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Preface

This thesis deals with several aspects of non-perturbative calculations in low-dimensional quantum
field theories. It is split into two main parts:

The first part focuses on method development and testing. Using exactly integrable QFTs in
zero spacetime dimensions as toy models, the need for non-perturbative methods in QFT is
demonstrated. In particular, we focus on the functional renormalization group (FRG) as a non-
perturbative exact method and present a novel fluid-dynamic reformulation of certain FRG flow
equations. This framework and the application of numerical schemes from the field of compu-
tational fluid dynamics (CFD) to the FRG is tested and benchmarked against exact results for
correlation functions. We also draw several conclusions for the qualitative understanding and
interpretation of renormalization group (RG) flows from this fluid-dynamic reformulation and dis-
cuss the generalization of our findings to realistic higher-dimensional QFTs.

The topics discussed in the second part are also manifold. In general, the second part of this
thesis deals with the Gross-Neveu (GN) model, which is a prototype of a relativistic QFT. Even
though being a model in two spacetime dimensions, it shares many features of realistic models
and theories for high-energy particle physics, but also emerges as a limiting case from systems in
solid state physics. Especially, it is interesting to study the model at non-vanishing temperatures
and densities, thus, its thermodynamic properties and phase structure.
First, we use this model to test and apply our findings of the first part of this thesis in a realistic
environment. We analyze how the fluid-dynamic aspects of the FRG realize themselves in the RG
flow of a full-fledged QFT and how we profit from this numeric framework in actual calculations.
Thereby, however, we also aim at answering a long-standing question: Is there still symmetry
breaking and condensation at non-zero temperatures in the GN model, if one relaxes the commonly
used approximation of an infinite number of fermion species and works with a finite number
of fermions? In short: Is matter (in the GN model) in a single spatial dimension at non-zero
temperature always gas-like?
In general, we also use the GN model to learn about the correct description of QFTs at non-zero
temperatures and densities. This is of utmost relevance for model calculations in low-energy quan-
tum chromodynamics (QCD) or other QFTs in medium and we draw several conclusions for the
requirements for stable calculations at non-zero chemical potential.

In any case, both parts come with thorough motivations, introductions, and conclusions and can
be studied mostly independently of each other. Either way, the first part can be considered as
a standalone work. It is written in a pedagogical manner and may be used as an introduction
into the fluid-dynamic framework to the FRG by readers with FRG knowledge, but also as a first
introduction for novices in QFT and FRG. The style of the second part is different and basic
knowledge about QFT and FRG is required. Nevertheless, especially the second part comes with
multiple appendices, which comprise all details of the explicit calculations. This ensures that QFT
practitioners, who are not experts on the topic, can in principle follow each step of the calculations.
Still, a lot of the numerical calculations are based on the fluid-dynamic framework for FRG, which
was put forward in the first part. However, if one is exclusively interested in the physics and
results, one does not necessarily need to read the first part in advance.
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In my personal view, the way progress is achieved in physics today has changed drastically in the
last decades. The era of great geniuses, who can push the boundaries of a field of research almost
completely on their own, is basically over. Today, the frontiers of research are mainly moved by
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indicate whenever ideas or results, which are presented in this thesis, can be originally assigned
to other individual members of the projects or other researchers. Otherwise, I will explicitly
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publications. Furthermore, I will explicitly mark in figures if they are already published or avail-
able as online pre-prints.1 Apart from this and for the sake of readability, I will abstain from
citing all equations and every detail of own published or pre-print works. As a direct consequence
of the above, I will also use “we” instead of “I” in almost all active sentences throughout this thesis.

At this point, I also want to explicitly mention that a huge share of the findings of these projects
and this thesis is and/or will be also presented in PhD and master theses of my collaborators,
who developed and contributed in almost equal shares to the single projects. In particular, these
are and will be the theses of M. J. Steil [6], L. Pannullo, J. Stoll [7], M. Winstel, N. Zorbach [8].
The other coauthors of my publications mostly contributed in significantly smaller shares to the
projects and publications and/or already graduated, such that there are no corresponding theses.

1The figures of my own publications were mostly produced by only one of the corresponding authors, while the
data were either produced by several authors or crosschecked by several authors. For Refs. [1, 2] the plots were
produced by myself, for Ref. [3] M. J. Steil produced the graphics, for Ref. [4] mainly N. Zorbach plotted the data,
and for Ref. [5] the graphics are mainly created by L. Pannullo.
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Zusammenfassung in deutscher
Sprache

Die Vorhersage von makroskopischen (thermodynamischen) Observablen aus mikroskopischen
Theorien ist eine der zentralen Aufgaben in der Quantenfeldtheorie (QFT). Hierbei stellt insbeson-
dere die Berechnung von Observablen in stark wechselwirkenden Systemen noch immer eine sehr
große Herausforderung dar. Dies gilt insbesondere für Systeme bei nicht-verschwindenden (niedri-
gen) Temperaturen und großen Nettoteilchendichten, z.B. bei der Berechnung von Phasendiagram-
men. Beispiele für solche Systeme finden sich sowohl im Bereich der (nicht-relativistischen) Fes-
tkörperphysik als auch der Hochenergiephysik. In letzterem Bereich ist insbesondere die Beschrei-
bung der starken Kernkraft durch die Quantenchromodynamik (QCD) bei nicht-verschwindenden
chemischen Potentialen und Temperaturen von besonderem experimentellem und theoretischem
Interesse, da diese die Zustände von Kernmaterie maßgeblich bestimmt.
In jedem Fall versagen im Kontext von stark wechselwirkenden Systemen bewährte störungsthe-
oretische Ansätze. Diese liefern zwar für den Fall sehr kleiner Kopplungen herausragende Resul-
tate, lassen sich jedoch nicht auf Systeme mit multiplen (unendlich vielen) Kopplungen beliebiger
Größenordnung anwenden. In diesem Fall ist es notwendig, auf sogenannte nicht-perturbative
Methoden zurückzugreifen. Neben der direkten numerischen Berechnung von Erwartungswerten
über aufwendige Gitter-Monte-Carlo-Simulationen, welche jedoch häufig bei hohen chemischen
Potentialen ihre Vorhersagekraft verlieren, bieten sich funktionale Methoden an. In dieser Arbeit
ist die Funktionale Renormierungsgruppe (F(RG)) zur Berechnung von Korrelationsfunktionen
von besonderem Interesse. Diese erlaubt das sukzessive Ausintegrieren von Quantenfluktuationen,
startend bei der mikroskopischen Theorie im ultravioletten Energiebereich und endend bei einer
effektiven makroskopischen Theorie und ihren Observablen im infraroten Energiebereich.
Ursprüngliches Ziel dieser Arbeit war die Anwendung der FRG auf Niederenergiemodelle für QCD
zur Beschreibung der Phasenstruktur von Kernmaterie bei moderaten Temperaturen und hohen
Dichten, wie sie beispielsweise in kompakten Sternen vorliegen. Während der Arbeit stellte sich je-
doch heraus, dass insbesondere zur Beschreibung von nicht-analytischen Strukturen, welche in den
RG-Flussgleichungen, z.B. bei hohen chemischen Potentialen oder in der Nähe von Phasenübergän-
gen, auftreten können, Weiterentwicklungen von bislang verwendeten (numerischen) Methoden für
diese sehr speziellen, nicht-linearen partiellen Differentialgleichungen (PDGen) notwendig wur-
den. Im Speziellen kann gezeigt werden, dass sich RG-Flussgleichungen (in bestimmten Modellen
und Näherungen) in echte abstrakte fluiddynamische Gleichungen umformen lassen. So können
z.B. RG-Flüsse von lokalen bosonischen Potentialen durch Advektions-Diffusions-Gleichungen mit
Quellen und Senken beschrieben werden. In direkter Konsequenz kann nicht nur die Dynamik
während des RG-Flusses im Feldraum voll fluiddynamisch interpretiert und analysiert werden,
sondern auch auf die hochentwickelten Methoden aus der numerischen Strömungsmechanik für die
Lösung der PDGen zurückgegriffen werden.
Ein zentrales Ziel dieser Arbeit ist es daher, die fluiddynamische Formulierung von RG-Fluss-
gleichungen weiterzuentwickeln und Methoden aus der numerischen Strömungsmechanik an diese
anzupassen, anzuwenden und zu testen. Da jedoch die praktische Anwendung von FRG auf Quan-
tenfeldtheorien fast immer Trunkierungen der (in der Regel unendlichen) Systeme von PDGen
beinhaltet und häufig für realistische QFTen keine exakten Vergleichswerte berechnet werden kön-
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nen, ist es notwendig, hierfür Systeme zu betrachten, in welchen sowohl exakte Referenzwerte
berechenbar sind als auch die FRG-Flussgleichungen exakt (untrunkiert) als PDG betrachtet wer-
den können. Zugleich ist es für realistische Tests notwendig, hinreichend komplizierte Systeme zu
verwenden.
Der erste Teil dieser Arbeit befasst sich daher mit skalaren QFTen mit beliebig komplizierten
„mikroskopischen“ Wirkungen in einem einzelnen Raumzeitpunkt. Anhand dieser Theorien wird
zunächst in der Arbeit die Notwendigkeit von nicht-perturbativen Methoden demonstriert. An-
schließend wird die FRG und ihre fluiddynamische Reformulierung präsentiert. Kern der Un-
tersuchung von Teil I ist eine ausgiebige Diskussion der direkten qualitativen Konsequenzen
der fluiddynamischen Formulierung, wie z.B. dem Anwachsen von Entropie während der RG-
Flüsse sowie der Anpassung einer etablierten Finite-Volumen-Diskretisierung an die spezielle RG-
Flussgleichung. Den Abschluss des ersten Teils der Dissertation bilden ausgiebige numerische
Benchmark-Tests sowie Diskussionen zur Übertragbarkeit und Anwendbarkeit der entwickelten
Methoden auf höherdimensionale realistische Systeme.
Der zweite Teil der Dissertation befasst sich mit ebenjener Anwendung von mitunter in Teil I
entwickelten Methoden auf das (1+1)-dimensionale Gross-Neveu (GN)-Modell im Medium. Das
GN-Modell stellt eine vollwertige Quantenfeldtheorie dar, welche viele Eigenschaften mit QCD
teilt, Anknüpfungspunkte an Modelle der Festkörperphysik bietet und in welcher in verschiedenen
Grenzwerten exakte Lösungen bekannt sind. Es eignet sich somit ideal als erster realistischer
Anwendungstest. Im Speziellen boten die neu entwickelten Methoden im Rahmen der FRG die
Chance, zur Beantwortung der lange ungeklärten Frage beizutragen, ob es im GN-Modell abseits
des strikten Limes „unendlich vieler Fermionen“ bei nicht-verschwindenden Temperaturen Kon-
densationseffekte und Phasenübergänge überhaupt geben kann. In Teil II dieser Arbeit gelang es
(innerhalb der verwendeten Näherungen) zu zeigen, dass die lange bestehende Vermutung, dass
dies nicht möglich sei, korrekt ist. Des Weiteren wurde die Analyse des GN-Modells zur Weiteren-
twicklung der sogenannten Stabilitätsanalyse zur Detektion räumlich inhomogener Kondensation
verwendet sowie die Effekte verschiedener Trunkierungen und Näherungen auf die Vorhersage von
Kondensationseffekten diskutiert.
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Chapter 1

Introduction

Abstract This chapter provides an introduction and brief motivation for why we are dealing
with zero-dimensional QFTs to this extent in a Ph.D. thesis. We explain why zero-dimensional
models are on the one hand ideal for pedagogical introductions into methods of statistical physics
and QFT, but – more importantly – are also perfectly suited for benchmark tests of some of these
methods.
Afterwards, we present some works and applications that are (at least partially) built on zero-
dimensional models in QFT.

Disclosure The introduction is based in parts on our own publications [1, 2, 3]. References in
this chapter are mostly exemplary or have the character of reviews and the citations do not aim
to be complete.

1.1. Introduction – the everyday challenges of QFT practi-
tioners

In statistical mechanics and modern QFT we are oftentimes confronted with the problem of com-
puting expectation values or correlation functions for physical observables from a partition of
probabilities among the various microscopic states of system [11, 12, 13]. Mathematically this
is usually realized in terms of an evaluation of nested sums and complicated high-dimensional
integrals over probability distributions.
On the one hand, there are not too many systems where these calculations can be cleverly done by
pen and paperwork. On the other hand, also brute-force numerical evaluation is not always feasible
or comes along with tremendous demand for computer power and the need for modern Monte-
Carlo integration techniques [14, 13]. Usually this is due to the highly involved structure of the
microscopic actions, which enter the probability distributions, as well as the high dimensionality
of the involved integrals.
In QFT another conceptual aspect that complicates calculations significantly is the general imprac-
ticality of Monte-Carlo integration in an infinite volume and in spacetime continuum. However,
restricting the theories and computations to some finite-sized spacetime box and discretizing space-
time by the introduction of a spacetime lattice with a minimal length-scale regulates infinities,
which stem from otherwise arbitrarily large and small momenta and energies of the particles/fields
in Fourier space [15, 14]. This enables numerical Monte-Carlo integration in the first place, but
also modifies the quantitative results directly. Another indirect effect, which goes hand in hand
with lattice regularizations, is usually the breaking of certain properties of a theory (usually sym-
metries), which additionally modifies the outcome of the calculations. Hence, it is required to
repeatedly perform calculations with lattices of different size, shape, and at different lattice spac-
ing, and to carefully extrapolate to infinite volume and the continuum afterwards, in order to
finally obtain reliable predictions for observables, where these artifacts are removed.
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On top of these challenges the mathematical description of some QFTs requires to introduce terms
into the microscopic actions which render the probability distributions complex and completely
impede common statistical integration techniques. This is oftentimes the case for studies of QFT
in medium at non-zero chemical potential and is referred to as the “sign problem”[16, 17]. It occurs
in various contexts from non-relativistic condensed matter systems to QCD. Among other things
these challenges lead to the development of a huge toolbox of (numerical) methods, which eventu-
ally either work around the direct computation of the high-dimensional integrals or significantly
improve or modify the established lattice Monte-Carlo integration techniques.

1.1.1. Solving functional integrals without solving functional integrals
Historically, one of the first approaches was to treat the computation of correlation functions from
path or functional integrals perturbatively [18, 19, 20, 21, 22]. Right from the start this was
restricted to theories with a small number of tiny couplings. Hence, perturbative methods are
completely inappropriate for systems in their strongly coupled regime with a potentially large or
infinite amount of couplings of any scale – which is anyhow repeatedly ignored even in nowadays
research. Additionally it is known that even an expansion in small couplings does ultimately
not converge [23], even though the inclusion of only the lowest orders can lead to remarkable
results as can be seen for example from Quantum Electrodynamics [19, 24, 25]. Also all kinds
of resummation techniques, which structure the summation of perturbative contributions and
overcome the non-convergence of perturbation series, were developed and surely have valid scopes
of application in this context. Otherwise, in the field of modern lattice Monte-Carlo simulations
recent developments comprise so-called reweighting techniques to probe topological ground states
[26] or calculations at imaginary chemical potential with extrapolation to real chemical potential
to tackle the sign problem [27] etc..
Anyhow, also many alternative non-perturbative methods emerged to perform computations in
strongly interacting systems.1 These include large-N techniques [28, 29, 30, 31, 32], where the
dimensionless expansion parameter is no longer a coupling, but the inverse number of certain
degrees of freedom of the system. This is also known as the method of Laplace or saddle-point
expansion in statistics [33] and we are dealing with this method several times in this thesis.
Then there are functional methods like Dyson-Schwinger equations (DSE) [34], the Bethe-Salpeter
equation [25] or the FRG [35], but also effective field theories or other systematic frameworks like
chiral perturbation theory [36, 37], QCD sum rules [38], current algebra techniques [39] etc..
Within the last decades so-called holographic methods, such as the AdS/CFT correspondence [31,
40, 41], gained in importance and are in nowadays part of the standard curriculum.

1.1.2. Knowing the limitations
However, all of these methods come with advantages and disadvantages as well as certain limita-
tions. Thus, it is absolutely essential to have estimates on shortcomings, the range of reliability as
well as accuracy of a method, before using it in an unknown and uncontrolled environment. Such
ranges of applicability and estimates for the precision are usually worked out from benchmark
tests with problems and models whose solutions are known exactly. Thereby it is crucial that
these tests encompass, if possible, the hardest plausible scenarios and limiting cases one can think
of. In various areas of engineering, natural and computer science, as well as finance this leads
to minimal specifications that need to be fulfilled by technical solutions to be later on considered
trustworthy for applications in well-defined scopes of application.
Anyhow, in fundamental research, where both, the methods as well as the fields of application,
are oftentimes still in an exploratory status, the above approach is not always strictly practicable.
In consequence, predictions from such studies should usually be taken with a grain of salt. (This
certainly also applies to the work of the author and certain research areas of high-energy particle
physics, which is the author’s profession.)

1Here, the references and methods are mostly from the context of high-energy particle physics.
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Howsoever, this does by no means imply that research in such fields is free from steadily trying to
improve their methods and from searching for reasonable test cases, which is, however, oftentimes
considered as tedious and little productive with respect to (w.r.t.) to new phenomenology. This
is because sometimes one has to take a few steps back, reduce the complexity of the problems to
well-controlled toy models, and reanalyze the seemingly established techniques from a different
perspective.

Exactly this is done in Part I of this thesis and the underlying publications [1, 2, 3]. This thesis is
therefore a minor contribution to the general aim of steadily advancing techniques and methods.
In particular, we are focusing on the FRG method and in parts also on the infinite-N technique.
Within the next lines, we provide a brief motivation of why we believe that this is necessary for
certain special aspects and applications of the FRG method.

1.2. Motivation

1.2.1. The Functional Renormalization Group and the local potential
approximation

Since its development in the early nineties of the last century [42, 43, 44, 45, 46, 47, 48], the FRG
method in terms of the Wetterich equation (also the exact renormalization group (ERG) equation)
has proven to be a powerful tool for the calculation of so-called vertex functions in various contexts
[35], which are directly related to observables in a QFT and which can also be directly mapped
to correlation functions from functional-integral calculations etc.. Oversimplified, the formal idea
(not to be confused with the physical idea) behind the FRG is to map the problem of solving
high-dimensional complicated integrals and sums for the calculation of correlation functions to
the problem of solving a set of coupled functional partial integro- and/or ordinary differential
equations – the RG flow equations – and extracting the vertex functions from their solution. (A
more detailed introduction follows in later chapters.) One could object already at this point that
this might not necessarily be an advantage, because solving coupled functional partial differential
equations and ordinary differential equations to high precision is by no means a trivial task [49,
50, 51, 52].
Nonetheless, it turns out that in innumerable different contexts the FRG method presents itself
as a powerful qualitative and quantitative tool. It already competes with other well-established
non-perturbative methods and even provides access to regimes of systems where other methods are
currently still doomed to fail, e.g., computations at moderate and high densities or in quantum-
gravity calculations. For more details, we refer to Part II and Appendix C of this thesis and for
example to Refs. [53, 54, 55, 56, 57, 58, 35].
For this motivational section it suffices to know that among others a specific prominent scope of
application of the FRG is the non-perturbative treatment of fluctuations in models for strongly
interacting systems from condensed-matter physics and high-energy particle physics, especially in
medium. A lot of these calculations within effective models are based, at least to lowest-order
approximation, on a truncation of the theoretically infinite number of coupled RG flow equations,
which exclusively incorporates local non-derivative couplings of the fields to arbitrary order, see
e.g., Refs. [59, 60, 61, 62, 53, 63]. This truncation is called the local potential approximation
(LPA). Mathematically it corresponds to a partial differential equation, where a local bosonic po-
tential is evolving in field-space along the RG time from ultra-violet (UV) to infra-red (IR) energy
scales. Also much better truncations oftentimes still include this particular flow equation, which
is then extended by additional coupled PDEs and ODEs [64, 65, 66, 67, 68, 63, 69, 70, 71, 72, 73].
Structurally, the LPA RG flow equation and its extensions are rather similar for a huge class of
these models and problems, such that the following is generic.
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1.2.2. Innovation and thoroughness – a lesson learned from LPA
Because the LPA flow equation is a highly non-linear PDE, which is of first order in the temporal
derivative and (usually) up to second order in the spatial derivatives of the effective potential,
there is little chance to solve it analytically – even though there are a few exactly integrable
examples where additional assumptions and limits slightly simplify the PDE [74, 75, 76, 77, 3]. In
consequence, a numerical solution is usually required.
Therefore several numerical schemes were developed in the last three decades within the FRG
community (in parts specifically for this PDE) and applied to this RG flow equation, see, e.g.,
Refs. [78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90] for a few examples. Under some circumstances
these methods produce or sometimes seem to produce decent results, which qualitatively and
quantitatively agree with expectations.
As it happens, it appears that much more time was spent on qualitative and phenomenological
new results than on careful testing all the utilized numerical schemes with exact and challenging
reference solutions of standard PDE problems (e.g., the heat equation, Bateman-Burgers equation,
shock-tube problems etc.) and specific exactly solvable FRG problems. Otherwise it is not expli-
cable what some colleagues and I experienced ourselves: A lot of these numerical schemes turned
out to be unstable in certain situations and solutions do not converge against exact reference
solutions. Hereby, we are mostly referring to the breakdown of the numerical time stepping due
to the generation of ill-conditioned input for the next time step. In addition, we experienced that
some of the schemes are not stable against the variation of numerical parameters, like the number
of gridpoints or the artificial size of the computational domain or the choice of time-stepper etc..
Still, in the FRG context there were physical parameter setups for some models where everything
was fine and we could not reproduce the instabilities from other situations. Furthermore, we also
experienced that there are a lot of publications which are not reproducible, because significant
information about the exact numerical setup was simply missing. Certainly, this is not meant as
a blanket critique and there are lots of high-quality publications, but the amount of works that
fall victim to these problems for this very specific class of FRG calculations is striking.

