGFR at high levels and thus was 

less gefitinib sensitive from the beginning (Hirsch et al., 2007). This highlights the necessity 

to develop bio-markers in order to identify patients that will benefit from a targeted therapy. 

Lapatinib (GlaxoSmithKline), a dual EGFR and ErbB2 inhibitor, was approved in 2007 for 

HER2 overexpressing breast cancer. 

From the extracellular side ErbB family members can be targeted in cancer therapy by 

monoclonal antibodies as described in the next section. 

 

5.1.5. Anti-EGFR antibodies 

The first study with monoclonal antibodies (mAbs) directed against the rat ErbB2 

extracellular region were carried out in the early 1980s and found that some mAbs are able to 

reverse the transformed phenotype of HER2 overexpressing cells (Drebin et al., 1985). Based 

on this defining study several mAbs to the human extracellular domains of EGFR and ErbB2 

were generated with varying effects on the receptor regulation (Hudziak et al., 1989; Lewis et 

al., 1993). Some induced receptor aggregation thus mimicking ligand activation (Schreiber et 

al., 1981; Schreiber et al., 1983), while others blocked receptor activation and showed the 

desired antiproliferative effects (Kawamoto et al., 1983; Sato et al., 1983; Masui et al., 1984; 

Gill et al., 1984). X-ray crystallographic and biochemical analysis of receptor-antibody 

complexes have indicated several modes of binding that lead to effective inhibition of ErbB 

receptor signaling: direct steric blockage of ligand binding or receptor dimerization, 
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stabilization of the tethered conformation, block of the domain rearrangement required for 

receptor dimerization, antibody-dependent cellular cytotoxicity (ADCC) and complement-

dependent cytotoxicity (CDC), antibody-mediated receptor down-regulation and 

augmentation of the antitumor effects of chemo- and radiotherapy (Mendelsohn and Baselga, 

2006; Leahy, 2008; Schmitz and Ferguson, 2009). Improved efficacy of mAbs in cancer 

therapy might be achieved by arming the antibodies with radionuclides or toxins (Carter, 

2001). 

 

Examples of anti-ErbB receptor antibodies already approved or in clinical trials are listed 

below. 

Cetuximab/Erbitux®. The chimeric antibody cetuximab/Erbitux® (ImClone/BMS and 

Merck KGaA) binds to domain III of EGFR, directly blocking ligand binding (Li et al., 2005). 

Cetuximab was approved by the FDA in 2004 for the treatment of patients with colorectal and 

head and neck cancer. Clinical trials for cetuximab as a first line treatment are in progress 

(Bokemeyer et al., 2009; Han et al., 2009).  

Panitumumab/Vectibix®. The antibody panitumumab/Vectibix® (Amgen) was developed 

from transgenic mice that express fully human antibodies and also binds to EGFR domain III 

(Yang et al., 2001). Probably it employs a similar ligand binding competition mechanism as 

cetuximab. As an antibody of the subtype IgG2 it does not stimulate robust antibody 

dependent ADCC (Schmitz and Ferguson, 2009). In 2006 it was FDA approved for colorectal 

cancer in combination with chemotherapy and is currently under investigation for first line 

treatment in colorecetal cancer (Stephenson et al., 2008). Recently the addition of 

panitumumab to the anti-angiogenesis mAb bevacizumab and chemotherapy for the first-line 

treatment of metastatic colorectal cancer was found to be harmful when compared with 

bevacizumab and chemotherapy alone (Giusti et al., 2009). Evaluation of this result is still 

ongoing. 

IMC-11F8. The fully human anti-EGFR antibody 11F8 (ImClone) binds to the same 

epitope on EGFR domain III as cetuximab competing with ligand binding (Li et al., 2008). It 

has performed well in phase I and is currently investigated in phase II clinical trials.  

MAb806, another anti-EGFR antibody, binds to domain II close to the receptor 

dimerization site (Johns et al., 2004). It was generated using cells expressing EGFR variant III 

(EGFRvIII, see section 1) as antigen, but also binds to overexpressed wild-type EGFR 

(Jungbluth et al., 2003). The antibody has performed well in a phase I study (Scott et al., 

2007). 
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Pertuzumab/ Omnitarg® (Genentech) binds to the domain II dimerization arm of ErbB2 

and directly blocks ligand induced ErbB2 heterodimerization (Franklin et al., 2004). It is a 

recombinant, humanized mAb and after a phase II study treating breast cancer patients in 

combination with trastuzumab (Portera et al., 2008) it is currently investigated in a phase III 

clinical trial (Baselga, 2008). 

Trastuzumab/Herceptin® (Genentech) binds to the membrane proximal domain IV of 

ErbB2 (Cho et al., 2003) and likely modulates a cleavage event that leads to ectodomain 

shedding and kinase activation (Molina et al., 2001). Trastuzumab was FDA approved in 

1998 for use in combination with first line chemotherapeutic agents in patients with metastatic 

breast cancer expressing high levels of ErbB2 (Slamon et al., 2001).  

 

The antibodies with structurally known epitopes are summarized in Fig. 8. 

 

 
Fig. 8: Antibody receptor co-structures 

Cartoon presentation of receptor antibody Fab fragment co-structures. The coloring is the same as in Fig. 6 with 
the receptor ectodomain in red (domain I) and grey/red (domain III) and green (domain II) and grey/green 
(domain IV). The antibody Fab fragments of cetuximab/Erbitux® is in ocher/orange (Li et al., 2005), of 11F8 in 
turquoise/violet (Li et al., 2008), of trastuzumab/Herceptin® in light violet/yellow (Cho et al., 2003) and of 
pertuzumab/Omnitarg® in red/blue (Franklin et al., 2004). The first two antibodies are directed against EGFR, 
while the latter two are targeted against ErbB2. 
 

The mode of action of another therapeutic antibody, matuzumab (EMD72000), which 

targets EGFR expressing tumors, is investigated in this thesis. Matuzumab is the humanized 

form of the murine mAb 425 (EMD55900) that was produced by immunization of BALB/c 

mice with human A431 epidermoid carcinoma cells (Murthy et al., 1987; Kettleborough et 

al., 1991). Matuzumab has performed well in phase I clinical trials against a number of 

cancers, both alone and in combination with chemotherapy (Bier et al., 2001; Vanhoefer et 

al., 2004; Graeven et al., 2006; Kollmannsberger et al., 2006; Rao et al., 2008), and has 

reached phase II trials (Seiden et al., 2007; Socinski, 2007). 
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5.2.  Results 

5.2.1. Matuzumab binding to sEGFR 

Surface plasmon resonance (SPR)/Biacore experiments were carried out to characterize 

the binding of Fab72000 (see 4.3.3) to the soluble extracellular domain of the EGF receptor 

(sEGFR) and the isolated receptor domain III (sEGFRd3) (see 4.3.1). The apparent KD values 

obtained were 113 ± 25 nM for sEGFR and 43 ± 13 nM for sEGFRd3 (Fig. 9). 

 

 
Fig. 9: Characterization of matuzumab binding to sEGFR 

Surface plasmon resonance (SPR)/Biacore analysis of the binding of sEGFR and sEGFRd3 to immobilized 
Fab72000. A series of samples of sEGFR or sEGFRd3, at the indicated concentrations, was passed over a 
biosensor surface to which Fab72000 had been amine coupled. Data points show the equilibrium SPR response 
value for a representative set of samples of sEGFR (black squares) and of sEGFRd3 (open triangles), expressed 
as a percentage of the maximal SPR binding response. The curves represent the fit of these data to a simple one-
site Langmuir binding equation. KD values, based on at least three independent binding experiments, are 113 ± 
25 nM for sEGFR and 43 ± 13 nM for sEGFRd3. 
 

The affinity measurement was verified with an ITC experiment, which gave a KD value of 

2.1 ± 0.5 nM for the interaction of Fab72000 with sEGFR (Fig. 10).  
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Fig. 10: ITC sEGFR and Fab72000 

Fab72000 (20 µM) was injected in 10 µl steps into a cell containing 2 µM sEGFR at 25°C. Each peak represents 
the heat of binding following one injection (upper plot). The lower plot shows the integrated results, where each 
point represents the normalized heat change for each injection. The calculated KD for this interaction is 2.1 ± 0.5 
nM. 
 

5.2.2. Ligand competition analysis of matuzumab 

Competition assays were carried out to investigate the ability of matuzumab to compete 

with ligand binding to EGFR. As shown in Fig. 11, there is an initial decrease in the 

equilibrium SPR response as increasing Fab72000 is added. At a 1:1 molar ratio of 

Fab72000:sEGFR the SPR response is about 45 % of that obtained with no added Fab. 

Addition of increasing excesses of Fab72000 does not further reduce this binding level. Even 

at higher concentration of sEGFR and with up to a 50 fold excess of Fab72000 the 

equilibrium SPR response does not fall below 40 % of the value in the absence of added Fab.  
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Equilibrium binding analysis to immobilized EGF for samples of sEGFR containing a 10 

fold molar excess of Fab72000 indicates an apparent KD value that is approximately five fold 

weaker than for sEGFR alone (see Appendix 11.3 Fig. 44). 

 

 
Fig. 11: Ligand competition properties of matuzumab 

A: A competition experiment showing the effect of addition of Fab72000 upon the binding of 600 nM sEGFR to 
immobilized EGF. Mixtures of 600 nM sEGFR plus the indicated concentrations of Fab72000 were passed over 
a biosensor surface to which EGF had been amine coupled. The equilibrium SPR responses for each mixture is 
shown, normalized to the response obtained with no added Fab. Error bars indicate the standard deviation on at 
least three independent measurements. The line simply connects the data points. B: The ability of FabC225 (the 
antigen binding domain of cetuximab; gray shades) and Fab72000 (red shades) to compete for the binding of 600 
nM sEGFR to immobilized EGF, determined exactly as described in A. Samples of each Fab alone show no 
binding to the immobilized EGF (data not shown). Data for FabC225 are taken from Li et al., 2005. Error bars 
indicate the standard deviation on at least three independent measurements. 
 

5.2.3. Matuzumab binding prevents receptor dimerization 

Analytical ultracentrifugation sedimentation equilibrium experiments (SE) were carried 

out to determine the oligomeric state of sEGFR:Fab72000 (see 4.3.4) in the presence of 

excess ligand. The control samples show a doubling of the molecular weight for sEGFR in 

presence of EGF. However, only a slight increase in molecular weight is observed for the 

complex sEGFR:Fab72000 with added ligand (Fig. 12).  
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Fig. 12: Does the sEGFR:Fab72000 complex dimerize? Analysis by AUC 

Analytical ultracentrifugation sedimentation equilibrium data of the oligomeric state of sEGFR:Fab72000 in the 
presence of EGF. Depicted are the theoretical molecular weights by sequence of the EGF receptor, the complex 
sEGFR:Fab72000 and the mutated receptor sEGFR Y251A/R285S:Fab72000 (sEGFRmut:Fab72000) (yellow 
bars), each alone and in presence of excess EGF. The experimentally determined molecular weights of the 
respective molecules are shown as green bars. The data represent a fit of 4 µM samples measured in 20 mM 
HEPES, 100 mM NaCl (pH 7.5). Equilibrium data after 18 h were obtained at three different speeds 6,000 rpm, 
9,000 rpm and 12,000 rpm at 20°C. 

 

The same slight increase in the molecular weight is seen for the dimerization incompetent 

receptor:antibody complex sEGFR Y251A/R285S:Fab72000 in presence of EGF. This protein 

has two mutations in the dimerization arm of domain II (Y251A/R285S) that lead to the loss 

of an inter-receptor hydrogen bond. The mutated receptor binds ligand, albeit with lower 

affinity, but does not dimerize (Dawson et al., 2005). It is not known why the mutated 

receptor shows a higher molecular weight than the wild type receptor, but the same was 

observed in former experiments (personal communication Dr. Dawson).  

 

5.2.4. The matuzumab epitope 

The crystal structure of EGFRd3 in complex with Fab72000 (see 4.5.3) reveals that 

Fab72000 binds primarily to the loop that precedes the most C-terminal strand of the domain 

III β-helix (amino acids 454-464; highlighted in red in Fig. 13). This loop penetrates into a 

cleft between the VL and VH domains of the Fab. The tip of this loop forms a type I beta turn, 

with T459 and S460 in this turn protruding the farthest into the cleft. All of the key 

interactions made by the Fab are from the complementarity determining regions (CDRs), with 

the major specificity determining contacts coming from CDRs H3 and L3. All CDRs 

contribute to binding to domain III. 
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Fig. 13: Structure of the complex between the matuzumab Fab fragment and domain III of sEGFR 

Cartoon of the sEGFRd3:Fab72000 complex. Domain III is colored in gray with the epitope highlighted in red. 
The orientation of domain III is the same as for the tethered sEGFR (left hand view) in Fig. 6. Fab72000 is 
colored cyan for the light chain and yellow for the heavy chain. 
 

The tip of the buried loop from sEGFR makes interactions with both the heavy and light 

chain CDRs (Fig. 14); the side chain of T459 interacts with that of H93 from the Fab light 

chain, while the side chain of S460 contacts the CDR H2 side chain E50. Two lysines, one on 

either end of the sEGFRd3 epitope loop, form salt bridge interactions with aspartic acids on 

the Fab (K454 with D100 from CDR H3 and K463 with CDR L2 D49).  

 

 
Fig. 14: The epitope of matuzumab in detail 

A closeup view of the interactions between Fab72000 and domain III of sEGFR. Domain III is in gray with the 
secondary structure elements highlighted in red. The VL and VH domains of Fab72000 are in gray with cyan and 
yellow highlights, respectively. The CDRs of Fab72000 are shown in cyan for L1, L2 and L3 of the VL domain, 
and in yellow for H1, H2 and H3 of the VH domain. The side chains of the amino acids participating in key 
interactions are shown, colored as for the CDRs for the Fab and in pink for domain III. The amino acids are 
labeled on a cyan background for those from VL, on a yellow background for VH and in black for sEGFRd3. 
Distances corresponding to hydrogen bonds are shown with dashed black lines. 
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Additional interactions with the buried epitope loop are contributed by side chains in 

CDRs H1, H2 and L1 that are within hydrogen bonding distance of the main chain of 

sEGFRd3 (Fig. 14 and Fig. 15). Two important direct interactions are made between the Fab 

and regions of domain III outside the loop between amino acids 454-464. A histidine from 

CDR L3 (H93) interacts with D434 on the adjacent loop of the sEGFRd3 β-helix, while on 

the other side of the binding site Y103 from the apex of CDR H3 extends to interact with 

N449. These two interactions anchor the Fab over the central binding loop and expand the 

epitope substantially beyond the single peptide loop. 

 

 
Fig. 15: Electron density at the sEGFRd3:Fab72000 interface 

Stereo representation of selected interactions between sEGFR domain III and Fab72000. Amino acids are shown 
in stick representation and colored pink for domain III, yellow and cyan for Fab72000 VH and VL respectively. 
The gray mesh represents the final 2Fo-Fc electron density map contoured at 1.0 σ. Distances consistent with 
hydrogen bonds are shown in dashed black lines. 
 

A total of 2 salt bridges and 11 predicted hydrogen bonds are involved in the interaction 

between Fab72000 and sEGFRd3, in an interface that buries 758 Å2 of solvent accessible 

surface on domain III (in the complex a total of 1516 Å2 of surface is occluded from solvent). 

The shape complementarity (sc) parameter for the interface of the sEGFRd3: Fab72000 

complex is 0.62.  

Neither the conformation of sEGFRd3 nor of Fab72000 is significantly altered upon 

formation of the complex. There are very minor differences in the side chain positions in both 

the domain III epitope and in the CDRs of the Fab. Most notably Y103 in the VH domain is 

disordered in the unbound Fab and becomes ordered on interacting with sEGFR. The elbow 

angle changes by 4° between the bound and unbound Fab72000. 
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5.2.5. The matuzumab epitope is distinct from the ligand binding site on 

domain III of sEGFR 

Based on the crystal structures sEGFRd3:Fab72000 (see 4.5.3), sEGFR:FabC225 (PDB 

ID 1YY9) and sEGFR:EGF (PDB ID 1NQL) the epitopes of matuzumab and EGF were 

mapped onto sEGFR domain III to investigate the spatial arrangement of their binding sites 

(Fig. 16A). The same was done with the epitopes of cetuximab and EGF (Fig. 16B). While 

the binding sites of cetuximab and the ligand clearly overlap, the epitopes of matuzumab and 

EGF show no overlap. 

 

 
Fig. 16: The matuzumab epitope is distinct from the ligand binding site on domain III of sEGFR 

A: surface representation of domain III is shown in gray viewed in approximately the same orientation as in Fig. 
13. On the left hand side the amino acids on domain III that are within 4 Å of Fab72000 (red) or of EGF (green) 
are indicated on this surface. The amino acids that were mutated (Fig. 17) are labeled in white. B: the same 
surface representation of domain III is shown with the contacting amino acids for FabC225 in yellow, for EGF in 
green and for the region of overlap between FabC225 and EGF in blue. 

 

To confirm that the crystallographically defined epitope for matuzumab precisely 

represents what is seen in solution, site specific alterations in sEGFR at key amino acids in the 

domain III matuzumab epitope were generated (Fig. 14) (see 4.1.1). Each purified, altered 

sEGFR (see 4.3.1) was analyzed for binding to immobilized Fab72000 and to immobilized 

EGF. Alteration to alanine of either of the two lysines on the epitope loop (K454A or K463A) 

leads to an approximate 100-fold reduction in the affinity of sEGFR for Fab72000 (Fig. 17). 

Substitution of alanines at T459 and S460 (T459A/T460A) also dramatically reduces the 

binding affinity. The combination of either lysine to alanine substitution with T459A/T460A 

abolishes all detectable interaction between sEGFR and the immobilized Fab72000. 
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Fig. 17: Effects of sEGFR mutant binding to matuzumab or EGF 

Surface plasmon resonance (SPR)/Biacore analysis of the binding of altered sEGFR proteins to immobilized 
Fab72000 or EGF. The equilibrium binding KD values for each protein were determined exactly as described in 
Fig. 9. The fold change in this KD value for each altered protein relative to that for the binding of wild type 
sEGFR to each immobilized ligand is plotted. Error bars indicate the standard deviation on at least three 
independent sets of measurements. 
 

sEGFR proteins with alterations in the Fab72000 epitope bind to immobilized EGF with 

near wild type affinity (Fig. 17). However, substitution of two amino acids that are known to 

be critical for EGF binding (D355T/F357A) have negligible effect on binding of sEGFR to 

Fab72000.  
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5.3.  Discussion 

5.3.1. Matuzumab binding characteristics to soluble and cell surface 

EGFR 

The KD value of 113 ± 25 nM for Fab matuzumab binding to sEGFR obtained by surface 

plasmon resonance (SPR)/Biacore studies (see 5.2.1) is weaker than observed for the binding 

of 125I-labeled intact matuzumab to cell surface EGFR with about 1-10 nM, depending on the 

cell line employed (Schmiedel et al., 2008). The value obtained by ITC with 2.1 ± 0.5 nM 

corresponds better to the cellular data. However, binding assays with immobilized soluble 

receptor and with cell surface receptor are not directly comparable. The isolated domain III 

of sEGFR (sEGFRd3) binds to immobilized Fab72000 with a KD value of 43.0 ± 12.9 nM. 

The antigen binding domain of matuzumab, like the ones of the antibodies cetuximab and 

11F8 (Li et al., 2005; Li et al., 2008), binds more tightly to sEGFRd3, possibly due to the 

absence of steric hindrance from the other domains of sEGFR.  

It is possible that the immobilization of the Fab72000 could affect the measured affinity in 

the Biacore experiments. However, essentially the same affinity for sEGFR binding to 

immobilized (amine coupled or bound via immobilized protein A) mAb matuzumab was 

obtained (see Appendix 11.3 Fig. 45). The absolute value of the affinity of sEGFR for 

immobilized Fab72000 obtained from the Biacore experiment is of less significance. This 

assay is however relevant in comparing the binding of sEGFRd3 and of the sEGFR proteins 

with alteration in the Fab72000 epitope to this same Biacore surface (see 5.3.3). 

 

It has previously been shown that, in the context of an SPR/Biacore assay, the Fab 

fragment of cetuximab (FabC225) is able to block all binding of soluble sEGFR to 

immobilized EGF (Li et al., 2005). Therefore the ability of matuzumab to compete with 

ligand binding to sEGFR was investigated by SPR. As shown in Fig. 11, matuzumab, in 

contrast to cetuximab, is not able to completely block the binding of the soluble receptor to 

immobilized EGF. Instead the equilibrium SPR response plateaus at 40% of the value in the 

absence of added Fab. One possible explanation for the observed SPR responses in Fig. 11 is 

that both unbound sEGFR and the sEGFR:Fab72000 complex can interact with the 

immobilized EGF, but that the complex binds with substantially weaker affinity. Equilibrium 

binding analysis to immobilized EGF for samples of sEGFR containing a 10 fold molar 

excess of Fab72000 indicates an apparent KD value that is approximately five fold weaker 

than for sEGFR alone. 
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Still, matuzumab, like cetuximab, competes efficiently for the binding of 3 nM 125I-

labeled EGF to the surface of A431 epidermoid carcinoma cells (Schmiedel et al., 2008). 

 

Taken together, these data suggest that there must be something quite different about the 

mode of binding to sEGFR of the Fab fragment of matuzumab compared to that of cetuximab. 

Both antibodies are able to compete for binding of low concentrations of EGF to cell surface 

EGFR, yet the Fab fragments from the two antibodies have very different effects on the 

ability of soluble EGFR to bind to immobilized EGF in the Biacore assay. This apparent 

discrepance can be explained after examining the complex structure of the matuzumab Fab 

fragment and sEGFRd3 (see 5.3.5). 

 

5.3.2. The matuzumab epitope on sEGFR domain III 

The epitope of matuzumab on sEGFR domain III consists of a single loop of 10 amino 

acids with two additional interactions probably stabilizing the antibody receptor interaction 

(Fig. 13). Kamat et al. identified through mutagenesis experiments the residues S460/G461 to 

be essential for binding of the murine progenitor of matuzumab 425 (Kamat et al., 2008). 

These residues comprise exactly the tip of the epitope loop as seen in the crystal structure. 

This mode of binding of an antibody to a large protein antigen is unusual. It is more 

common for the epitope on a large protein antigen to comprise a large flat surface (Sundberg 

and Mariuzza, 2002), as was observed for the binding of cetuximab and 11F8 to EGFR (Li et 

al., 2005; Li et al., 2008). The fact that all complementarity determining regions (CDRs) of 

matuzumab contribute to the binding to sEGFRd3 is also an unusual feature compared to most 

antigen-antibody complexes (Sundberg and Mariuzza, 2002). 

The shape complementarity parameter for the interface of the sEGFRd3:Fab72000 

complex of 0.62 is slightly lower than is typically observed for antigen-antibody interfaces 

(0.64 to 0.68) (Lawrence and Colman, 1993). The sc values reported for cetuximab and 11F8 

bound to EGFR (Li et al., 2005; Li et al., 2008) and for the pertuzumab and trastuzumab 

complexes with the extracellular region ErbB2 (Cho et al., 2003; Franklin et al., 2004) are all 

somewhat higher, in the range from 0.69 to 0.75. This perhaps reflects the more convex shape 

of the matuzumab epitope compared to those of these other antibody drugs. 

The elbow angle change of only 4° between the bound and unbound Fab72000 is in within 

the range expected due to dynamic elbow flexibility (Stanfield et al., 2006) and thus probably 

not induced by the binding event. 
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Neither the conformation of the domain III and nor that of Fab72000 is significantly 

altered upon complex formation. Additionally, the binding of Fab72000 would not be 

expected to disrupt the tethered configuration of sEGFR (Fig. 6, left panel), the preferred 

solution conformation of the receptor (Dawson et al., 2007) and the likely conformation of the 

unliganded receptor at the cell surface. Fab72000 can readily be docked onto its epitope on 

either of the two known structures of tethered sEGFR (PDB IDs 1NQL and 1YY9) without 

hindrance from any of the other domains of sEGFR. 

 

5.3.3. Matuzumab and ligand epitopes do not overlap on sEGFR domain 

III 

SPR/Biacore experiments showed a dramatically reduced affinity of Fab72000 to sEGFR 

carrying mutations in the Fab72000 epitope in comparison to wild type receptor (Fig. 17). 