This puzzling unpredictability of reliability was only resolved when my colleagues Grossi and Wink
took the step back and reanalyzed the LPA PDE as a whole, trying to eliminate the bias of the
common FRG perspective and existing approaches to this PDE (which I had myself). Indeed
they were able to reformulate the LPA flow equation (firstly in the infinite-N limit) in terms of
a conservation law for the derivative of the potential [77]. In fact, they (re)discovered, see also
Refs. [75, 76, 91], that the PDE is actually a highly non-linear advection equation with all its
consequences, such as the possible emergence of discontinuities like shock and rarefaction waves.
During these developments it turned out that lifting the infinite-N limit, the LPA flow equation
is for most models indeed a non-linear advection-diffusion-sink/source equation and therefore falls
into the class of classical fluid-dynamical problems. As it happens, this fact and interpretation of
generic RG flow equations had been known in parts already in advance of the modern formulation
of the FRG in terms of the Wetterich equation, Refs. [92, 93, 94, 95, 96, 97, 98, 99, 100], but
seemed to have been partially forgotten. Currently, work on the extension of this reframing of
modern RG flow equations to fluid-dynamical problems is ongoing [101, 4, 102, 103].

After unraveling the true underlying structure of this equation, an explanation for our troublesome
experience with some numerical methods is rather obvious. If a certain parameter setup for the
PDE allows for the occurrence of non-analytical behavior, which is easily produced in non-linear
PDEs [52, 49, 104, 50, 51], all those numerical schemes that are explicitly or implicitly based on
smoothness of the solution are doomed and lack convergence, which is unfortunately the case for
a lot of them. Otherwise, if the solution was smooth, everything could work out without troubles.

Another direct consequence of these discoveries is that the formulation of RG flow equations as
fluid-dynamical problems allows for the direct application or adaption of the methods from the
highly developed toolbox of CFD. Therefore, a “from-scratch development” of own and completely
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new methods becomes at least questionable, if one is not an absolute expert on non-linear PDEs.

Anyhow, also the application of established methods from the field of CFD to FRG problems needs
to be tested. In particular, the special non-linear structure of the PDEs that emerge in the FRG
formalism is not always explicitly covered even by modern numerical schemes. This is because
most of the schemes are either developed for non-relativistic fluid dynamics – mostly (variants of)
the Navier-Stokes problem – or relativistic fluid dynamics in the context of astrophysical problems
and nuclear collisions. Especially the involved fluxes are of completely different structure than in
the LPA flow equation. Consequently, careful testing is required, when CFD methods are run at
their edge of applicability.

To this end E. Grossi and N. Wink first focused on the infinite-N limit of the O(N) model, where
the LPA RG flow equation is exact (in terms of a truncation) [74] and integrable in three spacetime
dimensions [75, 76, 77]. Besides benchmarking their fluid-dynamical framework, which was based
on Discontinuous Galerkin (DG) (finite element) methods, they also studied the relation between
phase transitions and shock waves in the effective potential, which would not have been possible
to this extent with previously used numerical methods.

1.2.3. Complicated and trivial at once – zero-dimensional toy model
QFTs

This is where research covered by Part I of this thesis sets in. Inspired by their findings, my
colleague M. J. Steil and I decided to also build up a fluid-dynamical framework for the solution
of FRG flows. We went for so-called finite-volume methods in the formulation of A. Kurganov
and E. Tadmor [105] – a well-established scheme for conservation laws in fluid dynamics. After
also testing this framework with the examples of Ref. [77], we searched for a testing ground with
exactly soluble reference solutions beyond the infinite-N limit, but within the FRG framework.
Here, inspired by Refs. [106, 107, 108, 109, 110], we came up with the idea to use zero-dimensional
QFT to benchmark our setup.
The reason is that structurally the FRG flow equation(s) are identical for zero and non-zero
spacetime dimensions. However, in zero dimensions the set of flow equations (PDEs) is finite,
because there are no derivative couplings and all (self-)interaction terms can be collected in field-
and RG-scale-dependent functions. (Details are presented in later chapters.) For certain models
the LPA flow equation is the only existing flow equation and is therefore exact (not a truncation)
without any additional assumptions. On the other hand, the complicated functional integrals
from calculations in higher-dimensional spacetimes reduce to ordinary integrals in zero spacetime
dimensions, such that the computation of reference solutions for correlation or vertex functions to
test the FRG turns out to be straightforward. Hence, zero-dimensional QFT presents itself as the
ideal testing ground for the newly introduced CFD framework for FRG, because it is complicated
within the FRG formalism, but simple(r) from the path-integral perspective – exactly the opposite
of what we hope for in non-zero dimensions.
However, in contrast to earlier FRG tests with zero-dimensional O(N)-models, which mostly fo-
cused on the FRG Taylor expansion of the effective potential for smooth initial potentials, we
mostly2 worked with the untruncated PDE for the local potential. Furthermore, in addition to
commonly studied smooth initial potentials, we constructed UV initial potentials which comprise
non-analytical structures of different kind. These present themselves as hard tests for our (numer-
ical) solution scheme of the flow equation, because they can be related to shock and rarefaction
waves in the fluid-dynamical framework.

Another huge advantage of using zero-dimensional QFT for testing and presenting the fluid-
dynamical reformulation is that the main structure of the RG flow equations is no longer buried

2Within our work we also present tests for additional artificially introduced truncations of the LPA flow equation,
i.e., the infinite-N limit in zero dimensions as well as the FRG Taylor expansion of the LPA flow equation.
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under a plethora of additional patterns such as momentum integrals, Matsubara sums, factors
from traces in various spaces etc.. Hence, it is pedagogically much simpler and the interpretation
is easier.
This allowed us to work out further aspects of the FRG, which are rather obvious as soon as one
switches perspectives to the fluid-dynamical framework. For example, it is well known that the
evolution of dissipative fluid dynamics is irreversible and produces entropy [49, 50], which must
therefore also hold true for the FRG flow equations. Hence, irreversibility of the RG seems to be
manifest on the level of the PDEs.

All in all, we found that FRG in zero dimensions is the ideal playground to study all kinds of
effects, which are present in the ERG, such that we ended up with a three-parts series on this
topic, Refs. [1, 2, 3], which M. J. Steil and I worked out with our collaborators and supervisors
N. Wink, E. Grossi, J. Braun, M. Buballa, and D. H. Rischke. This is presented and summarized
in Part I.

1.3. Some applications of zero-dimensional QFT
The general idea to test and study methods from statistical mechanics and QFT with zero-
dimensional toy models is, as already anticipated, not original to the author and collaborators.
Indeed, there are a lot of works that used zero-dimensional models for this purpose before, but also
tried to describe real-world physical situations or limits with models of this type. In the following,
we therefore present a selection of studies which deal with zero-dimensional (toy) models and their
application to contextualize our own work.

However, before we start, let us explicitly state what we are referring to when we are talking about
zero-dimensional QFT: By zero dimensions, we are always referring to zero spatial and zero tem-
poral dimensions, thus QFT in a single point in space and time. This is to be distinguished from
systems with zero spatial dimensions but time/frequency/energy dependence, which are oftentimes
also referred to as zero-dimensional QFTs, especially in the context of solid-state theory and/or
quantum mechanical systems, cf. Refs. [111, 112, 113]. Anyhow, our work deals with quantum
fields, which do not have any dependence on space and time at all and can therefore be considered
as ultra-localized and maximally interacting.

This is for example realized in Ref. [114]. The authors study grains of superconducting particles.
Effectively they consider the zero-volume limit of a static Ginzburg-Landau approximation for the
action in the partition function and argue that spatial fluctuations are suppressed in super-small
volumes, which allows to ignore derivative contributions in the action. In consequence, their model
reduces to an exactly integrable ϕ4-theory with O(2) symmetry.
Also inspired by this work, there are some more technically driven publications, which mainly
focus on large-N techniques. All of these works are based on O(N) models in zero dimensions
with ϕ4-interaction and usually positive mass-like term. For example Refs. [115, 107] study the
1
N -approximation and find good convergence against an exact solution of the partition function,
even for low orders in 1

N and rather small N . Similar studies were also performed by Refs. [116,
117, 118, 119, 120, 121, 122]. Some of these works as well as Refs. [123, 124, 125, 126, 127]
also use zero-dimensional scalar field theories to pedagogically introduce, discuss, and analyze
graph-theoretical aspects and methods in QFT.
In this context, it is for example interesting that the dual-graph representation of the connected
Feynman bubble diagrams, which enter the logarithm of the partition function, can be interpreted
as randomly branching polymers or chains. In consequence, zero-dimensional O(N) models can be
used to study this process of randomly branching one-dimensional objects, cf. Refs. [117, 118, 119,
120] (also for illustrations). Hence, these works draw connections to general theories of random
surfaces, which play a role for low-dimensional models of topological gravity theories. This is
underlined by the fact that the zero-dimensional analogue of the Dyson-Schwinger equations for
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ϕ4-theory can be mapped to the Virasoro algebra as is shown by these references.

Another interesting application of zero-dimensional ϕ4-theory is that it is perfectly suited to learn
and benchmark perturbation theory [128, 129, 130, 131, 107, 109, 23, 124, 125] and optimized
perturbation theory [132, 125]. With this model it is rather simple to demonstrate that the per-
turbative series in the coupling constant, even if the coupling constant is small, does not converge
w.r.t. conventional convergence criteria. It is only asymptotic to the correct solution, such that the
first summands may form a decent approximation very close to vanishing coupling, even though
the whole series diverges.

In the recent work [133] a zero-dimensional ϕ4-theory with additional complex mass parameter
was used to mimic and study the role that is usually played by a chemical potential and thus
mimics the sign problem in calculations using stochastic quantization and the complex Langevin
method.

However, within this work, we are predominantly interested in testing the FRG method with
zero-dimensional QFT. Also this was done partially before. For example, Ref. [106] uses a theory
of a single scalar field in zero dimensions to pedagogically introduce the FRG formalism, though
explicit calculations are not presented. Also Refs. [109, 108, 134, 125] use it as an introduction
to the FRG, but also present tests for the FRG Taylor expansion, where the exact LPA flow
equation is artificially expanded in vertex functions, which form a coupled set of ODEs, that is
solved numerically. For smooth initial potentials of ϕ4-theory with positive mass, all these works
find good agreement with exact results. In addition, Refs. [107, 109] also test ϕ4 potentials with
negative mass, but without benchmarking these results against exact solutions. Also an iterative
approach to solve the LPA flow equation as well as a mixture of iterative scheme and Taylor
expansion are tested and benchmarked for example by Ref. [109] and show good agreement for
positive mass.
The above works are all formulated in the 1particle irreducible (PI) effective-action functional
formalism for the FRG. Anyhow, it is also possible to work within the 2PI formalism. Also this
formalism was analyzed for zero-dimensional O(N) models, with and without FRG framework
and also in the context of density-functional theory, see Refs. [110, 135, 136, 137, 125, 138].

Recently, after the completion and publication of the results of our own work in the associated
Refs. [1, 2, 3] on solving FRG flow equations in terms of advection-diffusion equations, Ref. [103]
used one of our zero-dimensional test cases for demonstrational purposes and comparison for
their DG scheme. The same scheme and fluid-dynamical framework was applied in Ref. [102] to
various RG flow equations, where RG flows of complex effective actions were studied to ultimately
investigate Lee-Yang singularities and PTs. This was also tested for zero-dimensional toy models.
Lastly, in the context of FRG publications, we would like to mention Ref. [139], where it is
explained for the O(N) model how zero-dimensional QFT emerges as a limiting case in the high-
temperature and small-volume limit of higher-dimensional theories after appropriate rescaling of
the effective potential.

For reviews concerning zero-dimensional toy models to test and study various (functional) methods
in QFT, we refer the interested reader to Refs. [131, 107, 124, 125].
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Chapter 2

A testing ground in zero
spacetime dimensions – the O(N)
model

Abstract In this chapter we introduce the zero-dimensional O(N) model. We present its for-
mulation as a full-fledged QFT. This comprises the calculation formula for and relation between
correlation and vertex functions and their systematic derivation from generating functionals for
arbitrary O(N)-symmetric classical actions. The chapter closes with a discussion on the absence
of spontaneous symmetry breaking and PTs in zero dimensions.

Disclosure None of the material in this chapter is new. Nevertheless, its collection and presen-
tation is original to the author and mostly based on our own Refs. [1, 2, 3]. Similar presentations
can be found for example in Refs. [109, 107, 125] and other references from Section 1.3. Thus,
the presentation in this chapter is mainly provided as a pedagogical introduction, to introduce
our notation, and to have reference formula for later chapters. We therefore mostly refrain from
repeatedly citing the “zero-dimensional QFT” literature and instead refer to more generic QFT
literature.

2.1. The zero-dimensional O(N) model in QFT
The zero-dimensional O(N)-model is defined as follows. Consider an N -dimensional vector in
Euclidean space with real components defined w.r.t. to some complete orthonormal basis,

ϕ⃗ = (ϕ1, ϕ2, . . . , ϕN ) ∈ RN , N ∈ N . (2.1)

This vector describes N identical neutral scalar (quantum) “fields”. In contrast to other field
theories, these fields do not exhibit any spacetime dependence. As already said, one might simply
assume that the theory is restricted to a single point. A field configuration is therefore given by an
N -dimensional vector of real numbers. Since one is dealing with identical scalar fields permutations
of the components certainly do not change the state of the system. However, one might also
consider continuous rotations in field space, which mix components of the N -dimensional vector.
These are mediated by matrix-vector multiplications,

ϕ⃗ 7→ ϕ⃗′ = O ϕ⃗ , (2.2)

where the (N × N)-dimensional matrix O is an element of the O(N) group in its fundamental
representation. Componentwise this transformation reads

ϕa 7→ ϕ′
a = Oab ϕb , a, b ∈ {1, 2, . . . , N} . (2.3)
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Indeed, these rotations can potentially change the state of the system. This, however, strongly
depends on the theory that describes the (self-)interactions of the N scalars.
Such a description is usually formulated (microscopically) in terms of an action or energy func-
tional, whose extremum singles out the most favorable configurations [12]. In zero spacetime
dimensions concepts like an action, energy functional, Hamiltonian or Lagrangian basically coin-
cide, because there are no spacetime derivatives and spacetime integrals and we are exclusively
dealing with dimensionless quantities. Hence, we will simply refer to this quantity as the action
S(ϕ⃗ ), which is an ordinary function of ϕ⃗ instead of a functional like in higher dimensions [19, 20].
(By writing S(ϕ⃗ ), we mean S(ϕ1, . . . , ϕN ); this also applies to other function(al)s in this or the
following chapters.)
If we think of this field theory in terms of a (quantum) statistical system, one can define a
probability-density function (up to a suitable normalization)

p(ϕ⃗ ) ≡ e−S(ϕ⃗ ) , (2.4)

which associates a probability to each micro-state of the system according to its (classical) action.
Configurations at the minimum of S(ϕ⃗ ) are more likely than configurations far away.
Now, similarly to generic systems from statistics and QFT [11, 19, 12, 140] expectation values are
calculated according to

⟨f(ϕ⃗ )⟩ ≡
∫∞

−∞ dNϕ f(ϕ⃗ ) p(ϕ⃗ )∫∞
−∞ dNϕ p(ϕ⃗ )

=
∫∞

−∞ dNϕ f(ϕ⃗ ) e−S(ϕ⃗ )∫∞
−∞ dNϕ e−S(ϕ⃗ )

(2.5)

for arbitrary functions/operators f(ϕ⃗ ), where the denominator ensures appropriate normalization.
Here, the functional integral turns into a standard Lebesgue integral [124].

The last ingredient for the construction of O(N)-invariant models is to demand O(N) symmetry
of the (microscopic) classical action S(ϕ⃗ ). (The integral measures in Eq. (2.5) are O(N) invariant
anyhow.) As a direct consequence S is in fact a function of the O(N)-invariant,

ρ ≡ 1
2 ϕ⃗

2 , (2.6)

rather than all components of ϕ⃗ independently.
If one is also studying expectation values which are exclusively functions of O(N)-invariant oper-
ators, viz. f(ϕ⃗ ) = f(ρ), Eq. (2.5) drastically simplifies,

⟨f(ρ)⟩ =
∫∞

0 dρ ρN2 −1 f(ρ) e−S(ρ)∫∞
0 dρ ρN2 −1 e−S(ρ)

, (2.7)

where we used∫ ∞

−∞
dNϕ =

∫ ∞

−∞
dϕ1 · · ·

∫ ∞

−∞
dϕN

(A.6)= ΩN
∫ ∞

0
dρ (2ρ)N2 −1 . (2.8)

Hence, the zero-dimensional QFT of an O(N)-symmetric theory of scalars actually reduces to the
calculation of one-dimensional integrals. This makes this system particularly interesting for test-
ing methods and approximation schemes in QFT, because exact reference values for expectations
values are easily computed to basically arbitrary precision by standard (numerical) integration,
cf. Section 1.3 and references therein.

However, note that up to this point we did not further specify S(ρ). Indeed for the formulation
of a valid QFT we can basically think of any continuous function of ρ, which is bounded from
below and asymptotically grows at least like ρ 1

2 to ensure convergence of the integrals. Continuity
is required, because in zero spacetime dimensions the action also coincides with the analogue of
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the effective bosonic potential, U(ρ) = S(ρ), which is supposed to be a continuous function of the
fields. Otherwise we would completely lose contact to higher-dimensional QFT. Even though this is
rarely discussed in QFT, we explicitly do not call for analyticity or smoothness of the action S(ρ),
or the effective potential U(ρ), respectively. In consequence, the commonly discussed ϕ4-theory
with positive or negative mass, which is certainly inspired from higher-dimensional physics, like
the Anderson-Brout-Englert-Guralnik-Hagen-Higgs-Kibble mechanism [141], is only one of many
possible setups one can think of. We will find that from the perspective of the FRG and infinite-N
methods as well as the study of PTs other initial potentials are much more interesting.

2.1.1. Expectation values – correlation functions
In calculations in QFT one is usually interested in (n-point)1correlation functions of fields. Here,
these particular expectations values are of course spacetime-independent, because there is no
spacetime. Therefore they reduce to correlation functions between components of ϕ⃗. Due to the
O(N) symmetry all various correlation functions are proportional to expectation values of (powers
of) the O(N)-invariant and it is easy to show, cf. also Refs. [107, 125], that

⟨ϕi ϕj⟩ = 1
N δij ⟨ϕ⃗ 2⟩ , (2.9)

⟨ϕi ϕj ϕk ϕl⟩ = 1
N(N+2) (δij δkl + δik δjl + δil δjk) ⟨(ϕ⃗ 2)2⟩ , (2.10)

⟨ϕi ϕj ϕk ϕl ϕm ϕn⟩ = 1
N(N+2)(N+4) (δij δkl δmn + all permutations ) ⟨(ϕ⃗ 2)3⟩ , (2.11)

...

Correlation functions of an odd number of fields vanish. In consequence by calculating integrals
of the form (2.7), i.e.,

⟨(ϕ⃗ 2)n⟩ =
2n
∫∞

0 dρ ρN2 −1 ρn e−S(ρ)∫∞
0 dρ ρN2 −1 e−S(ρ)

, (2.12)

one has access to all standard correlation functions between fields. Furthermore, for all f(ρ) from
Eq. (2.7) that are expandable in polynomials,2 one can use the previous result as well as the
expansion coefficients to reconstruct ⟨f(ρ)⟩.

2.1.2. The generating functional
Usually the calculation and derivation of correlation functions like Eqs. (2.9) to (2.11) is formalized
in statistics and quantum field theory by introducing the moment-generating function(al) [140],
the generating function(al) of n-point functions, respectively [20, 142, 19, 124],

Z(J⃗ ) ≡ N
∫ ∞

−∞
dNϕ e−S(ϕ⃗ )+J⃗ T ·ϕ⃗ . (2.13)

Oftentimes it is also called the partition function in the presence of sources or “magnetic” fields
J⃗ . Formally it is a (multidimensional) two-sided Laplace transform of the probability-density
function (2.4). Note that definition (2.13) also applies to theories of N real scalars without (full)
O(N) symmetry.

1The term n-point is of course misleading in a “spacetime” which is a single point. Still, we will stick to this
notation to keep contact to the higher-dimensional formalism.

2In general, the function f(ρ) does not even need to be analytic. However, in QFT we are mostly confronted
with the calculation of expectation values of expandable functions or monomials of fields.
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Correlation functions are derived from this object by taking derivatives w.r.t. the source J⃗ and
setting J⃗ = 0. However, one usually also introduces correlation functions in the presence of source
fields,

⟨ϕin · · ·ϕi1⟩J⃗ ≡ 1
Z(J⃗ )

∂nZ(J⃗ )
∂Jin . . . ∂Ji1

≡ (2.14)

≡
ZJ⃗n···J⃗1

(J⃗ )in...i1
Z(J⃗ )

=

= 1
Z(J⃗ )

N
∫ ∞

−∞
dNϕϕi1 . . . ϕin e−S(ϕ⃗ )+J⃗ T ·ϕ⃗ .

As can be seen from the last line, the normalization factor N cancels and Eqs. (2.9) to (2.11) are
for example recovered via definition (2.5) for J⃗ = 0.
Thus, the entire information about a QFT is either stored in its generating functional (2.13) or
all correlation functions – mathematically: the moments.