However, the affinity of EGF to the mutated receptor is only slightly reduced in comparison 

to the wild type. This confirms that the striking reduction in binding affinity for Fab72000 is 

not due to a global disruption of the structure of domain III of sEGFR. The reverse effect is 

seen for receptor protein carrying mutations in the ligand binding site: the affinity of EGF is 

reduced while the binding to Fab72000 remains unaffected. These results confirm that the 

epitopes of the ligand and matuzumab are distinct as seen in 5.2.5. Indeed, not only is there no 

overlap of the epitope for matuzumab and the ligand binding region on domain III (Fig. 16A), 

but a bound Fab72000 would impose no steric hindrance to the binding of EGF or of TGF-α 

to domain III. With domain III from the sEGFRd3:Fab72000 complex overlaid on domain III 

from the sEGFR:EGF complex (PDB ID 1IVO) the closest approach of the Fab and EGF is 9 

Å. This is in stark contrast to the situation for cetuximab binding. There is a high degree of 

overlap between the cetuximab and EGF binding sites on domain III (Fig. 16B). The steric 

block of this ligand binding site is the primary mechanism of cetuximab mediated inhibition 

of ligand induced dimerization and activation of EGFR (Li et al., 2005). Clearly the 

mechanism of inhibition of EGFR activation by matuzumab must be different. 
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5.3.4. The matuzumab inhibition mechanism 

If matuzumab does not directly block access of the ligand to the domain III ligand binding 

site, how does it prevent high affinity ligand binding, receptor dimerization and activation as 

seen in ultracentrifugation studies (Fig. 12)? To understand this, the effect of the binding of 

Fab72000 upon the formation of the ligand induced dimeric form of the receptor is 

considered.  

As shown in Fig. 6, sEGFR undergoes a dramatic domain rearrangement in going from 

the tethered inactive state to the ligand bound dimeric state (Burgess et al., 2003). Additional 

local structural changes in domain II are known to be key for high affinity ligand binding, 

receptor dimerization and activation (Ogiso et al., 2002; Dawson et al., 2005). As shown in 

Fig. 18 and discussed in detail below, when domain III from the sEGFRd3:Fab72000 

complex is overlaid on domain III from the receptor in its extended, dimerization competent 

conformation (PDB ID 1MOX), there are direct clashes between the bound Fab72000 and 

both domains I and II of the extended receptor. Thus, with matuzumab bound to domain III of 

EGFR, the receptor cannot undergo the large scale domain rearrangement that is required for 

dimerization. Further, the binding of Fab72000 blocks the critical local conformational 

changes in domain II. 
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Fig. 18: Implications for the mechanism of inhibition of EGFR by matuzumab 

A. Cartoon of the extended sEGFR with Fab72000, in surface representation, docked onto its domain III epitope. 
The orientation of the receptor is the same as for the right hand protomer in the sEGFR dimer shown in Fig. 6 
(with domains colored as for the left hand protomer; EGF is omitted for clarity). Fab72000 is colored as in Fig. 
13. The N-terminal region of domain I clashes with the VL domain (indicated with an arrow). Additional clashes 
occur along the C-terminal half of domain II (see part B). The C-terminal loop on domain II (D278, H280) that 
makes critical contacts across the dimer interface is marked with an asterisk. 
B. In this view, an approximate 50° rotation about the vertical axis relative to part A, domain II is shown in 
sphere representation in dark green. A cartoon of domain II of the other molecule in the dimer is shown (light 
green) for reference. Domain I has been omitted for clarity. The VL domain of the Fab clashes with domain II in 
the critical C-terminal region that forms the binding pocket for the dimerization arm and makes important 
contacts with domain III (from N274 and E293 in domain II, colored orange). These interactions are known to be 
crucial for stabilizing the dimerization competent conformation of domain II. The Fab72000 epitope loop on 
domain III is colored in red. 
 

With the receptor in the extended conformation, the N-terminal region of the domain I 

clashes with the light chain of Fab72000 preventing domain I from reaching the position that 

is required for high affinity ligand binding (indicated with an arrow in Fig. 18). This is 

reminiscent in nature and extent to clashes between the antigen-binding fragment of 

cetuximab (FabC225) and domain I that were previously implicated as part of the mechanism 

of inhibition of EGFR dimerization by that antibody (Li et al., 2005). In that case, the 

different orientation of FabC225 on domain III positions th VH domain such as to occlude the 

N-terminal portion of domain I from its required position in the receptor dimer. 

Clashes between domain II of the extended receptor and the Fab were not seen in the 

cetuximab complex, and are significant. With Fab72000 bound to domain III of EGFR it 

would not be possible for the C-terminal portion of domain II to adopt the conformation 

observed in the ligand bound dimeric form of the receptor. As shown in Fig. 18B, if Fab72000 

is docked onto its epitope on domain III of an sEGFR molecule in the extended conformation, 

there are clashes along the C-terminal half of domain II, predominantly with the VL domain of 
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the Fab. This C-terminal half of domain II forms the binding pocket for the dimerization arm 

from the other molecule in the receptor dimer. Additional interactions across the dimer 

interface from a C-terminal loop on domain II (D279 and H280, marked with an asterisk in 

Fig. 18A) contribute substantially to the stability of the EGFR dimer. The conformation of 

domain II in this region is stabilized by interactions with domain III that have been 

demonstrated to be critical for EGFR dimerization and activation (Ogiso et al., 2002; Dawson 

et al., 2005). The binding of Fab72000 to domain III would disrupt all of these interactions.  

Thus, Fab72000 binding to domain III of EGFR blocks the global domain rearrangement 

of EGFR and the local conformational changes in domain II. The blocking both of these key 

elements in formation of the productive EGFR dimer is critical for the effective inhibition of 

EGFR activation by matuzumab.  

 

5.3.5. Matuzumab binding properties interpreted with structural 

information 

The steric restriction on EGFR conformation imposed by the binding of matuzumab 

offers a structural framework to explain the competition data presented in Fig. 11. In binding 

studies at the cell surface matuzumab and cetuximab are both efficiently competing with 

EGF to receptor binding, while in SPR/Biacore assays the two antibodies show differing 

competition characteristics. A major difference between the two competitions assays is the 

concentrations of the soluble ligands that are used. In the cell based competition assay EGF 

is present at 3 nM. This concentration is well below the KD value for the binding of EGF to 

isolated domain III: between 500 nM (for the Kohda fragment) and 2 μM (for insect cell 

expressed sEGFRd3) (Ogiso et al., 2002; Dawson et al., 2005). To observe binding of EGF 

to cell surface EGFR under these conditions both domains I and III must be engaged to form 

a high affinity EGF binding site. However, binding of matuzumab to EGFR prevents the 

receptor from adopting the conformation required to form the high affinity ligand binding 

site. Thus at this relatively low EGF concentration matuzumab blocks detectable binding of 

EGF to the cell surface and thus competes as effectively for the binding of EGF as does 

cetuximab. Any EGF that binds to the exposed ligand binding site on domain III of a 

matuzumab occupied cell surface EGFR would be so weakly bound that it would be washed 

out in this assay. By preventing the receptor from adopting the conformation required for the 

bipartite binding of EGF between domains I and III, matuzumab blocks all detectable 

binding of EGF to cell surface EGFR in this assay.  
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By contrast the Biacore assay is performed at a much higher concentration of soluble 

ligand (in this case sEGFR, which binds to immobilized EGF). The soluble EGFR is passed 

over this surface at 600 nM, a concentration that is close to the KD for the binding of isolated 

domain III of EGFR to immobilized EGF. Under these conditions the monovalent binding of 

domain III alone to EGF can be detected. There are probably two populations of sEGFR with 

two different affinities. Unbound sEGFR has a higher affinity for EGF, while the Fab72000 

bound sEGFR has a lower affinity. In the Biacore assay, the residual binding to immobilized 

EGF observed for sEGFR in the presence of excess Fab72000 (Fig. 44) is due, at least in 

part, to binding to EGF of the exposed domain III in an sEGFR:Fab72000 complex.  

 

5.3.6. Implications for the therapeutic application of matuzumab 

As discussed above, the mechanism of inhibition of matuzumab is different from that 

previously described for cetuximab. Both antibodies effectively block productive binding of 

EGF to cell surface EGFR, but do so by interacting with distinct epitopes on domain III. Not 

only are the epitopes of matuzumab and cetuximab non-overlapping, but the structures 

suggest that both matuzumab and cetuximab could simultaneously bind to EGFR. As shown 

in Fig. 19, when FabC225 and Fab72000 are simultaneously docked onto their respective 

epitopes on domain III the two Fab fragments occupy different positions and do not overlap.  
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Fig. 19: The matuzumab and cetuximab epitopes do not overlap 

A surface representation of the domain III as in Fig. 16 is shown. Cartoons of Fab72000, FabC225 (PDB ID 
1YY9) and EGF (PDB ID 1IVO) are shown docked onto their respective binding sites on domain III. Fab72000 
is colored as in Fig. 13, FabC225 is shown with the heavy chain in orange and the light chain in light green, and 
EGF is in purple. 
 

This observation was experimentally confirmed by surface plasmon resonance/Biacore, 

size exclusion chromatography and analytical ultracentrifugation analysis investigating the 

simultaneous binding properties of cetuximab and the murine progenitor of matuzumab 425 to 

soluble and cell surface EGFR (Kamat et al., 2008). Cellular competition assays showed that 

neither antibody competes with the binding of the other (Schmiedel et al., 2008; Kamat et al., 

2008). Further it has been reported that there is an increased number of cell surface antibody 

binding sites for a mixture of matuzumab and cetuximab compared to either antibody alone 

(Kreysch and Schmidt, 2004). This suggests that both matuzumab and cetuximab can bind to 

a single receptor molecule at the cell surface. 

 

Treatment of cells with combinations of antibodies against distinct epitopes on the 

extracellular domain of EGFR, and on the related family member ErbB2, lead to enhanced 

receptor internalization and degradation (Ye et al., 1999; Spiridon et al., 2002; Friedman et 

al., 2005), a factor that contributes to the antitumor activity of many therapeutic antibodies 

(Logtenberg, 2007). Matuzumab and cetuximab can both bind simultaneously to EGFR and 

this has the potential to lead to synergistic antitumor effects.  
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Indeed, a combination of cetuximab and the murine progenitor of matuzumab 425 reduced 

growth and survival of EGFR overexpressing breast cancer cells more effectively than either 

antibody alone (Kamat et al., 2008). Furthermore, it was shown that combinations of 

antibodies binding to different epitopes on EGFR trigger potent complement-dependent 

cytotoxicity (CDC) (Dechant et al., 2008). The authors particularly emphasized the 

combination of cetuximab and matuzumab for effectivity. Combination of matuzumab and 

cetuximab could, thus, be beneficial in cancer therapy.  
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5.4.  Conclusion 

EGFR dimerization requires a conformational reorganization of the receptor extracellular 

region that is promoted by ligand binding to domain I and III (Fig. 6). As shown 

schematically in Fig. 20, cetuximab acts as a competitive inhibitor, preventing ligand induced 

dimerization by directly blocking access of ligand to the domain III ligand binding site.  

 

 
Fig. 20: Matuzumab and cetuximab use different mechanisms to block ligand induced EGFR dimerization 
In the center of the scheme the ligand induced sEGFR dimer is represented, with domain I in red, domain II in 
green, domain III in gray with red border, domain IV in gray with green border and the ligand (E) in violet. The 
colors for one protomer are lightened for contrast. On the left hand side a scheme is shown to illustrate the 
mechanism of inhibition of ligand induced dimerization by matuzumab. Fab72000 binds to domain III of sEGFR 
and sterically prevents the receptor from adopting the conformation required for dimerization. Importantly, 
Fab72000 blocks the local conformational changes in domain II that are critical for both high affinity ligand 
binding and dimerization. The inhibition is non-competitive; the ligand binding site on domain III is not blocked. 
This contrasts with the mechanism of inhibition previously reported for cetuximab (Li et al., 2005). FabC225 
(right hand side) is a competitive inhibitor that blocks the ligand binding site on domain III. This is the primary 
mechanism of inhibition of ligand mediated dimerization by cetuximab. 
 

By contrast matuzumab does not occlude the ligand binding site on domain III. Rather 

matuzumab exploits a non-competitive mechanism to inhibit sEGFR dimerization and 

activation. Inhibition of ligand induced EGFR activation by matuzumab is entirely dependent 

on sterically blocking the receptor from adopting the conformation that is required for high 

affinity ligand binding and dimerization. These different mechanisms of inhibition suggest 

opportunities to exploit multiple EGFR targeting drugs to act synergistically for optimal 

therapeutic gain. 
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6. Antibody binding and dimerization properties of the 

mutant EGFR variant III ectodomain 

6.1.  Introduction 

Beside cancer related mutations in the tyrosine kinase domain of the epidermal growth 

factor receptor (EGFR), several mutations in the extracellular part of EGFR were described to 

promote tumorigenesis (Lee et al., 2006). The type III EGFR mutation (EGFRvIII, de2-7 

EGFR or ΔEGFR) is the most common one and clinically connected with enhanced tumor 

aggresivity and chemoresistance (Nishikawa et al., 1994; Huang et al., 1997; Heimberger et 

al., 2005; Weppler et al., 2007; Wang et al., 2009). The mutated receptor EGFRvIII is a 

truncated version of the wild type EGFR showing constitutive signaling activity and impaired 

down-regulation (Pedersen et al., 2001). 

The presence of EGFRvIII was described for many different cancer types, among them 

lung and prostate cancer as well as gliomas, where the mutation is found in up to 50% of 

glioblastomas (Moscatello et al., 1995; Frederick et al., 2000; Cavenee, 2002). Expression of 

EGFRvIII is a negative prognostic indicator in glioblastoma and mediates resistance to TKIs 

targeted against EGFR (Learn et al., 2004). 

 

6.1.1. EGFRvIII in-frame deletion 

EGFRvIII contains a deletion of exons 2-7 of the wild tpye gene, resulting in the in-frame 

loss of most of domain I and II including the dimerization arm (Pedersen et al., 2001). At the 

fusion junction a novel glycine residue is generated. Thus, the protein consists of the residues 

1-5 of domain I, the glycine residue and continues with residue 274 of domain II (Fig. 21). 
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Fig. 21: Domain organization of EGFR and EGFRvIII in comparison 

Human EGFR and EGFRvIII comprise an extracellular region consisting of domains I-IV, a transmembrane 
region and an intracellular tyrosine kinase domain. The truncated EGFRvIII consists of residues 1-5 of domain I 
of the wild type EGFR, a glycine residue at the fusion junction and continues with residue 274 of domain II. The 
sequence of domain III and IV are unaltered in mutant EGFRvIII in comparison to full length EGFR (figure 
adapted from Pedersen et al., 2001). 

 

Based on the sequence the ligand binding site on domain III is unaltered as well as the 

epitope of the monoclonal antibodies cetuximab (Li et al., 2005) and matuzumab (Schmiedel 

et al., 2008). However, no ligand binding is observed through the mutated receptor on the cell 

surface (Wikstrand et al., 1997). It is unclear if the mutant receptor is able to form 

homodimers at the cell surface upon ligand stimulation since conflicting data were published 

(Chu et al., 1997; Fernandes et al., 2001). Heterodimerization of the EGFRvIII with the wild 

type EGFR was shown in murine BaF/3 cells and in human glioblastoma cells (O'Rourke et 

al., 1998; Luwor et al., 2004). Structural or biophysical investigations of the isolated 

ectodomain of EGFRvIII are not available so far. 

EGFRvIII was so far only shown to be expressed on cancer cells and is therefore an ideal 

target for anticancer therapy (Wikstrand et al., 1997; Kuan et al., 2000; Li and Wong, 2008). 

It is unknown if untransfected cells in tumors are able to co-express both the receptor wild 

type and EGFRvIII within the same cells or if a mixture of cells is present expressing either 

one or the other receptor controversially discussed in literature (Nishikawa et al., 1994; 

Aldape et al., 2004; Yang et al., 2008; Zhu et al., 2009). 
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6.1.2. EGFRvIII signaling activity 

In comparison to the wild type receptor, which signals via the phosphatidylinositol 3-

kinase (PI3K)/Akt, ras/raf/MEK/ERK, phospholipase C gamma (PLCγ), and signal transducer 

and activator of transcription (STAT3) signaling pathways (Sebastian et al., 2006) (see 3.4), 

EGFRvIII seems to activate different signaling pathways (Zhu et al., 2009).  

The phosphorylation of the mutant was reported to be lower in comparison to the wild 

type, but to be constitutive. Recently it was found that tyrosine residue 992 in human 

EGFRvIII expressed by mouse cells is constitutively phosphorylated (Zhu et al., 2009). 

Attempts to identify intracellular molecules mediating the mutant signaling have been 

inconclusive so far. PLCγ was reported not to be phosphorylated in NR6M cells expressing 

only EGFRvIII (Chu et al., 1997), while it was recently described as persistently activated in 

mouse glioblastoma cells expressing human EGFRvIII (Zhu et al., 2009). The last group 

implies a novel MAPK independent signaling pathway for PLCγ in glioblastomas.  

Several authors describe elevated PI3K activity in murine fibroblasts and human glioma 

cells expressing EGFRvIII (Moscatello et al., 1998; Narita et al., 2002; Klingler-Hoffmann et 

al., 2003). However, both cell lines express endogenous wild type EGFR, which might have 

influenced the results obtained. In contrast, mouse glioma cells expressing human EGFRvIII 

were reported to show phosphorylated Akt only on Ser-473, which is not mediated through 

PI3K but through mTORC2 kinase activity (Zhu et al., 2009).  

The activation of the mitogen-activated protein kinase (MAPK) by EGFRvIII also remains 

controversial. Two groups reported activation of the MAPK pathway in NR6 cells and in 

U87MG glioma cells (Wu et al., 1999; Lorimer and Lavictoire, 2001). Other groups 

suggested that there was no MAPK activation in NIH3T3 cells, NR6 cells or in mouse glioma 

cells (Moscatello et al., 1996; Chu et al., 1997; Zhu et al., 2009). Therefore, it remains 

unclear so far which pathway contributes significantly to the enhanced tumorigenicity of 

EGFRvIII in vivo. 

 

6.1.3. EGFRvIII down-regulation 

There are two main mechanisms described for negative EGF receptor regulation:  

(1) intracellular binding of the ubiqutin ligase Cbl at phosphorylated tyrosine residues leading 

to internalization plus lysosomal receptor degradation and (2) extracellular binding of the 

leucine rich repeat and immunoglobulin-like domain-1 protein (LRIG1), which enhances 

receptor degradation by a so far unknown mechanism (Davies et al., 2006; Stutz et al., 2008). 
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The exact mechanism by which EGFRvIII evades down-regulation is not fully understood 

yet, but it seems that only the first of the two described mechanisms is impaired for 

EGFRvIII. Studies suggest that the interaction of the mutant receptor with Cbl may be 

compromised (Davies et al., 2006). Recently it was reported that in spite of the mutation in 

the extracellular domain of the EGFRvIII the mutual interaction with LRIG1 is not disrupted 

(Stutz et al., 2008). It was suggested that the loss of LRIG1 might promote EGFRvIII driven 

oncogenesis. Similar promotion of gliomagenesis especially for EGFRvIII expressing tumors 

was observed through the loss of the tumor suppressors Ink4a/Arf and PTEN (Zhu et al., 

2009). 

In addition to inefficient internalization, the EGFRvIII was reported to be efficiently 

recycled to the plasma membrane resulting in a long half-life of the mutant receptor (Grandal 

et al., 2007).  

 

6.1.4. Therapeutic strategies against EGFRvIII 

Several strategies are under investigation to treat cancer patients with EGFRvIII 

expressing tumors including active vaccination and monoclonal antibodies. 

Vaccination with a peptide containing the EGFRvIII specific mutated junction sequence 

has now progressed to clinical trial. The efficiency of anti-cancer vaccination was first shown 

in mice injected with a peptide derived from EGFRvIII. The immunized animals showed a 

significantly decreased tumor incidence in comparison to control mice (Moscatello et al., 

1997). Currently there are five clinical trials evaluating active immunization with exactly the 

EGFRvIII peptide (now produced under the name CDX-110) described by Moscatello et al. 

(1997) reaching from Phase I to Phase II/III (Sonabend et al., 2007; Li and Wong, 2008; 

Sampson et al., 2008) 

 
Since EGFRvIII seems to be a tumor-specific marker (Wikstrand et al., 1995), the mutant 

is currently investigated as therapeutic target in anti-cancer immunotherapy through 

monoclonal antibodies, i.e. mAb806 or cetuximab, and single chain antibody variable 

domains (scFv) (Kuan et al., 2000; Shankar et al., 2006; Aerts et al., 2007; Yoshimoto et al., 

2008; Yang et al., 2008). In summary, several monoclonal antibodies including the antibody 

cetuximab were described to recognize the mutated receptor in vitro (Wikstrand et al., 1995; 

Modjtahedi et al., 2003). However, in vivo effectivity of cetuximab was reported to be 

reduced in comparison with mAb806 (Li et al., 2007). Cetuximab was described to bind to 

EGFRvIII expressed by human glioma cell lines and to trigger ADCC in a dose-dependent 
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manner, but not to exhibit a growth-inhibitory effect (Fukai et al., 2008). Furthermore, 

boronated cetuximab was used for boron neutron capture therapy of rat gliomas, but showed 

in vivo reduced binding to EGFRvIII in comparison to the wild type EGFR (Yang et al., 

2008). A chimeric version of the mouse mAb 806 (ch806) has been engineered and has 

performed well in phase I trials (Scott et al., 2007). The antibody was reported to accumulate 

in patient tumor tissue in comparison with normal tissue. This is in accordance with the 

observation that mAb806 binds to EGFRvIII and to wild type EGFR in cells expressing 

elevated levels of the receptor, but not to wild type EGFR in tissue expressing normal levels 

of EGFR (Jungbluth et al., 2003).  

In addition, combination therapy of different tyrosine kinase inhibitors with chemotherapy 

was described to be potentially beneficial for glioblastoma patients with high EGFRvIII 

expression levels (Huang et al., 2007). Methods to detect EGFRvIII in tissue samples of 

patients are developed to enable EGFRvIII-directed therapies (Yoshimoto et al., 2008). 

 

 



  EGFRvIII - Results 

70 

6.2. Results 

In this chapter the structure of the isolated extracellular domain of sEGFRvIII is 

investigated as well as its dimerization properties. In addition the binding characteristics of 

EGF and the monoclonal antibodies matuzumab (see 5) and cetuximab to the EGFRvIII 

ectodomain are analyzed. 

 

6.2.1. Expression and purification sEGFRvIII 

This section describes for the first time the expression and purification of the mutant 

EGFR variant III ectodomain for crystallization experiments and antibody and ligand binding 

studies. The soluble extracellular domain of EGFR variant III (sEGFRvIII) was expressed in a 

6 L scale Sf9 cell culture (see 4.2.1 and 4.3.2). The yield was about 0.2 mg/L purified protein 

depending on the age and condition of the Sf9 cells. The sEGFRvIII C-terminal end was 

confirmed by Western blot with an anti-His6-antibody. The N-terminal sequence and the 

mutation fusion junction (Fig. 3) were confirmed by Edman degradation. The purity of 

sEGFRvIII was confirmed both by reducing and non-reducing SDS-PAGE (Fig. 22), by 

dynamic light scattering (DLS) and by analytical size exclusion chromatography (SEC)/static 

light scattering (SLS) methods. sEGFRvIII samples showed a polydispersity of 17.2 % at  

10 mg/ml measured by DLS and a defined SEC peak with a corresponding molar mass of  

47 kDa. This is in accordance with a molecular weight of sEGFRvIII by sequence of 39.2 kDa 

plus glycosylation. 
 

 
Fig. 22: SDS-PAGE sEGFRvIII purification 

The non-reducing SDS-PAGE of sEGFRvIII gel filtration fractions shows a single band in lane 5 corresponding 
to a protein of the expected size (39.2 kDa by sequence plus glycosylation, marked with an arrow). Aggregated 
or misfolded protein (lanes 2-4) was separated through the gel filtration run using a HiLoadTM Superdex200 
16/60 preparation grade column (GE Healthcare) pre-equilibrated with 20 mM HEPES, 100 mM NaCl (pH 7.5). 
The protein marker is shown in lane 1 with the sizes indicated in kDa. 
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6.2.2. sEGFRvIII dimerization properties 

Soluble EGFR wild type (sEGFR) and mutant EGFR variant III (sEGFRvIII) ectodomains 

(see 4.2.1and 4.3) were analyzed for their ligand dependent dimerization properties by 

analytical SEC/SLS (Fig. 23).  

Addition of a 1.2 molar excess of the ligand EGF to sEGFR leads to a doubling of 

molecular weight of the species in the sample from 77 kDa to 133 kDa. This was not seen for 

sEGFRvIII samples, which showed a shift in molar mass from 45 Da to 48 kDa in the 

presence of excess ligand EGF.  

In addition the heterodimerization properties of sEGFR and sEGFRvIII were investigated 

in absence and presence of excess ligand. Beside clear homodimeric sEGFR and monomeric 

sEGFRvIII peaks as seen in Fig. 23 no defined heterodimer peaks could be oberserved. 

However, this could be due to the resolution limit of the column.  
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Fig. 23: sEGFR and sEGFRvIII dimerization properties analysed by static light scattering 

sEGFR (A) and sEGFRvIII (B) ligand dependend dimerization was analysed by analytical SEC/static light 
scattering (SLS). The red line indicates a sample with a 1.2 molar excess of EGF, the green line a 0.5 molar 
excess of EGF and the blue line the respective receptor without added ligand. The straight lines indicate the 
molecular mass distribution in the sample, wheres the curves show the elution profile as determined by the 
refractive index. 30-40 µl (2 mg/ml) protein solution was injected onto a Superdex75 HR analytical SEC column 
(GE Healthcare) and the molecular weight determined from light scattering data. The column was equilibrated 
with 20 mM HEPES, 100 mM NaCl (pH 7.5) using an Agilent 1200 HPLC system. SLS data for protein eluting 
from the SEC column were collected using a DAWN-HELEOS-II static light scattering detector coupled to an 
in-line refractive index meter (Wyatt Technologies). The data were analyzed using the Astra V software (Wyatt 
Technologies). The molar weight of sEGFR (77 kDa) doubled in the presence of EGF (133 kDa), indicating a 
dimerization event. This was not seen for sEGFRvIII (47 kDa) in the presence of excess ligand (48 kDa). 
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6.2.3. Antibody and ligand binding properties of sEGFRvIII 

Surface plasmon resonance (SPR)/Biacore experiments were carried out to characterize 

the binding of the matuzumab Fab fragment (Fab72000) and the cetuximab Fab fragment 

(FabC225) to sEGFRvIII. The apparent KD values obtained were 19.4 ± 2.4 nM and 2.2 ± 0.1 

nM for matuzumab and cetuximab, respectively (Fig. 24). 

 

 
Fig. 24: Characterization of cetuximab and matuzumab binding to sEGFRvIII 

Surface plasmon resonance (SPR)/Biacore analysis of the binding of sEGFRvIII to immobilized FabC225 or 
Fab72000. A series of sEGFRvIII samples of the indicated concentrations was passed over a biosensor surface to 
which FabC225 or Fab72000 had been amine coupled. Data points show the equilibrium SPR response value for 
a representative set of samples for FabC225 (black squares) and Fab72000 (black triangles), expressed as a 
percentage of the maximal SPR binding response. The curves represent the fit of these data to a simple one-site 
Langmuir binding equation. The inset shows that there is no additional binding at higher concentrations. KD 
values, based on at least three independent binding experiments, are 19.4 ± 2.4 nM and 2.2 ± 0.1 nM for 
sEGFRvIII binding to Fab matuzumab and Fab cetuximab, respectively. 
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SPR/ Biacore experiments were carried out to characterize the binding of the ligand to 

sEGFRvIII. The apparent KD value obtained was 2.4 ± 0.3 µM (Fig. 24). 

 

 
Fig. 25: Characterization of EGF binding to sEGFRvIII 

Surface plasmon resonance (SPR)/Biacore analysis of the binding of sEGFRvIII to immobilized EGF. A series 
of sEGFRvIII samples of the indicated concentrations was passed over a biosensor surface to which EGF had 
been covalently coupled. Data points show the equilibrium SPR response value for a representative set of 
samples expressed as a percentage of the maximal SPR binding response. The curve represents the fit of these 
data to a simple one-site Langmuir binding equation. The KD value, based on at least three independent binding 
experiments, is 2.4 ± 0.3 µM. 
 

6.2.4. The sEGFRvIII structure 

The crystal structure of sEGFRvIII was determined at 3.9 Å resolution. It reveals the 

intact sEGFR wild type domain III and IV. However, for domain I and II including the 

deletion junction (residues 1-5 and 274-309 of wild type sEGFR) almost no electron density 

was visible. These domains are probably disordered in the crystal structure and are therefore 

not included in the model of sEGFRvIII (Fig. 26 and Fig. 27). 
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Fig. 26: Structure of sEGFRvIII 

Cartoon representation of the extracellular domain of the mutant EGFR variant III (sEGFRvIII). Domain III is 
colored in gold and domain IV in blue. No electron density was observed for domain II and domain I including 
the deletion junction indicating a disordered region in the crystal (marked by an asterisk) (see Fig. 27).  
 

 

 
Fig. 27: Electron density of sEGFRvIII domain III 

Stereo representation of a slab of the sEGFRvIII domain III electron density. Amino acids are shown in stick 
representation and colored in gold. The grey mesh represents the 2Fo-Fc electron density map contoured at 1.0 σ. 
Oxygen atoms are colored in red, nitrogen in blue and disulfide bridges in yellow. The askterisks mark the last 
amino acid that is visible at the N-terminus of domain III.  
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6.2.5. The sEGFRvIII solution structure 

Small-angle X-ray solution scattering studies were carried out to calculate a low 

resolution shape of sEGFRvIII in solution and to model the disordered regions in the crystal 

structure. An estimate of the molecular mass was assessed from the Porod volume of the 

particle in solution, which is equal to 1230 Å3. The experimental radius of gyration Rg and 

maximum size Dmax of sEGFRvIII were estimated as 40±5 Å and 160±10 Å, respectively. 

The processed and merged SAXS scattering curve in the range 0.05<s<0.30 Å-1 from 

sEGFRvIII is displayed in Fig. 28. Overlayed are the by CRYSOL calculated scattering 

curves of sEGFRvIII as seen in the crystal structure and sEGFRvIII (χ = 9.39) modeled by 

BUNCH (χ = 3.21, see below) (Svergun et al., 1995; Petoukhov and Svergun, 2005). 

 

 
Fig. 28: Experimental and calculated SAXS scattering curves sEGFRvIII 

Experimental and theoretical scattering intensities calculated by CRYSOL (relative scale) as a function of the 
momentum transfer 0.05<s<0.30 Å-1 (s = 4π sinθ/λ) for sEGFRvIII. Displayed are the experimental scattering 
data (green), the theoretical scattering curve of the sEGFRvIII fragment seen in the crystal structure (sEGFRvIII 
x-ray, black) and the theoretical scattering of sEGFRvIII modeled by BUNCH (sEGFRvIII BUNCH, pink). The 
scattering of sEGFRvIII x-ray and sEGFRvIII BUNCH fit the experimental data with discrepancies of χ = 9.39 
and χ = 3.21, respectively. 
 

The model of sEGFRvIII calculated by BUNCH (Petoukhov et al., 2002; Petoukhov and 

Svergun, 2005) shows domain I and II as well as the receptor ectodomain C-terminus as 

dummy residues (DR) (Fig. 29). The model fits the experimental scattering with a discrepancy 

of χ = 3.21 (Fig. 28). 
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Fig. 29: Model of the disordered sEGFRvIII regions calculated by BUNCH 

Cartoon representation of sEGFRvIII modeled by BUNCH (Petoukhov and Svergun, 2005) with domain III and 
IV colored according to Fig. 26. The model of the C-terminus (blue) as well as domain I (orange) and II (purple) 
are displayed as dummy residue chain. The optimal position of domain III and IV as rigid body domain and the 
probable conformations of the C-terminus and domain I/II were found by a simulated annealing protocol using 
the program BUNCH. The program combines rigid body with ab initio modeling. 
 

The low resolution shape of sEGFRvIII was reconstructed ab initio using the bead 

modelling program DAMMIN (Svergun, 1999), which employs the range of scattering 

vectors up to s = 0.3 Å -1 (resolution about 20 Å). The most probable model averaged out of a 

10 reconstructions (Fig. 30) displays a very extended structure and fits the experimental data 

with discrepancy χ = 1.69. 

 

 
Fig. 30: Ab initio solution structure of sEGFRvIII calculated by DAMMIN 

Cartoon representation of sEGFRvIII as seen in the crystal structure (Fig. 26) fitted into the ab initio shape 
(displayed as a grid) of solution sEGFRvIII calculated by the program DAMMIN (Svergun, 1999). 10 densely 
packed bead models were calculated based on simulated annealing procedures and averaged to determine 
common structural features using the programs DAMAVER (Volkov and Svergun, 2003) and SUPCOMB 
(Kozin and Svergun, 2001). 
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6.3.  Discussion 

6.3.1. Antibody and ligand binding characterisitics to soluble EGFRvIII 

The KD values of 19.4 ± 2.4 nM and 2.2 ± 0.1 nM for Fab72000 and FabC225, 

respectively, binding to sEGFRvIII obtained by surface plasmon resonance (SPR)/Biacore 

studies (see 6.2.3) are in accordance with the affinity values for wild type sEGFR: the 

Fab72000 showed a KD value of 43 ± 13 nM for binding to the isolated sEGFR domain III 

(Schmiedel et al., 2008; see 5.2.1), and FabC225 was reported to have a KD value of 2.3 ± 

0.5 nM for wild type sEGFR (Li et al., 2005). For Fab72000 binding to the full ectodomain 

of EGFR a KD value of 113 ± 25 nM was obtained (Schmiedel et al., 2008; see 5.2.1). An 

overview of the KD values compared here is given in Table 5. 

 
Table 5: Affinities of Fab72000, FabC225 and EGF to different sEGFR constructs 

KD values Fab72000 FabC225 EGF 

sEGFR 113 ± 25 nM 2.3 ± 0.5 nM* 130 ± 3 nM* 

sEGFRvIII 19.4 ± 2.4 nM 2.2 ± 0.1 nM 2.4 ± 0.3 µM 

sEGFR domain III 43 ± 13 nM 1.7 ± 0.6 nM* 2.3 ± 0.5 μM* 

(*data marked with an asterisk are taken from Li et al., 2005) 

 

The reduced affinity of the Fab to the full ectodomain in comparison to the single domain 

could be explained by steric hindrances from the other domains of sEGFR. The similar 

affinities of Fab matuzumab binding to sEGFRvIII and sEGFR domain III can be explained 

by the same absence of steric influence in sEGFRvIII with the deleted parts of domain I and 

II. Cetuximab binding seems to be less impaired by the presence of the other domains in the 

EGFR ectodomain since its affinities for sEGFR and sEGFRvIII are the same.  

 

The characteristics of ligand binding to sEGFRvIII obtained by SPR/Biacore studies are 

also in accordance with previously reported affinities (Table 5). The KD value 2.4 ± 0.3 µM 

of EGF binding to sEGFRvIII (see 6.2.3) corresponds well with the KD value for the binding 

to isolated domain III: between 500 nM for the Kohda fragment (Kohda et al., 1993) and 2.3 

± 0.5 μM for insect cell expressed sEGFRd3 (Ogiso et al., 2002; Dawson et al., 2005; Li et 

al., 2005). Thus, the mutation is not affecting EGF binding to the domain III binding site. 

However, high affinity ligand binding to EGFR requires the presence of both domain I and 

domain III, which explains why no ligand binding at the cell surface has been observed 
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(Wikstrand et al., 1997). At the cell surface the concentration of EGF is well below the KD 

value for the binding of EGF to domain III alone. By contrast the Biacore assay is performed 

at a much higher concentration of soluble ligand (in this case sEGFRvIII, which binds to 

immobilized EGF). Under these conditions the monovalent binding of domain III alone to 

EGF can be detected, which is not seen at the cell surface. 

 

Based on the sequence of sEGFRvIII the receptor domain III is predicted to be unaffected 

by the deletion mutation. The unchanged affinities of ligand and of antibody binding to 

different epitopes on this domain indeed indicate the same overall fold of domain III in wild 

type sEGFR and mutant sEGFRvIII. To further investigate the structure of the EGFRvIII 

ectodomain and to gain insight into the activation of the mutant, its crystal and solution 

structure were determined by x-ray crystallography and SAXS, respectively. 

 

6.3.2. The structure of EGFRvIII domain III and IV is unaffected by the 

mutation 

The 3.9 Å low resolution crystal structure of sEGFRvIII (Fig. 26) shows the intact sEGFR 

wild type domain III and IV. The flexible N-terminus of sEGFRvIII that is not seen in the 

crystal structure might be one reason for the low diffraction quality of the crystals.  

Superposition of the domains III of sEGFRvIII and sEGFR shows a shift of domain IV of 

about 20° relative to domain III (Fig. 31).  

 

 
Fig. 31: sEGFRvIII and sEGFR wild type in comparison 

Cartoon presentation of sEGFR wild type and sEGFRvIII aligned with their domains III. sEGFR (PDB ID 
1YY9, Li et al., 2005) is colored in green and red analogue to Fig. 6, sEGFRvIII is shown in yellow and blue 
analogue to the coloring in Fig. 26. The receptor domain IV shows a shift of about 20° in respect to domain III. 
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The shift of domain IV in respect to domain III in comparison to sEGFR in PDB ID 1YY9 

could be induced by crystal packing or could signify a biological relevance. Crystal packing 

as a reason for the shift seems to be more reasonable, since the position of domain IV in 

1YY9 would be impaired in the crystal of sEGFRvIII through symmetry mates. Furthermore 

other ErbB structures indicate a flexibility in the linker region between domain III and IV. 

Superposition of the domains III of other EGFR structures (PDB IDs 1NQL, 3B2V) or other 

ErbB family members (PDB IDs 1N8Z, 1M6B, 1S78, 2AHX) also shows slight shifts (~ 10°) 

of domain IV relative to domain III. 

 

6.3.3. sEGFRvIII in solution 

An estimate of the molecular mass of sEGFRvIII in solution was assessed from the Porod 

volume of the particle, which was calculated as 1230 Å3. Noting that, for globular proteins, 

the hydrated volume in Å3 should be about twice the molecular mass in Da (Porod, 1982), a 

molecular weight estimate of 61.5 kDa is obtained. This is in line with monomeric sEGFRvIII 

(47 kDa by SLS/SEC). The experimental radius of gyration Rg and maximum size Dmax (40±1 

Å and 160±5 Å, respectively) are larger than expected from the crystal structure of 

sEGFRvIII, where the maximum distance is 100 Å (Fig. 26). The additional extension of the 

particle in solution could be due to partial receptor aggregation. This leads to the generation 

of a very extended molecule in the ab initio shape reconstitutions (Fig. 29 and Fig. 30) and to 

a high discrepancy (χ = 3.21) of the experimental scattering and the theoretical scattering of 

the model calculated by BUNCH (Fig. 28 and Fig. 29). The ab initio models calculated by 

DAMMIN (Fig. 30) fit the experimental data with a lower discrepancy (χ = 1.69), but is still 

not close to the ideal fit with a χ value 1.  

The SAXS measurements need to be repeated with samples closer to monodispersity. 

 

6.3.4. sEGFRvIII dimerization and activation 

Analytical size exclusion chromatography (SEC) and static light scattering (SLS) 

experiments (Fig. 23) showed that the isolated extracellular domain of sEGFRvIII is unable to 

dimerize in the presence of ligand. This is maybe not surprising in the absence of the 

dimerization arm. However, this result shows that the amino acids N274 and E293 in domain 

II, which are unaffected by the deletion mutation, are not sufficient for soluble receptor 
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dimerization. These amino acids are known to participate in crucial interactions for stabilizing 

the dimerization competent conformation of the receptor (Dawson et al., 2005).  

Recently, it was argued that for a thorough analysis of EGF receptor dimerization and 

acitivation the whole receptor needs to be investigated beside the ectodomain (Lemmon, 

2009). The ligand binding properties of wild type sEGFR can only be explained if in addition 

to the soluble extracellular domain also the transmembrane and juxtamembrane domains are 

included (Macdonald and Pike, 2008). However, studies investigating the homodimerization 

properties of EGFRvIII at the cell surface are controversial. On one hand it was reported that 

the transforming characteristics of EGFRvIII at the cell surface are independent of receptor 

dimerization (Chu et al., 1997). On the other hand it was reported that the mutant receptor 

partly homodimerizes at the cell surface and induces constitutive receptor activation 

(Fernandes et al., 2001).  

Heterodimerization between the ectodomains of EGFR and EGFRvIII could not be 

observed in the SEC/SLS studies presented here (Fig. 23). In mouse cells transfected with 

EGFR and EGFRvIII heterodimerization was reported for the two receptors leading to 

enhanced phosphorylation of the wild type receptor (Luwor et al., 2004). It is unclear if the 

mutant receptor is able to heterodimerize with the other ErbB family members. 

The studies presented here show that the isolated extracellular domain of sEGFRvIII itself 

is unable to dimerize and to explain the oncogenic properties of the mutant. The results 

underline the importance to investigate the whole transmembrane receptor in order to 

understand its signaling properties. Cell surface homo- and heterodimerization properties of 

EGFRvIII and its influence on EGFRvIII signaling are still not fully understood. 

 

6.3.5. Implications for a therapeutic approach against EGFRvIII driven 

cancers 

The mutant receptor EGFRvIII was shown to be constitutively active on the cell surface 

independent of ligand binding (Pedersen et al., 2001; Zhu et al., 2009). The structure of the 

extracellular domain as well as the binding studies presented here show that the ligand 

binding site on domain III is unaffected by the mutation. However, the affinity of the ligand to 

domain III alone is too low to observe binding at the ligand concentration present at the cell 

surface. The results are in accordance with the observation that no ligand binding can be 

detected at the cell surface.  
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If EGFRvIII is indeed consitutively active independent of receptor dimerization as was 

argued by Chu et al. (Chu et al., 1997), a therapeutic approach by monoclonal antibodies 

would be a special case in the EGFR field. Many modes of action described for therapeutic 

anti-EGFR antibodies such as direct steric blockage of ligand binding or inhibition of receptor 

dimerization (Schmitz and Ferguson, 2009) (see 5.1.5) would not be relevant for EGFRvIII. 

However, antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent 

cytotoxicity (CDC) as well as antibody-mediated receptor down-regulation and augmentation 

of the antitumor effects of chemo- and radiotherapy (Mendelsohn and Baselga, 2006; Schmitz 

and Ferguson, 2009) might still be very powerful effects of antibody binding. The structure of 

the EGFRvIII extracellular domain and the binding studies presented here showed that the 

antibodies cetuximab and matuzumab are able to bind to the soluble mutant receptor with 

wild type affinity. Cellular studies showed efficient recognition of cell surface EGFRvIII by 

several monoclonal antibodies directed against EGFR, including cetuximab (Wikstrand et al., 

1995; Modjtahedi et al., 2003; Aerts et al., 2007; Yang et al., 2008). However, in vivo 

effectivity of cetuximab was reported to be reduced in comparison to targeting the wild type 

receptor (Fukai et al., 2008). On human glioma cell lines expressing EGFRvIII cetuximab 

was shown to bind and to trigger ADCC in a dose-dependent manner, but to exhibit no 

growth-inhibitory effect (Fukai et al., 2008). This reduced efficacy of cetuximab in EGFRvIII 

expressing gliomas might be due to the missing direct effects of cetuximab observed for wild 

type EGFR. 
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6.4.  Conclusion 

The deletion mutation in the ectodomain of the EGFR variant III is not affecting the 

structure of domain III and IV as seen in the crystal structure presented here (Fig. 26). The 

mutant is binding ligand with its domain III binding site (Fig. 25) with an affinity comparable 

to wild type EGFR. This affinity is however too low to see effective ligand binding at the cell 

surface. The dimerization studies presented here (Fig. 23) show that the soluble ectodomain is 

not able to dimerize upon ligand stimulation. This result is consistent with cell surface studies 

of Chu et al., which showed that EGFRvIII activation does not include receptor dimerization 

(Chu et al., 1997). However, Fernandes et al. presented cell surface experiments with partly 

dimerized EGFRvIII (Fernandes et al., 2001). It remains unclear what exactly happens at the 

cell surface, when EGFRvIII is present. Thorough cell surface studies and full length receptor 

experiments are needed to understand the oncogenic properties of the mutant at the cell 

surface.  

However, a therapeutic approach against EGFRvIII driven cancers, most notably 

glioblastomas, with monoclonal antibodies binding to the wild type domain III or IV might be 

benefical for patients. These antibodies are predicted to bind with wild type affinity to the 

mutant at the cell surface since the structure of the two domains is unaffected by the deletion 

mutation as seen in the crystal structure (Fig. 26). Binding studies with cetuximab and 

matuzumab presented here confirmed that prediction (Fig. 24).  

The antibodies are not expected to impair receptor dimerization through block of ligand 

binding or steric hindrances as seen for the wild type receptor. But they might be able to elicit 

antibody-dependent cellular cytotoxicity and receptor down-regulation as well as to increase 

the susceptibility of the cells to radio- and/or chemotherpy. Effectiveness of antibody-based 

therapy against EGFRvIII driven cancers needs to be evaluated in clinical trials. 
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7. Characterization of the antibody EMD1159476 binding 

to the insulin-like growth factor-1 receptor (IGF-1R) 

7.1.  Introduction 

The insulin-like growth factor-I receptor (IGF-1R) is a member of the receptor tyrosine 

kinase family (see 3.1) and, together with the insulin receptor (IR) and insulin-related receptor 

(IRR), forms a subfamily with similar structural organization (Ward and Lawrence, 2009) 

(Fig. 1 and Fig. 32). In normal physiology, ligand activation of IGF-1R is involved in fetal 

growth and linear growth of the skeleton and other organs (Ruan et al., 1992; Ruan et al., 

1999; Sullivan et al., 2008), whereas IR regulates glucose homeostasis (Kitamura et al., 

2003). Children with mutations in IGF-1R have been described to have poor in utero and 

postnatal growth and neurodevelopmental delay (Woods et al., 1996; Abuzzahab et al., 2003). 

The third member of the IR family IRR has no known ligand and no identified function (Ward 

et al., 2007). 

Although IGF-1R and IR are in their domain organization very similar and both receptors 

almost ubiquitously expressed in the organism, they perform accurately distinct cellular and 

physiological functions. This is achieved through a fundamentally different regulation of 

ligand bioavailability. The ligand of IR insulin is excreted by the pancreas depending on 

blood glucose levels, whereas the ligands of IGF-1R are produced under endocrine growth 

hormone (GH) control in the liver as well as in somatic cells. IGF-1R is bound by three 

different ligands: insulin-like growth factor-1 (IGF-1), IGF-2 and with a twofold lower 

affinity insulin (Ryan and Goss, 2008). The bioavailability of IGF-1 and IGF-2 in the tissue is 

regulated by a family of six binding proteins, called IGF binding proteins (IGFBPs) 

(Clemmons, 2007). However, gene deletion studies suggest that IGF-1R and IR are still 

capable of compensating the loss of the respective other receptor, with IR able to stimulate 

growth (Firth and Baxter, 2002) and IGF-1R capable of regulating a metabolic response (Di 

Cola et al., 1997). 