2.1.3. The Schwinger functional

Another way of deriving correlation functions and storing information about a QFT or a statistical
system is the Schwinger function(al). It is simply defined via the logarithm of Eq. (2.13) and
therefore directly related to the free energy,

W(J⃗ ) ≡ ln Z(J⃗ ) . (2.15)

It is also called the cumulant-generating function(al) [140], generating function(al) of connected
n-point functions [19, 20, 142, 24], or Ursell function in the context of statistical mechanics after
Ref. [143].
These cumulants or connected correlation functions (in the presence of sources J⃗ ) are simply
defined by derivatives of W(J⃗ ),

⟨ϕin · · ·ϕi1⟩c
J⃗

≡ WJ⃗n···J⃗1
(J⃗ )in...i1 . (2.16)

Explicitly one finds that the one-point function – the expectation value of the probability distri-
bution – is the same for both generating functionals,

⟨ϕi⟩c
J⃗

= WJ⃗ (J⃗ )i =
ZJ⃗ (J⃗ )i
Z(J⃗ )

= ⟨ϕi⟩J⃗ . (2.17)

The connected two-point function, which is also called variance, reads

⟨ϕi2 ϕi1⟩c
J⃗

= WJ⃗2J⃗1
(J⃗ )i2i1 = (2.18)

=
ZJ⃗2J⃗1

(J⃗ )i2i1
Z(J⃗ )

−
ZJ⃗2

(J⃗ )i2
Z(J⃗ )

ZJ⃗1
(J⃗ )i1

Z(J⃗ )
=

= ⟨ϕi2 ϕi1⟩J⃗ − ⟨ϕi2⟩J⃗ ⟨ϕi1⟩J⃗ .
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Analogously, one proceeds with the three-point function,

⟨ϕi3 ϕi2 ϕi1⟩c
J⃗

= WJ⃗3J⃗2J⃗1
(J⃗ )i3i2i1 = (2.19)

=
ZJ⃗3J⃗2J⃗1

(J⃗ )
Z(J⃗ )

−
ZJ⃗3

(J⃗ )i3
Z(J⃗ )

ZJ⃗2J⃗1
(J⃗ )i2i1

Z(J⃗ )
−

ZJ⃗2
(J⃗ )i2

Z(J⃗ )
ZJ⃗3J⃗1

(J⃗ )i3i1
Z(J⃗ )

−

−
ZJ⃗1

(J⃗ )i1
Z(J⃗ )

ZJ⃗3J⃗2
(J⃗ )i3i2

Z(J⃗ )
+ 2

ZJ⃗3
(J⃗ )i3

Z(J⃗ )
ZJ⃗2

(J⃗ )i2
Z(J⃗ )

ZJ⃗1
(J⃗ )i1

Z(J⃗ )
=

= ⟨ϕi3 ϕi2 ϕi1⟩J⃗ − ⟨ϕi3⟩J⃗ ⟨ϕi2 ϕi1⟩J⃗ − ⟨ϕi2⟩J⃗ ⟨ϕi3 ϕi1⟩J⃗ − ⟨ϕi1⟩J⃗ ⟨ϕi3 ϕi2⟩J⃗ +

+ 2 ⟨ϕi3⟩J⃗ ⟨ϕi2⟩J⃗ ⟨ϕi1⟩J⃗ .

Already at this point the advantage of the Schwinger functional in terms of storing information
is obvious and proceeding to higher-order correlation functions is straightforward. Redundant
information, e.g., contributions of two- and one-point functions to the three-point function, are
simply subtracted in the definition of the connected n-point function. The term “connected” hereby
refers and derives from the graphical representation of correlation functions, where products of
correlation functions appear in terms of unconnected graphs [19, 20, 142].

2.1.4. The effective action
However, when it comes to storing information yet another generating functional is more efficient
– the generating functional of 1PI vertex functions. It is directly related to the grand-canonical
potential in statistical mechanics [11] and defined in terms of the Legendre transformation of the
Schwinger functional (2.15) [144, 145, 146, 18, 19, 24],

Γ(φ⃗ ) ≡ supJ⃗
{
J⃗ · φ⃗− W(J⃗ )

}
= J⃗ T (φ⃗ ) · φ⃗− W(J⃗(φ⃗ )) . (2.20)

Usually, we refer to this quantity as the (IR) effective action. Hereby, sup refers to the supremum
and the components of the mean-field vector are defined by

φi ≡ WJ⃗(J⃗(φ⃗ ))i ≡ WJ⃗(J⃗ )i
∣∣
J⃗=J⃗(φ⃗) . (2.21)

The name 1PI again is due to the diagrammatic representation of correlation functions, which
exclusively contain contributions of diagrams that cannot be separated by cutting a single internal
line [24]. Hence, w.r.t. the connected correlation functions these are even less diagrams, which
are sufficient for encoding all information about a QFT. In addition, the (renormalized) vertex
functions that are derived from Eq. (2.20) by taking derivatives w.r.t. the components of φ⃗ are
directly related to the observables in a QFT in higher-dimensional spacetimes, e.g., scattering
amplitudes etc., see, e.g., Ref. [72] for a recent application in the FRG framework to pion scattering.
Next, we present certain relations between the 1PI vertex functions,

Γφ⃗···φ⃗(φ⃗ )in···i1 ≡ ∂nΓ(φ⃗ )
∂φin . . . ∂φi1

, (2.22)

and the previously defined correlation functions. From Eq. (2.20) it is directly found that

Γφ⃗(φ⃗ )i = Ji(φ⃗ ) . (2.23)

As long as this equation is not evaluated at the minimum of Γ(φ⃗ ) the right-hand side (r.h.s.) keeps
its dependence on φ⃗.
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Furthermore, from Eqs. (2.21) and (2.23) one easily finds,

δji = δJj(φ⃗ )
δJi(φ⃗ ) = δJj(φ⃗ )

δφk

δφk
δJi(φ⃗ ) = Γφ⃗φ⃗(φ⃗ )jk WJ⃗J⃗(J⃗(φ⃗ ))ki , (2.24)

δij = δφj(J⃗ )
δφi(J⃗ )

= δφk(J⃗ )
δJi

δJj

δφk(J⃗ )
= WJ⃗J⃗(J⃗ )ik Γφ⃗φ⃗(φ⃗(J⃗ ))kj , (2.25)

which implies that the two-point vertex function and the variance are inverse to each other. We
further define

Gφ⃗φ⃗(φ⃗ )ij ≡ (Γφ⃗φ⃗(φ⃗(J⃗ )))−1
ij ≡ WJ⃗J⃗(J⃗ )ij , (2.26)

which is called the full field-dependent propagator in higher dimensions. In zero dimensions this
name is of course absurd in its literal sense but used anyhow.

For more general relations we have to work harder. We need the chain-rule relation between Ji
and φi derivatives,

δ

δJi
= δφj
δJi

δ

δφj
= WJ⃗J⃗(J⃗(φ⃗ ))ij

δ

δφj
= Gφ⃗φ⃗(φ⃗ )ij

δ

δφj
, (2.27)

Now, by backwards engineering, we obtain an algorithm which relates correlation functions (2.14)
with quantities in the framework of the effective action,

⟨ϕin · · ·ϕi1⟩J⃗ =
ZJ⃗n···J⃗1

(J⃗ )in···i1

Z(J⃗ )
= (2.28)

=
(

δ

δJin
+ φin

) ZJ⃗n−1···J⃗1
(J⃗ )in−1···i1

Z(J⃗ )
=

=
[
n−1∏
j=1

(
δ

δJij
+ φij

)]
φin =

=
[
n−1∏
j=1

(
Gφ⃗φ⃗(φ⃗ )ijk

δ

δφk
+ φij

)]
φin .

Ultimately, this is done by evaluation of the product and the derivatives w.r.t. φi in the last line.
For an explicit calculation the following identity for the derivative of the propagator (2.26) turns
out to be useful,

δ

δφk
Gφ⃗φ⃗(φ⃗ )ji = δ

δφk

(
Γφ⃗φ⃗(φ⃗ )

)−1
ji

= −Gφ⃗φ⃗(φ⃗ )jn Γφ⃗φ⃗φ⃗(φ⃗ )knmGφ⃗φ⃗(φ⃗ )mi . (2.29)

In the same fashion as for Eq. (2.28), one derives an algorithm that relates connected correlation
functions (2.16) to vertex functions (2.22),

⟨φin · · ·φi1⟩c
J⃗

=
[
n−1∏
j=1

(
Gφ⃗φ⃗(φ⃗ )ijk

δ

δφk

)]
φin . (2.30)

For more details on this formalism in the context of the FRG, see also Ref. [54].

Explicitly, from Eqs. (2.28) and (2.30) one obtains the following identities for the lowest three
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orders,

⟨ϕi⟩c
J⃗

= ⟨ϕi⟩J⃗ = φi , (2.31)

⟨ϕj ϕi⟩c
J⃗

=Gφ⃗φ⃗(φ⃗ )ji , (2.32)

⟨ϕj ϕi⟩J⃗ =Gφ⃗φ⃗(φ⃗ )ji + φj φi , (2.33)

⟨ϕk ϕj ϕi⟩c
J⃗

= −Gφ⃗φ⃗(φ⃗ )nkGφ⃗φ⃗(φ⃗ )jmGφ⃗φ⃗(φ⃗ )il Γφ⃗φ⃗φ⃗(φ⃗ )nml , (2.34)

⟨ϕk ϕj ϕi⟩J⃗ = −Gφ⃗φ⃗(φ⃗ )nkGφ⃗φ⃗(φ⃗ )jmGφ⃗φ⃗(φ⃗ )il Γφ⃗φ⃗φ⃗(φ⃗ )nml + (2.35)

+Gφ⃗φ⃗(φ⃗ )kj φi +Gφ⃗φ⃗(φ⃗ )ji φk +Gφ⃗φ⃗(φ⃗ )ik φj + φk φj φi .

2.1.5. Correlation functions for the O(N) model
These general relations for zero-dimensional models of N real scalars can be further simplified
under the assumption of O(N) symmetry and if they are evaluated for J⃗ = 0, which corresponds
to an evaluation at the minimum of Γ(φ⃗ ), which we simply call φ⃗min and which is shown in
Section 2.2.2 to be trivial in zero dimensions. As already mentioned, correlation functions of an
odd number of fields vanish for J⃗ = 0. Using the relations (2.9) to (2.11) we find the following
identities, see also, e.g., Refs. [107, 125],

⟨ϕi ϕi⟩c = ⟨ϕi ϕi⟩ =
(
Γφ⃗φ⃗(φ⃗min )

)−1
ii
, (2.36)

⟨ϕi ϕi ϕi ϕi⟩c = ⟨ϕi ϕi ϕi ϕi⟩ − 3 ⟨ϕi ϕi⟩2 = −⟨ϕi ϕi⟩4 Γφ⃗φ⃗φ⃗φ⃗(φ⃗min )iiii , (2.37)

⟨ϕi ϕi ϕi ϕi ϕi ϕi⟩c = ⟨ϕi ϕi ϕi ϕi ϕi ϕi⟩ − 15 ⟨ϕi ϕi ϕi ϕi⟩ ⟨ϕi ϕi⟩ + 30 ⟨ϕi ϕi⟩3 = (2.38)

= − ⟨ϕi ϕi⟩6 Γφ⃗φ⃗φ⃗φ⃗φ⃗φ⃗(φ⃗min )iiiiii + 10 ⟨ϕi ϕi⟩−1 (⟨ϕi ϕi ϕi ϕi⟩c)2 ,

which can be solved for the vertex functions (evaluated for the same component of φ⃗),

Γ(2) ≡ Γφ⃗φ⃗(φ⃗min )ii = N

⟨ϕ⃗ 2⟩
, (2.39)

Γ(4) ≡ Γφ⃗φ⃗φ⃗φ⃗(φ⃗min )iiii = 3 N2

⟨ϕ⃗ 2⟩2

[
1 − N

N+2
⟨(ϕ⃗ 2)2⟩
⟨ϕ⃗ 2⟩2

]
, (2.40)

Γ(6) ≡ Γφ⃗φ⃗φ⃗φ⃗φ⃗φ⃗(φ⃗min )iiiiii = 60 N3

⟨ϕ⃗ 2⟩3

[
1 − 9N

4(N+2)
⟨(ϕ⃗ 2)2⟩
⟨ϕ⃗ 2⟩2 + 3N2

2(N+2)2
⟨(ϕ⃗ 2)2⟩2

⟨ϕ⃗ 2⟩4 − (2.41)

− N2

4(N+2)(N+4)
⟨(ϕ⃗ 2)3⟩
⟨ϕ⃗ 2⟩3

]
.

Deriving relations like these (also for higher-order vertex functions) can be automized using com-
puter algebra programs like Mathematica [147] as was done for results in later chapters of this
thesis.

In the following chapters we are repeatedly making use of these relations between vertex functions
and expectation values from the path integral, because the FRG is formulated on the level of the
effective action (2.20), while the straightforward calculation of reference values is only possible
by direct evaluation of the expectation values from the partition function. Thus, the identities
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provide access to exact reference values for the vertex function via the one-dimensional integrals
(2.12). For explicit numerical and/or analytical results it still remains to specify the classical
action S(ϕ⃗ ) as is shown below for various test cases.

2.2. Symmetry breaking, phase transitions, convexity and
all of that

Next, we turn to a very special feature of zero-dimensional QFT, namely the absence of (sponta-
neous) symmetry breaking and PTs and what this has to do with the Coleman-Mermin-Wagner-
Hohenberg-Berezinskii (CMWHB) theorem. In this context we also discuss convexity of the gen-
erating functionals. Our discussion is a summary of our more detailed Ref. [1, Appendix B], which
is in turn partially based on Refs. [109, 13].

2.2.1. Ehrenfest classification
According to Ehrenfest’s classification [148, 11], PTs are defined as discontinuities in the derivatives
of thermodynamic potentials, when differentiating is performed w.r.t. an intensive thermodynamic
variable. The order n of a PT is given by the lowest nth-order derivative which shows this
discontinuity while lower-order derivatives must stay continuous.
However, in zero spacetime dimensions there are no true thermodynamic potentials and state
variables. All quantities are dimensionless and concepts like temperature, pressure etc. do not
exist. Still, as already mentioned before, there are zero-dimensional analogues of thermodynamic
potentials, namely the Schwinger functional (2.15), which plays the role of the free energy, and
the effective action, which can be associated with the grand canonical potential (2.20). The cor-
responding “thermodynamic state variables” are the sources J⃗ and mean fields φ⃗. In consequence
PTs should show up as discontinuities in derivatives w.r.t. J⃗ or φ⃗, depending on the generating
functional.

Having said this, it can be shown that in fact Z(J⃗ ) ∈ C∞ in zero dimensions for O(N)-symmetric
actions, thus it is a smooth function of J⃗ ∈ RN . Following Ref. [109] this is demonstrated as
follows: (For sake of simplicity we restrict the “physicists proof” to N = 1.)
A function is called smooth (or ∈ C∞), if for all n ∈ N the left- and right-derivatives coincide.
For the generating functional (2.13) this is realized if

lim
ϵ→0

[
∂nZ(J)
∂Jn

∣∣∣∣
J+ϵ

− ∂nZ(J)
∂Jn

∣∣∣∣
J−ϵ

]
= 0 , (2.42)

which is easily demonstrated using Def. (2.13) and that S(ϕ) at least grows quadratically and is
bounded from below,

lim
ϵ→0

[
∂nZ(J)
∂Jn

∣∣∣∣
J+ϵ

− ∂nZ(J)
∂Jn

∣∣∣∣
J−ϵ

]
= lim

ϵ→0
N
∫ ∞

−∞
dϕϕn e−S(ϕ)+Jϕ ( eϵϕ − e−ϵϕ ) = (2.43)

= lim
ϵ→0

[
2ϵN

∫ ∞

−∞
dϕϕn+1 e−S(ϕ)+Jϕ +O(ϵ2)

]
= 0 .

In the second step the exponentials are expanded for small ϵ and it is further used that in zero
dimensions the remaining ϕ-integral in the last line is finite.3 The proof can be directly generalized
to N ̸= 1. Note that the convergence of the ϕ⃗-integration (for arbitrary N) is only guaranteed if
S(ϕ⃗ ) is an even function of each component of ϕ⃗. For O(N)-symmetric actions this is trivially

3The last aspect is not fulfilled in higher dimensional spacetime as well as the N → ∞ limit in zero-dimensional
spacetime, which is, why PTs in terms of discontinuities etc. can exist. Similar violations of theorems affect the
convexity of the generating functionals, see below.
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fulfilled. Hence, without any terms that explicitly break the O(N) symmetry there are no phase
transitions according to Ehrenfest.

Having established that Z(J⃗ ) ∈ C∞, this directly transfers to W(J⃗ ) and Γ(φ⃗ ), because the log-
arithm of a smooth function is smooth. The same applies to the Legendre transformation of a
smooth function.

It is also noteworthy (because it might appear counter-intuitive at first sight) that these arguments
applies to any S(ϕ⃗ ) which at least grows asymptotically linear in the invariant ρ. This also
includes non-differentiable, non-analytic actions, which might have non-trivial degenerate global
minima. However, one has to keep in mind that we are integrating over ϕ⃗, respectively ρ, and
that smoothness of the generating functional refers to J⃗ instead. For examples and illustrations,
we refer to Ref. [1, Appendix B] and Refs. [149, 13].

2.2.2. Convexity of the generating functionals and the location of the
physical point

Before we continue with our discussion on the absence of PTs etc., we have to briefly comment
on the convexity of the generating functionals as well as the identification of the physical point
where correlation functions and vertex functions are evaluated.

Convexity

A function of several arguments is convex if its Hessian is positive semi-definite. In turn, a matrix
M is positive semi-definite if x⃗T M x⃗ ≥ 0 for all x⃗ ∈ RN .

Hence, for Z(J⃗ ) we need to study its second derivatives w.r.t. the source-field components Ji.
These, however, are directly related to the generic two-point correlation functions in the presence
of the sources J⃗ ,

⟨ϕi2 ϕi1⟩J⃗ = 1
Z(J⃗ )

N
∫ ∞

−∞
dNϕϕi1 ϕi2 e−S(ϕ⃗ )+J⃗ T ·ϕ⃗ , (2.44)

which is clear from definition (2.14). The additional factor 1/Z(J⃗ ) is irrelevant for the following,
because it is manifestly positive for all J⃗ . In consequence, we study

xi ⟨ϕi ϕj⟩J⃗ xj = 1
Z(J⃗ )

N
∫ ∞

−∞
dNϕ

(
x⃗T · ϕ⃗

)2 e−S(ϕ⃗ )+J⃗ T ·ϕ⃗ . (2.45)

The expression is positive semi-definite, which is seen as follows: Consider a substitution of the
integration variables in terms of an O(N) rotation (2.2), OT ϕ⃗′ = ϕ⃗. Next, without loss of gener-
ality (w.l.o.g.) choose the rotation matrix such that x⃗T OT = (|x⃗|, 0, . . . , 0). This turns the factor
in front of the exponential into |x⃗|2 ϕ′2

1 , which is positive or zero. The integral measure as well as
the action S(ϕ⃗ ) are O(N)-invariant and have the same shape in the transformed variables. The
source is replaced by J⃗ T OT , which ultimately does not alter the fact that the exponential in total
is always positive.
We find that the Hessian is positive semi-definite and Z(J⃗ ) is convex.

Analogously we proceed for W(J⃗ ) and show its convexity. Using Eq. (2.18),

xi ⟨ϕi2 ϕi1⟩c
J⃗
xj =

〈(
x⃗T · ϕ⃗

)2〉
J⃗

−
〈
x⃗T · ϕ⃗

〉
J⃗

〈
x⃗T · ϕ⃗

〉
J⃗

= (2.46)

=
〈(
x⃗T · ϕ⃗−

〈
x⃗T · ϕ⃗

〉
J⃗

)2〉
J⃗
> 0 ,
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it is easy to see that the Hessian is always positive semi-definite.
From this we can directly conclude that also Γ(φ⃗ ) is convex, because the Legendre transform of
a convex function is convex by definition, cf. Refs. [149, 13].

The physical point – the evaluation point for correlation and vertex functions

Taking into account that all three generating functionals are smooth and convex it is obvious that
they have their unique minimum at J⃗ = 0 and φ⃗ = 0 respectively. The correct evaluation point
for correlation functions of Z(J⃗ ) and W(J⃗ ) is of course by construction J⃗ = 0 – their minimum.
However, from Eq. (2.23) we also know that the correct evaluation point of the field-dependent
vertex functions is the extremum of Γ(φ⃗ ). It follows from the previous considerations that this
extremum is a unique minimum in zero dimensions and located at φ⃗ = 0.

Again, note that even though the classical O(N)-invariant action S(ϕ⃗ ) might have degenerate
non-trivial global minima, the physical evaluation point for Γ(φ⃗ ) is always φ⃗ = 0 in zero dimen-
sions and the O(N) symmetry of the ground state is always restored. Hence, there is no symmetry
breaking in zero spacetime dimensions.

For higher-dimensional QFTs the IR effective action still needs to be convex. However, smoothness
and analyticity is no longer required, such that there is an entire “flat region” and the physical
minimum can indeed be/stay non-trivial. Symmetry breaking is in general possible.

We refer to Ref. [1, Appendix B] and Refs. [149, 13] for further discussions and illustrations on
these topics.

2.2.3. Landau’s classification of phase transitions
According to Landau’s classification, PTs [150] are linked to the spontaneous breaking or restora-
tion of symmetries, while an intensive external thermodynamic state variable is varied. It is
signaled by the (dis)appearance of an order parameter, which characterizes the state of the sys-
tem (its symmetry), e.g., a condensate. On some occasions it is also possible to use an extensive
thermodynamic state variable itself as an order parameter. Here, however, it does not make sense
to study the variation of its canonically conjugate intensive state variable, since this corresponds
to explicit symmetry breaking.
Zero dimensions are again special: The only “intensive state variables” are J⃗ and their canonically
conjugate “extensive” counterparts are φ⃗. However, φ⃗ is directly linked to the condensate. Hence,
there is exclusively the option to explicitly break the O(N) symmetry by considering non-vanishing
source fields J⃗ . However, as long as J⃗ = 0, we also have φ⃗min = ⟨ϕ⃗ ⟩ = 0 as discussed in
Sections 2.2.1 and 2.2.2.
The same applies to the variation of any other parameter in S(ϕ⃗ ). It simply has no influence on
the location of the physical point, which is always at φ⃗ = 0 in the IR, and the condensate ⟨ϕ⃗ ⟩
always vanishes, as long as the O(N) symmetry is not explicitly broken.
Thus, Ehrenfest and Landau classification lead to identical conclusions on the possible ground
state of zero-dimensional O(N) models – namely the trivial state.

2.2.4. The CMWHB theorem
Some readers might interject that this result is already expected from the CMWHB theorem. It
states that for systems of spatial dimensions d ≤ 2 and sufficiently short-range interactions there
cannot be spontaneous breaking of continuous symmetries at non-zero temperature [151, 152, 153,
154, 155].
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Indeed, zero-dimensional systems fulfill the “dimensional” requirement and interactions are indeed
strong and “short-range”, because they are all in a single point. However, there is a priori no notion
of temperature.
Still, there is a workaround: It is possible to think of zero-dimensional QFTs in terms of the
infinite-temperature limit of a thermal quantum mechanical system or a QFT in a tiny spacetime
box. In any case, considering the zero-volume and infinite-temperature limit, only the lowest
bosonic Matsubara mode survives and the system is effectively zero-dimensional [109, 139]. In
this sense, the CMWHB theorem applies and spontaneous symmetry breaking is forbidden.

Despite everything and strictly speaking, this argument is only valid for systems with N > 1 and
continuous symmetries, where breaking of this symmetry causes the existence of Nambu-Goldstone
modes [156, 157, 144], because the theorem relies on their existence for the symmetry restoration.
In fact, we have found, that also for N = 1 there is no symmetry breaking either, even though this
symmetry is a discrete Z2 symmetry. It seems as if the single σ-mode actually suffices to restore
the symmetry, totally without the support of Nambu-Goldstone particles. We come back to this
fact several times in this thesis and strongly believe that this calls for additional future research.
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Chapter 3

The need for strictly
non-perturbative methods

Abstract In this chapter we briefly discuss the severe limitations of perturbative methods as
well as the large-N expansion. We first provide a short general introduction into the methods.
Then their shortcomings are exemplified using two different zero-dimensional O(N)-symmetric toy
models. However, for general reference we start this chapter by presenting the trivial model – the
free theory.
Note, that our entire discussion does not aim at mathematical rigor and there is a lot more to
say about these two and related methods than what is presented in this chapter. Here, we are,
however, mainly interested in motivating the use of strictly non-perturbative methods like the
FRG in a playful way with seemingly innocent actions and get familiar with aspects of the large-
and infinite-N approximation. Experts might want to simply skim over this chapter and continue
careful reading in the next chapter.

Disclosure This chapter and especially the part on the saddle-point expansion is mainly based
on our own Ref. [3]. Furthermore it contains material from our publications [1, 2]. However, we
also comment on well-known results for perturbation theory for the zero-dimensional O(N) model.
These results are taken from Refs. [128, 129, 130, 131, 109, 107, 23, 124, 125].

3.1. The free theory
Before we turn to the main subject of this chapter, we briefly present some results for the trivial case
– the free theory – as reference. The corresponding action S(ϕ⃗ ) of massive non-interacting O(N)-
symmetric bosons is given by a potential which exclusively contains the quadratic contribution
with positive mass m2,

S(ϕ⃗ ) = U0(ϕ⃗ ) = 1
2 m

2 ϕ⃗ 2 = m2 ρ = U0(ρ ) , (3.1)

All corresponding correlation functions (2.9) can therefore be calculated from the moments of a
Gaussian-type integral,

⟨(ϕ⃗ 2)n⟩ (2.12)=
2n
∫∞

0 dρ ρN2 −1 ρn e−U0(ρ)∫∞
0 dρ ρN2 −1 e−U0(ρ)

(3.1)= t = m2 ρ , (3.2)

=
2nm2n ∫∞

0 dt tN2 −1 tn e−t∫∞
0 dt tN2 −1 e−t

(A.37)=

=
2nm2n Γ

(
N
2 + n

)
Γ
(
N
2
) .
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With Eq. (A.38) we find

⟨(ϕ⃗ 2)0⟩ = ⟨1⟩ = 1 , and ∀n > 1 ⟨(ϕ⃗ 2)n⟩ = 2
m2

(
N
2 + n− 1

)
⟨(ϕ⃗ 2)n−1⟩ . (3.3)

The corresponding vertex functions are derived by inserting these results into Eqs. (2.39) to (2.41)
etc.. One finds,

Γ(2) = m2 , and ∀n > 2 Γ(n) = 0 . (3.4)

Anyhow, for this special case it is easier to evaluate the Gaussian integral in Eq. (2.13) explicitly
for the action (3.1) and determine W(J⃗ ) from Eq. (2.15),

W(J⃗ ) = ln Z(J⃗ ) ≡ ln
(

N
∫ ∞

−∞
dNϕ e− 1

2m
2ϕ⃗ 2+J⃗ T ·ϕ⃗

)
= 1

2m2 J⃗
2 + const. (3.5)

As expected for a Gaussian integral it directly follows that exclusively the variance – the connected
two-point correlation function (2.18) – is non-zero, while all higher cumulants – connected n-point
correlation functions – vanish [140]. Additionally, it turns out that the Legendre transformation
to the effective action is trivial and we find

Γ(φ⃗ ) = 1
2 m

2 φ⃗ 2 + const. , (3.6)

which directly explains Eq. (3.4). This result is also rather intuitive for massive non-interacting
particles, because all interaction vertices vanish and exclusively the 1PI two-point function sur-
vives.

3.2. Limitations of perturbation theory

Next, we turn to the first real application of the zero-dimensional O(N) model. It serves as the
minimal example to study limitations of perturbation theory. To this end, we need a non-trivial
O(N)-symmetric action, which contains “interactions” of our bosons in the single spacetime point.
As usual in QFT the ϕ4-model will do the job.
After presenting the model and exact reference solutions, we first demonstrate the general non-
convergence of the perturbation series. Second, we show that considering a low-order expansion
may still be useful for an extremely small coupling in the sense of an asymptotic series, while it is
totally inappropriate beyond this limit.
Ultimately, we discuss general shortcomings of the idea of the perturbative approach.

3.2.1. ϕ4-theory

The zero-dimensional version of the ϕ4-theory is defined by the following action/potential

S(ϕ⃗ ) = U(ϕ⃗ ) = m2

2 ϕ⃗ 2 + λ
4! (ϕ⃗ 2)2 , (3.7)

with positive mass m2 ∈ R>0 and positive quartic coupling λ ∈ R>0. (Later on we also consider
the same action with negative mass.) Formulated in terms of the O(N)-invariant (2.6) this reads,

U(ρ) = m2 ρ+ λ
6 ρ

2 . (3.8)

Exact solution

Interestingly, the zero-dimensional ϕ4-theory is one of the rare QFTs that is exactly integrable.
Analogously to the free theory the expectation values (2.12) can be calculated in terms of known
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functions. This is because the respective integrals are all of the following type,∫ ∞

0
dρ ρN2 −1 ρn e−U(ρ) =

∫ ∞

0
dρ ρN2 +n−1 e−m2ρ−λ

6 ρ
2

= (3.9)

=
( 6
λ

) 1
2 (N2 +n)

[
1
2 Γ
( 1

2
(
N
2 + n

))
1F1

(
1
2
(
N
2 + n

)
; 1

2 ; 6
λ

(
m2

2
)2
)

−

−
( 6
λ

) 1
2 m2

2 Γ
( 1

2
(
N
2 + n+ 1

))
1F1

(
1
2
(
N
2 + n+ 1

)
, 3

2 ; 6
λ

(
m2

2
)2
)]
,

such that the correlation functions and vertex functions can all be expressed in terms of functions
of this result for the appropriate n. Here 1F1(a; b; c) is the confluent hypergeometric function and
Γ(s) is the conventional gamma function (A.37).
There are various ways to reshape this result, e.g., in terms of Kummer’s and Tricomi’s function
or modified Bessel functions of the second kind. Anyhow, the result is well-known in literature,
see, e.g., Refs. [107, Eq. (3.2)], Ref. [110, Eq. (36)] or other references from Chapter 1.
However, note that for practical applications it is usually much simpler to calculate the (one-
dimensional) integrals in the expectation values (2.12) numerically to basically arbitrary precision,
which is also done throughout this work.

Anyhow, having exact reference solutions, we can turn to conventional perturbation theory.

3.2.2. Perturbation theory
The following paragraphs are based on Refs. [128, 129, 130, 131, 109, 107, 23, 124, 125] and ex-
clusively serve for introductory and motivational purposes.

Conventional perturbation theory is based on an expansion of the partition function (2.13) and
consequently the expectation values (2.12) in the coupling λ under the assumption that λ ≪ 1,
thus,

⟨(ϕ⃗ 2)n⟩ =
2n
∫∞

0 dρ ρN2 −1 ρn e−S(ρ)∫∞
0 dρ ρN2 −1 e−S(ρ)

= (3.10)

=
2n
∫∞

0 dρ ρN2 −1 ρn e−ρ−λ
6 ρ

2∫∞
0 dρ ρN2 −1 e−ρ−λ

6 ρ
2 =

=
2n
∫∞

0 dρ ρN2 −1 ρn
[
1 − λ

6 ρ
2 + λ2

72 ρ
4 + O(λ3)

]
e−ρ∫∞

0 dρ ρN2 −1 [1 − λ
6 ρ

2 + λ2

72 ρ
4 + O(λ3)

]
e−ρ

.

For the two-point vertex function, inserting Eq. (3.10) into Eq. (2.39) leads to

Γ(2) = N

⟨ϕ⃗ 2⟩
= 1 + (N + 2) λ6 − 2 (N + 4)(N + 2) 1

2
(
λ
6
)2 + O(λ3) . (3.11)

For both results and w.l.o.g. we set m2 = 1, which corresponds to a simple rescaling of the fields
and the coupling. For example, for N = 2 we find for the expansion to O(λ6),

Γ(2) = 1 + 2
3 λ− 2

3 λ
2 + 14

9 λ3 − 46
9 λ4 + 562

27 λ5 − 8054
81 λ6 + O(λ7) . (3.12)

Thus, already from this expression one sees that the modulus of the expansion coefficients is
growing rapidly, which should be alarming. Absorbing the factor 1

4! from Eq. (3.7) in the coupling
does not alter this fact.
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This can be analyzed more systematically. To this end and again w.l.o.g. we study the basic
integral from the denominator of Eq. (3.10) for N = 1 in terms of a perturbation series,∫ ∞

0
dρ ρ 1

2 −1 e−U(ρ) = (3.13)

=
∫ ∞

0
dρ ρ 1

2 −1 e−ρ−λ
6 ρ

2
=

=
∫ ∞

0
dρ ρ 1

2 −1 e−ρ
∞∑
m=0

1
m!
(

− λ
6 ρ

2)m =

=
∞∑
m=0

am λ
m .

In the last step, we exchanged summation and integration and defined the expansion coefficients,

am = (−1)m 1
6m

1
m!

∫ ∞

0
dρ ρ2m+ 1

2 −1 e−ρ (A.37)= (3.14)

= (−1)m 1
6m

1
m! Γ

(
2m+ 1

2
)

=

= (−1)m 1
6m

1
m!

(4m)!
42m(2m)!

√
π .

To study the convergence of the series in the last line of Eq. (3.13), we use the ratio test
(d’Alembert’s criterion) and Eq. (A.43),

r = lim
m→∞

∣∣∣am+1λ
m+1

am λm

∣∣∣ ∝ lim
m→∞

mλ . (3.15)

We find that r > 1 for large m, such that the sum does not converge. (This result does not
change for other integrals occurring in Eq. (3.10).) In conclusion, the exchange of summation and
integration in the last step of Eq. (3.13) was not justified and perturbation theory is in general
ill-conditioned. In fact, we can directly argue that the expansion Eq. (3.13) has zero radius of
convergence at λ = 0, because the original integral itself converges for λ > 0, but diverges for λ < 0.

The explanation why it is still possible to obtain decent results for very small coupling and finite
expansion order is that the series is an asymptotic series at λ = 0 and it is possible to calculate
an optimal finite expansion order with least deviation from the exact result. Hence, for extremely
small λ the precision of the perturbation theory is overwhelming and the difference between the
Taylor expansion and the partial sum is negligible. However, increasing the coupling leads to large
deviations, already for rather small expansion orders, which then grow rapidly.
From a QFT perspective, this is understood as follows. The combinatorial number of graphs which
contributes to each order in perturbation theory grows faster (factorial) than the suppression by
the powers of the small coupling, λm. Thus, suppression of higher-order terms in the perturbation
series exclusively works until combinational growth exceeds the suppression by the small coupling.
For the O(N) model all this depends on N , the specific order-n correlation function (3.10) and λ.

Here, we do not go any further into detail on this topic. Instead we refer to the textbooks Ref. [23,
Sec. 2.1], Ref. [128, Sec. 11], Ref. [129, Sec. 7.5], Ref. [130, Sec. 5.1] or for example Refs. [131,
109, 107, 124, 125]. In this context it is also worth mentioning that there are variants to improve
perturbation theory, e.g., using Borel summation or the framework of optimized perturbation
theory, which are also discussed within some of the above references.
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Figure 3.1: The exact result for Γ(2) −m2 via Eqs. (2.12), (2.39), and (3.8) and the perturbative
result from Eq. (3.12) as functions of λ for N = 2. The plot is an adaption from Ref. [107, Fig. 3].

Anyhow, to get an impression of the poor quality of perturbation theory, we plot the exact result
for Γ(2) and the perturbative result for different expansion orders as a function of λ for fixed N = 2
in Fig. 3.1. It is obvious (already without plotting the relative deviations), that perturbation the-
ory is close to the correct result exclusively for λ ≪ 1 and significantly deviates for larger λ.
This result does not change drastically for different N , but is even worse for higher-order vertex
functions, cf. Ref. [107].

However, what about UV actions with large λ, multiple couplings, negative mass term, or cusps?
Of course, there are again selected examples where perturbation theory (with certain modifica-
tions) could be applied and decent results are obtained. Nevertheless, perturbation theory cannot
be seen as a reliable framework beyond these strict limitations. Especially in higher-dimensional
systems it is much harder to estimate the point where one leaves the range of applicability, where
perturbation theory breaks down. Additionally, calculations are getting much more involved, be-
cause UV and IR divergences can emerge in every single expansion order and call for regularization
and renormalization.
In conclusion, it is worth turning to alternative techniques, which also avoid direct evaluation of
the (functional) integrals and (statistical) integration.

3.3. The 1
N -expansion and its limitations

The following subsections are mostly based on our own publication Ref. [3] and in parts closely
follow its text. Some introductory examples and figures are taken from Ref. [107] and adopted for
our purposes.

We turn to a commonly used “non-perturbative” approach for the calculation of correlation func-
tions in statistical mechanics and QFT. The method is referred to (depending on the context) by
many different names, which, strictly speaking, all refer to slightly different, but closely related
methods in pure mathematical statistics. In most QFT contexts physicists are not too picky and
loosely interchange these names. (Most definitely this is also true for my own work).
The method is known as the 1

N -expansion (including theN → ∞ limit), t’Hooft limit, the Laplace’s
method, the saddle-point expansion, the stationary-phase approximation, or method of steepest
descent. Oftentimes it is simply referred to as the mean-field approximation, which is probably
most unspecific and sometimes even wrong.

Anyhow, the key idea behind the method is the expansion of characteristic quantities of a model or
theory, like the correlation and vertex functions, in powers of 1

N . Here, N is the number of different
kinds of (interacting) degrees of freedom in our model or theory. In high-energy physics these can
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be particle/field types, spins, molecules, color charges etc.. For an expansion in 1
N it should there-

fore be assumed that this number is large, 1 ≪ N . In order to make sense of this expansion, it is
required to rescale extensive quantities by appropriate powers of N . This facilitates the compari-
son between different N and especially the N → ∞ limit without introducing artificial divergences.

At this point, the question arises why a method that again relies on an expansion in a small
parameter, here 1

N , is considered to be non-perturbative. The explanation is that contrary to
conventional perturbation theory, which is based on an expansion in a dimensionless small cou-
pling constant, the 1

N -expansion is also applicable to strongly interacting systems with large and
multiple coupling constants etc.. Indeed, the method enjoyed great successes and oftentimes keeps
its predictive power even for systems of unexpectedly small N in their strongly coupled regime, cf.
for example Refs. [28, 158, 159, 160, 29, 74, 31] in the context of particle physics or see Ref. [30]
for a review. This is also demonstrated within this section. Nevertheless, the method also comes
with certain problematic features, e.g., non-convex IR potentials or a total failure, if the expansion
point is a non-analytic or degenerate global minimum of the potential. Such shortcomings are the
key aspect of our critique and motivate the use for strictly non-perturbative methods like the FRG.

Within the next subsections, we introduce the 1
N -expansion for our zero-dimensional O(N) model.

For this theory the N from the 1
N -expansion parameter is of course the dimension N of the group

and number of boson fields. We introduce the method for the calculation of arbitrary correlation
functions and arbitrary UV potentials. First, we crosscheck the method with the free theory.
Afterwards we present established results for the performance of the 1

N -expansion for the ϕ4-
theory, which we already studied within perturbation theory. The limitations of the method are
demonstrated using another toy model developed by ourselves in Ref. [3], which is inspired by a
higher-dimensional model from Ref. [77] and used to study the large- and infinite-N limit in FRG
in the context of shock waves and diffusion in field space.

3.3.1. The 1
N

-expansion for the zero-dimensional O(N) model
The starting point of our discussion are of course again the general correlation functions (2.12) of
zero-dimensional O(N) models,

⟨(ϕ⃗ 2)n⟩ =
2n
∫∞

0 dρ ρN2 −1 ρn e−U(ρ)∫∞
0 dρ ρN2 −1 e−U(ρ)

. (3.16)

As has just been said, the 1
N -expansion requires to rescale extensive quantities with their inverse

dependence on N . Therefore, we introduce the rescaled O(N)-invariant and the rescaled potential,

ρ 7→ y = 1
N ρ , U(ρ) 7→ V (y) = 1

N U(ρ) . (3.17)

Expressing the correlation functions by these quantities and slightly rearranging the integrals, we
arrive at,

⟨(ϕ⃗ 2)n⟩ =
2nNn

∫∞
0 dy yN2 −1 yn e−NV (y)∫∞

0 dy yN2 −1 e−NV (y)
= (3.18)

=
2nNn

∫∞
0 dy yn−1 e−N [V (y)− 1

2 ln(y)]∫∞
0 dy y−1 e−N [V (y)− 1

2 ln(y)] =

=
2nNn I(N)[V (y) − 1

2 ln(y), yn−1]
I(N)

[
V (y) − 1

2 ln(y), y−1
] .

In the last line we introduced the integral

I(N)[f, g] ≡
∫ ∞

0
dy g(y) e−Nf(y) , (3.19)
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which is the standard form to apply the saddle point expansion/Laplace’s method [33]. (Note, that
the cognizant reader can already identify the logarithmic structure in the function f(y), which is
also generated in Yukawa-type models in QFT, if fermions are completely integrated out.)

The saddle-point expansion The following general calculations are not original to the author
and can be found elsewhere, e.g., in Refs. [33].
The fundamental assumption of the 1

N -expansion is that f(y) has a unique global minimum at y0.
In addition, it is assumed that f(y) and g(y) are analytic in y0 – expandable to arbitrary order.
As long as both functions grow at least like polynomials in y (about y0), it is possible to derive
an asymptotic series of I(N)[f, g] for large N in powers of 1

N .
The idea behind is that the integrand of Eq. (3.19) is strongly peaked around the minimum y0 of
f(y) if N is large and can be approximated by a sum of Gaussian integrals. Thus, shifting the
integration variable by y0,

y = y0 + z√
N
, (3.20)

an expansion in z√
N

should lead to good approximations already for small expansion orders, as
long as N is sufficiently large and vice versa.
Consequently we study this shift in the integral (3.19) and a systematic expansion in 1

N ,

I(N)[f, g] = (3.21)

=
∫ ∞

0
dy g(y) e−Nf(y) = (3.22)

= 1√
N

∫ ∞

−y0
√
N

dz g(y0 + z√
N

) exp
(

−Nf
(
y0 + z√

N

))
= (3.23)

= 1√
N

∫ ∞

−y0
√
N

dz g(y0 + z√
N

) × (3.24)

× exp
(

−Nf (0) − 1
2 f

(2) z2 − 1
6

√
N
f (3) z3 − 1

24N f (4) z4 + O(z5)
)

≃

≃ e−Nf(0) 1√
N

∫ ∞

−∞
dz e− 1

2 f
(2) z2

(
g(0) + 1√

N

[
g(1) − 1

6 g
(0) f (3) z2] z + (3.25)

+ 1
N

[ 1
2 g

(2) − 1
6 g

(1) f (3) z2 + 1
72 g

(0) (f (3))2 z4 − 1
24 g

(0) f (4) z2] z2 + O(N− 3
2 )
)

=

= e−Nf(0)
√

2π
Nf(2)

∞∑
i=0

1
Ni Ci[f, g] . (3.26)

In the calculation n-th derivatives of f and g, which are evaluated at y0 are abbreviated with
superscripts (n). The above calculation consists of the following steps

1. An integration-variable substitution via the shift (3.20).

2. An expansion of the exponent in z√
N

.

3. The extraction of the z-independent zeroth-order term from the integral and separation of
the Gaussian factor exp(− 1

2 f
(2) z2) in the integrand.

4. An expansion of the remaining exponential contribution and expansion of g in z√
N

.
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5. Extending the integration domain and lower integration bound, using that N is large and
that the integrand is peaked.

6. The term-by-term evaluation of Gaussian type integrals and elimination of integrals that are
odd in z.

7. Grouping terms in powers of 1
N .

The result is a power series in 1
N with N -independent coefficient Ci[f, g]. The first two coefficients

are for example,

C0[f, g] = g(0) , (3.27)

C1[f, g] = g(2)

2 f (2) − g(1) f (3)

2 (f (2))2 + 5 g(0) (f (3))2

24 (f (2))3 − g(0) f (4)

8 (f (2))2 . (3.28)

Computing higher-order coefficients is simple but tedious and error-prone using pen and paper.
It is advisable to use computer algebra systems like Mathematica [147], as was also done in this
work and Ref. [3].

Application of the saddle-point expansion to the zero-dimensional O(N) model Taking
this expansion for the integrals of type (3.19), it is straightforward to express Eq. (3.18) in a power
series in 1

N . The expansion up to O(N−2) reads,

⟨(ϕ⃗ 2)n⟩
Nn

= (3.29)

= (2y0)n
(

1 + 1
N

n
[
n− 1 + (n− 3) 2y2

0 V
(2)(y0) − 2y3

0 V
(3)(y0)

][
2y2

0V
(2)(y0) + 1

]2 + O
( 1
N2

))
,

and is easily extended to higher-order corrections. However, remember that it is exclusively valid
for functions f(y) = V (y) − 1

2 ln(y) which are analytic around their global minimum y0.
Using Eq. (3.29) we can again derive expressions for the 1PI vertex functions via Eqs. (2.39)
to (2.41) and their generalization.