 

Both IGF-1R and IR are homodimers with their extracellular domains composed of two α 

and two β chains, which are covalently linked through disulfide bridges, a transmembrane 

region for each β chain and an intracellular kinase domain (Ullrich et al., 1986; Denley et al., 

2005) (Fig. 32).  
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Fig. 32: Domain organization of IGF-1R 

The insulin-like growth factor-1 receptor (IGF-1R) is a disulfide-linked dimer and belongs to the family of 
transmembrane receptor tyrosine kinases. The extracellular domain comprises two α and two β chains each with 
two homologous large domains I and III (or L1 and L2) in orange and green and a cysteine-rich domain II (or 
CR) in yellow. These domains are closely related to the EGF receptor family domains I-III. Three Fn type III 
domains (FnIII-1 – 3) in magenta, cyan and blue are linked by disulfide bridges with the approximate locations 
indicated. The second FnIII domain contains a 120-residue long insert domain (ID), which includes the cleavage 
site to generate the α and β chain (figure adapted from Ward et al., 2007) 
 

The α and β subunits are expressed as a single precursor polypeptide, which is then post-

translationally processed by dimerization, proteolytic cleavage and glycosylation (Ward et al., 

2007). The amino-terminal regions of the α chain of both IGF-1R and IR are composed of 

three domains, which show a close resemblance to the domains I-III of the EGF receptor 

family (see 5.1). They comprise two structurally homologous domains, called large 

homologous domain L1 (domain I) and L2 (domain III), which are separated by a cysteine-

rich (CR) domain (domain II) (Surinya et al., 2008). Domains I to III of IGF-1R are 

connected to the transmembrane region through three fibronectin type-III domains (FnIII-1 - 

3) (Fig. 32). 
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7.1.1. Structures of IGF-1R and IR extracellular domains 

The first ectodomain structure of the IGF-1R/IR family was solved in 1998: the domains 

I-III of IGF-1R (Garrett et al., 1998). This structure provided a framework to interpret 

mutations leading to alterations in ligand binding specificity both for IGF-1R and IR 

(Whittaker et al., 2001; Whittaker et al., 2002). Only 8 years later the structure of the same 

construct of IR was solved (Lou et al., 2006). A comparison of the IGF-1R and IR structures 

showed differences in two regions that are thought to influence ligand specificity: one residue 

(F39 in IR and S35 in IGF-1R) in domain I and a large loop in the domain II (Lou et al., 

2006) (Fig. 33). This loop protrudes into the putative ligand binding site in IR, but is more flat 

and shows significantly less α-helix in IGF-1R. It has almost no sequence similarity and an 

opposite electrostatic potential in the two receptors. 

 

 
Fig. 33: Comparison of the domain I-III structures of IR and IGF-1R 

Cartoon representation of the first three domains of the insulin receptor (IR) and the insulin-like growth factor 1 
receptor (IGF-1R). Helices are shown in red; sheets in domain I (L1) and domain III (L3) in blue, green and 
yellow; sheets in domain II (cys rich) are shown in orange. The side chains of disulfide-linked cysteine residues 
are represented as yellow sticks. The two regions comprising the main structural differences between the two 
related receptors are indicated with a box and a circle in IR (figure adapted from Lou et al., 2006). 
 

IR IGF-1R 
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The first full length ectodomain structure of the IGF-1R/IR family was solved in the same 

year (McKern et al., 2006). The IR-A extracellular domain crystallized at 3.8 Å resolution as 

a dimer bound by four monoclonal anti-body Fabs for stabilization. Surprisingly and in 

contrast to previously suggested models (Ottensmeyer et al., 2000; De Meyts and Whittaker, 

2002), the structure showed a folded-over conformation (monomer shown in Fig. 35) that 

suggests a ligand binding site between the domain I, domain III and the carboxy-terminal 

surface of FnIII-1 (McKern et al., 2006). 

 

 
Fig. 34: Structure of the insulin receptor ectodomain monomer 

Crystal structure of the insulin receptor (IR) monomer shown in cartoon representation based on protein data 
base (PDB) ID 2DTG (McKern et al., 2006). Individual domains are colored as follows: domain I, orange; 
domain II, yellow; domain III, green; FnIII-1, magenta; FnIII-2, cyan; FnIII-3, blue. No convincing electron 
density was described for parts of the insert domain-α and -β. 
 

A model for the ligand-induced activation of IR based on the structure of the ectodomain 

dimer is described in the following section. A similar mechanism is assumed for IGF-1R 

based on sequence similarities between the two receptors, structural similarities as seen for 

domain I-III and biochemical studies (Lawrence et al., 2007 and references therein). 
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7.1.2. Ligand-induced IR/IGF-1R activation 

The structure of the IR ectodomain comprises two receptor monomers as shown in Fig. 

34, which are oriented to one another with a reversed mirror axis. The domains I-III (L1, CR, 

L2) of one monomer are packed against the three FnIII domains (FnIII-1 – 3) of the other and 

vice versa (McKern et al., 2006) (Fig. 35). The current model for ligand binding (McKern et 

al., 2006; Ward et al., 2008) proposes that each monomer in the receptor dimer contains two 

different binding sites, referred to as Site 1 and Site 2 (Fig. 35). Ligand binding to Site 1 on 

either of the two α subunits has a low affinity and is followed by a second high-affinity 

binding event between the bound ligand and Site 2 of the opposite receptor. 

 

 
Fig. 35: Insulin receptor ligand binding model 

Model of insulin binding to the insulin receptor (IR) with two ectodomains symmetrically aligned and viewed 
down the Y-axis. Each domain is represented as a rectangle colored the same as in Fig. 34. The approximate 
locations of the ligand binding Sites 1 and 2 are indicated. In the basal state, both low-affinity binding sites are 
equally accessible. In the high-affinity state, one insulin molecule binds to Sites 1 and 2 of opposite receptors, 
causing the two monomers to close up on that side and to open up on the opposite side. The simultaneous 
binding of two insulin molecules is not possible, thus causing negative cooperativity of ligand binding (figure 
taken from Ward et al., 2007). 

 

Two insulin molecules cannot bind simultaneously, which causes a ‘see-sawing’ 

movement of the receptors oscillating from one state into the other (De Meyts, 1994; Ward et 

al., 2007; Kiselyov et al., 2009). This model implies a negative cooperativity of ligand 

binding, which is indeed seen in cell surface ligand binding experiments to IGF-1R and IR 

(De Meyts and Whittaker, 2002; De Meyts, 2004). Interestingly, ligand binding to IGF-1R 

and IR reveals high and low affinity ligand binding states and a negative cooperativity exactly 

as observed for EGFR (see 5.1 and Lemmon, 2009). 

Surprinsingly, soluble ectodomains show only low affinity binding despite the fact that the 

dimer is already preformed through disulfide-bridges (Ward and Lawrence, 2009). This 

implies that the soluble constructs are unable to adopt exactly the conformation of the 

membrane-bound dimers. The high affinity binding of IR and IGF-1R ectodomains is restored 
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in the presence of a transmembrane anchor (Surinya et al., 2008; Ward and Lawrence, 2009), 

Fc domains (Bass et al., 1996) or a leucine zipper motif (Hoyne et al., 2000). While soluble 

IR ectodomains do not show negative cooperativity as expected (De Meyts, 1994; De Meyts 

and Whittaker, 2002), IGF-1R soluble ectodomains do (Surinya et al., 2008). This difference 

might be one of the factors regulating the biological activities of the two functionally different 

receptors. 

 

Ligand binding induces a conformational change both in the ligand and in the receptor 

leading to intracellular transphosphorylation of one kinase by the other (Butler et al., 1998; 

Ward and Lawrence, 2009). The phosphorylated tyrosine residues intracellularly recruit 

downstream effector proteins, including insulin receptor substrate (IRS)-1 to IRS-4, and 

stimulate signal cascades as described in section 3.4 (Samani and Brodt, 2001). IGF-1R 

signaling results in both proliferative and antiapoptotic effects (Kurmasheva and Houghton, 

2006). Furthermore, IGF-1R can interact with steroid hormones and their receptors, other 

peptide growth factor receptors, extracellular matrix proteins, integrin receptors and 

cytokines, such as transforming growth factor-β (Hartog et al., 2007). 

 

7.1.3. IGF-1R and cancer 

The involvement of IGF-1R in malignant transformation was first recognized in 

fibroblasts derived from homozygous IGF-1R null mice embryos (Sell et al., 1993). These 

cells are normally prone to transformation; however, in the absence of IGF-1R oncogenes are 

unable to induce malignant transformation. Re-expression of IGF-1R in these cells restored 

their susceptibility to transformation. In the following years signaling from the IGF-1 system 

was connected to the pathogenesis of many different human cancers, including breast, colon, 

liver, pancreatic and prostate cancer as well as melanoma, multiple myeloma and 

glioblastoma (Resnicoff et al., 1994; Hankinson et al., 1998; Kalli et al., 2002; Cardillo et al., 

2003; Durai et al., 2005).  

Studies showed that the aberrant activation of the IGF-1R signaling cascade leads to 

enhanced proliferation, survival and metastasis in cancer cells (DiGiovanni et al., 2000; 

Hadsell et al., 2000; Carboni et al., 2005; Kurmasheva and Houghton, 2006). In addition, 

there also seems to be an involvement of enhanced IGF-1R activity in resistance to certain 

anticancer therapies, including cytotoxic chemotherapy, hormonal agents, monoclonal 

antibodies and radiation (Camirand et al., 2002; Abe et al., 2006; Desbois-Mouthon et al., 

2006; Allen et al., 2007). IGF-1R has also be shown to be involved in the unique malignant 
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property of anchorage-independent growth (Baserga et al., 2003) and to influence the 

signaling of other growth factor receptors such as the vascular endothelial growth factor 

receptor (VEGFR) and the epidermal growth factor receptor (EGFR) (Tao et al., 2007). 

Amplification of the IGF-1R gene, however, is infrequent as shown in breast tumors (<2%) 

(Berns et al., 1992; Almeida et al., 1994) and sarcomas (Sekyi-Otu et al., 1995). Activating 

mutants of the receptor have not been described yet. 

 

Due to the ubiquitous presence and body-wide physiologic function of IGF-1R, serious 

side effects of targeting the receptor in a tumor therapy has long been a major concern. In 

addition cross-reactions with the IR signaling system were feared to cause diabetes. Signaling 

through hybrid receptors was shown to be involved in tumor promoting effects (Rose et al., 

2006; Avnet et al., 2009). It may thus be not enough to target the IGF-1R alone.  

 

Strategies to inhibit IGF signaling in cancer include the reduction of available ligand 

(Letsch et al., 2003), the reduction of receptor activity (Resnicoff et al., 1996; McCutcheon et 

al., 2001; Rochester et al., 2004) and receptor targeting through specific kinase inhibitors or 

monoclonal antibodies. Other strategies include administration of IGF binding proteins, 

antibodies against the ligands IGF-1 and IGF-2, and soluble decoy receptor proteins (Van Den 

Berg et al., 1997; Samani et al., 2004).  

Targeted therapies include tyrosine kinase inhibitors (TKIs) against the intracellular 

kinase domain, e.g. cyclolignan picropodophyllin (PPP) (Vasilcanu et al., 2008), and 

monoclonal antibodies against the IGF1-R extracellular domain.  

Recent studies, which investigate the results of anti-IGF-1R antibodies given together 

with other mAbs and/or chemo- or radiotherapy, indicate a synergistic effect of combination 

therapy. Crosstalk between different receptor tyrosine kinases, e.g. the epidermal growth 

factor receptor (EGFR) and IGF-1R, as well as mutations or compensations in the 

downstream signaling cascade imply the necessity to target the transforming signaling 

network simultaneously at several spots (Gee et al., 2005; Jones et al., 2006; Knowlden et al., 

2008).  

Several examples of combination treatment in the clinics showed advantages in 

therapeutic effectivity. E.g. the monoclonal antibody CP-751,871 (see 7.1.4) caused 

significantly greater inhibition of colorectal and breast cancer xenograft growth in 

combination with 5-fluorouracil or tamoxifen, respectively as compared with chemotherapy 

alone (Cohen et al., 2005). Combination of the antibody h7C10 (see 7.1.4) with either a 
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chemotherapeutic agent or the anti-EGFR antibody cetuximab (see 5.1.5) was superior to 

either agent alone (Goetsch et al., 2005). Targeting of the EGF receptor family member 

ErbB2 by trastuzumab (see 5.1.5) in combination with the induction of the dominant-negative 

IGF-1R expression resulted in enhanced growth inhibition of breast cancer cells (Camirand et 

al., 2002). The antitumor effects of kinase inhibitors against IGF-1R and EGFR are 

potentiated in combination in hepatoma cells (Desbois-Mouthon et al., 2006). 

The following chapter summarizes the antibodies against IGF-1R that are currently under 

investigation. 

 

7.1.4. Anti-IGF-1R antibodies 

Several monoclonal antibodies against the IGF-1R ectodomain have been developed that 

block ligand binding and induce receptor internalization and degradation (Li et al., 2000; 

Burtrum et al., 2003; Maloney et al., 2003; Sachdev et al., 2003; Goetsch et al., 2005; Wang 

et al., 2005). Some of these are currently in phase I and phase II clinical trials for the 

treatment of different tumors. As side effects infrequently mild transient hyperglycaemia was 

observed, whereas hypoglycaemia, a potential result from increased insulin sensitivity, has so 

far not been reported (Hartog et al., 2007). 

CP-751,871. This fully human antibody (Pfizer) showed receptor down-regulation as well 

as inhibition of xenograft tumor growth of breast cancer, lung cancer and colorectal cancer in 

a dose-dependent manner (Cohen et al., 2005). Antibody-dependent cellular cytotoxicity 

(ADCC) was not triggered by this antibody, which might be advantageous in cancer therapy 

due to the ubiquitous expression of IGF-1R. Phase I studies for patients with advanced solid 

tumors as well as multiple myeloma showed a favorable safety profile (Haluska et al., 2007; 

Lacy et al., 2008). A phase II study of CP-751,871 as first-line therapy in combination with 

chemotherapy for non-small cell lung cancer (NSCLC) as well as phase I/II studies in postate, 

colorectal and breast caner are still ongoing (Weroha and Haluska, 2008; Ryan and Goss, 

2008).  

IMC-A12. The fully human antibody IMC-A12 (ImClone) was reported to down-regulate 

IGF-1R and to inhibit in vivo breast cancer, colorectal cancer and pancreatic cancer cell 

growth (Burtrum et al., 2003). A phase I study in solid tumors resulted in a favorable toxicity 

profile (Weroha and Haluska, 2008). The antibody is currently tested in phase II clinical trials 

in patients with prostate, breast, pancreatic and colorectal cancer in different combinations 

with anti-EGFR antibodies, chemotherapy and kinase inhibitors (Ryan and Goss, 2008). 
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h7C10/MK-0646. The humanized antibody h7C10/MK-0646 (Merck USA) showed 

growth inhibition for several cancer cell lines and inhibited IGF-1 induced IGF-1R 

phosphorylation in a dose-dependent manner. Also, h7C10 abolished IGF-1 induced 

activation of PI-3K/Akt and MAPK pathways, enhanced ADCC in vitro and stimulated 

receptor internalization (Wang et al., 2005; Broussas et al., 2009). h7C10 is currently tested in 

phase I and II clinical trials in patients with breast, pancreas, prostate and multiple myeloma 

patients (Goetsch et al., 2005). 

AMG 479. This fully human monoclonal antibody (Amgen) is currently in phase I and II 

clinical trials against bladder, breast, colorectal, gastric and head/neck cancer, as well as 

melanoma, non-Hodgkin’s lymphoma, ovarian, pancreas, prostate and soft tissue sarcoma 

(Ryan and Goss, 2008). Phase I studies in solid tumors showed mild adverse events, e.g. 

hyperglycemia. 

AVE-1642. This humanized antibody (Sanofi-Aventis) is in phase I clinical trials 

targeting solid tumors and multiple myeloma (Ryan and Goss, 2008; Descamps et al., 2009). 

R1507. The fully human recombinant antibody R1507 (Roche) is in phase I clinical trials 

against lymphoma, non-Hodgkin’s lymphoma, soft tissue sarcoma and unspecified solid 

tumors (Ryan and Goss, 2008). 

SCH-717454. This fully human monoclonal antibody (Schering-Plough) is currently in 

phase II clinical trials treating patients with sarcomas and colorectal cancer (Weroha and 

Haluska, 2008). 
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7.2.  Results 

In this chapter the binding characteristics of another therapeutic antibody, EMD1159476, 

are presented. EMD1159476 is preclinically tested as a drug which targets IGF-1R expressing 

tumors. 

 

7.2.1. Expression and purification sIGF-1R 

Baculovirus expression system. A yield of 40 µg/L Sf9 cell culture and of 200 µg/L Hi5 

cell culture was obtained. In addition to the low protein yields, the purified proteins showed 

no defined gel filtration peak and appeared in non-reducing SDS-PAGEs evenly distributed 

over a wide range of protein sizes from ~50 kDa to 200 kDa. Due to these limitations in the 

protein production a mammalian expression system for sIGF-1R domain I-III and domain II 

was established. 

 

Mammalian expression system. A yield of 0.5 mg/L soluble IGF-1R domain I-III (sIGF-

1Rd1-3) and 1 mg/L soluble IGF-1R domain II (sIGF-1Rd2) was obtained from HEK293 cell 

culture. The C-terminal end of the protein was confirmed by Western blot with an anti-His6-

antibody. Purified sIGF-1Rd1-3 and d2 were analyzed both by reducing and non-reducing 

SDS-PAGEs (Fig. 36) and by analytical SEC/static light scattering (SLS) methods. Both 

constructs showed a defined SEC peak with a corresponding molar mass of 57.4 kDa for 

domain I-III and 28 kDa for domain II. This is in accordance with a molecular weight of 53.3 

kDa and 18 kDa by sequence plus glycosylation, respectively. 
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B 

 
Fig. 36: SDS-PAGE sIGF-1R domain I-III and domain II purification 

A: non-reducing SDS-PAGE of sIGF-1R domain I-III gel filtration fractions showing a single band (lanes 5-8) 
corresponding to a glycosylated protein of the expected size (53.3 kDa by sequence plus glycosylation, marked 
with an arrow). B: non-reducing SDS-PAGE of sIGF-1R domain II gel filtration fractions showing a broad band 
(lane 5) corresponding to a glycosylated protein of the expected size (17.3 kDa by sequence plus glycosylation, 
marked with an arrow). The bands appear very broad in the gel, which probably indicates inhomogeneities in the 
glycosylation pattern. Aggregated or misfolded protein (A and B lanes 2-4) was separated through the gel 
filtration run using a HiLoadTM Superdex200 16/60 preparation grade column (GE Healthcare) pre-equilibrated 
with 20 mM HEPES, 100 mM NaCl (pH 7.5). The protein marker is shown both in A and B in lane 1 with the 
sizes indicated in kDa. 
 

7.2.2. Fab1159476 structure 

The x-ray structure of the EMD1159476 Fab fragment (Fab1159476) (see 4.3.3) was 

determined at 1.7 Å (Fig. 37 and Fig. 38). 

 

 
Fig. 37: Fab1159476 structure 

Cartoon representation of the Fab fragment EMD1159476. The heavy chain is colored in yellow and the light 
chain in red. 
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Fig. 38: Fab1159476 electron density 

Stereo view of a section of the antibody Fab fragment heavy and light chain. Amino acids are shown in stick 
representation and are colored in red and yellow for the light and heavy chain, respectively. The gray mesh 
represents the final 2Fo-Fc electron density map contoured at 1.0 σ. Oxygen atoms are colored in red, nitrogen in 
blue and disulfide bridges in yellow. 
 

Crystallization conditions for the complex of sIGF-1R domain I-III:Fab1159476 and IGF-

1R domain II:Fab1159476 were extensively screened, but no crystals were obtained. 
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7.2.3. Antibody binding to sIGF-1R domain I-III and domain II 

Surface plasmon resonance (SPR)/Biacore experiments were performed to characterize 

the binding of Fab1159476 to the isolated soluble extracellular IGF-1 receptor domains I-III 

(sIGF-1Rd1-3) and domain II (sIGF-1Rd2). The apparent KD values obtained were 61.4 ± 1.9 

nM for sIGF-1Rd1-3 and 30.7 ± 1.4 nM for sIGF-1Rd2 (Fig. 39). 

 

 
Fig. 39: Characterization of EMD1159476 binding to sIGF-1R 

Surface plasmon resonance (SPR)/Biacore analysis of the binding of sIGF-1Rd1-3 and sIGF-1Rd2 to 
immobilized Fab1159476. A series of samples of sIGF-1Rd1-3 or sIGF-1Rd2, at the indicated concentrations, 
was passed over a biosensor surface to which Fab1159476 had been amine coupled. Data points show the 
equilibrium SPR response value for a representative set of samples of sIGF-1Rd1-3 (black squares) and of sIGF-
1Rd2 (red triangles), expressed as a percentage of the maximal SPR binding response. The curves represent the 
fit of these data to a simple one-site Langmuir binding equation. KD values, based on at least three independent 
binding experiments, are 61.4 ± 1.9 nM for sIGF-1Rd1-3 and 30.7 ± 1.4 nM for sIGF-1Rd2. 
 

The affinity of the Fab fragment to both receptor constructs was additionally analyzed by 

ITC. A KD value of 6.1 ± 1.3 nM and 4.1 ± 0.7 nM for domain I-III and domain II, 

respectively, was obtained (Fig. 40 and Fig. 41) 



  IGF-1R - Results 

 98

 
Fig. 40: ITC sIGF-1R domain I-III and Fab1159476 

Fab1159476 (16.7 µM) was injected in 11 µl steps into a cell containing 1.7 µM sIGF-1R domain I-III (sIGF-
1Rd1-3) at 25°C. Each peak represents the heat of binding following one injection (upper plot). The lower plot 
shows the integrated results, where each point represents the normalized heat change for each injection. The 
calculated KD for this interaction is 6.1± 1.3 nM. 
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Fig. 41: ITC sIGF-1R domain II and Fab1159476 

Fab1159476 (50 µM) was injected in 11 µl steps into a cell containing 5 µM sIGF-1R domain II (sIGF-1Rd2) at 
25°C. Each peak represents the heat of binding following one injection (upper plot). The lower plot shows the 
integrated results, where each point represents the normalized heat change for each injection. The calculated KD 
for this interaction is 4.7 ± 0.7 nM. 
 

 

Biacore competition assays. Preliminary competition assays were carried out to 

investigate the ability of IGF-1 to compete with Fab1159476 binding to commercial sIGF-1R 

(R&D Systems) and sIGF-1R domain I-III (sIGF-1Rd1-3). The commercial sIGF-1R samples 

consist of a mixture of the cleaved and disulfide-bridged heterodimer and the unprocessed 

disulfide-bridged α-β polypeptide pro-receptor. Binding of ligand requires the fully processed 

form of the receptor. sIGF-1Rd1-3 and the pro-receptor are not expected to bind IGF-1 since 

they lack crucial interacting domains and the correct folding. However, all constructs are able 

to bind Fab1159476 as seen in Fig. 39-Fig. 41. As shown in Fig. 42 there is no decrease in the 

equilibrium SPR response for sIGF-1Rd1-3 samples (square symbols) as increasing IGF-1 is 
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added. However, with increasing amounts of IGF-1 added to sIGF-1R samples (round 

symbols) the equilibrium SPR response decreases to about 40%.  

Part of the remaining SPR response is caused by the unprocessed pro-receptor which is 

still able to bind to the Fab surface with its domain II.  

 

 
Fig. 42: Preliminary ligand competition properties of EMD1159476 

A preliminary competition experiment showing the effect of addition of IGF-1 upon the binding of 600 nM 
sIGF-1R and sIGF-1R domain I-III (sIGF-1Rd1-3) to immobilized Fab1159476. Mixtures of 600 nM sIGF-1R 
and sIGF-1Rd1-3 plus the indicated concentrations of IGF-1 were passed over a biosensor surface to which 
Fab1159476 had been amine coupled. The equilibrium SPR responses for each mixture is shown, normalized to 
the response obtained with no added ligand (squares and straight line for sIGF-1Rd1-3; dots and dotted line for 
sIGF-1R). The lines simply connect the data points.  
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7.3.  Discussion 

The KD value of 61.4 ± 1.9 nM for Fab1159476 binding to sIGF-1R domain I-III 

obtained by surface plasmon resonance (SPR)/Biacore studies is 10-fold weaker than 

observed for the binding of the Fab fragment determined by ITC (KD of 6.1 ± 1.3 nM). This 

could be explained by hindrances induced by the immobilization of the Fab fragment or by 

an underestimation of the KD value introduced by the steady-state fitting of the SPR/Biacore 

data. 