3.3.2. Crosscheck - the free theory
As a first crosscheck, it is always advisable to return to the free theory, see Section 3.1. (Anyhow,
we need these results as being part of our special toy model later on.) For sake of simplicity, we
again set m2 = 1 in Eq. (3.1), such that the 1

N -rescaled potential reads

V0(y) = y . (3.30)

For the corresponding f(y) we find

f(y) = V (y) − 1
2 ln(y) = y − 1

2 ln(y) . (3.31)

The minimum y0 of this function is unique and located at

0 != ∂yf(y)
∣∣
y=y0

= 1 − 1
2y0

. (3.32)

Consequently,

y0 = 1
2 , V (y0) = 1

2 , f(y0) = 1
2
[
1 − ln

( 1
2
)]
, (3.33)
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and for the second and third derivatives we have

∂2
yV (y)

∣∣
y=y0

= 0 , ∂2
yf(y)

∣∣
y=y0

= 2 , (3.34)

∂3
yV (y)

∣∣
y=y0

= 0 , ∂3
yf(y)

∣∣
y=y0

= −8 . (3.35)

Obviously, V (y), f(y), and g(y) = yn−1 are analytic around y0 = 1
2 , such that Eq. (3.29) can be

used as an approximation. Using the above values in Eq. (3.29) one finds,

1
N ⟨ϕ⃗ 2⟩ = 1 , 1

N2 ⟨(ϕ⃗ 2)2⟩ = 1 + 2
N , 1

N3 ⟨(ϕ⃗ 2)3⟩ = 1 + 6
N + 8

N2 , . . . (3.36)

and from Eqs. (2.39) to (2.41) etc.,

Γ(2) = 1 , and ∀n > 2 Γ(n) = 0 . (3.37)

In fact, these are exact results, as can be seen by direct comparison with Eqs. (3.3) and (3.4).
The reason is, that the maximal correction for 1

Nn ⟨ϕ⃗ 2⟩ to 1 is always O(N−(n−1)). Expanding to
higher order in 1

N is therefore useless.
Interestingly, taking the N → ∞ limit, the result for the vertex functions (3.37) does not change,
while the correlation functions (3.36) all reduce to 1. The first result is hardly surprising, because a
free theory is a free theory and its IR interaction vertices always have to vanish, independent of the
number N of free particles. However, the higher-order correlation functions (3.36) also contain
totally unconnected graphs of free propagators, which correspond to many-particle processes,
where particles are in fact “passing by” each other and do not interact. These trivial processes
depend on the number N of possibly involved non-interacting particles.

3.3.3. ϕ4-theory in the 1
N

-expansion
Next, let us return to the ϕ4-theory and see, whether the 1

N -expansion yields better performance
than perturbation theory, especially for large λ and/or negative mass term m2. Hence, w.l.o.g.
we consider Eq. (3.8) with m2 = ±1,

U(ρ) = ± ρ+ λ
6 ρ

2 ,
(3.17)⇒ V (y) = ± y + λ′

6 y
2 , λ′ = Nλ . (3.38)

Checking analyticity of f(y) = V (y) − 1
2 ln(y) at its minimum,

y0 = ∓3 +
√

9 + 6λ′

2λ′ , (3.39)

is trivial, because y0 ̸= 0 and all involved functions are analytic for y > 0. Hence, we can directly
apply the 1

N -expansion to both scenarios in Eq. (3.38) at arbitrary λ.
Here, we do not present any further analytic results, even though this would be easily possible.
Instead, we evaluate Eqs. (3.29) and (2.39) symbolically using Mathematica [147] and ultimately
insert explicit values for n, N , and λ for different expansion orders. These results are compared
to exact results for Γ(2), which are obtained from brute-force integration of Eqs. (2.12) and (2.39).
The idea of benchmarking the 1

N -expansion in zero dimensions is not original to ourselves. It
was performed in great detail in the excellent Ref. [107] for ϕ4-theory with positive mass term.
Here, we simply reproduce parts of their Fig. 3, which exemplifies the power of the 1

N -expansion
already at rather small N by computing Γ(2), here for N = 2. In Fig. 3.2 we also present an
analogous plot for ϕ4-theory with negative mass term, which shows similar results concerning the
reliability. However, studying higher-order vertex functions, as was also done in Ref. [107], one
clearly experiences slower convergence by including higher-order corrections in 1

N . Furthermore, a
more systematic analysis for increasingN at a fixed λ is straightforward and presented in Ref. [107].
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(a) For positive mass m2 = 1.

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

(b) For negative mass m2 = −1.

Figure 3.2: The exact result (blue solid line) for Γ(2) via Eqs. (2.12), (2.39), and (3.38) and the
large-N expansion result from Eqs. (3.29) and (2.39) as functions of λ for N = 2. The zeroth
order is plotted as a red solid line, the first-order correction as an orange dashed line and the
second-order correction as a green dashed line with larger dashing in both panels. The left panel
is an adaption of Ref. [107, Fig. 3].

Nonetheless, this work is not about benchmarking the precision of the 1
N -expansion with simple

toy models, where we totally believe that it yields decent results, also in higher-dimensional
generalizations. Rather, we want to demonstrate how the slight modifications in the UV sector
of a theory (the UV classical action) can lead the 1

N -expansion astray and how the infinite-
N limit can totally alter the phenomenology w.r.t. finite N . This is for example of particular
relevance in the vicinity of first-order PTs and for condensation/vaporization phenomena, e.g.,
if an external parameter like the chemical potential is varied. Here, potentials can comprise
degenerate global minima and cusps at their physical point. However, in the context of higher-
dimensional model calculations it is usually hard to identify these problems, due to a multitude
of interfering mathematical challenges and additional approximations.

3.3.4. An instructive toy model to study the failure of the 1
N

-expansion
and problems of the infinite-N limit

To this end we constructed the following seemingly innocent toy model in Ref. [3], which was
inspired by Ref. [77]. Its continuous potential is formed by stringing together linear pieces in y,
which corresponds to a piecewise quadratic dependence on the scalar field itself. The negative/zero
slope of the middle piece depends on some parameter a ≥ 0. In 1

N -rescaled quantities (3.17) it
explicitly reads,

V (y) =



y for 0 ≤ y ≤ 2 ,

−a y + 2 (a+ 1) for 2 < y ≤ 8 ,

y − 6 (a+ 1) for 8 < y ,

(3.40)

and for its y-derivative we find,

v(y) = ∂yV (y) =



1 for 0 ≤ y ≤ 2 ,

−a for 2 < y ≤ 8 ,

1 for 8 < y .

(3.41)
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Figure 3.3: The potential V (y) from Eq. (3.40) (upper panel) and its derivative v(y) = ∂yV (y)
from Eq. (3.41) (lower panel) for different values of the parameter a and where ac is given by
Eq. (3.42). From Ref. [3, Fig. 1].

The potential and its y-derivative are illustrated for three different values of a in Fig. 3.3. Here,
ac, which we denote as the critical value for a, is

ac = 1
4 − 1

3 ln(2) ≈ 0.018951 . (3.42)

This terminology and the role of ac are discussed in the next paragraphs. In addition, another
illustration of the potential in the rescaled scalar field

x ≡ 1√
N
ϕ , (3.43)

is later on provided in Fig. 6.12. It is clearly visible that the UV potential has always a unique
global analytic minimum at y = 0 for a ∈ [0, 2ac]. Additionally there is a degenerate flat region
for a = 0 and a second non-analytic local minimum at y = 8 for 0 < a ≤ 2ac. (Values a > 2ac are
not of relevance for our discussion.)

Exact solution

Before we turn to the actual discussion and the saddle-point expansion, note that this model is
exactly integrable. Using the definition of the (incomplete) gamma function (A.36) and (A.37),
we find for a > 0,∫ ∞

0
dy yN2 −1 yn e−NV (y) (3.40)= (3.44)

=N−(N2 +n)
(

Γ
(
N
2 + n

)
− Γ

(
N
2 + n, 2N

)
+ e6N(a+1) Γ

(
N
2 + n, 8N

)
+

+ (−a)−(N2 +n) e−2N(a+1) [Γ(N2 + n,−2Na
)

− Γ
(
N
2 + n,−8Na

)])
,
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and for a = 0,∫ ∞

0
dy yN2 −1 yn e−NV (y) (3.40)= (3.45)

=N−(N2 +n)
[
Γ
(
N
2 + n

)
− Γ

(
N
2 + n, 2N

)
+ e6N Γ

(
N
2 + n, 8N

)
+

+ e−2N (4N2 +n − 1)(2N)N2 +n

N
2 + n

]
.

These general integrals can in principle be used to evaluate the arbitrary correlation functions
(2.12) by hand and to further obtain the vertex functions (2.39) to (2.41). High-precision numerical
evaluation is of course also always possible.

The infinite-N limit of the exact solution

In addition to the exact solution for finite N , we also present the infinite-N limit of this exact
solution. For this, we insert Eq. (3.44) or Eq. (3.45), respectively, into the general expression for
the correlation function (2.12), which we rescale by 1

Nn . Afterwards we use Eqs. (A.41) and (A.42)
and send N → ∞. We find for a = 0,

lim
N→∞

1
Nn ⟨(ϕ⃗ 2)n⟩ = 1 , (3.46)

while for 0 < a ≤ 2ac,

lim
N→∞

1
Nn ⟨(ϕ⃗ 2)n⟩ =


1 , for a ≤ ac ,

16n , for ac < a ≤ 2ac .
(3.47)

The corresponding vertex functions in the N → ∞ limit are

Γ(2) =


1 , for a ≤ ac ,

1
16 , for ac < a ≤ 2ac ,

∀n ̸= 2 Γ(n) = 0 . (3.48)

For further details we refer to Ref. [3, Appendix A].

3.3.5. Application of the saddle-point expansion
Next, we turn to the saddle-point expansion of the correlation functions for the potential (3.40).
To this end, we analyzed and plot the function

f(y) = V (y) − 1
2 ln(y) , (3.49)

see Fig. 3.4. We recapitulate that an expansion in 1
N , thus Eq. (3.29), is exclusively applicable,

if f(y) has a unique global minimum y0 and is analytic around this minimum. Our f(y) has
in general two minima y0,1 and y0,2 with y0,1 < y0,2. The second minimum is always located
at y0,2 = 8 – the non-analytic cusp of the potential (3.40), while the first minimum agrees with
the minimum of f(y) for the free theory, thus y0,1 = 1

2 , see Section 3.3.2. The latter is easily
understood, because the minimum is always located on the first sector of the potential, where
V (y) = y, which is identical to the free theory.
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Figure 3.4: The function f(y) = V (y) − 1
2 ln(y) for the potential (3.40) for selected values of the

parameter a with ac = 1
4 − 1

3 ln(2) = 0.018951. The local minima of f(y) are located at y0 = 1
2 and

y0,2 = 8, where y0 (y0,2) is the unique global minimum for 0 ≤ a < ac (a > ac). At a = ac both
minima coincide and are global minima of f(y). The non-analyticity of f(y) in y0,2 = 8 inherited
from the piecewise definition of V (y) is clearly visible in the plot. From Ref. [3, Fig. 2].

The number and the position of the minima is independent of the parameter a. However, depending
on a, either y0,1 or y0,2 is the global minimum, while the other one still stays a local minimum.
The critical value is a = ac, when both minima of f(y) are degenerate, i.e.,

f
(
y0,1 = 1

2
) != f(y0,2 = 8) , (3.50)

which is exactly the case for ac previously defined in Eq. (3.42). (This does by no means imply
that V (y0,1) = V (y0,2).)

We conclude: As long as a < ac the 1
N -expansion of the expectation values (3.29) is perfectly

valid, because f(y), g(y), and V (y) are analytic at the expansion point y0,1 = 1
2 . Moreover, we

simply recover the results of the saddle-point expansion of the free theory from Section 3.3.2, but
this time for a highly non-linear interacting theory with non-analytic UV potential. However, in
contrast to the free theory, the saddle-point results for the correlation functions (3.36) are an actual
approximation to the exact results at finite N , because the latter are calculated from Eqs. (3.45)
and (3.44). Now, we could of course start to quantify the quality of this approximation, which is
however, not the objective of the discussion. Still, we note that for N → ∞ the leading order of
the 1

N -expansion agrees with the N → ∞ limit of the exact results (3.46) and (3.47). This sounds
trivial, but it is not.
On the other hand, if a ≥ ac the situation is totally different. The saddle-point approximation
and 1

N -expansion is formally1 no longer applicable, because the expansion point is non-analytic
and might not even be unique for a = ac. In this case, we should indeed abstain from using the
expansion Eq. (3.29), because an expansion is no longer well-defined. This does of course not alter
the fact that the exact result Eq. (3.44) is perfectly valid and also the N → ∞ limit (3.47) that
can be obtained from this result is well-defined.

In summary, we learned:

1. Already tiny variations of parameters in a theory can cause great differences in their phe-
nomenology. This effect is drastically enhanced in the N → ∞ limit, as can be seen from
all correlation functions (3.47), which jump at ac, while Eq. (3.45) and ratios thereof are
continuous functions of a at ac as long as N is finite. This jump in the correlation functions
and vertex functions can be associated with a first-order PT, which is driven by the varia-
tion of a, but is totally absent for finite but otherwise arbitrarily large N . In conclusion, the

1In fact, if one applies the saddle-point expansion at y0,2, despite the fact that it is mathematically not allowed,
and exclusively uses right-derivatives, one still obtains appropriate results for this toy model. Howsoever, this is
dangerous and certainly not generalizable.
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N → ∞ limit completely changes the physics of the system. This drastic difference between
finite and infinite N and its consequences are again analyzed within the FRG framework for
this model.

2. Sometimes it is extremely hard to judge when one is leaving the radius of convergence of
an approximation scheme. In the context of smooth UV potentials, which can be written
down in closed form, it might be simple to identify the global minimum and judge its quality
as an expansion point. Nevertheless, oftentimes the 1

N -expansion and the infinite-N limit
are applied to UV actions, where this is a highly non-trivial task. For example, consider
a boson-fermion system with Yukawa interaction, where the fermions are integrated out.
Here, the effective bosonic UV action comprises the logarithm of the fermion determinant
and identifying the true ground state of this effective classical action can be challenging.
Furthermore, external parameters, like a chemical potential can introduce artificial cusps
into these actions, which could even coincide with non-trivial minima of the potential. See
Part II for further discussions, details, and examples.

Hence, our simple toy model should be considered as a warning that the 1
N -expansion and infinite-

N limit can fundamentally spoil the phenomenology. In addition, these methods are not by
themselves sensitive to their limitations.

3.3.6. Summary
In this chapter we demonstrated on the basis of two examples, i.e., perturbation theory and the
1
N -expansion (including the infinite-N limit), that there is a manifest need for non-perturbative
methods, which also avoid the direct evaluation of the integrals in the partition function and
expectation values, but which are

1. independent of the number and (relative) strength of couplings.

2. insensitive to the analyticity/smoothness of the involved actions.

3. not based on a specific expansion point.

4. work reliable in all kinds of limits of a theory (e.g., small vs. infinite N) and under the
variation of external parameters.

In addition, we demonstrated that it needs challenging but exactly solvable test cases to study the
quality and predictability of a method under a controlled environment. It is simply not enough to
use standard ϕ4-theory as a benchmark test, which is anyhow oftentimes the case in the literature.



Chapter 4

The Functional Renormalization
Group from zero spacetime
dimensions

Abstract In this chapter we provide a pedagogical and perhaps unconventional introduction
to the FRG method. Without having to understand the physical concepts of coarse-graining,
RG scales, and renormalization etc. we derive the ERG equation – the Wetterich equation – in
zero-dimensional spacetime. We start off with some simple observations concerning the generating
functional for correlation functions and deduce a flow equation for this functional, which smoothly
interpolates between a trivial theory and the theories that we are actually interested in. We
show how to transform this flow equation into a flow equation for the generating functional for
1PI vertex functions and how to find the correct initial condition for the latter. For the entire
discussion we again use the model of N identical real scalars with possible O(N) symmetry.
Afterwards we turn to truncations of the flow equation and explain why these are actually not
needed in zero spacetime dimensions, which makes zero-dimensional FRG a perfect testing ground.
We derive and discuss the exact flow equation for the local potential, but also introduce an artificial
truncation scheme, the FRG Taylor expansion. Both are studied numerically in later chapters.
Finally, we discuss symmetry breaking/restoration during the RG flow.

Disclosure This chapter is completely based on our own publications [1, 2, 3] and especially
follows the discussion of Ref. [1, Chap. II & Appendix B d], which was in turn partially inspired
by Refs. [106, 109, 107, 108, 110, 135, 136]. However, the presentation of the material in this
thesis slightly differs in its presentation from the corresponding publication [1] and is exclusively
written by the author. General introductions to the FRG in higher dimensions can be found for
example in Refs. [53, 54, 55, 56, 57, 100, 35].

4.1. Solving integrals with flow equations

Having briefly analyzed two alternative methods to the brute-force calculation of expectation val-
ues in the previous chapter, which were not able to produce satisfactory results, we finally turn
to the FRG as a possibly more powerful alternative and strictly non-perturbative method.

We start our discussion with a simple observation: As we have already experienced in Section 3.1
there are QFTs where the calculation of all correlation and vertex functions is trivial. These
are free non-interacting (massive) theories, which simply correspond to standard Gaussian-type
integrals in the functional-integral formalism, and their correlation functions can be identified as
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the standard Gaussian moments. This basically generalizes to arbitrary spacetime dimensions and
field types.
Let us assume that we add some arbitrary higher-order interacting terms to a free theory, such that
the theory is no longer exactly integrable. Furthermore, let us assume that the coefficient of the
quadratic term, the positive mass, is huge compared to all other interaction terms in the action.
In addition, we know that the probability-distribution function for the microstates is formed by
the exponential of the negative action, see Eq. (2.4). This implies that the integrands in the corre-
lation functions (2.5) are completely dominated by the quadratic mass term and almost perfectly
approximate Gaussian integrands, because higher-order contributions from interaction terms ex-
clusively enter in the tail of the probability distribution, which hardly contributes to the integrals,
due to the strong exponential suppression. Thus, by sending the (positive) mass to extremely
large values, basically any theory turns into a quasi-free ultra-massive Gaussian non-interacting
integrable theory.

So, what if we introduce an artificial mass term into the partition function of a theory that we are
interested in and by hand manipulate its magnitude, such that a complicated interacting theory can
be transformed into a trivial quasi-free theory and vice versa? If this transition could be described
dynamically by some evolution equation, there was a chance to calculate the correlation and vertex
functions of highly complicated theories from a particular evolution starting with trivial Gaussian
correlation and vertex functions. Instead of calculating high-dimensional functional integrals, we
“only” had to solve the evolution equation(s).
In fact, exactly this is possible and done by the FRG method, which is explained in the following
using the zero-dimensional model of N real scalars from Chapter 2.

Of course, the FRG and the RG in general are based on many more physical and mathemati-
cal ideas and observations. For a pedagogical introduction to the concepts behind, we refer to
Ref. [161] or the FRG-specific Refs. [53, 54, 55, 56, 57, 100, 35]. We come back to these ideas at
various occasions throughout the discussions of this thesis, but do not go into detail here.

4.1.1. The scale-dependent partition function
As motivated in the previous paragraph, we use the zero-dimensional model of N real scalars and
introduce an artificial mass-like term into the action and the partition function (2.13),

Z(t, J⃗ ) ≡ N
∫ ∞

−∞
dNϕ e−S(ϕ⃗ )−∆S(t,ϕ⃗ )+J⃗ T ·ϕ⃗ . (4.1)

This term is sometimes denoted as the regulator insertion and reads

∆S(t, ϕ⃗ ) ≡ 1
2 ϕ⃗

T R(t) ϕ⃗ = 1
2 ϕiRij(t)ϕj . (4.2)

So far we do not assume O(N) symmetry of the theory. Consequently it is advisable to choose
a diagonal mass term, which does not introduce additional interactions between the fields, but is
still applicable to O(N)-symmetric theories,

R(t) ≡ 1 r(t) , ↔ Rij(t) = δij r(t) . (4.3)

The higher-dimensional analogues of R and r are usually called the regulator and the regulator-
shape function and are oftentimes energy/momentum-dependent.1 This directly brings us to
their dependence on the so-called RG time t. In higher-dimensional models the RG time t is
directly linked to the RG scale k, usually via the UV cutoff Λ, see Appendix D.1. However, in
zero spacetime dimensions there is no notion of an energy scale which can serve as a “momentary”
reference scale for the energies and momenta occurring in loops, like in higher dimensions, because

1For details on higher-dimensional regulator(-shape) functions, we refer to Refs. [162, 163, 54, 100, 164, 165,
166, 167].
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in zero dimensions there are no loop momenta etc.. Anyhow, in zero dimensions we still use the
concept of the UV cutoff Λ, which simply refers to a plain number, and is larger than any other
“scale” in the model, e.g., couplings, other parameters etc.. Here, Λ is simply associated to the
maximal artificial “mass” per particle that is introduced by the regulator – the coefficient of the
quadratic term in the action. In turn, the RG time is used to smoothly interpolate between a
theory with this huge mass Λ (in the UV) and the original theory without the artificial additional
mass-like term (in the IR). (The association of small t with the UV and large t with the IR
is explained below, when we turn to the 1PI formalism.) In fact, it can be interpreted as the
zero-dimensional version of Callan-Symanzik-type regulators, cf. Ref. [167].
Therefore, w.l.o.g.2 we choose the following regulator-shape function and domain for t,

r(t) = Λ e−t , t ∈ [0,∞) . (4.4)

Thus, for t = 0 we have r(t = 0) = Λ and the theory is approximately Gaussian and all correlation
functions are known. Oppositely, for t → ∞ we recover the original partition function (2.13) and
the correlation functions, that we are interested in in the first place.
For practical (and numerical) purposes it usually suffices (is necessary) to stop at some finite tIR,
which still has to correspond to an extremely small r(tIR) = rIR ≳ 0, and has to be much smaller
than all other “scales” in the model. This is referred to as the IR cutoff time/scale.

The role of the regulator – a visualization

For better understanding of the effect of r(t) on integrals like Eq. (4.1), we plot its integrand for
N = 1 and J = 0 for two different Z2-symmetric actions. In Fig. 4.1a we use the action (3.7) of the
ϕ4-theory with negative mass term, while Fig. 4.1b shows the dependence on t for a non-analytic
but otherwise perfectly valid classical action,

S(ϕ) =



−ϕ2 , if |ϕ| ≤ 5
4 ,

−
( 5

4
)2
, if 5

4 < |ϕ| ≤ 2 ,

1
48 (ϕ4 − 91) , if 2 < |ϕ| .

(4.5)

The plots clearly demonstrate how r(t) deforms the actions from ultra-massive free smooth actions,
which are quadratic in ϕ, into their actual shape, while the exponential integrand turns from a
Gaussian-shape distribution into the more complex original probability distribution. As long as Λ
is much larger than the other parameters of the actions, the Gaussian character clearly dominates.
However, when r(t) reaches the magnitude of the other parameters in the action, which is of order
one, we observe a rapid change until r(t) ultimately becomes irrelevant for large t and the original
action/probability distribution is recovered.

4.1.2. The heat equation – an evolution equation for the scale-dependent
generating functional of (connected) correlation functions

So far we introduced a term into our original theory, the regulator, which allows to smoothly
interpolate between a trivial quasi-free Gaussian theory and the theory that we are originally
interested in. Next, we examine how this evolution can be described mathematically.

2The only two requirements for the regulator-shape function, apart from the correct t = 0 and t → ∞ limits, are
that r(t) ∈ C1, such that its first derivative exists for all t, see also Ref. [100]. In addition we demand ∀t ∂tr(t) ≤ 0.
This guarantees that the regulator can always be interpreted as a mass term and monotonically decreases with t.
The need for both aspects becomes clear within the next lines. Furthermore, note that all regulators that fulfill
these criteria are reparametrization-invariant in zero dimensions. This does not generalize to higher-dimensional
theories.
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(a) For the action (3.7) with m2 = λ = 1.
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Figure 4.1: The integrand (upper panel) and the exponent (classical action plus regulator insertion)
of Eq. (4.1) for N = 1 at J = 0 as a function of the field variable ϕ for various RG times t. The
UV cutoff is Λ = 103, which is notably larger than the model parameters, and the IR cutoff
rIR ≃ 3.06 · 10−4 is significantly smaller than all model scales and corresponds to t = 15. From
Ref. [1, Figs. 1 & 2].

A flow equation for Z(t, J⃗ )

As usual, if we study changes of quantities with time – here RG time – we take derivatives w.r.t.
t of these quantities. For Eq. (4.1) this leads to

∂tZ(t, J⃗ ) = −
[ 1

2 ∂tr(t)
]

N
∫ ∞

−∞
dNϕ ϕ⃗ 2 e−S(ϕ⃗ )−∆S(t,ϕ⃗ )+J⃗·ϕ⃗ = (4.6)

= −
[ 1

2 ∂tr(t)
]
δij

∂2Z(t, J⃗ )
∂Jj ∂Ji

=

= −
[ 1

2 ∂tr(t)
]

∆J⃗ Z(t, J⃗ ) ,

where ∆J⃗ is the Laplace operator in the space of source-fields J⃗ . On a formal level, this RG
equation constitutes a PDE for the scale-dependent partition function Z(t, J⃗ ) on the infinite
domain J⃗ ∈ RN . The RG time plays the role of the evolution parameter – the time – and the
source-field space J⃗ is identified with the spatial domain. The equation is of first order in time
and of second order in its spatial derivatives. In fact, we identify Eq. (4.6) as a conventional
heat/diffusion equation [168], a fact which is also known in the FRG community [124, 100, 169].
In order to be a well-posed problem with unique (weak) solution and stable convergence according
to Hadamard, it is well-known that the diffusion coefficient of the heat equation needs to be
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positive semi-definite [168, 49, 50], i.e.,

D = − 1
2 ∂tr(t) ≥ 0 . (4.7)

This is indeed ensured by the monotonicity of the regulator shape function, see also Refs. [100,
164].3
A direct consequence of the RG evolution being described by a diffusion equation, which also gen-
eralizes to higher spacetime dimensions, is that the equation itself singles out a unique direction
of time from the UV (t = 0) to the IR (t → ∞). The reason is that diffusion is a dissipative
manifestly irreversible process and linked to the production of entropy. This introduces a ther-
modynamic arrow of time and time asymmetry [170] and backwards integration is impeded. It is
manifest on the level of the PDE and its numeric solution, as will be discussed in detail in later
chapters.
However, to be well-posed, one also needs to specify boundary and initial conditions for the PDE.
Formally, boundary conditions are not needed here, because the PDE is defined on all RN and
an initial condition suffices. It is a pure initial-value/Cauchy problem [104]. Unfortunately, the
initial condition is basically identical for any UV action S(ϕ⃗ ), because it is by construction an
almost perfect Gaussian,

Z(t = 0, J⃗ ) ≈ N
( 2π

Λ
)N

2 e
J⃗ 2

2Λ . (4.8)

This implied that RG flows for Z(t = 0, J⃗ ) of totally different classical actions S(ϕ⃗ ) are identical,
which is nonsense. Thus, one had to include the tiny deviations from the perfect Gaussian shape,
which are caused by the different higher-order interaction contributions in S(ϕ⃗ ), to obtain different
initial conditions. This, however, would require to solve the high-dimensional functional integrals
which we wanted to avoid in the first place.
In conclusion, Eq. (4.6) is perfectly valid, but seems to be problematic for practical (numerical)
computations, see Ref. [1] for further details. Furthermore, we mentioned several times in Sec-
tion 2.1 that the generating functional for correlation functions is anyhow not the optimal choice
of storing information about a QFT.
Therefore, we turn to the other two generating functionals that were introduced in Section 2.1,
i.e., the generating functional of connected correlation functions, Def. (2.15), and the generating
functional of 1PI vertex functions, Def. (2.20).

A flow equation for W(t, J⃗ )

It is straightforward to generalize the definition of the generating functional of connected correla-
tion functions to its scale-dependent counterpart. One simply uses Def. (4.1) and defines

W(t, J⃗ ) ≡ ln Z(t, J⃗ ) , (4.9)

which starts off in the UV at t = 0 as an almost perfect parabolic function of the source fields J⃗ ,
cf. Eq. (4.8), and approaches its physical value for t → ∞.
Using the identities of Section 2.1.3 and the flow equation (4.6), we arrive at an RG flow equation
for W(t, J⃗ ),

∂tW(t, J⃗ ) = −
[ 1

2 ∂tr(t)
] [

∆J⃗ W(t, J⃗ ) +
(
∂
∂Ji

W(t, J⃗ )
) (

∂
∂Ji

W(t, J⃗ )
)]
. (4.10)

In analogy to the flow equation (4.6) we are confronted with a heat equation with manifestly
positive diffusion coefficient. However, in addition to the conventional “heat-flux” another term

3Note that zero-dimensional spacetime allows to eliminate ∂tr(t) from the equation by appropriate reparametriza-
tion of the temporal coordinate, which anyhow keeps the structure of the equation unchanged and again emphasizes
that all valid regulators are identical up to a reparametrization. In higher-dimensional spacetimes this is no longer
the case.
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is generated, which is quadratic in the first spatial derivative of the abstract fluid field W(t, J⃗ ).
This turns the problem into a non-linear PDE, which in general complicates its solution.
Anyhow, we are again confronted with the same shortcoming as before. The initial condition is
to first approximation identical for any possible S(ϕ⃗ ). However, incorporating the tiny devia-
tions from W(t = 0, J⃗ ) ∝ J⃗ 2 required to solve the functional integral from Eq. (4.1) including
interaction terms. However, this was what we wanted to avoid in the first place by turning to
perturbation theory, the 1

N -expansion, and the FRG method.

Note: Interestingly, the flow equation (4.10) is structurally identical to Polchinski’s RG flow equa-
tion for the RG flow of effective Lagrangians [171, 100] and similar to the flow equations used in
Ref. [102]. In turn, these flow equations do not exhibit the problem of indistinguishable initial con-
ditions, because there the abstract fluid is the effective Lagrangian (Wilson’s effective action) itself.

Anyhow, we turn to yet another generating functional and its associated exact RG flow equation
and demonstrate that it has well-defined and distinguishable initial conditions for separate theories
– the Wetterich equation.

4.2. The exact renormalization group equation – the Wet-
terich equation

In a first step, we generalize the definition of the generating functional of 1PI vertex functions
(2.20) (the effective action) to a scale-dependent version using the Legendre transformation of
Eq. (4.9),

Γ(t, φ⃗ ) ≡ supJ⃗
{
J⃗ · φ⃗− W(t, J⃗ )

}
= J⃗(t, ϕ⃗ ) · ϕ⃗− W(t, J⃗(t, ϕ⃗ )) . (4.11)

Note that the evaluation on the supremum makes the sources RG-time- and field-dependent.
Furthermore, we introduce the so-called effective average action,

Γ̄(t, φ⃗ ) ≡ Γ(t, φ⃗ ) − ∆S(t, φ⃗ ) , (4.12)

where we subtract the regulator insertion (4.2) from Eq. (4.11). Both generating functionals,
Eqs. (4.11) and (4.12), have the correct IR limit for t → ∞ and approach the 1PI IR effective
action (2.20). Their UV behavior is, however, different, and discussed below. (Within the next
lines it becomes clear why one uses Eq. (4.12) instead of Eq. (4.11) for practical computations.)

4.2.1. A flow equation for Γ̄(t, φ⃗ )
The derivation of the exact RG flow equation for the effective average action (4.12) is straight-
forward. One starts again by taking the time derivative of the generating functional. The actual
calculation is presented in the next lines, with explicit references to the used identities at the end
of the lines,

∂tΓ̄(t, φ⃗ ) (4.12)= (4.13)

= ∂t
(
Γ(t, φ⃗ ) − ∆S(t, φ⃗ )

) (4.11)=

= ∂t
(
J⃗(t, φ⃗ ) · φ⃗− W(t, J⃗(t, φ⃗ )) − ∆S(t, φ⃗ )

) (4.2)=

=
(
∂tJ⃗(t, φ⃗ )

)
· φ⃗− ∂tW(t, J⃗(t, φ⃗ )) −

(
∂tJi(t, φ⃗ )

) [
∂
∂Ji

W(t, J⃗)
]
J⃗=J⃗(t,φ⃗ ) −

( 1
2 ∂tr(t)

)
φ⃗ 2 (2.21)=
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= − ∂tW(t, J⃗(t, φ⃗ )) −
( 1

2 ∂tr(t)
)
φ⃗ 2 (4.10),(2.21)=

=
( 1

2 ∂tr(t)
)
δij

∂2W(t, J⃗ )
∂Jj ∂Ji

.

In a final step, we have to express the scale-dependent connected two-point correlation function
to formulate the entire flow equation on the level of the vertex functions. We use Eqs. (2.26)
and (4.12) and find,

∂tΓ̄(t, φ⃗ ) =
( 1

2 ∂tr(t)
)
δij G

φ⃗φ⃗(t, φ⃗ )ji =
( 1

2 ∂tr(t)
)
δij
(
Γ̄φ⃗φ⃗(t, φ⃗) +R(t)

)−1
ji
. (4.14)

This equation is the zero-dimensional version of the ERG equation or Wetterich equation for a
model of N real scalars. In its general form for possibly non-diagonal regulators in arbitrary
spacetime dimensions and with arbitrary field content, this equation reads

∂tΓ̄t[Φ] = STr
[( 1

2 ∂tRt)Gt[Φ]
]
, (4.15)

where Φ contains all degrees of freedom of a system and STr is the “supertrace” that accounts for
sign flips due to anti-commutation of fermionic components etc.. For further information, we refer
to Appendix C.2, where a detailed derivation of the Wetterich equation is presented for arbitrary
field content in an arbitrary number of spacetime dimensions, and Refs. [54, 172, 35].

Anyhow, a few comments concerning the form of Eq. (4.14) are in order. In general, the equation
is still a diffusion-type equation. It is first order in its temporal derivative and of second order in
its spatial derivatives. The spatial domain is now the mean-field space and the spatial coordinates
are φ⃗ ∈ RN . In contrast to the previous RG flow equations (4.6) and (4.10), we are confronted with
an inverse dependence on the second derivative of the abstract fluid field Γ̄(t, φ⃗ ). The equation
therefore surely keeps its dissipative character, but diffusion is not necessarily enhanced in regions
of high gradients and vice versa. We shed light on the true underlying structure of this equation in
the next chapter. For the moment we simply turn to the issue of an appropriate initial condition
for this PDE, because the PDE is still a Cauchy problem without boundary conditions, since the
domain of the PDE is not compact and not finite.

4.2.2. A proper UV initial condition for the RG flow of the effective
average action

To find the initial condition for Eq. (4.14) we have to calculate the t → 0 limit of the effective
average action (4.12). The starting point of this discussion is the identity

e−Γ(t,φ⃗ ) = eln Z(t,J⃗(t,φ⃗ ))−J⃗ T (t,φ⃗)·φ⃗ = N
∫ ∞

−∞
dNϕ e−S(ϕ⃗ )−∆S(t,ϕ⃗ )+J⃗ T ·(ϕ⃗−φ⃗ ) , (4.16)

which simply follows from the Defs. (4.1), (4.9), and (4.11).
Firstly, we shift the integration variables by the mean fields, ϕ⃗ 7→ ϕ⃗ ′ = ϕ⃗ − φ⃗, which is the same
shift that is frequently deployed in the background-field formalism to study fluctuations about the
expectation value of the field [145, 173]. Secondly, we use the t-dependent version of Eq. (2.23)
and find,

e−Γ̄(t,φ⃗ ) = N
∫ ∞

−∞
dNϕ′ e−S(ϕ⃗ ′+φ⃗ )−∆S(t,ϕ⃗ ′ )−r(t) ϕ⃗ ′T ·φ⃗+Γφ⃗(t,φ⃗ )i ϕ′

i . (4.17)

The two rightmost terms in the exponent can be combined and we have

Γ̄(t, φ⃗ ) = − ln
∫ ∞

−∞
dNϕ

( r(t)
2π
)N

2 e−S(ϕ⃗+φ⃗ )− 1
2 r(t) ϕ⃗ 2+Γ̄φ⃗(t,φ⃗ )i·ϕi − ln N

( 2π
r(t)
)N

2 . (4.18)
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Here, we renamed the integration variable and introduced the normalization factor of an N -
dimensional Gaussian integral with mass r(t). Now we are ready to analyze the t → 0 limit of
Γ̄(t, φ⃗ ).
In the integral on the r.h.s. the classical action does not depend on t, while the last term in
the exponent is of higher order. The middle term of the exponent, however, approaches an N -
dimensional Dirac delta distribution

lim
t→0

( r(t)
2π
)N

2 e− 1
2 r(t) ϕ⃗ 2

≈ δ(N)(ϕ⃗ ) , (4.19)

as long as Λ is much larger than all scales in S(ϕ⃗ ). Thus, denoting

c(t) = − ln N
( 2π
r(t)
)N

2 , (4.20)

the t → 0 limit of the effective average action is

Γ̄(t, φ⃗ ) → − ln
∫ ∞

−∞
dNϕ δ(N)(ϕ⃗ ) e−S(ϕ⃗+φ⃗ )+Γ̄φ⃗(t,φ⃗ )i ϕi +c(t) = S(φ⃗ ) + c(t) . (4.21)

We identify the initial condition for the RG flow equation of the effective average action as the
classical action evaluated for the mean fields φ⃗ (up to a scale-dependent constant, which we ignore
for a moment). Different models with distinct classical actions S(φ⃗ ) therefore correspond to
different well-defined initial conditions and generally distinguishable RG flows.
This also explains why t = 0 is denoted as the UV and t → ∞ as the IR: The effective average
action simply continuously interpolates between the classical microscopic UV action S(φ⃗ ) and the
full-quantum IR effective action Γ(φ⃗ ). This transition from micro- to macro-physics is exactly
described by the ERG equation (4.14). In higher-dimensional spacetime it goes hand in hand with
continuously integrating out momentum shells, which makes the Wetterich equation the direct
implementation of Wilson’s concept [174, 175, 176, 161] of the RG.

However, it remains to analyze the role of the scale-dependent but field-independent constant
(4.20). The problem is that for t → 0 its absolute value is large, c(t) ∼ ln r(t). Therefore, by
including this term, the initial condition for the RG flow would be completely dominated by this
large constant and the differences of different S(φ⃗ ) would again be hardly visible. Anyhow, an
overall field-independent term is always irrelevant for all physical observables, which are either
obtained from the IR vertex functions or from relative differences in Γ(φ⃗ ). In both cases the
t-dependent constant drops out. In addition, inspecting Eq. (4.14), one finds that the r.h.s. of the
PDE exclusively depends on the second derivative of Γ̄(t, φ⃗ ), such that the t-dependent constant
does not modify the evolution of Γ̄(t, φ⃗ ) itself. We conclude that the t-dependent term (4.20) can
be ignored and dropped from practical calculations.

In summary, the Wetterich equation (4.15) is the evolution equation that we were looking for: It
allows to circumvent the brute-force calculation of functional integrals like Eq. (2.12). The price
to be paid is that one has to solve in general a highly non-linear multi-dimensional PDE. Instead
of calculating the correlation functions, one extracts the vertex functions from the solution of the
PDE by taking field-space derivatives at its minimum, cf. Section 2.2.2. In zero dimensions, this is
of course cumbersome compared to the direct calculation of expectation values, while for higher-
dimensional problems, it could be an advantage. Unfortunately, in higher-dimensional spacetimes,
the Wetterich equation even turns into a functional partial-integro differential equation, which
usually cannot be solved exactly and calls for approximations. The question is therefore how
solving this equation is done in practice. This is the topic of the following two sections.
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4.3. The ERG equation without truncations – a PDE for
the local potential of the zero-dimensional O(N) model

As it stands, even the zero-dimensional Wetterich equation for a model of N real scalars is a tough
problem, because it is an N -dimensional PDE, and without further constraints, there is nothing
we can do about it.
Fortunately, most problems in QFT are heavily constrained by symmetries of all kind. For the
(functional) integrals in the calculation of correlation functions like Eq. (2.7) the O(N) symmetry
was used to reduce the dimensionality of the integration from N to 1. A similar approach is
usually taken in the FRG formalism: It is known that the IR effective action only comprises terms
which are in accordance with the UV symmetries of the system – the symmetries of the partition
function [144, 145, 19, 177, 13]. Hence, during the RG flow all kinds of interaction terms and
couplings are generated, but all of them have to preserve the symmetries from the UV. (Of course,
this is not the case for the vacuum/ground state, which is extracted as the minimum of the IR
effective action and can break symmetries, which is spontaneous symmetry breaking during the
RG flow.)
Having this in mind, it is advisable to write down the scale-dependent effective average action in
terms of scale-dependent function(al)s of invariants of the UV symmetries and to study the RG
flow of these function(al)s.

4.3.1. The flow equation of the local potential of the O(N) model
For the zero-dimensional O(N) model this is simple. The only possible O(N)-invariant structure,
which is built up from the O(N) invariant of the mean fields φ⃗,

ϱ = 1
2 φ⃗

2 , (4.22)

is a scale-dependent effective potential U(t, φ⃗ ) = U(t, ϱ). In the UV at t = 0 it simply matches
the classical potential of Chapter 2. The effective average action is therefore described on all RG
scales by

Γ̄(t, φ⃗ ) = U(t, φ⃗ ) = U(t, ϱ) , (4.23)

and starts off in the UV as the classical action/potential S(φ⃗ ) = S(ϱ) = U(ϱ). Inserting this in
the ERG equation (4.14) we obtain an exact flow equation, which is effectively two-dimensional –
one temporal coordinate (the RG time t) and a single spatial coordinate (the invariant ϱ).
In order to also reduce the r.h.s. of Eq. (4.14) to a dependence on t and ϱ, we have to invert the
matrix-valued two-point function and calculate the propagator. This is done as follows.
We calculate the first two derivatives of Eq. (4.23) w.r.t. the components of φ⃗,

Γ̄φ⃗(t, φ⃗ )i ≡ ∂
∂φi

Γ̄(t, φ⃗ ) = φi ∂ϱU(t, ϱ) , (4.24)

Γ̄φ⃗φ⃗(t, φ⃗ )ji ≡ ∂2

∂φj ∂φi
Γ̄(t, φ⃗ ) = δji ∂ϱU(t, ϱ) + φj φi ∂

2
ϱU(t, ϱ) . (4.25)

These and the Def. (4.3) of the regulator can be used to write down the components of the full
field-dependent matrix-valued two-point vertex function,(

Γ̄φ⃗φ⃗(t, φ⃗ ) +R(t)
)
ji

= δji
[
r(t) + ∂ϱU(t, ϱ)

]
+ φj φi ∂

2
ϱU(t, ϱ) . (4.26)

The inverse of this object is generated as follows. We introduce the field-space projectors which
project onto the one-dimensional subspace which is parallel (∥) to the field-space vector ϕ⃗, and
onto the (N − 1)-dimensional subspace that is perpendicular (⊥) to the same vector respectively,

P∥
ji(φ⃗ ) ≡ φj φi

φ⃗ 2 , P⊥
ji(φ⃗ ) ≡ δji − φj φi

φ⃗ 2 . (4.27)



46 4. The Functional Renormalization Group from zero spacetime dimensions

As is convenient for any reasonable projectors, they are idempotent, orthogonal, and complete.
Using these projectors, the two-point function is split into parallel and perpendicular contributions(

Γ̄φ⃗φ⃗(t, φ⃗ ) +R(t)
)
ji

= P⊥
ji(φ⃗ )

[
r(t) + ∂ϱU(t, ϱ)

]
+ (4.28)

+ P∥
ji(φ⃗ )

[
r(t) + ∂ϱU(t, ϱ) + 2ϱ ∂2

ϱU(t, ϱ)
]
,

The inversion of this object is now simple, due to the projector properties. One finds

(
Γ̄φ⃗φ⃗(t, φ⃗ ) +R(t)

)−1
ji

= P⊥
ji(φ⃗ ) 1

r(t) + ∂ϱU(t, ϱ) + (4.29)

+ P∥
ji(φ⃗ ) 1

r(t) + ∂ϱU(t, ϱ) + 2ϱ ∂2
ϱU(t, ϱ) ,

= P⊥
ji(φ⃗ )Gππ(t, φ⃗ ) + P∥

ji(φ⃗ )Gσσ(t, φ⃗ ) .