A similar difference between Biacore and ITC results was seen for binding studies 

carried out with isolated sIGF-1R domain II. The KD values of Fab1159476 binding were 

30.7 ± 1.4 nM and 4.7 ± 0.7 nM for Biacore and ITC, respectively. The tighter binding of the 

isolated domain II in the Biacore experiments is possibly due to the absence of steric 

hindrance from the other domains of sIGF-1Rd1-3. The affinities for isolated domain II 

indicate an even a tighter binding (Biacore) or the same affinity within the error range (ITC) 

as compared to the domain I-III data. This suggests that the epitope of the antibody is 

exclusively within domain II of IGF-1R with no additional interactions from other domains. 

The affinitites of the Fab binding obtained by ITC are similar to affinities reported for 

other anti-IGF-1R antibodies. Doern et al. described two Biogen in-house antibodies with KD 

values of 1± 0.2 nM and 4 ± 0.5 nM obtained by ITC for the full ectodomain (Doern et al., 

2009). 

 

Surface plasmon resonance (SPR)/Biacore competition experiments (Fig. 42) showed an 

impaired binding of sIGF-1R to the Fab surface in the presence of IGF-1 in comparison to 

samples without ligand. This indicates a competitive binding of IGF-1 and EMD1159476. 

However, based on the experiment presented here it remains unclear if the binding of 

antibody and ligand is mutually exclusive or if the presence of the ligand is just impairing the 

binding of the receptor to the Fab. Further experiments quantifying the amounts of the 

different receptor species in the samples are necessary to answer this question. 

 

The thermodynamic data for Fab binding to isolated domain II and doman I-III show 

differences in enthalpy (ΔH°) and entropy (ΔS°), whereas the change in Gibbs energy (ΔG°) 

for both constructs is similar (Fig. 43 and see 11.3 Table 6). 
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Fig. 43: Thermodynamic characteristics of Fab binding to IGF-1R 

The EMD1159476 Fab binding to IGF-1R domain II (domII) and domain I-III (domI-III) was investigated by 
isothermal titration calorimetry (ITC) using a VP-ITC microcalorimeter (Microcal LLC) at 25°C. The data were 
compared to results obtained for two other antibody Fabs BIIB5 and BIIB4 binding to the full IGF-IR 
ectodomain (*data from Doern et al., 2009). All three antibodies have similar affinities with KD values ranging 
from 1-6 nM with an almost identical change in Gibbs energy (ΔG°) ranging from -11.5 – -12.3 kcal/mol. 
Interestingly, there is an entropic penalty for EMD1159476 Fab binding to domain II, while the Fab binding to 
domain I-III is connected with an entropic gain. This might indicate an increase in spatial freedom of domain I 
and III upon Fab binding. Exact values are given in Table 6. 

 

In contrast to Fab binding to domain II the observed enthalpy of Fab binding to domain I-

III is reduced more than half and the observed entropy of the system is increased. This may be 

due to differences in the rotational, conformational or solvation enthalpy upon Fab binding to 

the two different constructs. The entropic gain of Fab binding to domain I-III could be 

explained by an increase in spatial freedom of domain I and III. This may indicate an epitope 

for the antibody, which would remove or prevent stabilizing inter-domain interactions. 

Two other antibody Fab fragments were also reported to have an entropic penalty for 

binding to the full length extracellular domain (Doern et al., 2009) (Fig. 43). The increase in 

entropy indicates a conformational ordering within the receptor, the antibody, or both. An 

ordering of the receptor upon binding of the latter two antibodies was reported to be observed 

in far UV circular dichroism spectra (Doern et al., 2009).  

The changes in Gibbs energy and the affinities are comparable for the antibody 

investigated in this thesis and the antibodies described before by Doern et al. (2009), which 

are in the range of other monoclonal antibodies in preclinical studies or clinical application 

(Li et al., 2005; Schmiedel et al., 2008; Li et al., 2008). 
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Taken together, the binding studies presented here (Fig. 39, Fig. 40 and Fig. 41) indicate 

that EMD1159476 is binding to domain II of the insulin-like growth factor 1 receptor IGF-1R. 

A KD value of 5 ± 2.0 nM was obtained. Competition assays showed an impaired binding of 

the ligand IGF-1 to the receptor in the presence of the antibody Fab fragment indicating a 

competitive binding mode. Indeed, it was shown that domain II of IGF-1R comprises a part 

responsible for ligand specificity (Fig. 33).  

The structure of the Fab fragment was solved at 1.7 Å resolution, but no crystals of the 

complex of sIGF-1R:Fab1159476 were obtained so far. 

 



   

104 



  Outlook 

105 

8. OUTLOOK 
The outlook refers to the three different sections of this thesis (1) EGFR – antibody 

interactions, (2) the mutant EGFR variant III (EGFRvIII) and (3) IGF-1R – antibody 

interactions. 

 

(1) EGFR – antibody interactions (chapter 5) 

For the EGFR targeting monoclonal antibody matuzumab the epitope was 

crystallographically determined and confirmed by mutational studies (see 5.2). The results 

presented in this thesis indicate that both the epitope and the mechanism of inhibition by 

matuzumab are distinct from those for another therapeutic antibody cetuximab. It was shown 

that a simultaneous binding of the two antibodies on EGFR is possible, implying that a 

combination therapy with both antibodies could be advantageous against EGFR driven 

cancers. Indeed, in vitro studies showed a synergistic effect of matuzumab and cetuximab in 

combination (Dechant et al., 2008; Kamat et al., 2008). This has important implications for 

the clinical use of matuzumab and for the development of therapeutic approaches targeting the 

EGF receptor.  

 

(2) The mutant EGFR variant III (chapter 6) 

For the mutant EGFR variant III this thesis showed that the deletion mutation is not 

affecting the overall fold of the receptor domain III and IV (see 6.2). The binding sites of 

therpeutic antibodies on these domains remain accessible in the mutant receptor as 

demonstrated for matuzumab and cetuximab. In contrast to the wild type receptor, which 

dimerizes in the presence of the natural ligand EGF, it was shown in this thesis that 

sEGFRvIII is unable to dimerize in spite of ligand binding to domain III. 

Further experiments clarifying the dimerization and activation characteristics of the 

mutant at the cell surface are needed. Homo- or heterodimerization studies could be 

performed using mutant and wild type specific fluorescent antibodies. A putative dependence 

of the constitutive activity of the sEGFRvIII kinase domain on receptor dimerization could be 

investigated by using antibodies that bind in the receptor dimerization interface and thus 

would sterically block mutant receptor dimerization or by using a dimerization incompetent 

sEGFR in combination with sEGFRvIII. 
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A large part of the excreted sEGFRvIII was misfolded indicating that this might also be 

the case in a cellular context. It might be important to investigate the impact of misfolded 

protein signaling from the inside of the cell. This could be done with phosphorylation studies 

using the Golgi-inhibitor Brefeldin A (Browning et al., 2004). 

 

(3) IGF-1R – antibody interactions (chapter 7) 

The results presented in this thesis indicate that the epitope of the antibody EMD1159476 

targeted against IGF-1R includes the receptor domain II (CR domain) and most probably is 

not involving other domains. Furthermore it was shown that the presence of the Fab fragment 

is impairing ligand binding indicating a competitive inhibition mechanism. The structure of 

the Fab fragment was solved; screening for crystallization conditions of the receptor-Fab 

fragment complex was performed but yielded no crystals so far. This might be due to 

inhomogeneous receptor glycosylation, which can prevent crystal packing through its 

flexibility. Future crystallization experiments are needed with deglycosylated complex 

protein. 
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10. GLOSSARY 
AB   acidic box 
ADCC   antibody-dependent cellular cytotoxicity 
ATP   adenosine-5'-triphosphate 
AUC SE  analytical ultracentrifugation sedimentation equilibrium 
Axl   Tyro3 protein tyrosine kinase 
C225   cetuximab 
CadhD   cadherin-like domain 
CDC   complement-dependent cytotoxicity 
CDR   complementarity determining region 
CR   cysteine-rich 
CRC   colorectal cancer 
CRD   cysteine-rich domain 
CV   column volume 
DDR   discoidin domain receptor 
DiscD   discoidin-like domain 
DLS   dynamic light scattering 
DMEM   Dulbecco's modified Eagle medium 
EDC   N-ethyl-N’-(dimethylaminopropyl)-carbodiimide hydrochloride 
EDTA   ethylenediaminetetraacetic acid 
EGFD   epidermal growth factor-like domain 
EGFR   epidermal growth factor receptor 
EMD72000  matuzumab 
EphR   ephrin receptors  
Fab   fragment antigen binding 
Fab1159476  fragment antigen binding of EMD1159476 
Fab72000  fragment antigen binding of matuzumab 
FabC225  fragment antigen binding of cetuximab 
FDA   US American Food and Drug administration 
FGFR   fibroblast growth factor receptors  
FnIII   fibronectin type-III domain 
GAP   guanine exchange factors (Ras-GAP) 
GBM   glioblastoma 
GH   growth hormone 
GHR   growth hormone receptor 
h   hours 
HB-EGF  heparin binding EGF-like growth factor ( 
HEPES   2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfonsäure 
HER2   human epidermal growth factor receptor 2 
HGFR   hepatocyte growth factor receptor, Met 
ID   insert domain 
IgD   immunoglobulin-like domain 
IGF-1R   insulin-like growth factor-1 receptor 
IGFBP   insulin-like growth factor binding proteins 
IMAC   immobilized metal-ion affinity chromatography 
IP3   inositol-3,4,5-trisphosphate 
IR   insulin receptor 
IRR   insulin-related receptor 
ITC   isothermal titration calorimetry 
KinD   kringle-like domain 
KLG/CCK  colon carcinoma kinase 
LMR   lemur 
LRD   leucine-rich domain 
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LRIG1   leucine rich repeat and immunoglobulin-like domain-1 protein 
LTK   leukocyte tyrosine kinase 
mAb   monoclonal antibody 
MAPK   mitogen-activated protein kinase (ERK)  
MAPKK  MAP-kinase-kinase (MEK1)  
min   minutes 
MOI   multiplicity of infection 
mSOS    mammalian son of sevenless 
mTOR   mammalian target of rapamycin 
MuSK   muscle-specific kinase 
NaCl   sodium chloride 
NGFR   nerve growth factor receptor receptor 
NHS   N-hydroxysuccinimide 
NRG   neuregulin 
NSCLC  non-small cell lung cancer 
PBS   phosphate-buffered saline 
PCR   polymerase chain reaction 
PDB   protein data base 
PDGFR  platelet-derived growth factor receptor 
PDK1   pyruvate dehydrogenase kinase 1 
PEI   polyethylenimin 
PI-3K   phophoinositidyl-3 kinase 
PKB   protein kinase B (Akt) 
PKC   protein kinase C  
PTB   phosphotyrosine-binding  
PtdIns(3,4)P2  phosphatidylinositol-3,4-bisphosphate 
PtdIns(3,4,5)P3  phosphatidylinositol-3,4,5-trisphosphate 
Ret   rearranged during transfection 
ROR   receptor orphan 
ROS   receptor tyrosine kinase expressed in some epithelial cell types 
RTK   receptor tyrosine kinase 
RU   response units 
RYK   receptor related to tyrosine kinases 
SC   shape complementarity 
sec   seconds 
SEC   size exclusion chromatography 
sEGFR   soluble ectodomain of EGFR 
sEGFRd3  soluble ectodomain EGFR domain III 
SH2   SRC homology-2  
SHC   SH2 domain-containing enzymes  
sIGF-1R  solucble ectodomain of IGF-1R 
SLS   static light scattering 
SPR   surface plasmon resonance 
TGF-α   transforming growth factor α 
TIE   tyrosine kinase receptor in endothelial cells 
TKI   tyrosine kinase inhibitor 
VEGF   vascular endothelial growth factor 
VEGFR  vascular endothelial growth factor receptors  
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11. APPENDIX 

11.1. Primer sequences 

K454 up   5’ AATACAATAAACTGGGCAAAACTGTTTGGGACC 3’ 

K454 rev   5’ GGTCCCAAACAGTTTTGCCCAGTTTATTGTATT 3’ 

K463 up  5’ GGGACCTCCGGTCAGGCAACCAAAATTATAAGC 3’ 

K463 rev   5’ GCTTATAATTTTGGTTGCCTGACCGGAGGTCCC 3’ 

T459A/S460A up  5’ AAAAAACTGTTTGGGGCCGCCGGTCAGAAAACCAAA 3’ 

T459A/S460A rev  5’ TTTGGTTTTCTGACCGGCGGCCCCAAACAGTTTTTT 3’ 

tripleK454A up  5’ AATACAATAAACTGGGCAAAACTGTTTGGGGCC 3’ 

tripleK454A rev  5’ GGCCCCAAACAGTTTTGCCCAGTTTATTGTATT 3’ 

tripleK463A up  5’ GGGGCCGCCGGTCAGGCAACCAAAATTATAAGC 3’ 

tripleK463A rev  5’ GCTTATAATTTTGGTTGCCTGACCGGCGGCCCC 3’ 

sEGFRvIII f1 up  5’ GGCTTCGAAGGAGATAGAACCATGCGACCCTCCGGGACGGCC 

GGG 3’ 

sEGFRvIII f1 rev  5’GTGATCTGTCACCACATAATTACCTTTCTTTTCCTCCAGAGCCCG 

ACT3’ 

sEGFRvIII f2 up  5’ AGTCGGGCTCTGGAGGAAAAGAAAGGTAATTATGTGGTGACAGAT 

CAC 3’ 

sEGFRvIII f2 rev  5’ GTCCTATTAATGGTGATGGTGATGGTGCTTAGGCCCATTCGTTGGA 

CAG 3’ 

sIGF-1Rd1-3 up  5’ GGCTTCGAAGGAGATAGAACCATGAAGTCTGGCTCCGGAG 3’ 

sIGF-1Rd1-3 rev  5’ GTCCTATTAATGGTGATGGTGATGGTGGACGTCACTTTCACAGG 

AGG 3’ 

sIGF-1Rd2 blunt up  5’ TCCACTCGTCGGCCAGAGCGAGA 3’ 

sIGF-1Rd2 blunt rev  5’ GACCTGTGTCCAGGGACCATGGAG 3’ 

sIGF-1Rd2 up  5’ GGCTTCGAAGGAGATAGAACCATGAAGTCTGGCTCCGGAG 3’ 

sIGF-1Rd2 rev  5’ CAAGAAAGCTGGGTCCTATTACGGGCAAGGACCTTCACAAGG 

GAT 3’ 
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11.2. Protein constructs 

Amino acid sequence sEGFR_His6 (signal peptide in bold) 
MRPSGTAGAALLALLAALCPASRALEEKKVCQGTSNKLTQLGTFEDHFLSLQRMFNNCEVVL
GNLEITYVQRNYDLSFLKTIQEVAGYVLIALNTVERIPLENLQIIRGNMYYENSYALAVLSN
YDANKTGLKELPMRNLQEILHGAVRFSNNPALCNVESIQWRDIVSSDFLSNMSMDFQNHLGS
CQKCDPSCPNGSCWGAGEENCQKLTKIICAQQCSGRCRGKSPSDCCHNQCAAGCTGPRESDC
LVCRKFRDEATCKDTCPPLMLYNPTTYQMDVNPEGKYSFGATCVKKCPRNYVVTDHGSCVRA
CGADSYEMEEDGVRKCKKCEGPCRKVCNGIGIGEFKDSLSINATNIKHFKNCTSISGDLHIL
PVAFRGDSFTHTPPLDPQELDILKTVKEITGFLLIQAWPENRTDLHAFENLEIIRGRTKQHG
QFSLAVVSLNITSLGLRSLKEISDGDVIISGNKNLCYANTINWKKLFGTSGQKTKIISNRGE
NSCKATGQVCHALCSPEGCWGPEPRDCVSCRNVSRGRECVDKCKLLEGEPREFVENSECIQC
HPECLPQAMNITCTGRGPDNCIQCAHYIDGPHCVKTCPAGVMGENNTLVWKYADAGHVCHLC
HPNCTYGCTGPGLEGCPTNGPKHHHHHH. 
 

Nucleotide sequence sEGFR_His6 

ATGCGACCCTCCGGGACGGCCGGGGCAGCGCTCCTGGCGCTGCTGGCTGCGCTCTGCCCGGC
GAGTCGGGCTCTGGAGGAAAAGAAAGTTTGCCAAGGCACGAGTAACAAGCTCACGCAGTTGG
GCACTTTTGAAGATCATTTTCTCAGCCTCCAGAGGATGTTCAATAACTGTGAGGTGGTCCTT
GGGAATTTGGAAATTACCTATGTGCAGAGGAATTATGATCTTTCCTTCTTAAAGACCATCCA
GGAGGTGGCTGGTTATGTCCTCATTGCCCTCAACACAGTGGAGCGAATTCCTTTGGAAAACC
TGCAGATCATCAGAGGAAATATGTACTACGAAAATTCCTATGCCTTAGCAGTCTTATCTAAC
TATGATGCAAATAAAACCGGACTGAAGGAGCTGCCCATGAGAAATTTACAGGAAATCCTGCA
TGGCGCCGTGCGGTTCAGCAACAACCCTGCCCTGTGCAACGTGGAGAGCATCCAGTGGCGGG
ACATAGTCAGCAGTGACTTTCTCAGCAACATGTCGATGGACTTCCAGAACCACCTGGGCAGC
TGCCAAAAGTGTGATCCAAGCTGTCCCAATGGGAGCTGCTGGGGTGCAGGAGAGGAGAACTG
CCAGAAACTGACCAAAATCATCTGTGCCCAGCAGTGCTCCGGGCGCTGCCGTGGCAAGTCCC
CCAGTGACTGCTGCCACAACCAGTGTGCTGCAGGCTGCACAGGCCCCCGGGAGAGCGACTGC
CTGGTCTGCCGCAAATTCCGAGACGAAGCCACGTGCAAGGACACCTGCCCCCCACTCATGCT
CTACAACCCCACCACGTACCAGATGGATGTGAACCCCGAGGGCAAATACAGCTTTGGTGCCA
CCTGCGTGAAGAAGTGTCCCCGTAATTATGTGGTGACAGATCACGGCTCGTGCGTCCGAGCC
TGTGGGGCCGACAGCTATGAGATGGAGGAAGACGGCGTCCGCAAGTGTAAGAAGTGCGAAGG
GCCTTGCCGCAAAGTGTGTAACGGAATAGGTATTGGTGAATTTAAAGACTCACTCTCCATAA
ATGCTACGAATATTAAACACTTCAAAAACTGCACCTCCATCAGTGGCGATCTCCACATCCTG
CCGGTGGCATTTAGGGGTGACTCCTTCACACATACTCCTCCTCTGGATCCACAGGAACTGGA
TATTCTGAAAACCGTAAAGGAAATCACAGGGTTTTTGCTGATTCAGGCTTGGCCTGAAAACA
GGACGGACCTCCATGCCTTTGAGAACCTAGAAATCATACGCGGCAGGACCAAGCAACATGGT
CAGTTTTCTCTTGCAGTCGTCAGCCTGAACATAACATCCTTGGGATTACGCTCCCTCAAGGA
GATAAGTGATGGAGATGTGATAATTTCAGGAAACAAAAATTTGTGCTATGCAAATACAATAA
ACTGGAAAAAACTGTTTGGGACCTCCGGTCAGAAAACCAAAATTATAAGCAACAGAGGTGAA
AACAGCTGCAAGGCCACAGGCCAGGTCTGCCATGCCTTGTGCTCCCCCGAGGGCTGCTGGGG
CCCGGAGCCCAGGGACTGCGTCTCTTGCCGGAATGTCAGCCGAGGCAGGGAATGCGTGGACA
AGTGCAAGCTTCTGGAGGGTGAGCCAAGGGAGTTTGTGGAGAACTCTGAGTGCATACAGTGC
CACCCAGAGTGCCTGCCTCAGGCCATGAACATCACCTGCACAGGACGGGGACCAGACAACTG
TATCCAGTGTGCCCACTACATTGACGGCCCCCACTGCGTCAAGACCTGCCCGGCAGGAGTCA
TGGGAGAAAACAACACCCTGGTCTGGAAGTACGCAGACGCCGGCCATGTGTGCCACCTGTGC
CATCCAAACTGCACCTACGGATGCACTGGGCCAGGTCTTGAAGGCTGTCCAACGAATGGGCC
TAAGCACCATCACCATCACCATTGA 
 



  Appendix 
 

 127

Amino acid sequence sEGFRd3_His6 (signal peptide in bold) 
MRPSGTAGAALLALLAALCPASRALEEKKVCNGIGIGEFKDSLSINATNIKHFKNCTSISGD
LHILPVAFRGDSFTHTPPLDPQELDILKTVKEITGFLLIQAWPENRTDLHAFENLEIIRGRT
KQHGQFSLAVVSLNITSLGLRSLKEISDGDVIISGNKNLCYANTINWKKLFGTSGQKTKIIS
NRGENSCKATGQVCHALCSPEGCWGPEPRDCVSCRNVSRGRECVDKHHHHHH 
 

Nucleotide sequence sEGFRd3_His6 

ATGCGACCCTCCGGGACGGCCGGGGCAGCGCTCCTGGCGCTGCTGGCTGCGCTCTGCCCGGC
GAGTCGGGCTCTGGAGGAAAAGAAAGTTTGCAACGGAATAGGTATTGGTGAATTTAAAGACT
CACTCTCCATAAATGCTACGAATATTAAACACTTCAAAAACTGCACCTCCATCAGTGGCGAT
CTCCACATCCTGCCGGTGGCATTTAGGGGTGACTCCTTCACACATACTCCTCCTCTGGATCC
ACAGGAACTGGATATTCTGAAAACCGTAAAGGAAATCACAGGGTTTTTGCTGATTCAGGCTT
GGCCTGAAAACAGGACGGACCTCCATGCCTTTGAGAACCTAGAAATCATACGCGGCAGGACC
AAGCAACATGGTCAGTTTTCTCTTGCAGTCGTCAGCCTGAACATAACATCCTTGGGATTACG
CTCCCTCAAGGAGATAAGTGATGGAGATGTGATAATTTCAGGAAACAAAAATTTGTGCTATG
CAAATACAATAAACTGGAAAAAACTGTTTGGGACCTCCGGTCAGAAAACCAAAATTATAAGC
AACAGAGGTGAAAACAGCTGCAAGGCCACAGGCCAGGTCTGCCATGCCTTGTGCTCCCCCGA
GGGCTGCTGGGGCCCGGAGCCCAGGGACTGCGTCTCTTGCCGGAATGTCAGCCGAGGCAGGG
AATGCGTGGACAAGTGCAAGCTTCTGGAGGGTGAGCCAAGGGAGTTTGTGGAGAACTCTGAG
TGCATACAGTGCCACCCAGAGTGCCTGCCTCAGGCCATGAACATCACCTGCACAGGACGGGG
ACCAGACAACTGTATCCAGTGTGCCCACTACATTGACGGCCCCCACTGCGTCAAGACCTGCC
CGGCAGGAGTCATGGGAGAAAACAACACCCTGGTCTGGAAGTACGCAGACGCCGGCCATGTG
TGCCACCTGTGCCATCCAAACTGCACCTACGGATGCACTGGGCCAGGTCTTGAAGGCTGTCC
AACGAATGGGCCTAAGCACCATCACCATCACCATTGA 
 

Amino acid sequence sEGFRvIII_His6 (signal peptide in bold) 
MRPSGTAGAALLALLAALCPASRALEEKKGNYVVTDHGSCVRACGADSYEMEEDGVRKCKKC
EGPCRKVCNGIGIGEFKDSLSINATNIKHFKNCTSISGDLHILPVAFRGDSFTHTPPLDPQE
LDILKTVKEITGFLLIQAWPENRTDLHAFENLEIIRGRTKQHGQFSLAVVSLNITSLGLRSL
KEISDGDVIISGNKNLCYANTINWKKLFGTSGQKTKIISNRGENSCKATGQVCHALCSPEGC
WGPEPRDCVSCRNVSRGRECVDKCKLLEGEPREFVENSECIQCHPECLPQAMNITCTGRGPD
NCIQCAHYIDGPHCVKTCPAGVMGENNTLVWKYADAGHVCHLCHPNCTYGCTGPGLEGCPTN
GPKHHHHHH. 
 