In the last line we defined the full propagators of the so-called radial σ mode and the N − 1 pions,
which correspond to the Nambu-Goldstone modes of higher-dimensional problems,

Gσσ(t, φ⃗ ) = 1
r(t) + ∂ϱU(t, ϱ) + 2ϱ ∂2

ϱU(t, ϱ) , (4.30)

Gππ(t, φ⃗ ) = 1
r(t) + ∂ϱU(t, ϱ) . (4.31)

Next, Eq. (4.29) is inserted into the r.h.s. of the Wetterich equation (4.14) and the summation
over field indices (the trace) is evaluated. In total, one obtains the following PDE,

∂tU(t, ϱ) = (N − 1)
1
2 ∂tr(t)

r(t) + ∂ϱU(t, ϱ) +
1
2 ∂tr(t)

r(t) + ∂ϱU(t, ϱ) + 2ϱ ∂2
ϱU(t, ϱ) , (4.32)

whose spatial domain is parameterized by the invariant ϱ ∈ [0,∞).
In contrast to what is usually found in the literature, it turns out, see next chapter, that for certain
purposes it is much better to return to the fields instead of the invariant as the domain of PDE.
However, instead of using φ⃗ it suffices to pick one field-space direction, e.g., φ⃗ = (σ, 0, . . . , 0), such
that

ϱ = 1
2 σ

2 , (4.33)

because the Wetterich equation is valid for any field configuration. Using this variable transfor-
mation, the PDE is defined for σ ∈ (−∞,∞) and reads,

∂tU(t, σ) = (N − 1)
1
2 ∂tr(t)

r(t) + 1
σ ∂σU(t, σ)

+
1
2 ∂tr(t)

r(t) + ∂2
σU(t, σ) = (4.34)

=

~π

+

σ

, (4.35)

where U(t, σ) = U(t,−σ), which is a remnant of the O(N) symmetry. In the last line we also
introduced the graphical representation of the RG flow equation in terms of Feynman graphs. The
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crossed circles represent the regulator term 1
2 ∂tr(t), while the full σ and pion propagators are rep-

resented by blue jagged and red dashed lines. For further details on this graphical representation,
see also Appendices C.2 and E.
Note that in higher spacetime dimensions the derivation of the flow equation of the effective
potential in O(N)-type models is very similar and the final result is structurally identical. The
difference in higher dimensions are scale-dependent prefactors and that the flow equation for the
effective potential is no longer exactly equivalent to the functional integral, but is part of an infinite
set of coupled set of PDEs, which is usually truncated, see Appendix C.2.4. Nevertheless, almost
all of the upcoming discussion in the next chapters can be generalized or adopted to non-zero
spacetime dimensions.

4.4. Artificially truncating the ERG equation – the FRG
Taylor (vertex) expansion

As was just said, FRG in higher-dimensional spacetime usually calls for approximations and one
is usually confronted with a coupled set of PDEs and ODEs which describe the RG flow of the
system.
A commonly used approximation scheme is the so-called vertex expansion [53, 57, 35], where
the scale-dependent effective average action is expanded in interaction vertices/field-orders. In
non-zero dimensions, these vertices are usually momentum-dependent and high resolution in mo-
mentum space is usually the goal, when this approach is used.
Another truncation scheme is the derivative expansion [53, 57, 35], where the effective average ac-
tion is expanded in powers of momenta, but field dependences are included at all orders. The lowest
order contribution of this approximation is the LPA, which is exact in zero dimensions, because
there are no momenta. This approximation is believed to work well at small momenta/energies
etc..
Still, even the LPA flow equation is oftentimes further approximated in terms of a Taylor-expansion
of the effective potential in powers of the field, e.g., Refs. [78, 178, 179, 53, 65, 56, 66, 180, 63, 70,
69, 71]. Hereby, the expansion point is usually chosen to be the scale-dependent or the IR mini-
mum of the effective potential. For zero dimensions the IR minimum is trivial as demonstrated in
Section 2.2.2. Consequently, in zero dimensions the vertex expansion and the Taylor expansion of
the effective potential coincide.

Even though the Taylor expansion of the effective potential is not needed and it is possible to
solve Eq. (4.34) (numerically) in full generality, it is instructive to study artificial truncations in
zero dimensions. The reason is that in general the effective potential does not need to be analytic
during the RG flow and can even develop non-analyticities in the IR in higher dimensions [83, 91,
77, 101, 103]. An expansion in the fields is therefore generally questionable, because the radius of
convergence might be strongly limited or not exist at all. Still, this expansion is used frequently
without any doubt. Therefore, we believe that it is useful to demonstrate its limited range of
applicability via some simple zero-dimensional test cases, similar to what was done in Chapter 3
for perturbation theory and the 1

N -expansion. Due to the availability of exact reference values,
this may help to get a better intuition on the quality of this truncation scheme and an estimate
of its factual range of applicability.
Hopefully, this contributes to the ongoing debate on useful truncation schemes of the Wetterich
equation, because so far there is no absolute systematics for the development of correct truncations
and their errors. Acting from necessity, truncations are usually simply adopted to the problem at
hand by experience rather than quantitative evidence.

4.4.1. The formalities of the FRG Taylor expansion
In this section, we formally introduce the zero-dimensional FRG Taylor expansion as a truncation
of the exact flow equations (4.32) and (4.34). This idea is not original to the author and can also
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be found in Refs. [107, 108, 109, 110, 125].
The starting point is the equality of the effective average action and the effective potential
Eq. (4.23). We expand it in powers of the O(N) invariant ϱ = 1

2 φ⃗
2, such that the expansion

respects the UV symmetry. Explicitly the expansion up to a truncation order m reads,

Γ̄(t, φ⃗ ) = U(t, φ⃗ ) =
m∑
n=0

1
(2n−1)!! Γ̄(2n)(t) 1

n!
( 1

2 φ⃗
2)n = (4.36)

= Γ̄(0)(t) + Γ̄(2) ( 1
2 φ⃗

2)+ 1
3 Γ̄(4) 1

2
( 1

2 φ⃗
2)2 + . . . ,

or

Γ̄(t, ϱ) = U(t, ϱ) =
m∑
n=0

1
(2n−1)!! Γ̄(2n)(t) 1

n! ϱ
n , (4.37)

expressed via the invariant itself. Here, Γ̄(2n)(t) are the scale-dependent expansion coefficients
– the vertices. The additional factors (2n − 1)!! and n! are introduced such that the expansion
coefficients in the IR exactly match the 1PI 2n-point vertex functions with identical field indices
(2.39) to (2.41) etc., thus, Γ̄(2n)(tIR) = Γ(2)

φi...φi .

This expansion implies that Eqs. (4.32) and (4.34) turn into a coupled set of ODEs for the expan-
sion coefficients. This system is obtained as follows.
We start by inserting the Taylor expansion (4.36) or Eq. (4.37) into Eqs. (4.24) to (4.26) and
repeat the projector decomposition of the previous Section 4.3.1. As an intermediate result, we
obtain the σ and pion propagators (4.30) and (4.31) in their Taylor-expanded version,

Gππ(φ⃗ ) =
[
r(t) +

m+1∑
n=1

1
(2n−1)!! Γ̄(2n)(t) 1

(n−1)!
( 1

2 φ⃗
2)n−1

]−1

= (4.38)

=
[
r(t) +

m+1∑
n=1

1
(2n−1)!! Γ̄(2n)(t) 1

(n−1)! ϱ
n−1

]−1

= Gππ(ϱ) ,

Gσσ(φ⃗ ) =
[
r(t) +

m+1∑
n=1

1
(2n−3)!! Γ̄(2n)(t) 1

(n−1)!
( 1

2 φ⃗
2)n−1

]−1

= (4.39)

=
[
r(t) +

m+1∑
n=1

1
(2n−3)!! Γ̄(2n)(t) 1

(n−1)! ϱ
n−1

]−1

= Gσσ(ϱ) ,

Thus, in analogy to the flow equations (4.32) and (4.34), we find

∂tΓ̄t(φ⃗ ) =
( 1

2 ∂tr(t)
)[

(N − 1)Gππ(φ⃗ ) +Gσσ(φ⃗ )
]
, (4.40)

and

∂tΓ̄t(ϱ) =
( 1

2 ∂tr(t)
)[

(N − 1)Gππ(ϱ) +Gσσ(ϱ)
]
, (4.41)

respectively.
In the last step, we also insert Eqs. (4.36) and (4.37) on the left-hand side (l.h.s.) of these equations
and expand both sides in ϱ = 1

2 φ⃗
2 up to the desired expansion order m. Either by comparing

coefficients on both sides of the equation or by taking an appropriate number of derivatives w.r.t.
the invariant and evaluating at ϱ = 1

2 φ⃗
2 = 0 afterwards, we obtain the following coupled set of
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ODEs [107, 109],

∂tΓ̄(0)(t) =N
1
2 ∂tr(t)

r(t) + Γ̄(2)(t)
, (4.42)

∂tΓ̄(2)(t) = − N + 2
3

1
2 ∂tr(t)[

r(t) + Γ̄(2)(t)
]2 Γ̄(4)(t) , (4.43)

∂tΓ̄(4)(t) = 2(N + 8)
3

1
2 ∂tr(t)[

r(t) + Γ̄(2)(t)
]3 [Γ̄(4)(t)

]2 − N + 4
5

1
2 ∂tr(t)[

r(t) + Γ̄(2)(t)
]2 Γ̄(6)(t) , (4.44)

...

and for all n ≥ 2m+ 2

∂tΓ̄(n)(t) = 0 . (4.45)

As can be seen, the respective flow equation for the coefficient Γ̄(2n)(t) always contains Γ̄(2n+2)(t)
on the r.h.s.. Hence, without truncating this system at an artificial expansion order m, we obtain
an infinite tower of coupled ODEs.
This is discussed in detail in Appendix C.2.4. In addition, note, that the UV initial values for the
ODE system of vertices are extracted by also expanding the UV potential and mapping its coef-
ficients on the UV coefficients Γ̄(2n)(tUV), which already implies analyticity of the initial potential.

Finally, we remark that a computation of high-order Taylor expansions by hand is tedious and
error prone. Therefore, we recommend using computer-algebra systems like Mathematica [147]
for their derivation as was also done for this thesis and the corresponding publication [1].

4.5. Symmetry breaking/restoration during the RG flow in
zero dimensions

In this section we return to the question of symmetry breaking/restoration in zero dimensions as
well as smoothness and convexity of the generating functionals. It is a continuation of Section 2.2.
The motivation for this discussion is rather simple. In Section 4.2.2 we argued that the correct
UV initial condition for the effective average action is the classical action, Γ̄(t = 0, φ⃗ ) = S(φ⃗ ).
Moreover, we know that the IR limit of the effective average action is the IR effective action
Γ̄(t → ∞, φ⃗ ) = Γ(φ⃗ ). For the latter, we demonstrated its smoothness and convexity in Section 2.2.
The former classical action, however, neither needs to be convex nor smooth.
This implies that there can be PTs during the RG flow from the UV to the IR on the level of
Γ̄(t, φ⃗ ). This transition only allows for a temporary breaking of a symmetry and always leads to a
restoration of all symmetries in the IR. Without fermionic degrees of freedom, symmetry breaking
has to be imprinted to the dynamics already in the UV initial condition, if it should be present
at all at some point during the RG flow, because the bosonic degrees of freedom exclusively work
against symmetry breaking.

Of course, this calls for some step-by-step explanation:
Let us start with the RG-scale-dependent versions of the generating functionals of (connected)
correlation and vertex functions Eqs. (4.1), (4.9), and (4.11). The plain introduction of the
regulator insertion (4.2) simply adds an additional smooth mass term to the classical action and
the partition function. In consequence, the proof of smoothness from Section 2.2.1 still applies.
The same holds true for the proof of convexity in Section 2.2.2. We conclude that the generating
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functionals Z(t, J⃗ ), W(t, J⃗ ), and Γ(t, φ⃗ ) are convex and smooth at all RG times t. The question
is how this fits with the discussion of the previous paragraph.

Convexity Concerning convexity, the reasoning is rather simple. In Eq. (4.12) we defined the
effective average action as follows

Γ̄(t, φ⃗ ) ≡ Γ(t, φ⃗ ) − ∆S(t, φ⃗ ) . (4.46)

Even though Γ(t, φ⃗ ) is convex for all t, it is obvious from this definition that this is not necessarily
the case for Γ̄(t, φ⃗ ) due to the subtraction of the quadratic mass term. This resolves the first
puzzle.

Smoothness Nevertheless, the question of smoothness remains. Since Γ(t, φ⃗ ) and ∆S(t, φ⃗ ) are
smooth for all t, Eq. (4.46) implies that also Γ̄(t, φ⃗ ) is smooth for all t. But this is in direct
opposition to the fact that Γ̄(t, φ⃗ ) is initialized with S(φ⃗ ), which can hand down contain cusps.

The reason for this discrepancy is hidden in Eq. (4.19). The limit of Γ̄(t → 0, φ⃗ ) = S(φ⃗ ) would
only be exact for an infinite UV cutoff Λ. This, however, does not make sense, because in this limit,
vertices like Γ̄(2)(t = 0) would diverge, as can be seen from Eq. (3.4) with m2 = Λ and we could
hardly calculate at all. Hence, the UV limit is pathologic. The approximation Γ̄(t → 0, φ⃗ ) = S(φ⃗ )
is only almost exact for very large Λ and explains the discrepancy in smoothness. For all practical
applications this does not have any consequence at all: As long as there is a contribution of the
diffusive σ mode in the flow equation, see Eq. (4.34), the flow equation itself will slightly smooth
out any cusps already after an infinitesimal RG time step, such that smoothness of Γ̄(t → 0, φ⃗ )
is recovered. (We find that this does not need to happen in the N → ∞ limit of Eq. (4.34).) We
can even estimate the error for the observables which stems from the minimal approximation in
the initial condition. In fact the error should be of magnitude

error ≈ largest scale in S
Λ , (4.47)

because the initial criterion for the choice of Λ was that it should be much larger than all scales
and parameters in S(φ⃗ ).

Analyticity Still, the above discussion does not say anything about analyticity of the generat-
ing functionals at all. A function can easily be smooth, without being analytic and expandable.
In consequence, even though smoothness might be restored for Γ̄(t, φ⃗ ) (at finite N) in the RG
flow immediately, this does by no means imply that the FRG Taylor expansion of Section 4.4.1
converges and is applicable at all.

In summary, the zero-dimensional O(N) model also allows to study PTs, even though these are
not associated with the variations of external thermodynamic parameters. The phase transition
that can be studied by our toy model is in fact symmetry restoration of the ground state, if it was
initially broken by the ground state of the microscopic UV classical action.

4.6. Summary
In this chapter we presented the FRG method in terms of simple modifications of probability-
distribution functions and generating functionals. By introducing an artificial mass-like term in a
QFT, which is altered along some evolution parameter t, we derived a partial differential equation
which allows to calculate vertex functions without (numerically) calculating functional integrals
at all. It is exclusively required to solve this PDE, which sometimes requires approximations.
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The peculiar aspect of this chapter is that by using the zero-dimensional O(N) model we were
able to reduce the Wetterich equation to its absolute minimal form and essential characteristic
properties. We were able to get rid of all additional complications, which usually come with high-
dimensional QFTs, such as spacetime symmetry groups, infinities, regularization, renormalization,
truncations etc.. This sets the stage for reanalyzing the Wetterich equation and working out some
novel fluid-dynamical aspects, which also generalize to higher-dimensional applications.
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Chapter 5

FRG flow equations and
(computational) fluid dynamics

Abstract In this chapter we recast the FRG flow equation for the effective potential of the zero-
dimensional O(N) model in the form of a conservation law. We identify advective and diffusive
fluxes. This promotes the interpretation of RG flow equation to a fluid-dynamical problem with all
its consequences, which are presented in detail. We discuss irreversibility and entropy production
as well as shocks and their mathematical formulation in different limits of the flow equation.
Afterwards we deal with the numerical implementation: We first focus on a specific numerical
scheme from the field of computational fluid dynamics, the Kurganov-Tadmor (KT) (central)
scheme, and then turn to the general formulation of appropriate boundary conditions.
The entire chapter focuses on theoretical considerations, while practical applications and tests of
our findings are discussed in the next chapter.

Disclosure This chapter is entirely based on our own work, which is published in Refs. [1, 2,
3]. The compilation of the results is different, but some parts of this chapter closely follow the
presentation from the publications. Most of the material is based on work which I performed in
equal shares with M. J. Steil and the support of our other coauthors.
Furthermore, this chapter is influenced by the works of our collaborators [77, 101, 102, 103] as
well as our related own project Ref. [4], which is presented in Part II of this thesis.

5.1. Flow equations and conservation laws

Already in Section 4.1 we discussed that the RG flow equations for Z(t, J⃗ ) and W(t, J⃗ ) share
certain similarities with fluid-dynamical problems, e.g., the heat equation. However, due to diffi-
culties with the initial conditions of these PDEs, we turned to the Wetterich equation for Γ̄(t, φ⃗ ).
We finally arrived at a flow equation for the local effective potential U(t, σ) = U(t, ϱ) for the
zero-dimensional O(N) model, cf. Eqs. (4.32) and (4.34). However, a structured analysis of this
equation is still outstanding. This is part of this chapter.

5.1.1. Turning the LPA flow equation into a conservation law
For convenience only, we again present the LPA flow equations (4.32) and (4.34) formulated in
the O(N) invariant ϱ,

∂tU(t, ϱ) = (N − 1)
1
2 ∂tr(t)

r(t) + ∂ϱU(t, ϱ) +
1
2 ∂tr(t)

r(t) + ∂ϱU(t, ϱ) + 2ϱ ∂2
ϱU(t, ϱ) , ϱ ∈ [0,∞) , (5.1)
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and in the background field σ,

∂tU(t, σ) = (N − 1)
1
2 ∂tr(t)

r(t) + 1
σ ∂σU(t, σ)

+
1
2 ∂tr(t)

r(t) + ∂2
σU(t, σ) , σ ∈ (−∞,∞) . (5.2)

Both formulations of the flow equation are of first order in the temporal coordinate, comprise a di-
rect dependence on their spatial coordinate, and contain terms with up to second-order derivatives
w.r.t. the spatial coordinate. It is notable that the r.h.s. of this flow equation does not depend
on U itself, but exclusively on its derivatives. Furthermore, we know that U is not a physically
measurable observable. It is only possible to measure derivatives of and relative differences in U .
Both facts can be seen as prompts from the equation itself not to study the PDEs as they stand,
but to turn to its spatial derivative(s).
Therefore, we calculate the ϱ-derivative of the first version of the PDE,

∂tu(t, ϱ) = d
dϱ

[
(N − 1)

1
2 ∂tr(t)

r(t) + u(t, ϱ) +
1
2 ∂tr(t)

r(t) + u(t, ϱ) + 2ϱ ∂ϱu(t, ϱ)

]
, ϱ ∈ [0,∞) , (5.3)

and the σ-derivative of its second version,

∂tu(t, σ) = d
dσ

[
(N − 1)

1
2 ∂tr(t)

r(t) + 1
σ u(t, σ)

+
1
2 ∂tr(t)

r(t) + ∂σu(t, σ)

]
, σ ∈ (−∞,∞) . (5.4)

Here we introduced

u(t, ϱ) = ∂ϱU(t, ϱ) , (5.5)

and,

u(t, σ) = ∂σU(t, σ) , (5.6)

respectively. Note that even though both derivatives are labeled with the small letter u, they are
different functions due to the chain rule ∂

∂σ = ∂ϱ
∂σ

∂
∂ϱ .

By not executing the derivatives on the r.h.s. of Eqs. (5.1) and (5.2) we can indeed identify the
flow equation for the derivative of the potential with a conservation law, where the flux (the
square bracket on the r.h.s.) depends on t, ϱ, u, and ∂ϱu or t, σ, u, and ∂σu respectively. (Of
course, also other choices of spatial and temporal coordinates are possible and the equation keeps
its conservative form.) In general, we identify u as the conserved quantity or the abstract fluid field.

It is important to remark that also the initial condition for the flow equation needs to be adopted
and is

u(t = 0, ϱ) = ∂ϱS(ϱ) , or u(t = 0, σ) = ∂σS(σ) . (5.7)

Moreover, if formulated in σ, the function u(t, σ) is Z2-anti-symmetric, u(t, σ) = −u(t,−σ), while
u(t, ϱ) has no additional symmetry and is exclusively defined for ϱ ≥ 0.

Before we start discussing the single contributions, a few remarks are in order.

1. The conservative form of the flow equation has clear advantages when it comes to an intuitive
interpretation of the dynamics. Our entire physical thinking and mathematical description
of the world is structured by conservation laws that provide direct access to the behavior of a
system. Conservation laws are not only found in all areas of natural science and engineering,
but also in finance and economics and have proven to be the most robust laws of Nature.

2. Conservation laws are subject of intensive research and studied numerically in the field of
CFD. Extremely powerful tools for their numerical solution were developed within the last
century [104, 49, 50, 51, 52]. Hence, formulating RG flow equations in terms of conservation
laws provides direct access to this toolbox, which only has to be adopted to the specific
problems at hand.
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3. The above observation that the LPA flow equation in the FRG formalism should be consid-
ered as a fluid-dynamical conservation law is due to Refs. [77, 181]. Some aspects/consequences
can already be found in Refs. [76, 75, 91].
Interestingly, it seems as if this reformulation of the RG flow equation in terms of a fluid-
dynamical problem is actually in parts a rediscovery. In the “pre-Wetterich” era of flow
equations, which was dominated by Polchinski-type equations [171], several works already
analyzed the flow equations in this fashion [92, 93, 94, 95, 96, 97, 98, 99, 100].
Moreover, even the notation of RG “flow” equation or RG “time” is not an accident and
comparisons of hydrodynamic flow and RG flow can be found in common textbooks [182,
19].
Therefore, it is surprising that these aspects have not been studied further.