Nucleotide sequence sEGFRvIII_His6 

ATGCGACCCTCCGGGACGGCCGGGGCAGCGCTCCTGGCGCTGCTGGCTGCGCTCTGCCCGGC
GAGTCGGGCTCTGGAGGAAAAGAAAGGTAATTATGTGGTGACAGATCACGGCTCGTGCGTCC
GAGCCTGTGGGGCCGACAGCTATGAGATGGAGGAAGACGGCGTCCGCAAGTGTAAGAAGTGC
GAAGGGCCTTGCCGCAAAGTGTGTAACGGAATAGGTATTGGTGAATTTAAAGACTCACTCTC
CATAAATGCTACGAATATTAAACACTTCAAAAACTGCACCTCCATCAGTGGCGATCTCCACA
TCCTGCCGGTGGCATTTAGGGGTGACTCCTTCACACATACTCCTCCTCTGGATCCACAGGAA
CTGGATATTCTGAAAACCGTAAAGGAAATCACAGGGTTTTTGCTGATTCAGGCTTGGCCTGA
AAACAGGACGGACCTCCATGCCTTTGAGAACCTAGAAATCATACGCGGCAGGACCAAGCAAC
ATGGTCAGTTTTCTCTTGCAGTCGTCAGCCTGAACATAACATCCTTGGGATTACGCTCCCTC
AAGGAGATAAGTGATGGAGATGTGATAATTTCAGGAAACAAAAATTTGTGCTATGCAAATAC
AATAAACTGGAAAAAACTGTTTGGGACCTCCGGTCAGAAAACCAAAATTATAAGCAACAGAG
GTGAAAACAGCTGCAAGGCCACAGGCCAGGTCTGCCATGCCTTGTGCTCCCCCGAGGGCTGC
TGGGGCCCGGAGCCCAGGGACTGCGTCTCTTGCCGGAATGTCAGCCGAGGCAGGGAATGCGT
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GGACAAGTGCAAGCTTCTGGAGGGTGAGCCAAGGGAGTTTGTGGAGAACTCTGAGTGCATAC
AGTGCCACCCAGAGTGCCTGCCTCAGGCCATGAACATCACCTGCACAGGACGGGGACCAGAC
AACTGTATCCAGTGTGCCCACTACATTGACGGCCCCCACTGCGTCAAGACCTGCCCGGCAGG
AGTCATGGGAGAAAACAACACCCTGGTCTGGAAGTACGCAGACGCCGGCCATGTGTGCCACC
TGTGCCATCCAAACTGCACCTACGGATGCACTGGGCCAGGTCTTGAAGGCTGTCCAACGAAT
GGGCCTAAGCACCATCACCATCACCATTGA 
 

Amino acid sequence sIGF-1Rd1-3_His6 (signal peptide in bold) 
MKSGSGGGSPTSLWGLLFLSAALSLWPTSGEICGPGIDIRNDYQQLKRLENCTVIEGYLHIL
LISKAEDYRSYRFPKLTVITEYLLLFRVAGLESLGDLFPNLTVIRGWKLFYNYALVIFEMTN
LKDIGLYNLRNITRGAIRIEKNADLCYLSTVDWSLILDAVSNNYIVGNKPPKECGDLCPGTM
EEKPMCEKTTINNEYNYRCWTTNRCQKMCPSTCGKRACTENNECCHPECLGSCSAPDNDTAC
VACRHYYYAGVCVPACPPNTYRFEGWRCVDRDFCANILSAESSDSEGFVIHDGECMQECPSG
FIRNGSQSMYCIPCEGPCPKVCEEEKKTKTIDSVTSAQMLQGCTIFKGNLLINIRRGNNIAS
ELENFMGLIEVVTGYVKIRHSHALVSLSFLKNLRLILGEEQLEGNYSFYVLDNQNLQQLWDW
DHRNLTIKAGKMYFAFNPKLCVSEIYRMEEVTGTKGRQSKGDINTRNNGERASCESDVHHHH
HH. 
 

Nucleotide sequence sIGF-1Rd1-3_His6 

ATGAAGTCTGGCTCCGGAGGAGGGTCCCCGACCTCGCTGTGGGGGCTCCTGTTTCTCTCCGC
CGCGCTCTCGCTCTGGCCGACGAGTGGAGAAATCTGCGGGCCAGGCATCGACATCCGCAACG
ACTATCAGCAGCTGAAGCGCCTGGAGAACTGCACGGTGATCGAGGGCTACCTCCACATCCTG
CTCATCTCCAAGGCCGAGGACTACCGCAGCTACCGCTTCCCCAAGCTCACGGTCATTACCGA
GTACTTGCTGCTGTTCCGAGTGGCTGGCCTCGAGAGCCTCGGAGACCTCTTCCCCAACCTCA
CGGTCATCCGCGGCTGGAAACTCTTCTACAACTACGCCCTGGTCATCTTCGAGATGACCAAT
CTCAAGGATATTGGGCTTTACAACCTGAGGAACATTACTCGGGGGGCCATCAGGATTGAGAA
AAATGCTGACCTCTGTTACCTCTCCACTGTGGACTGGTCCCTGATCCTGGATGCGGTGTCCA
ATAACTACATTGTGGGGAATAAGCCCCCAAAGGAATGTGGGGACCTGTGTCCAGGGACCATG
GAGGAGAAGCCGATGTGTGAGAAGACCACCATCAACAATGAGTACAACTACCGCTGCTGGAC
CACAAACCGCTGCCAGAAAATGTGCCCAAGCACGTGTGGGAAGCGGGCGTGCACCGAGAACA
ATGAGTGCTGCCACCCCGAGTGCCTGGGCAGCTGCAGCGCGCCTGACAACGACACGGCCTGT
GTAGCTTGCCGCCACTACTACTATGCCGGTGTCTGTGTGCCTGCCTGCCCGCCCAACACCTA
CAGGTTTGAGGGCTGGCGCTGTGTGGACCGTGACTTCTGCGCCAACATCCTCAGCGCCGAGA
GCAGCGACTCCGAGGGGTTTGTGATCCACGACGGCGAGTGCATGCAGGAGTGCCCCTCGGGC
TTCATCCGCAACGGCAGCCAGAGCATGTACTGCATCCCTTGTGAAGGTCCTTGCCCGAAGGT
CTGTGAGGAAGAAAAGAAAACAAAGACCATTGATTCTGTTACTTCTGCTCAGATGCTCCAAG
GATGCACCATCTTCAAGGGCAATTTGCTCATTAACATCCGACGGGGGAATAACATTGCTTCA
GAGCTGGAGAACTTCATGGGGCTCATCGAGGTGGTGACGGGCTACGTGAAGATCCGCCATTC
TCATGCCTTGGTCTCCTTGTCCTTCCTAAAAAACCTTCGCCTCATCCTAGGAGAGGAGCAGC
TAGAAGGGAATTACTCCTTCTACGTCCTCGACAACCAGAACTTGCAGCAACTGTGGGACTGG
GACCACCGCAACCTGACCATCAAAGCAGGGAAAATGTACTTTGCTTTCAATCCCAAATTATG
TGTTTCCGAAATTTACCGCATGGAGGAAGTGACGGGGACTAAAGGGCGCCAAAGCAAAGGGG
ACATAAACACCAGGAACAACGGGGAGAGAGCCTCCTGTGAAAGTGACGTCCACCATCACCAT
CACCATTAA 
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Amino acid sequence sIGF-1Rd2_His6 (signal peptide in bold) 
MKSGSGGGSPTSLWGLLFLSAALSLWPTSGDLCPGTMEEKPMCEKTTINNEYNYRCWTTNRC
QKMCPSTCGKRACTENNECCHPECLGSCSAPDNDTACVACRHYYYAGVCVPACPPNTYRFEG
WRCVDRDFCANILSAESSDSEGFVIHDGECMQECPSGFIRNGSQSMYCIPCEGPCPHHHHHH
. 
 

Nucleotide sequence sIGF-1Rd2_His6 

ACCATGAAGTCTGGCTCCGGAGGAGGGTCCCCGACCTCGCTGTGGGGGCTCCTGTTTCTCTC
CGCCGCGCTCTCGCTCTGGCCGACGAGTGGAGACCTGTGTCCAGGGACCATGGAGGAGAAGC
CGATGTGTGAGAAGACCACCATCAACAATGAGTACAACTACCGCTGCTGGACCACAAACCGC
TGCCAGAAAATGTGCCCAAGCACGTGTGGGAAGCGGGCGTGCACCGAGAACAATGAGTGCTG
CCACCCCGAGTGCCTGGGCAGCTGCAGCGCGCCTGACAACGACACGGCCTGTGTAGCTTGCC
GCCACTACTACTATGCCGGTGTCTGTGTGCCTGCCTGCCCGCCCAACACCTACAGGTTTGAG
GGCTGGCGCTGTGTGGACCGTGACTTCTGCGCCAACATCCTCAGCGCCGAGAGCAGCGACTC
CGAGGGGTTTGTGATCCACGACGGCGAGTGCATGCAGGAGTGCCCCTCGGGCTTCATCCGCA
ACGGCAGCCAGAGCATGTACTGCATCCCTTGTGAAGGTCCTTGCCCGCACCATCACCATCAC
CATTAA 
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11.3. Supplementary data 

 
Table 6: ITC-derived characteristics of antibody binding to IGF-1R at 25°C 

Construct ΔH° 
(kcal/mol) 

-TΔS° 
(kcal/mol) 

ΔG° 
(kcal/mol) 

KD  
(nM) 

Stoichiometry 
of binding (n) 

IGF-1Rd2 -13.5±0.1 2.1 -11.4 4.1 ± 0.7 0.81 
IGF-1Rd1-3 -5.8±0.1 -5.4 -11.2 6.1 ± 1.3 1.18 
BIIB5* -20.2±2.5 7.8 -12.3 1 ± 0.2 0.98 
BIIB4* -26.6±0.6 15.1 -11.5 4 ± 0.5 0.91 
(*data from Doern et al., 2009)  
 

 

 
Fig. 44: sEGFR in complex with matuzumab binding to EGF 

Surface plasmon resonance (SPR)/Biacore analysis of the binding of sEGFR and sEGFR in complex with a 
10fold excess of Fab72000 to immobilized EGF. A series of samples of sEGFR or sEGFR:Fab72000, at the 
indicated concentrations, was passed over a biosensor surface to which EGF had been amine coupled. Data 
points show the equilibrium SPR response value for a representative set of samples of sEGFR (black squares) 
and sEGFR:Fab72000 (red diamonds), expressed as a percentage of maximal SPR binding response. The curves 
represent a fit of these data to a simple one-site Langmuir binding equation. KD values, based on at least three 
independent binding experiments, are 248 ± 11.2 nM for sEGFR and 868 ± 26.1 nM for sEGFR:Fab72000. 
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Fig. 45: sEGFR binding to mAb72000 immobilized by protein A 

The binding of sEGFR (0.5 nM – 1 µM) to whole length antibody EMD72000 on a protein A surface was 
investigated by Surface plasmon resonance (SPR)/Biacore. The preliminary KD value (101.1±3.9 nM) is in the 
range of the affinity of the receptor to a surface with immobilized Fab72000 (113 ± 25 nM). For exact 
measurement of the affinity a surface regeneration is required. 
Previous Biacore binding studies of sEGFR flown over a Fab72000 surface showed an affinity of 113 ± 25 nM 
(Fig. 9). This is lower than the value observed for cetuximab, which binds with an affinity of 2.3± 0.5 nM. It is 
possible that this KD value is anomalously low due to some steric effect of the direct amine coupling of the Fab 
on the chip surface. To test this, a different immobilization strategy was employed. Protein A was amine coupled 
to a Biasensor chip and mAb72000 bound to this protein A surface through interaction with the Fc region of the 
mAb, leaving the Fv regions fully accessible to sEGFR binding. 
8.3 µg protein A in NaAc pH 4.5 were immobilized on an activated CM5 chip surface at a flow rate of 5 µl/min. 
After blocking the activated surface an immobilization level of 2275 RU was reached. Subsequently 0.1 µg 
mAb72000 was flown over the protein A surface at 5 µl/min. This yielded a immobilization level of 3510 RU 
(total 5780 RU). This preliminary sEGFR binding analysis gives a KD value of 101.1±3.9 nM, which is in the 
range of the affinity obtained for the receptor binding to directly immobilized Fab72000. 
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SUMMARY

An increasing number of therapeutic antibodies targeting tumors that express the epidermal growth factor
receptor (EGFR) are in clinical use or late stages of clinical development. Here we investigate the molecular
basis for inhibition of EGFR activation by the therapeutic antibody matuzumab (EMD72000). We describe the
X-ray crystal structure of the Fab fragment of matuzumab (Fab72000) in complex with isolated domain III from
the extracellular region of EGFR. Fab72000 interacts with an epitope on EGFR that is distinct from the ligand-
binding region on domain III and from the cetuximab/Erbitux epitope. Matuzumab blocks ligand-induced
receptor activation indirectly by sterically preventing the domain rearrangement and local conformational
changes that must occur for high-affinity ligand binding and receptor dimerization.
INTRODUCTION

The epidermal growth factor receptor (EGFR) is aberrantly

activated in a variety of epithelial tumors and has been the focus

of much interest as a target in anticancer therapy. EGFR is one of

a family of four receptor tyrosine kinases (collectively known as

the ErbB or HER receptors) that are involved in critical cellular

processes such as proliferation, differentiation, and apoptosis

(Hubbard and Miller, 2007; Schlessinger, 2000). Misregulation

of EGFR, through overexpression or mutation, leads to constitu-

tive activity or impaired receptor downregulation and can cause

malignant transformation of the cell (Mendelsohn and Baselga,

2006).

Based on structural studies over the past 5 years of the ErbB

receptors, a model has been proposed for ligand-dependent

dimerization and activation of EGFR (Figure 1) (Burgess et al.,

2003; Ferguson et al., 2003; Zhang et al., 2006). Dimerization of

the EGFR extracellular region is entirely receptor mediated,
with the majority of interactions contributed by domain II of

EGFR (Garrett et al., 2002; Ogiso et al., 2002). In the unliganded

state, the receptor adopts a very different conformation that

occludes much of the domain II dimerization interface in an intra-

molecular interaction or tether with domain IV (Bouyain et al.,

2005; Cho and Leahy, 2002; Ferguson et al., 2003). Upon ligand

binding, theextracellular regionofEGFRmustundergoadramatic

domain rearrangement, which exposes the domain II dimerization

interface. Additional localized ligand-induced changes stabilize

the precise conformation of domain II that is required for dimer-

ization (Dawson et al., 2005). Receptor dimerization brings the in-

tracellular regions into close proximity, promoting the allosteric

activation of the kinase domains (Zhang et al., 2006).

This mechanism suggests a number of ways to inhibit EGFR

activation through interaction with the extracellular region of

the receptor (Ferguson, 2004). X-ray crystallographic and

biochemical analysis of receptor-antibody complexes have indi-

cated several modes of binding that lead to effective inhibition of
SIGNIFICANCE

Antibodies targeting the EGF receptor family are proven anticancer drugs. The anti-ErbB2 antibody trastuzumab/Herceptin
is established as a treatment of ErbB2-positive breast cancer, and therapeutic protocols are in clinical use for two EGFR-
targeting antibodies, cetuximab/Erbitux and panitumumab/Vectibix. Matuzumab, a humanized form of the mouse anti-
EGFR mAb425, is in phase II clinical trials. Our studies show that both the epitope for and the mechanism of inhibition by
matuzumab are distinct from those for cetuximab. We show that matuzumab and cetuximab can both simultaneously
bind to EGFR, implying that combination therapy with both antibodies could be advantageous. This has important implica-
tions for the clinical use of matuzumab and in moving forward with the development of therapeutic approaches targeting the
EGF receptor.
Cancer Cell 13, 365–373, April 2008 ª2008 Elsevier Inc. 365

mailto:ferguso2@mail.med.upenn.edu
mailto:thorsten.knoechel@merck.de


Cancer Cell

Inhibition of EGFR by Matuzumab
ErbB receptor signaling. The chimeric antibody cetuximab/Erbi-

tux (Imclone/BMS and Merck KGaA) binds to domain III of EGFR,

directly blocking ligand binding (Li et al., 2005). Another anti-

EGFR antibody, mAb806, binds to domain II close to the recep-

tor dimerization site (Johns et al., 2004). The anti-ErbB2 antibody

pertuzumab/Omnitarg (Genentech) binds to the domain II dimer-

ization arm and prevents ligand-induced ErbB2 heterodimeriza-

tion (Franklin et al., 2004), while trastuzumab/Herceptin (Genen-

tech) binds to the membrane-proximal domain IV of ErbB2 (Cho

et al., 2003) and likely modulates a cleavage event that leads to

ectodomain shedding and kinase activation (Molina et al., 2001).

We were interested to establish the mode of inhibition of EGFR

by another therapeutic antibody, matuzumab (EMD72000),

which targets EGFR-expressing tumors. Matuzumab is the

humanized form of the murine mAb 425 (EMD55900) that was

produced by immunization of BALB/c mice with human A431

epidermoid carcinoma cells (Kettleborough et al., 1991; Murthy

et al., 1987). Monoclonal antibody 425 (EMD55900) blocks

ligand-dependent activation of EGFR in tumor cell lines (Rodeck

et al., 1990) and has been demonstrated to inhibit growth of

EGFR-dependent tumors in preclinical studies (Rodeck et al.,

1987). Matuzumab has performed well in phase I clinical trials

against a number of cancers, both alone and in combination

with chemotherapy (Bier et al., 2001; Graeven et al., 2006;

Kollmannsberger et al., 2006; Vanhoefer et al., 2004), and is

being actively pursued in multiple ongoing phase II trials (Seiden

et al., 2007; Socinski, 2007).

Here we describe the crystal structure of the Fab fragment of

matuzumab (Fab72000) bound to a truncated form of the extra-

cellular region of EGFR that comprises all of domain III plus the

first 24 amino acids from domain IV. Matuzumab binds to an

epitope on domain III of EGFR that is distinct from both the

Figure 1. Ligand-Induced EGF Receptor Dimerization

The extracellular region of the EGF receptor (sEGFR) is shown in cartoon

representation with domain I in red, domain II in green, and domains III and

IV in gray, with the secondary structure elements highlighted in red and green,

respectively. The inactive receptor (left-hand view) exists in a tethered, autoin-

hibited conformation with an intramolecular interaction between domains II

and IV. Upon ligand binding, the receptor adopts a very different domain

arrangement (right-hand view). Ligand (here EGF, shown in purple cartoon)

binds between domains I and III of a single EGFR molecule, stabilizing the pre-

cise, extended configuration of EGFR that can dimerize. All contacts between

the two molecules in the dimer are receptor mediated, with domain II providing

the primary dimerization contacts. EGF receptor dimerization is ligand

induced, but entirely receptor mediated. The colors on the right-hand molecule

in the sEGFR dimer have been muted for contrast. Coordinates from PDB IDs

1IVO and 1NQL were used to generate this figure. Domain IV in the sEGFR

dimer was modeled as previously described (Ferguson et al., 2003).
366 Cancer Cell 13, 365–373, April 2008 ª2008 Elsevier Inc.
ligand-binding site and the cetuximab epitope on that domain.

Matuzumab does not directly block the access of ligand to the

domain III-binding site, and thus does not share the primary

mechanism for inhibition of ligand-induced EGFR activation

employed by cetuximab. Rather, the binding of matuzumab to

domain III sterically blocks the domain rearrangement that is

required for high-affinity ligand binding and receptor dimeriza-

tion. Further, binding to this epitope places the antigen-binding

domains of matuzumab such as to impede the formation of the

critical contacts between domains II and III that are required to

stabilize the dimerization competent conformation of domain II.

This noncompetitive mechanism of inhibition of EGFR activation

has implications for both the application of current drugs and the

development of anti-EGFR therapeutics.

RESULTS AND DISCUSSION

Binding Characteristics of Matuzumab to Cell Surface
and Soluble EGFR
To determine the mode of binding of matuzumab to EGFR, and

to elucidate the mechanism of inhibition of EGFR by this thera-

peutic antibody, we sought to determine the X-ray crystal struc-

ture of the complex between the Fab fragment of the antibody

and the extracellular region of EGFR. We first characterized the

binding of matuzumab to the soluble extracellular domain of

EGFR (sEGFR) and compared the results to the behavior of

this antibody in cell surface binding assays.

Soluble EGFR was produced by secretion from baculovirus-

infected Sf9 cells and purified exactly as described (Ferguson

et al., 2000). The Fab fragment of matuzumab (Fab72000),

produced by papain cleavage of the antibody, was immobilized

on a CM5 biosensor chip (see Experimental Procedures). Using

surface plasmon resonance (SPR/Biacore), we established that

sEGFR binds to this immobilized Fab72000 with a KD value of

113 ± 25 nM (Figure 2A). This value is weaker than that observed

for the binding of 125I-labeled intact matuzumab to cell surface

EGFR (about 1–10 nM, depending on the cell line employed;

data not shown), although these binding assays are not directly

comparable. It has previously been shown that the epitope for

cetuximab lies exclusively on domain III of sEGFR (Li et al.,

2005). To address whether this is also true for matuzumab, we

produced and purified isolated domain III of sEGFR (sEGFRd3;

amino acids 311–514 of mature EGFR) exactly as described

(Li et al., 2005). As shown in Figure 2A, sEGFRd3 binds to immo-

bilized Fab72000 with a KD value of 43.0 ± 12.9 nM. The antigen-

binding domain of matuzumab, like that of cetuximab, binds

more tightly to sEGFRd3, possibly due to the absence of steric

hindrance from the other domains of sEGFR.

We next used both SPR and cell surface binding analysis to

investigate the ability of matuzumab to compete with ligand

binding to EGFR. As shown in Figure 2B, matuzumab, like cetux-

imab, competes efficiently for the binding of 3 nM 125I-labeled

EGF to the surface of A431 epidermoid carcinoma cells. It has

previously been shown that, in the context of an SPR/Biacore

assay, the Fab fragment of cetuximab (FabC225) is able to block

all binding of soluble sEGFR to immobilize EGF (Li et al., 2005).

We asked if this is also true for the Fab fragment of matuzumab.

Samples of 600 nM sEGFR containing increasing excesses of

Fab72000 were passed over a biosensor surface to which EGF
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had been immobilized. As shown in Figure 2C, there is an initial

decrease in the equilibrium SPR response as increasing

Fab72000 is added. At a 1:1 molar ratio of Fab72000:sEGFR,

the SPR response is about 45% of that obtained with no added

Fab. Addition of increasing excesses of Fab72000 does not fur-

ther reduce this binding level. Even at a higher concentration of

sEGFR and with up to a 50-fold excess of Fab72000 (data not

shown), the equilibrium SPR response does not fall below 40%

of the value in the absence of added Fab. One possible explana-

Figure 2. Characterization of the EGFR-Binding and Ligand

Competition Properties of Matuzumab

(A) Surface Plasmon Resonance (SPR) analysis of the binding of sEGFR and

sEGFRd3 to immobilized Fab72000 (the antigen-binding domain of matuzu-

mab). A series of samples of sEGFR or sEGFRd3, at the indicated concentra-

tions, was passed over a biosensor surface to which Fab72000 had been

amine coupled. Data points show the equilibrium SPR response value for a

representative set of samples of sEGFR (black squares) and of sEGFRd3

(open triangles), expressed as a percentage of the maximal SPR-binding

response. The curves represent the fit of these data to a simple one-site Lang-

muir binding equation. KD values, based on at least three independent binding

experiments, are 113 ± 25 nM for sEGFR and 43 ± 13 nM for sEGFRd3.

(B) Competition of EGF (green diamonds), matuzumab (red triangles), or cetux-

imab (black triangles) for the binding of 125I-labeled EGF to A431 cells. Cells

were incubated with media containing 3 nM 125I-labeled EGF plus the indi-

cated concentration of cold matuzumab, cetuximab, or EGF for 6 hr at 4�C.

Following washing to remove unbound material, cells were lysed and liquid

scintillation counting was used to determine the amount of bound 125I-labeled

EGF. The counts per minute (CPM) for each sample are shown, expressed as

a percentage of the CPM value obtained for no added competitor. Error bars

indicate the standard deviation on three independent experiments. The line

indicates the fit to a sigmoidal dose-response model. IC50 values from this

analysis are 2.0 nM for matuzumab and cetuximab and 7.3 nM for EGF.

(C) A competition experiment showing the effect of addition of Fab72000 upon

the binding of 600 nM sEGFR to immobilized EGF. Mixtures of 600 nM sEGFR

plus the indicated concentrations of Fab72000 were passed over a biosensor

surface to which EGF had been amine coupled. The equilibrium SPR

responses for each mixture is shown, normalized to the response obtained

with no added Fab. Error bars indicate the standard deviation on at least three

independent measurements. The line simply connects the data points.

(D) The ability of FabC225 (the antigen-binding domain of cetuximab; gray

shades) and Fab72000 (red shades) to compete for the binding of 600 nM

sEGFR to immobilized EGF, determined exactly as described in (C). Samples

of each Fab alone show no binding to the immobilized EGF (data not shown).

Data for FabC225 taken from Li et al. (2005). Error bars indicate the standard

deviation on at least three independent measurements.
tion for the observed SPR responses in Figure 2C is that both

unbound sEGFR and the Fab72000/sEGFR complex can interact

with the immobilized EGF, but that the complex binds with

substantially weaker affinity. Equilibrium binding analysis to

immobilized EGF for samples of sEGFR containing a 10-fold

molar excess of Fab72000 indicates an apparent KD value that

is approximately 5-fold weaker than that for sEGFR alone (data

not shown). Certainly these data suggest that there must be

something quite different about the mode of binding to sEGFR

of the Fab fragment of matuzumab compared to that of cetuxi-

mab. Both antibodies are able to compete for binding of low

concentrations of EGF to cell surface EGFR, yet the Fab frag-

ments from the two antibodies have very different effects on

the ability of soluble EGFR to bind to immobilized EGF in the

Biacore assay (Figure 2D and Li et al., 2005).

To gain further insight into the precise mode of binding of

matuzumab to EGFR, and to understand how this leads to inhi-

bition of cell surface ligand binding and of ligand-stimulated

EGFR activation, we crystallized and solved the structures of

Fab72000 alone and in complex with the sEGFRd3 (see Experi-

mental Procedures and Table 1).

The Structure of the Fab72000/sEGFRd3 Complex
Crystals of the isolated Fab72000 that diffract to 2.15 Å resolu-

tion were obtained, and the structure was solved by molecular

replacement (MR) methods using as search model the coordi-

nates of an Fab fragment selected by degree of sequence

similarity (Protein Data Bank [PDB] ID 1L7I). A complex of

sEGFRd3 and Fab72000 was purified by size exclusion chroma-

tography (SEC), and crystals that diffract to 3.2 Å resolution were

obtained using streak seeding techniques. To solve this struc-

ture, MR search models based on the coordinates for domain

III of sEGFR (PDB ID 1YY9) and the coordinates of the refined

Fab72000 were used to locate the two Fab72000/sEGFRd3

complexes in the asymmetric unit. Data collection and refine-

ment statistics are given in Table 1.

Fab72000 binds primarily to the loop that precedes the most

C-terminal strand of the domain III b-helix (amino acids

454–464; highlighted in red in Figure 3A). This loop penetrates

into a cleft between the VL and VH domains of the Fab. The tip

of this loop forms a type I beta turn, with T459 and S460 in this

turn protruding the farthest into the cleft. This mode of binding

is unusual for the recognition of a large protein antigen, where

it is more common for the epitope to comprise a large flat surface

on the antigen (Sundberg and Mariuzza, 2002), as was observed

for the binding of cetuximab to EGFR (Li et al., 2005). All of the

key interactions made by the Fab are from the complementar-

ity-determining regions (CDRs), with the major specificity-deter-

mining contacts coming from CDRs H3 and L3. All of the CDRs

contribute to binding to domain III, also an unusual feature

compared to most antigen-antibody complexes (Sundberg and

Mariuzza, 2002).

The tip of the buried loop from sEGFR makes interactions with

both the heavy- and light-chain CDRs (Figure 3B); the side chain

of T459 interacts with that of H93 from the Fab light chain, while

the side chain of S460 contacts the CDR H2 side chain E50. Two

lysines, one on either end of the sEGFRd3 epitope loop, form salt

bridge interactions with aspartic acids on the Fab (K454 with

D100 from CDR H3 and K463 with CDR L2 D49). Additional
Cancer Cell 13, 365–373, April 2008 ª2008 Elsevier Inc. 367
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interactions with the buried epitope loop are contributed by side

chains in CDRs H1, H2, and L1 that are within hydrogen-bonding

distance of the main chain of sEGFRd3 (Figure 3B and Figure S1

available online). Two important direct interactions are made

between the Fab and regions of domain III outside the loop

between amino acids 454–464. A histidine from CDR L3 (H93)

interacts with D434 on the adjacent loop of the sEGFRd3 b-helix,

while on the other side of the binding site Y103 from the apex of

CDR H3 extends to interact with N449. These two interactions

anchor the Fab over the central binding loop and expand the

epitope substantially beyond the single peptide loop.

A total of two salt bridges and 11 predicted hydrogen bonds

are involved in the interaction between Fab72000 and sEGFRd3,

in an interface that buries 758 Å2 of solvent-accessible surface

on domain III (a total of 1516 Å2 of surface is occluded from

solvent in the complex). The shape complementarity (sc) param-

eter for the interface of the Fab72000/sEGFRd3 complex is 0.62,

Table 1. Data Collection and Refinement Statistics

Fab72000 Fab72000/sEGFRd3

Data Collection Statisticsa

Space group P212121 C2

Unique cell

dimensions

a = 56.8 Å,

b = 61.4 Å,

c = 102.7 Å

a = 141.1 Å, b = 205.0 Å,

c = 81.6 Å, b = 117.5�

X-ray source CHESS F1 SLS X06SA

Resolution limit 2.15 Å 3.2 Å

Observed/unique 107,297/

20,191

120,206/33,886

Completeness (%) 99.9 (99.9) 99.7 (98.7)

Rsym
b 0.10 (0.42) 0.12 (0.35)

<I/s> 20.7 (3.6) 11.4 (3.4)

Refinement Statistics

Resolution limits 50–2.15 Å 50–3.2 Å

No. of reflections/no.

test set

19,098/1029 32,028/1709

R factor (Rfree)
c 0.22 (0.26) 0.24 (0.29)

Model one Fab72000

molecule

two Fab72000/sEGFRd3

complexes

Protein aa 4–211 of

light chain; aa

1–224 of

heavy chain

aa 310–500 of mature

sEGFR with 13 saccharide

units; aa 1–211 of Fab light

chain; aa 1–135, 142–222 of

Fab heavy chaind

Water/ions 99 water

molecules; 2

sulfates

—

Total number of atoms 3209 8517

RMSD bond length (Å) 0.012 0.015

RMSD bond angles (�) 1.35 1.6
a Numbers in parentheses refer to last resolution shell.
b Rsym = SjIh� <Ih>j/SIh, where <Ih> is the average intensity over symme-

try equivalent measurements.
c R factor = SjFo � Fcj/SFo, where summation is over data used in the

refinement; Rfree includes 5% of the data excluded from the refinement.
d Number of missing amino acids in the heavy and light chains differs in

the two complexes.
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slightly lower than is typically observed for antigen-antibody

interfaces (0.64 to 0.68) (Lawrence and Colman, 1993). The sc

values reported for cetuximab bound to EGFR (Li et al., 2005)

and for the pertuzumab and trastuzumab complexes with the

extracellular region ErbB2 (Cho et al., 2003; Franklin et al.,

2004) are all somewhat higher, in the range from 0.70 to 0.75,

perhaps reflecting the more convex shape of the matuzumab

epitope compared to those of these other antibody drugs.

Neither the conformation of sEGFRd3 nor that of Fab72000 is

significantly altered upon formation of the complex. There are

very minor differences in the side chain positions in both the

domain III epitope and in the CDRs of the Fab. Most notably,

Y103 in the VH domain is disordered in the unbound Fab and

becomes ordered on interacting with sEGFR. The elbow

angle changes by only 4� between the bound and unbound

Fab72000, which is in within the range expected due to dynamic

elbow flexibility (Stanfield et al., 2006).

Not only is the conformation of domain III unaltered by

Fab72000 binding, but also the location of the bound Fab72000

would not be expected to disrupt the tethered configuration of

sEGFR (Figure 1, left panel), the preferred solution conformation

of the receptor (Dawson et al., 2007), and the likely conformation

of the unliganded receptor at the cell surface. Fab72000 can

readily be docked onto its epitope on either of the two known

structures of tethered sEGFR (PDB IDs 1NQL and 1YY9) without

hindrance from any of the other domains of sEGFR.

The Matuzumab Epitope Is Distinct from the
Ligand-Binding Site on Domain III of sEGFR
To confirm that the crystallographically defined epitope for

matuzumab precisely represents what is seen in solution, we

generated site-specific alterations in sEGFR at key amino acids

in the domain III matuzumab epitope (Figures 3B and 4A). Each

alteration was introduced in the context of the full-length extra-

cellular domain and these altered sEGFR proteins expressed

and purified using appropriately baculovirus infected Sf9 cells.

Each purified, altered sEGFR was analyzed for binding to immo-

bilized Fab72000 and to immobilized EGF, exactly as described

(Li et al., 2005). Alteration to alanine of either of the two lysines on

the epitope loop (K454A or K463A) leads to an approximate

100-fold reduction in the affinity of sEGFR for Fab72000

(Figure 4B). Substitution of alanines at T459 and S460 (T459A/

T460A) also dramatically reduces the binding affinity. The

combination of either lysine to alanine substitution with T459A/

T460A abolishes all detectable interaction between sEGFR and

the immobilized Fab72000.

As shown in Figure 4A, the binding sites for matuzumab and for

EGF on domain III do not overlap. As would be predicted based

upon this observation, the sEGFR proteins with alterations in the

Fab72000 epitope bind to immobilized EGF with near wild-type

affinity (Figure 4B). This also confirms that the striking reduction

in binding affinity of these altered sEGFR proteins for Fab72000

is not due to a global disruption of the structure of domain III

of sEGFR. Finally, substitution of two amino acids that are known

to be critical for EGF binding (D355T/F357A) have negligible

effect on binding of sEGFR to Fab72000.

Not only is there no overlap of the epitope for matuzumab and

the ligand binding region on domain III, but a bound Fab72000

would impose no steric hindrance to the binding of EGF or of
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Figure 3. Structure of the Complex between

the Matuzumab Fab Fragment and Domain

III of sEGFR

(A) Cartoon of the Fab72000/sEGFRd3 complex.

Domain III is colored in gray with the epitope high-

lighted in red. The orientation of domain III is the

same as for the tethered sEGFR (left-hand view)

in Figure 1. Fab72000 is colored cyan for the light

chain and yellow for the heavy chain.

(B) A closeup view of the interactions between

Fab72000 and domain III of sEGFR. Domain III is

in gray with the secondary structure elements

highlighted in red. The VL and VH domains of

Fab72000 are in gray with cyan and yellow high-

lights, respectively. The CDRs of Fab72000 are

shown in cyan for L1, L2, and L3 of the VL domain, and in yellow for H1, H2, and H3 of the VH domain. The side chains of the amino acids participating in key

interactions are shown, colored as for the CDRs for the Fab and in pink for domain III. The amino acids are labeled on a cyan background for those from VL,

on a yellow background for VH, and in black for sEGFRd3. Distances consistent with hydrogen bonds are shown with dashed black lines.
TGFa to domain III. With domain III from the Fab72000/sEGFRd3

complex overlaid on domain III from the sEGFR/EGF complex

(PDB ID 1IVO) the closest approach of the Fab and EGF is 9 Å.

This is in stark contrast to the situation for cetuximab binding.

There is a high degree of overlap between the cetuximab and

EGF-binding sites on domain III (Figure 4C). The steric block of

this ligand-binding site is the primary mechanism of cetuxi-

mab-mediated inhibition of ligand-induced dimerization and

activation of EGFR (Li et al., 2005). Clearly the mechanism of

inhibition of EGFR activation by matuzumab must be different.

Figure 4. The Matuzumab Epitope Is Distinct from the Ligand-

Binding Site on Domain III

(A) A surface representation of domain III is shown in gray viewed in approxi-

mately the same orientation as in Figure 3. Amino acids on domain III that are

within 4 Å of Fab72000 (red) or of EGF (green) are indicated on this surface. The

amino acids that were altered (see [B]) are labeled in white.

(B) Surface Plasmon Resonance (SPR) analysis of the binding of altered

sEGFR proteins to immobilized Fab72000 or EGF. The equilibrium binding

KD values for each protein were determined exactly as described in the legend

to Figure 2A. The fold change in this KD value for each altered protein relative to

that for the binding of wild-type sEGFR to each immobilized ligand is plotted.

Error bars indicate the standard deviation on at least three independent sets of

measurements.

(C) The same surface representation of domain III as in (A) is shown with the

contacting amino acids for FabC225 in yellow, for EGF in green, and for the

region of overlap between FabC225 and EGF in blue.
Implications for the Mechanism of Inhibition of EGFR
Activation by Matuzumab
If matuzumab does not directly block access of the ligand to the

domain III ligand-binding site, how does it prevent high-affinity

ligand binding, receptor dimerization, and activation? To under-

stand this, we consider the effect of the binding of Fab72000

upon the formation of the ligand-induced dimeric form of the

receptor. As shown in Figure 1, sEGFR undergoes a dramatic

domain rearrangement in going from the tethered inactive state

to the ligand-bound dimeric state (Burgess et al., 2003). Addi-

tional local structural changes in domain II are known to be key

for high-affinity ligand binding, receptor dimerization, and activa-

tion (Dawson et al., 2005; Ogiso et al., 2002). As shown in Fig-

ure 5, and discussed in detail below, when domain III from the

Fab72000/sEGFRd3 complex is overlaid on domain III from the

receptor in its extended, dimerization-competent conformation

(PDB ID 1MOX), there are direct clashes between the bound

Fab72000 and both domains I and II of the extended receptor.

With matuzumab bound to domain III of EGFR, the receptor

cannot undergo the large-scale domain rearrangement that is

required for dimerization. Further, the binding of Fab72000

blocks the critical local conformational changes in domain II.

With the receptor in the extended conformation, the N-termi-

nal region of the domain I clashes with the light chain of

Fab72000, preventing domain I from reaching the position that

is required for high-affinity ligand binding (indicated with an

arrow in Figure 5A). This is reminiscent in nature and extent to

clashes between the antigen-binding fragment of cetuximab

(FabC225) and domain I that were previously implicated as

part of the mechanism of inhibition of EGFR dimerization by

that antibody (Li et al., 2005). In that case, the different orienta-

tion of FabC225 on domain III positions the VH domain such as

to occlude the N-terminal portion of domain I from its required

position in the receptor dimer.

Clashes between domain II of the extended receptor and the

Fab were not seen in the cetuximab complex, and are significant.

With Fab72000 bound to domain III of EGFR, it would not be pos-

sible for the C-terminal portion of domain II to adopt the confor-

mation observed in the ligand-bound dimeric form of the

receptor. As shown in Figure 5B, if Fab72000 is docked onto

its epitope on domain III of an sEGFR molecule in the extended

conformation, there are clashes along the C-terminal half of
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Cancer Cell

Inhibition of EGFR by Matuzumab
domain II, predominantly with the VL domain of the Fab. This

C-terminal half of domain II forms the binding pocket for the

dimerization arm from the other molecule in the receptor dimer.

Additional interactions across the dimer interface from a C-ter-

minal loop on domain II (D279 and H280, marked with an asterisk

in Figure 5A) contribute substantially to the stability of the EGFR

dimer. The conformation of domain II in this region is stabilized

by interactions with domain III that have been demonstrated to

be critical for EGFR dimerization and activation (Dawson et al.,

2005; Ogiso et al., 2002). The binding of Fab72000 to domain

III would disrupt all of these interactions. Thus, Fab72000 binding

to domain III of EGFR blocks the global domain rearrangement of

EGFR and the local conformational changes in domain II. We

propose that blocking both of these key elements in formation

of the productive EGFR dimer is critical for the effective inhibition

of EGFR activation by matuzumab.

The steric restriction on EGFR conformation imposed by the

binding of matuzumab offers a structural framework to explain

the competition data presented in Figure 2. When matuzumab

(or just its antigen-binding domain, Fab72000) binds to the extra-

cellular region of EGFR, the receptor cannot adopt the confor-

mation required for both domains I and III to engage in ligand

binding. However, the ligand-binding site on domain III is

completely exposed. EGF can bind to this site with low affinity

(approximately 1 mM; Kohda et al., 1993; Lemmon et al., 1997;

Li et al., 2005). Under the conditions of the cell-based assay,

weak binding of EGF to only domain III of EGFR is not detected.

Figure 5. Implications for the Mechanism of Inhibition of EGFR by

Matuzumab

(A) Cartoon of the extended sEGFR with Fab72000, in surface representation,

docked onto its domain III epitope. The orientation of the receptor is the same

as for the right-hand protomer in the sEGFR dimer shown in Figure 1 (with

domains colored as for the left-hand protomer; EGF is omitted for clarity).

The Fab72000 is colored as in Figure 3. The N-terminal region of domain I

clashes with the VL domain (indicated with an arrow). Additional clashes occur

along the C-terminal half of domain II (see [B]). The C-terminal loop on domain

II (D278, H280) that makes critical contacts across the dimer interface is

marked with an asterisk.

(B) In this view, an approximate 50� rotation about the vertical axis relative to

(A), domain II is shown in sphere representation in dark green. A cartoon of do-

main II of the other molecule in the dimer is shown (light green) for reference.

Domain I has been omitted for clarity. The VL domain of the Fab clashes with

domain II in the critical C-terminal region that forms the binding pocket for the

dimerization arm and makes important contacts with domain III (from N274

and E293 in domain II, colored orange). These interactions are known to be

crucial for stabilizing the dimerization competent conformation of domain II.

The Fab72000 epitope loop on domain III is colored in red.
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By preventing the receptor from adopting the conformation

required for the bipartite binding of EGF between domains I

and III, matuzumab blocks all detectable binding of EGF to cell

surface EGFR in this assay. By contrast, the Biacore assay is

performed at a much higher concentration of soluble ligand (in

this case 600 nM sEGFR, which binds to immobilized EGF).

Under these conditions, the monovalent binding of domain III

alone to EGF can be detected. In the Biacore assay, the residual

binding to immobilized EGF observed for sEGFR in the presence

of excess Fab72000 is due, at least in part, to binding to EGF of

the exposed domain III in an Fab72000/sEGFR complex.

Implications for the Therapeutic Application
of Matuzumab
As discussed above, the mechanism of inhibition of matuzumab is

different from that previously described for cetuximab. Both anti-

bodies effectively block productive binding of EGF to cell surface

EGFR (Figure 2B) but do so by interacting with distinct epitopes

on domain III. Not only are the epitopes nonoverlapping, but the

structures suggest that both antibodies could simultaneously

bind to EGFR. As shown in Figure 6A, when FabC225 and

Fab72000 are simultaneously docked onto their respective epi-

topes on domain III the two Fab fragments occupy different posi-

tions and do not clash. This observation is consistent with cellular

competition assays. Excess cetuximab is unable to compete with

the binding of 125I-labeled matuzumab to the cell surface EGFR on

A431 cells (Figure 6B). Similarly matuzumab cannot compete for
125I-labeled cetuximab binding (Figure 6C). Further, it has been

reported that there are an increased number of cell surface anti-

body-binding sites for a mixture of matuzumab and cetuximab

compared to either antibody alone (Kreysch and Schmidt,

2004). This suggests that both matuzumab and cetuximab can

bind to a single receptor molecule at the cell surface.

Figure 6. The Matuzumab and Cetuximab Epitopes Do Not Overlap

(A) A surface representation of the domain III as in Figure 4 is shown. Cartoons

of Fab72000, FabC225 (PDB ID 1YY9), and EGF (PDB ID 1IVO) are shown

docked onto their respective binding sites on domain III. Fab72000 is colored

as in Figure 3A, FabC225 is shown with the heavy chain in orange and the light

chain in light green, and EGF is in purple.

(B and C) Competition of matuzumab (red triangles) or cetuximab (black trian-

gles) for binding of 125I-labeled matuzumab (B) or 125I-labeled cetuximab (C) to

A431 cells, performed and analyzed as described in Figure 2B.
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Treatment of cells with combinations of antibodies against

distinct epitopes on the extracellular domain of EGFR, and on

the related family member ErbB2, leads to enhanced receptor

internalization and degradation (Friedman et al., 2005), a factor

that contributes to the antitumor activity of many therapeutic

antibodies. Matuzumab and cetuximab can both bind simulta-

neously to EGFR, and this has the potential to lead to synergistic

antitumor effects. Combination of matuzumab and cetuximab

could thus be beneficial in cancer therapy.

Conclusion
EGFR dimerization requires a conformational reorganization of

the receptor extracellular region that is promoted by ligand bind-

ing to domains I and III (Figures 1 and 7). As shown schematically

in Figure 7, cetuximab acts as a competitive inhibitor, preventing

ligand-induced dimerization by directly blocking access of

ligand to the domain III ligand-binding site. By contrast, matuzu-

mab does not occlude the ligand-binding site on domain III.

Rather, matuzumab exploits a noncompetitive mechanism to

inhibit sEGFR dimerization and activation. Inhibition of ligand-in-

duced EGFR activation by matuzumab is entirely dependent on

sterically blocking the receptor from adopting the conformation

that is required for high-affinity ligand binding and dimerization.

These different mechanisms of inhibition suggest opportunities

to exploit multiple EGFR-targeting drugs to act synergistically

for optimal therapeutic gain.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification

sEGFR and sEGFRd3 were expressed in baculovirus-infected Sf9 cells, purified

as described (Fergusonet al., 2000; Li et al., 2005) and used without modification

of their glycosylation state. Matuzumab (EMD72000) was provided by Merck

KGaA. The Fab fragment of matuzumab (Fab72000) was generated by papain

cleavage using the ImmunoPure Fab Preparation Kit (Pierce) and used without

additional purification. Fab72000/sEGFR complex was generated exactlyas de-

scribed (Li et al., 2005). To generate the complex with sEGFRd3, Fab was mixed

Figure 7. Matuzumab and Cetuximab Use Different Mechanisms to

Block Ligand-Induced EGFR Dimerization and Activation

In the center of the scheme, the ligand-induced sEGFR dimer is represented,

with domain I in red, domain II in green, domain III in gray with red border,

domain IV in gray with green border, and the ligand (E) in violet. The colors

for one protomer are lightened for contrast. On the left-hand side a scheme

is shown to illustrate the mechanism of inhibition of ligand-induced dimeriza-

tion by matuzumab. Fab72000 binds to domain III of sEGFR and sterically pre-

vents the receptor from adopting the conformation required for dimerization.

Importantly, Fab72000 blocks the local conformational changes in domain II

that are critical for both high-affinity ligand binding and dimerization. The inhi-

bition is noncompetitive; the ligand-binding site on domain III is not blocked.

This contrasts with the mechanism of inhibition previously reported for cetux-

imab (Li et al., 2005). FabC225 (right side) is a competitive inhibitor that blocks

the ligand-binding site on domain III. This is the primary mechanism of inhibi-

tion of ligand-mediated dimerization by cetuximab.
with a 1.2-fold molar excess of sEGFRd3 and excess sEGFRd3 separated from

Fab72000/sEGFRd3 complex by SEC using a Bio-Silect SEC250 column

(Bio-Rad), equilibrated with 20 mM HEPES and 100 mM NaCl (pH 7.5).

Crystallization and Data Collection

Proteins were concentrated and buffer exchanged into 10 mM HEPES and

50 mM NaCl (pH 7.5) and crystallized using the hanging drop vapor diffusion

method. Large single crystals of Fab72000 were obtained by mixing equal

volumes (1 ml) of the Fab (13 mg/ml) with a solution containing 1.8 M ammo-

nium sulfate and 0.1 M MES (pH 6.5) and equilibrating over a reservoir of

this buffer at 20�C. Crystals were flash frozen in reservoir solution that was

supplemented with 9% sucrose, 2% glucose, 8% glycerol, and 8% ethylene

glycol. X-ray diffraction data were collected at the Cornell High Energy

Synchrotron Source (CHESS) beamline F1, using an ADSC Quantum-210

CCD detector. Fab72000/sEGFRd3 was crystallized by mixing equal parts

(1 ml) of the SEC purified complex (14 mg/ml) with 1 M NaCl, 16% PEG

3350, and 50 mM MES (pH 6.0) and equilibrating over a reservoir of the

same buffer at 20�C. Streak seeding was used to produce large single crystals

(0.5 3 0.1 3 0.15 mm) that were cryostabilized by serial transfer to solutions of

reservoir containing increasing concentrations of ethylene glycol. Following

transfer to the final cryostabilizer of reservoir plus 15% ethylene glycol, crys-

tals were flash frozen in liquid nitrogen. Data were collected at the Swiss Light

Source (SLS) beamline X06SA, using a Mar225 CCD detector. All data were

processed in HKL2000 (Otwinowski and Minor, 1997). Data collection statis-

tics are summarized in Table 1.

Structure Determination and Refinement

The structures of the Fab72000 and Fab72000/sEGFRd3 were solved by the

method of MR using the program PHASER (CCP4, 1994). To solve the Fab

structure, the coordinates for Fab2C4 (PDB ID 1L7I) (Vajdos et al., 2002)

were selected as the initial search model based on the sequence identity

between Fab2C4 and Fab72000. To solve the Fab72000/sEGFRd3 structure,

one of the two Fab fragments in the asymmetric unit was first located using the

refined Fab72000 coordinates as search model. With the position of this Fab

fragment fixed, a second search using the coordinates of domain III of sEGFR

(amino acids 310–500 from PDB ID 1YY9) located one of the sEGFRd3

molecules. Subsequently, the second Fab72000/sEGFRd3 complex in the

asymmetric unit was found. Coordinates were manually rebuilt in COOT

(Emsley and Cowtan, 2004) and refined using CNS (Brünger et al., 1998) and

Refmac (CCP4, 1994). New maps were calculated following each iteration of

refinement, including solvent flattened maps with minimized model bias calcu-

lated using the program DM (CCP4, 1994). Refinement statistics are summa-

rized in Table 1.

SPR/Biacore-Binding Studies

Surface Plasmon Resonance (SPR)/Biacore studies were carried out using

a Biacore 3000 instrument at 25�C in 10 mM Tris, 150 mM NaCl, 3 mM

EDTA, and 0.005% Tween-20 (pH 8.0). Fab72000 was immobilized on

a Biacore CM5 biosensor chip as follows: the CM-dextran matrix was acti-

vated with N-ethyl-N0-(dimethylaminopropyl)-carbodiimide hydrochloride

(EDC) and N-hydroxysuccinimide (NHS). Fab72000 (500 ng) was flowed over

this activated surface at a concentration of 5 mg/ml in 10 mM sodium acetate

(pH 5.0) at 5 ml per minute for 20 min. The remaining reactive sites were blocked

with 1 M ethanolamine-HCl (pH 8.5). Immobilized Fab fragment contributed

a signal of 1436 response units (RU). The surface was regenerated between

sEGFR injections with two 5 ml injections of 10 mM glycine and 1 M NaCl

(pH 2.5) to remove remaining bound sEGFR. EGF immobilization and

sEGFR-binding analysis were performed exactly as described (Ferguson

et al., 2000). Data were analyzed using Prism 4 (GraphPad Software, Inc.).

Cell-Based Binding Studies
125I-labeled EGF, matuzumab, and cetuximab were generated with specific ac-

tivities of 1750 Ci/mmol, 273 Ci/mmol, and 238 Ci/mmol, respectively. A431 epi-

dermoid carcinoma cells were plated in 96-well dishes and grown to 75%–90%

confluence. Cells were washed twice with ice-cold DMEM containing 1% BSA

(incubation medium) and incubated in this medium containing 3 nM radio-

labeled ligand plus the relevant cold competitor (200 ml/well) for 6 hr at 4�C. Cells

were washed three times with ice-cold incubation medium and were lysed with
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1 M NaOH (200 ml/well). The wells were washed with 200 ml of water, and liquid

scintillation counting was used to determine the counts of bound 125I-labeled

species. Data were analyzed using Prism 4 (GraphPad Software, Inc.).

Generation of sEGFR Epitope Mutations

Standard PCR-directed site-directed mutagenesis strategies were used to

produce the appropriate DNA in the pFastBac vector. The following mutations

were made: K454A, K463A, T459A/S460A, K454A/T459A/S460A, and T459A/

S460A/K463A. The generation of recombinant baculovirus, overexpression

in Sf9 cells, and protein purification were exactly as described before for

wild-type sEGFR (Ferguson et al., 2000).

ACCESSION NUMBERS

Coordinates of the Fab72000 and Fab72000/sEGFRd3 structures have been

deposited, with PDB ID codes 3C08 and 3C09, respectively.

SUPPLEMENTAL DATA

The Supplemental Data include one supplemental figure and can be found with

this article online at http://www.cancercell.org/cgi/content/full/13/4/365/DC1/.
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Graeven, U., Kremer, B., Südhoff, T., Killing, B., Rojo, F., Weber, D., Tillner, J.,

Unal, C., and Schmiegel, W. (2006). Phase I study of the humanised anti-EGFR

monoclonal antibody matuzumab (EMD 72000) combined with gemcitabine in

advanced pancreatic cancer. Br. J. Cancer 94, 1293–1299.

Hubbard, S.R., and Miller, W.T. (2007). Receptor tyrosine kinases: Mecha-

nisms of activation and signaling. Curr. Opin. Cell Biol. 19, 117–123.

Johns, T.G., Adams, T.E., Cochran, J.R., Hall, N.E., Hoyne, P.A., Olsen, M.J.,

Kim, Y.S., Rothacker, J., Nice, E.C., Walker, F., et al. (2004). Identification of

the epitope for the epidermal growth factor receptor-specific monoclonal

antibody 806 reveals that it preferentially recognizes an untethered form of

the receptor. J. Biol. Chem. 279, 30375–30384.

Kettleborough, C.A., Saldanha, J., Heath, V.J., Morrison, C.J., and Bendig,

M.M. (1991). Humanization of a mouse monoclonal antibody by CDR-grafting:

The importance of framework residues on loop conformation. Protein Eng. 4,

773–783.

Kohda, D., Odaka, M., Lax, I., Kawasaki, H., Suzuki, K., Ullrich, A., Schles-

singer, J., and Inagaki, F. (1993). A 40-kDa epidermal growth factor/transform-

ing growth factor alpha-binding domain produced by limited proteolysis of the

http://www.cancercell.org/cgi/content/full/13/4/365/DC1/


Cancer Cell

Inhibition of EGFR by Matuzumab
extracellular domain of the epidermal growth factor receptor. J. Biol. Chem.

268, 1976–1981.

Kreysch, H.G., and Schmidt, J. (2004). Pharmaceutical compositions directed

to Erb-B1 receptors. Merck Patent GMBH (DE), EP1549344. April 2004. WO

2004/032960 A1.

Kollmannsberger, C., Schittenhelm, M., Honecker, F., Tillner, J., Weber, D.,

Oechsle, K., Kanz, L., and Bokemeyer, C. (2006). A phase I study of the human-

ized monoclonal anti-epidermal growth factor receptor (EGFR) antibody EMD

72000 (matuzumab) in combination with paclitaxel in patients with EGFR-

positive advanced non-small-cell lung cancer (NSCLC). Ann. Oncol. 17,

1007–1013.

Lawrence, M.C., and Colman, P.M. (1993). Shape complementarity at protein/

protein interfaces. J. Mol. Biol. 234, 946–950.

Lemmon, M.A., Bu, Z., Ladbury, J.E., Zhou, M., Pinchasi, D., Lax, I., Engelman,

D.M., and Schlessinger, J. (1997). Two EGF molecules contribute additively to

stabilization of the EGFR dimer. EMBO J. 16, 281–294.

Li, S., Schmitz, K.R., Jeffrey, P.D., Wiltzius, J.J.W., Kussie, P., and Ferguson,

K.M. (2005). Structural basis for inhibition of the epidermal growth factor

receptor by cetuximab. Cancer Cell 7, 301–311.

Mendelsohn, J., and Baselga, J. (2006). Epidermal growth factor receptor

targeting in cancer. Semin. Oncol. 33, 369–385.

Molina, M.A., Codony-Servat, J., Albanell, J., Rojo, F., Arribas, J., and Baselga,

J. (2001). Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclo-

nal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast

cancer cells. Cancer Res. 61, 4744–4749.

Murthy, U., Basu, A., Rodeck, U., Herlyn, M., Ross, A.H., and Das, M. (1987).

Binding of an antagonistic monoclonal antibody to an intact and fragmented

EGF-receptor polypeptide. Arch. Biochem. Biophys. 252, 549–560.

Ogiso, H., Ishitani, R., Nureki, O., Fukai, S., Yamanaka, M., Kim, J.H., Saito, K.,

Sakamoto, A., Inoue, M., Shirouzu, M., et al. (2002). Crystal structure of the

complex of human epidermal growth factor and receptor extracellular

domains. Cell 110, 775–787.

Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data col-

lected in oscillation mode. In Macromolecular Crystallography, Volume 276,

C.W. Carter and R.M. Sweet, eds. (New York: Academic Press), pp. 307–326.
Rodeck, U., Herlyn, M., Herlyn, D., Molthoff, C., Atkinson, B., Varello, M., Step-

lewski, Z., and Koprowski, H. (1987). Tumor growth modulation by a monoclo-

nal antibody to the epidermal growth factor receptor: Immunologically

mediated and effector cell-independent effects. Cancer Res. 47, 3692–3696.

Rodeck, U., Williams, N., Murthy, U., and Herlyn, M. (1990). Monoclonal

antibody 425 inhibits growth stimulation of carcinoma cells by exogenous

EGF and tumor-derived EGF/TGF-alpha. J. Cell Biol. 44, 69–79.

Schlessinger, J. (2000). Cell signaling by receptor tyrosine kinases. Cell 103,

211–225.

Seiden, M.V., Burris, H.A., Matulonis, U., Hall, J.B., Armstrong, D.K., Speyer,

J., Weber, J.D.A., and Muggia, F. (2007). A phase II trial of EMD72000

(matuzumab), a humanized anti-EGFR monoclonal antibody, in patients with

platinum-resistant ovarian and primary peritoneal malignancies. Gynecol.

Oncol. 104, 727–731.

Socinski, M.A. (2007). Antibodies to the epidermal growth factor receptor in

non small cell lung cancer: Current status of matuzumab and panitumumab.

Clin. Cancer Res. 13, 4597–4601.

Stanfield, R.L., Zemla, A., Wilson, I.A., and Rupp, B. (2006). Antibody elbow

angles are influenced by their light chain class. J. Mol. Biol. 31, 1566–1574.

Sundberg, E.J., and Mariuzza, R.A. (2002). Molecular recognition in antibody-

antigen complexes. Adv. Protein Chem. 61, 119–160.

Vajdos, F.F., Adams, C.W., Breece, T.N., Presta, L.G., de Vos, A.M., and

Sidhu, S.S. (2002). Comprehensive functional maps of the antigen-binding

site of an anti-ErbB2 antibody obtained with shotgun scanning mutagenesis.

J. Mol. Biol. 320, 415–428.

Vanhoefer, U., Tewes, M., Rojo, F., Dirsch, O., Schleucher, N., Rosen, O.,

Tillner, J., Kovar, A., Braun, A.H., Trarbach, T., et al. (2004). Phase I study of

the humanized antiepidermal growth factor receptor monoclonal antibody

EMD72000 in patients with advanced solid tumors that express the epidermal

growth factor receptor. J. Clin. Oncol. 22, 175–184.

Zhang, X., Gureasko, J., Shen, K., Cole, P.A., and Kuriyan, J. (2006). An

allosteric mechanism for activation of the kinase domain of epidermal growth

factor receptor. Cell 125, 1137–1149.
Cancer Cell 13, 365–373, April 2008 ª2008 Elsevier Inc. 373



Cancer Cell, Volume 13 

Supplemental Data 

Matuzumab Binding to EGFR Prevents  

the Conformational Rearrangement  

Required for Dimerization 
Judith Schmiedel, Andree Blaukat, Shiqing Li, Thorsten Knöchel, and Kathryn M. 
Ferguson 
 
 
Figure S1.  Electron Density at the sEGFRd3/Fab72000 Interface 
Stereo view of select interactions between domain III of sEGFR and Fab72000.  Amino acids are 
shown in stick representation and are colored in pink for domain III, and in yellow or cyan for 
the Fab72000 VH and VL domains, respectively.  Side chain labels for the Fab are on yellow or 
cyan background (VH and VL, respectively).  The gray mesh represents the final 2Fo-Fc electron 
density map contoured at 1.0 σ.  Distances consistent with hydrogen bond formation are 
indicated with dashed black lines. 
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Abnormal activation of the epidermal growth factor receptor (EGFR) and its homolog HER2 (Neu/ErbB2) 
has been associated with many human cancers, and monoclonal antibodies targeting EGFR and HER2 are 
effective anticancer therapies. Structural studies of these receptors and antibodies have revealed much 
about how they function. In this issue of Cancer Cell, Schmiedel et al. report structural and functional studies 
of the anti-EGFR monoclonal antibody Matuzumab. They show that Matuzumab binds and inhibits EGFR 
in a manner distinctive from that of other therapeutic anti-EGFR antibodies and suggest that combination 
therapies with Matuzumab and other antibodies may prove beneficial.
The epidermal growth factor receptor 
(EGFR/ErbB1/HER1) consists of an extra-
cellular ligand binding region followed 
by a single membrane-spanning helix, a 
cytoplasmic tyrosine kinase domain, and 
a C-terminal tail of ~230 amino acids (Bur-
gess et al., 2003). Ligand binding to the 
extracellular region promotes receptor 
dimerization, which in turn leads to acti-
vation of the cytoplasmic tyrosine kinase 
(Holbro and Hynes, 2004). When acti-
vated, the EGFR kinase phosphorylates 
several tyrosines in the EGFR C-terminal 
tail that then serve as docking sites for 
downstream signaling effectors that initi-
ate signaling cascades and stimulate cell 
growth and differentiation (Holbro and 
Hynes, 2004). Three EGFR homologs, 
HER2 (Neu/ErbB2), HER3 (ErbB3), and 
HER4 (ErbB4) are found in humans and, 
together with EGFR, make up the EGFR/
ErbB family of receptors. HER2 is an 
atypical member of this family in that 
it is not directly activated by ligand but 
rather serves as a universal heterodimeric 
partner for each of the other ErbB family 
members (Holbro and Hynes, 2004).

EGFR was the first cell-surface recep-
tor to be associated with cancer, and 
abnormal EGFR or HER2 function has 
subsequently been found to contribute 
to the severity of many human tumors 
(Hynes and Lane, 2005). For this reason, 
agents targeting EGFR or HER2 have 
been actively pursued as cancer thera-
pies. These agents fall into two general 
classes: monoclonal antibodies, which 
bind to receptor extracellular regions 
and will be discussed here, and small-
molecule kinase inhibitors that target the 
Cancer
cytoplasmic kinase activity. To date, two 
monoclonal antibodies against EGFR, 
Cetuximab (Erbitux) and Panitumumab 
(Vectibix), have been approved by the 
FDA for treatment of colorectal and/or 
head-and-neck cancer, and two EGFR 
kinase inhibitors, erlotinib (Tarceva) and 
gefitinib (Iressa), have been approved for 
the treatment of lung cancer. A mono-
clonal antibody targeting HER2, Tras-
tuzumab (Herceptin), and a pan-ErbB 
kinase inhibitor, lapatinib (Tykerb), have 
also been approved for treatment of 
HER2-overexpressing breast cancers. 
Many other ErbB-targeted therapies are 
under development.

Beginning ~5 years ago, X-ray crystallo-
graphic studies of the extracellular regions 
of ErbB family members uncovered the 
basic mechanism by which ligand binding 
 Cell 13, April 2008 ©2008 Elsevier Inc.  291
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regulates receptor dimeriza-
tion and activity (Burgess et 
al., 2003) (Figure 1A). The 
extracellular regions of ErbB 
family members are com-
posed of four subdomains. 
Domains I and III are homolo-
gous, and both contribute to 
ligand binding. Domains II and 
IV are homologous and form 
extended, cysteine-rich struc-
tures (Burgess et al., 2003). 
In the absence of ligand, an 
extended loop from domain 
II contacts a pocket at the C 
terminus of domain IV and 
constrains the extracellular 
region to a compact, “teth-
ered” conformation in which 
domains I and III are held far 
apart (Figure 1A, left panel). 
To bind ligand with high affin-
ity, a domain rearrangement 
occurs in which the domain 
II/IV contact is broken and 
domains I and II rotate as a 
pair to bring domains I and III 
into proximity and allow them 
to bind ligand simultaneously 
in a clamp-like interaction 
(Figure 1A, middle panel). In 
this ligand-bound, extended 
structure, the domain II loop 
that contacted domain IV in 
the absence of ligand becomes exposed 
and mediates receptor dimerization (Fig-
ure 1A, middle and right panels). This 
loop is, thus, frequently referred to as the 
“dimerization arm.”

It came as a pleasing surprise when 
crystal structures of the HER2 extracel-
lular region showed that it does not adopt 
the tethered conformation. Instead, HER2 
is fixed in an active-like conformation 
characterized by an interaction between 
domains I and III and a constitutively 
exposed dimerization arm (Cho et al., 
2003; Garrett et al., 2003) (Figure 1B). 
This domain I/III interaction occludes the 
canonical ErbB ligand-binding surface 
and appears to mimic the effects of ligand 
binding, which rationalizes the absence of 
a HER2 ligand and the role of HER2 as 
a universal partner for other ErbB family 
members.

Given the long time scale of clinical tri-
als, many ErbB-targeted therapies entered 
development long before the molecular 

underpinnings of ErbB activation and 
HER2 behavior became apparent. It has, 
thus, been particularly satisfying that as 
structural and biochemical studies of 
therapeutic anti-ErbB antibodies prog-
ress, a consistent picture of ErbB function 
is emerging. For example, Trastuzumab 
(Herceptin) binds to the juxtamembrane 
region of HER2 (Figure 1C) at a site that 
would not obviously interfere with HER2 
dimerization or activation (Cho et al., 
2003). Indeed, biochemical studies show 
that Trastuzumab does not block either 
dimerization or activation of HER2 (Agus 
et al., 2002). Trastuzumab does block 
proteolytic cleavage of the HER2 ectodo-
main, however, which occurs adjacent 
to the cell membrane and leaves behind 
an active kinase, and this effect may 
contribute to its antiproliferative activity 
(Baselga et al., 2001). Antibody-depen-
dent cellular cytotoxicity also appears to 
contribute significantly to Trastuzumab 
activity (Clynes et al., 2000). In contrast, 

the anti-HER2 antibody Pertu-
zumab, currently in phase III 
clinical trials for ovarian can-
cer, binds directly to the HER2 
dimerization arm and blocks 
both dimerization and activa-
tion in response to stimulation 
of a HER2 partner (Agus et al., 
2002) (Figure 1C). This differ-
ence appears to explain why 
Pertuzumab is more effective 
than Trastuzumab in cancers 
where HER2 is activated, but 
not overexpressed.

Unlike HER2, targeting the 
dimerization arm of EGFR 
does not appear to be an 
effective strategy as it is gen-
erally buried at either an intra- 
or intermolecular interface. 
Indeed, the first anti-EGFR 
antibody to be approved by 
the FDA for cancer therapy, 
Cetuximab (Erbitux), com-
petes with ligand for bind-
ing to EGFR and was shown 
by Ferguson and colleagues 
to bind and block the ligand 
binding site on EGFR domain 
III (Li et al., 2005) (Figure 1C). 
These authors also noted that 
Cetuximab binding to EGFR 
would sterically prohibit EGFR 
adopting the extended, active-

like conformation (Figure 1), providing a 
dual mechanism of EGFR inhibition. The 
humanized anti-EGFR antibody IMC-11F8 
binds at this same site and also works by 
this dual mechanism (Li et al., 2008).

In this issue of Cancer Cell, Schmiedel 
et al. now show that a third anti-EGFR 
mAb, Matuzumab, binds at a nearby but 
distinct site on EGFR and displays a dif-
ferent constellation of biochemical and 
inhibitory properties (Schmiedel et al. 
2008). Matuzumab, which is currently in 
phase II trials for treatment of lung and 
stomach cancer, is like Cetuximab in that 
it binds to domain III of EGFR (Figure 1C). 
Unlike Cetuximab, however, the Matu-
zumab binding site does not overlap with 
the EGF binding site, and Matuzumab 
does not completely compete with EGF 
for binding to EGFR. Matuzumab does 
reduce the apparent affinity of EGF for 
EGFR. How to explain this behavior? 
Schmiedel et al. point out that although 
Matuzumab and EGF could simultane-

Figure 1. Surface Representations of EGFR and HER2 in Active, 
Inactive, and Antibody-Bound Conformations
(A) A surface representation of the extracellular region of EGFR in the ab-
sence of ligand is shown with domains I (blue), II (green), III (yellow), and IV 
(red) colored as indicated (left panel). Ligand (EGF, purple) binding stabilizes 
a domain rearrangement in which domains I and II rotate as a pair and break 
the domain II/IV contact, bringing domain I (blue) and III (yellow) into proxim-
ity to bind ligand. This rearrangement exposes the previously buried domain 
II dimerization arm, which is marked with a red asterisk (middle panel). The 
exposed dimerization arm then mediates receptor dimerization and activation 
(right panel). 
(B) The HER2/ErbB2 extracellular region adopts a constitutively “active-like” 
structure in which domains I and III contact each other directly and the do-
main II dimerization arm is exposed. 
(C) The Fab fragments of Matuzumab (slate blue) bound to EGFR (far left), 
Cetuximab (purple) bound to EGFR (second from left), Trastuzumab (cyan) 
bound to HER2 (second from right), and Pertuzumab (magenta) bound to 
HER2 (far right) are shown. The plasma membrane is indicated with two green 
lines, and a membrane-spanning region is represented with a green cylinder. 
A surface representation of the EGFR kinase is shown in light green with a 
space-filling representation of a bound nucleotide.
292  Cancer Cell 13, April 2008 ©2008 Elsevier Inc.
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ously bind to EGFR domain III, the bind-
ing of Matuzumab would interfere with 
formation of the active-like EGFR confor-
mation (Figure 1A, middle panel). Thus, in 
the presence of Matuzumab, EGF could 
only contact domain III (or domain I), and 
its affinity for EGFR would be reduced—
exactly what is observed. Schmiedel et 
al. also show that Cetuximab and Matu-
zumab do not compete for binding to 
EGFR, as predicted from comparison of 
crystal structures of their complexes with 
EGFR, and suggest that combination 
therapy with Cetuximab (or IMC-11F8) 
and Matuzumab may result in added clini-
cal benefit.

It is clear that basic and clinical studies 
of the ErbB family of receptors have come 
a long way in the last few years. The results 
RanBP2 is a remarkably large (350 kD!) 
protein that contains, as its only enzy-
matic function, an unusual SUMO E3 
ligase domain (Pichler et al., 2002). In 
the final step of SUMO modification, the 
E2 conjugating enzyme Ubc9 transfers 
activated SUMO moieties to lysines on 
substrate proteins. This reaction typi-
cally requires, or is greatly stimulated by, 
SUMO E3 ligases. The best understood 
SUMO E3s are the PIAS family of pro-
teins, which contain a RING finger motif 
and promote sumolyation by recruiting 

RanBP2: A Tumor
on TopoII, SUMO,
Michelle S. Navarro1 and Jeff Bachant1,
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In vertebrate cells, the small ubiquit
somerase II (TopoII) to centromeres
chromatids as cells transition into a
the nucleoporin RanBP2 as a novel 
interaction reveals TopoII recruitme
segregation errors that lead to canc
from each type of inquiry has informed the 
other, and together, they are leading to a 
deeper understanding of ErbB function 
and how to treat ErbB-involved diseases. 
It is also clear that much remains to be 
learned, and exciting times are ahead.
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mitotic defects, including perturbations 
to K-microtubule (MT) attachment, mis-
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