5.1.2. The LPA flow equation as an advection-diffusion equation
Next, we dive into a deeper analysis of the single contributions to the flow equation. Therefore,
we first split Eqs. (5.3) and (5.4). For the ϱ-formulation we find

∂tu(t, ϱ) + d
dϱ F [t, u] = d

dϱ Q[t, ϱ, u, ∂ϱu] , (5.8)

with fluxes

F [t, u] = − (N − 1)
1
2 ∂tr(t)

r(t) + u(t, ϱ) , (5.9)

Q[t, ϱ, u, ∂ϱu] =
1
2 ∂tr(t)

r(t) + u(t, ϱ) + 2ϱ ∂ϱu(t, ϱ) , (5.10)

whereas for its formulation in σ, we have

∂tu(t, σ) + d
dσ F [t, σ, u] = d

dσ Q[t, ∂σu] , (5.11)

with fluxes

F [t, σ, u] = − (N − 1)
1
2 ∂tr(t)

r(t) + 1
σ u(t, σ)

, (5.12)

Q[t, ∂σu] =
1
2 ∂tr(t)

r(t) + ∂σu(t, σ) . (5.13)

Here, we identify F as advection-type fluxes and Q as diffusion-type fluxes, which is explained
within the next lines. The full equation is therefore identified as an advection-diffusion problem,
which falls into the class of standard fluid-dynamical PDEs.

The pion-loop as a non-linear advection flux

In a first step, let us simply ignore the Q-contributions to the flow equation. Later on, we find
that this formally corresponds to the N → ∞ limit, which is already anticipated from the factor
(N − 1) in F . From the derivation of the RG flow equation in Section 4.3, we know that the fluxes
F completely stem from the loop contributions of the N − 1 pions (the Goldstone modes in higher
dimensions).
Now, the question is why we can interpret this contribution as an advection term which transports
the fluid u in a directed manner. This is understood by executing the derivatives in Eqs. (5.8)
and (5.11) (ignoring Q) [77],

∂tu(t, ϱ) = −(∂uF [t, u]) ∂ϱu(t, ϱ) , ∂uF [t, u] = (N − 1)
1
2 ∂tr(t)

[r(t) + u(t, ϱ)]2 < 0 . (5.14)
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We clearly see that this equation is an advection equation in its primitive form, where the fluid
velocity is given by ∂uF [104, 49, 50, 51, 52]. Hence, N → ∞ is the inviscid limit of the flow
equation. We find that the fluid velocity depends on the fluid u itself, similar to the famous
Bateman-Burgers equation [183, 184], but is also time-dependent. Interestingly, due to the mono-
tonicity of r(t), see Eq. (4.4), the fluid velocity is manifestly negative, which implies that the
fluid u is exclusively moved from large ρ towards ρ = 0. Hence, there is a unique direction of
information propagation.
Similarly, we find for the σ-formulation,

∂tu(t, σ) = −(∂uF [t, σ, u]) ∂σu(t, σ) − ∂σF [t, σ, u] , (5.15)

where

∂uF [t, σ, u] = (N − 1)
1
2 ∂tr(t)

σ [r(t) + 1
σ u(t, σ)]2

. (5.16)

Again, we have the structure of an advection equation with dynamical fluid velocity ∂uF [t, σ, u],
where σ ∈ (−∞,∞). We find that the fluid u simply always moves towards σ = 0 from positive
and negative σ. In addition to the advective term, one also obtains admixtures of a source-like
term, because the advection flux in Eq. (5.11) is explicitly σ-dependent. (However, this term is
undirected and does not influence the discussion on bulk transport.)
For both formulations the strength of the advection strongly depends on t as well as the ratio
of r(t) and u(t, ϱ), respectively 1

σ u(t, σ), in the denominators. In general, for large ϱ = 1
2 σ

2,
the advection flux and fluid velocity are strongly suppressed and there is no movement at all,
because asymptotically u grows at least linear in ϱ = 1

2 σ
2. Anyhow, especially for late RG times

and small ϱ = 1
2 σ

2 or regions where r(t) and u(t, ϱ), respectively 1
σ u(t, σ) are of opposite sign

and almost cancel in the denominators, the flux and velocity can get huge. Among other things,
this implies that fast-moving waves of u approach ϱ = 1

2 σ
2 = 0 and eventually collide with the

boundary condition (in ϱ) or with waves of opposite sign (in σ). Furthermore, this generically
allows for shock- and rarefaction-wave formation, because systems of non-linear advection tend to
form non-analytical behavior [104, 49, 50, 51, 52], which was studied in Ref. [77, 101] and recently
Ref. [103] in the FRG context.
Also note that the velocity ∂uF strongly depends on the number of pions and is generally not
bounded at all. In consequence, the RG flow falls in the class of non-relativistic classical flow
equations and there is no “causal bound” for propagation speed like in relativistic hydrodynamics.

The σ-loop as a non-linear diffusion flux

Next, let us turn to the contribution of the σ-loop and ignore the advective contribution. This
is easily done by setting N = 1. In complete analogy to the previous discussion, the best way
to identify the diffusive nature of the σ-contribution to the RG flow is to execute the spatial
derivatives in Eqs. (5.8) and (5.11). This time we start with the σ-version of the flow equation,

∂tu(t, σ) = D[t, ∂σu] ∂2
σu(t, σ) , (5.17)

where

D[t, ∂σu] ≡ ∂σQ[t, ∂σu] = −
1
2 ∂tr(t)

[r(t) + ∂σu(t, σ)]2 > 0 . (5.18)

We directly identify the RG flow equation (for N = 1) as a heat/diffusion equation with dynami-
cal diffusion coefficient D[t, ∂σu]. Hence, the N = 1 scenario is the “viscous” limit. The manifest
positivity of the diffusion coefficient ensures stability of the equation and well-posedness of the
problem [168, 104, 49, 50, 51, 52]. In general, ordinary diffusion is an undirected process, which
tends to eliminate gradients of all kind. There is strong diffusion in the vicinity of jumps, cusps,
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and large gradients, while in constant, smooth, and flat regions diffusive processes are slow. Nev-
ertheless, here we are confronted with highly non-linear diffusion. The diffusion coefficient itself
is RG-time dependent and inversely depends on the gradient of the fluid. Again, we find that
for large |σ| and/or early times the diffusion is strongly suppressed. For late times the diffusion
gets stronger. However, here it critically depends on the gradient and the second derivative of u.
In regions of small gradients and but large curvatures (close to minima of u) diffusion is strong,
because the diffusion coefficient as well as ∂2

σu(t, σ) are large. The effect is even more pronounced
in regions where r(t) and ∂σu(t, σ) are of opposite sign, e.g., in the middle part of a mexican-
hat-type potential, such that diffusion on the level of the PDE strongly works against symmetry
breaking.

In total, we find that both the advective and diffusive contribution tend to be strongest for RG
scales close or below model scales and for small ϱ = 1

2 σ
2. Especially the diffusive σ-mode is

important for a flattening of the potential at small |σ|, respectively for symmetry restoration. The
relative dominance of advection or diffusion for fixed initial condition can be controlled by varying
the number of fields N .

So far our discussion of diffusion was based on the σ-formulation of the RG flow equation. The
simple reason is that the flux (5.10) cannot be uniquely identified as a diffusion flux due to the
additional u(t, ϱ) and ϱ dependences. This is easily seen by executing the ϱ-derivative. Thus,
already at this point we conclude that the best choice of spatial variables might strongly depend
on the difference between finite and infinite N and the applied numerical schemes, which oftentimes
rely on a strict splitting of advective and diffusive fluxes. We come back to the differences of the
σ- and ϱ-formulation below.

5.1.3. Consequences of the fluid-dynamical interpretation of RG flows
Identifying the ERG equation as a highly non-linear advection-diffusion equation comes with some
direct severe consequences.

Diffusion and irreversibility

As briefly mentioned in Section 4.1, systems that comprise diffusive processes are dissipative, which
therefore also applies to the LPA flow equation (except for the N → ∞ limit). Furthermore, dis-
sipation is always linked to an increase in information that is needed to describe the system, or
a loss of information about the initial state (depending on the perspective). This is associated to
the growth of an entropy and directly linked to the irreversibility of a process.

In fact, the direct connection between irreversibility, the semi-group property of the RG, and
diffusion terms in the LPA flow equation was already discussed for versions of RG flow equations
from the “pre-Wetterich” era [97, 98, 99]. For example, Ref. [99] states that the second order field-
space derivative of the potential “[...] corresponds to a dissipation in the flow and is responsible
for the semi-group property of the RG.” This view is supported by our findings based on the more
modern FRG formulation by Wetterich, Morris, Ellwanger et al..

Advection and irreversibility

Still, also purely advective systems can show irreversible dynamics and entropy production. This
happens, for example, if several characteristic curves, which describe the movement of little por-
tions of the fluid, intersect and a shock wave is formed. Here, the information about the initial
state and direction of the movement of the single fluid portions is lost and the dynamics is irre-
versible and subsequently described by the movement of the shock front. This also comes with an
increase of an entropy of the system. For recent discussions in the context of infinite-N FRG flow
equations, see Refs. [77, 101, 3].
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A “thermodynamic arrow of time” in the RG flow

We conclude that for general N the LPA flow equation describes an irreversible flow of the deriva-
tive of the local potential from t = 0 (the UV) to t → ∞ (the IR). Further, this evolution goes
hand in hand with the production of entropy and the loss of information about the initial (UV)
state of the system. Hence, the RG scale/time can be interpreted as a “thermodynamic arrow
of time” in the abstract sense, which is set by the direction of increasing entropy and gradual
loss of information about the initial state [170]. These aspects directly generalize to the Wetterich
equation for arbitrary systems, because the Wetterich equation is of manifestly diffusive character,
as long as truncations and approximations are not applied to the PDE. Truncations may violate
this property.

The reinterpretation of the IR

In this context, it is also sensible to rethink the interpretation of the IR solution of RG flow
equations. From the fluid-dynamical perspective on the RG flow equation, the IR, where all
fluctuations are integrated out and the “PDE dynamics” stops, can be interpreted as a kind of
“thermodynamic” equilibrium, which is approached by the diffusive contribution, or a steady flow,
from the advective perspective.
In fact, this is conceptually very similar to the equilibration of the air flow around an airfoil, when a
plane reaches its travel altitude and should therefore be seen as a manifestly fluid-dynamic process.

This interpretation and its consequences might be of particular interest for RG flow equations of
higher-dimensional systems in their rescaled dimensionless form. Here, steady-flow solutions/equilibrium
solutions from fluid dynamics are the fixed-point solutions of the RG.

Relation to Kadanoff’s and Wilson’s approach to the RG

From the classical and original non-perturbative RG perspective, which traces back to Wilson’s
generalization of Kadanoff’s block-spin transformation [185, 174, 175, 176, 161, 19], the above
discussion of the Wetterich formulation of the RG is rather intuitive. Step-by-step block-spin
transformations from microscopic to macroscopic scales with appropriate rescaling are a manifestly
irreversible process, where the information about the microscopic spin configuration is lost and
absorbed in effective macroscopic spins – the coarse-graining process. On top, several distinct
microscopic configurations can lead to the same macroscopic physics.
The same applies if formulated in Fourier space on the level of QFTs, to the gradual integration of
(Euclidean) momentum shells from the UV to the IR, where all couplings and processes at some
energy scale are integrated out and absorbed in effective couplings at lower energy scales until
the IR is reached. The possible infinite number of effective measurable IR couplings, vertices, or
expectation values comprise all microscopic information from all higher energy scales. Neverthe-
less, it is impossible to restore the information about the micro-physics once the IR is reached.
Backwards integration to higher energy and smaller length scales is only possible theoretically in
truncated subsystems.

Relation to the “pre-Wilson” and perturbative RG

It is interesting to ask how these findings relate to the perturbative picture of the RG, which
traces back to the early works of Callan, Symanzik, Gell-Mann, Low, t‘Hooft, Weinberg, Georgi,
Politzer and many more. Here, one does not consider a continuum of infinitely many coupling
constants, which is for example collected in an effective potential, but studies the RG flow of a
single coupling or selected small number of couplings. (This can also be done with the Wetterich
equation using truncations.)
Anyhow, in this case the RG equations reduce to a coupled set of ODEs, and the dissipative and
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fluid-dynamical character of the RG is lost. On a formal level,1it is possible to integrate this set
of ODEs in both directions, to higher and lower RG scales and energies. The most extreme case
is certainly the β-function of a single coupling. Hence, also irreversibility and the semi-group
property of the RG transformations is spoiled. Working on a finite small set of couplings therefore
implies that it would be possible to resolve the microphysics from the macrophysics, which is not
possible.
Anyhow, this does not imply that this “pre-Wilson” RG approach is wrong. It is merely the
range of applicability that is limited to the weakly interacting perturbative regime of models and
theories. As soon as one leaves this regime and encounters strongly interacting physics, one is
confronted with a fast rising number of interactions of different scales and one has to turn to a
non-perturbative framework, which reflects the previously described effects.

This difference of the perturbative and non-perturbative RG perspectives is already summarized
in the recommendable article [161] by Wilson himself.

An entropy function and the connection to the C-theorem

In the light of the above discussion, the obvious question is, whether it is possible to quantify the
dissipative character of RG flow equations by some explicit entropy function.

Basically, this is what is also tried by so-called C-functions and was first discussed in the context
of two-dimensional conformal QFT [95]. In Ref. [95], Zamolodchikov discusses the irreversibility
of RG group: “Some of the information on the ultraviolet behavior of the field theory is lost
under renormalization transformations with t > 0, since in the field theory it is not legitimate to
examine correlations at scales smaller than the cutoff. We would therefore expect that a motion
of the space Q [a change of the set of all couplings] under the influence of the renormalization
group would become an ‘irreversible’ process, similar to the time evolution of dissipative systems.”
Therefore, Zamolodchikov proposes and proves that “[t]here exists a function c(g) of the coupling
constant g in a 2D renormalizable field theory which decreases monotonically under the influence
of a renormalization-group transformation.” The exact properties of such C-function are [95] (in
the notation of Ref. [2]),

1. There exists a positive function

C({gi}, t) ≥ 0 . (5.19)

of all (possibly infinitely many) dimensionless couplings {gi} of the theory and RG time t,
with the additional property

d
dt C({gi}, t) ≥ 0 . (5.20)

(The choice of sign is convention.)

2. The C-function takes a fixed value at (critical) fixed points of the theory. These fixed values
can be identified with the central charge c (of the Virasoro algebra [187]),

C({g∗
i }, t) = c , (5.21)

and the central charge is different for different fixed points.

The terminus “C-theorem” is usually restricted to two-dimensional (conformal) QFTs, while gen-
eralizations to higher dimensions, e.g., four dimensions, are denoted as A-theorems, where the
central charge is replaced by some anomaly coefficient [188].
Even though there was rather active research on C- and A-functions, their construction, and proofs
within the last decades, cf. Refs. [189, 188, 190, 191, 192, 186, 193, 97, 98, 99, 194, 195, 196, 197,

1On a practical level, numerical instabilities or the special form of the equations [186] might still prevent the
“up-and-down” integration of a system of ODEs.
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198, 199, 100], not all questions in this context seem to be settled. Especially the explicit con-
struction of C-functions for practical models and truncations is still a field of active research.

We shall not further comment in detail on the current status of research in this field as it is beyond
the scope of our present studies. Nevertheless, we believe that our work might introduce a new
aspect to the discussion, which we were not able to find in the literature so far.

1. In the past, entropy-like functions or C-functions were oftentimes discussed in the context of
a (finite) set of coupling constants. We believe that our zero-dimensional minimal example
might hint at another approach, which was also taken by Refs. [97, 98, 99, 100, 190, 164, 198,
199]. The irreversible character of the RG flow is manifestly encoded, if one turns to a global
description of the space of couplings, e.g., in terms of a flowing effective potential via some
dissipative PDE. Hence, entropy-/C-functions might be identified via global descriptions of
field/theory space.

2. We believe that our work shows that there should be a direct connection between the C-
theorem and abstract entropy functions of the PDEs that describe the RG flows. This is
of particular interest for truncated systems of FRG flow equations or approximations. On
the one hand, the approach via entropy functions of the PDEs from the field of CFD might
allow to identify C-functions of truncated systems. On the other hand, this connection could
help to identify minimal requirements for truncations, e.g., the presence of irreversibility,
dissipation, and an entropy-/C-function on the level of the ODEs and PDEs.

3. Furthermore, as discussed below, the existence of an entropy function for a PDE can be used
to show stability and convergence of the solution [49, 50]. In addition, discretized versions
can in turn be related, used, and studied for finding stable numerical schemes. We further
demonstrate that there could be a direct relation between C-functions, (numerical) entropy
functions, and the total variation diminishing (TVD) property below.

In the following, we therefore present the construction of an entropy function from Ref. [2] for
our zero-dimensional O(N) model. We comment on possible identification as a C-function. For
generalization to higher dimensions we refer to Ref. [2]. Unfortunately, so far we were only able
to construct an entropy function for N = 1 and N = ∞, while the problem remains unsolved for
N ̸= 1. A possible explanation is sketched in Section 5.1.6 and Refs. [2, 3].

5.1.4. An entropy function in the viscous N = 1 limit
Within the next paragraphs, we recapitulate the main steps in the construction of an entropy
function for the RG flow equation of the zero-dimensional O(N) model with N = 1 from Ref. [2],
where also a discussion of subtleties can be found.

As one of the ingredients, we need the spatial derivative of the RG flow equation (5.4),

∂t[∂σu(t, σ)] = d
dσ

( − 1
2 ∂tr(t)

[r(t) + ∂σu(t, σ)]2 ∂
2
σu(t, σ)

)
. (5.22)

However, the actual starting point is the definition of the functional

S[f(σ)] ≡ −
∫ ∞

−∞
dσ s(f(σ)) , (5.23)

which we denote as the entropy functional of some real-valued function f(σ). The integration
domain is the entire field space (the domain of the PDE as well as f). As the integrand, we
introduced a continuously (at least) twice differentiable convex function,

s : R → R , y 7→ s(y) , (5.24)
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with

s(y) ∈ C2(R) , s′′(y) ≥ 0 , (5.25)

which shall not grow faster than y2 for |y| → ∞.
In the following we show that by choosing f(σ) = ∂σu(t, σ) Eq. (5.23) indeed presents a mono-
tonically increasing function for t ∈ [0,∞), viz.,

d
dt S[∂σu] ≥ 0 , (5.26)

and can therefore be interpreted as an entropy-type function (after minor modifications).

We straightforwardly evaluate

d
dt S[∂σu] = (5.27)

= − d
dt

∫ ∞

−∞
dσ s(∂σu(t, σ)) (5.23)=

= −
∫ ∞

−∞
dσ
(
∂t[∂σu(t, σ)]

)
s′(∂σu(t, σ)) (5.22)=

=
∫ ∞

−∞
dσ
[

d
dσ

( 1
2 ∂tr(t)

[r(t) + ∂σu(t, σ)]2 ∂
2
σu(t, σ)

)]
s′(∂σu(t, σ)) =

=
∫ ∞

−∞
dσ
( − 1

2 ∂tr(t)
[r(t) + ∂σu(t, σ)]2 [∂2

σu(t, σ)]2
)
s′′(∂σu(t, σ)) +

+
[ 1

2 ∂tr(t)
[r(t) + ∂σu(t, σ)]2 [∂2

σu(t, σ)] s′(∂σu(t, σ))
]∞

−∞
,

where we used integration by parts in the last step.
To understand that the r.h.s. of this equation is indeed greater or equal to zero, it is instructive
to analyze the remaining terms separately.

1. By construction, due to its convexity, s′′ ≥ 0. Also [∂2
σu(t, σ)]2 is obviously positive. The

same holds true for the denominator, even though already r(t)+∂σu(t, σ) > 0 by construction
of the FRG. Lastly, because of its monotonicity, −∂tr(t) > 0. In total, the integrand of the
first term is manifestly positive and so is the integral.

2. The second term vanishes, which is seen as follows: First, by construction, s′(y) maximally
grows like y for |y| → ∞. Second, for |σ| → ∞ the potential U(t, σ) grows at least quadrat-
ically, implying that ∂σu(t, σ) grows at least linearly in σ. We distinguish

(a) If lim|σ|→∞ U(t, σ) ∼ σ2 the factor ∂2
σu(t, σ) = ∂3

σU(t, σ) vanishes, while the other
terms do not grow with σ for large |σ|. This implies that the entire term vanishes,
because of the evaluation at ±∞.

(b) If lim|σ|→∞ U(t, σ) grows faster than σ2 than the denominator [r(t)+∂σu(t, σ)]2 always
grows faster than the terms in the numerator. Hence, for an evaluation at ±∞ the term
vanishes.

In conclusion, we find that S[∂σu] grows monotonically during the RG flow. Further it encodes
all information about all possible interactions and dynamics of the field in a global manner and
therefore is equivalent to an infinite set of coupling constants/vertices.
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Anyhow, there are two remaining issues. A first minor problem is that S[∂σu] is by Def. (5.23)
negative, which is uncommon for an entropy. Second, S[∂σu] is simply divergent, because field-
space is infinite and ∂σu(t, σ) is at least constant for |σ| → ∞. This is seen best if we explicitly
choose s(y) = y2, which we will keep for all further discussions,

S[∂σu] = −
∫ ∞

−∞
dσ [∂σu(t, σ)]2 . (5.28)

Both doubts are cured by keeping in mind that we are exclusively interested in relative changes
or differences of entropy. Therefore, we are allowed to simply subtract the entropy functional of
the initial condition. We define the normalized entropy

C[∂σu] = S[∂σu(t, σ)] − S[∂σu(t = 0, σ)] , (5.29)

which is always positive. On top, it is finite, because for large |σ| the “fluid” u(t, σ) does not
evolve at all and the asymptotic contributions of both terms in Eq. (5.29) cancel. This is seen by
inspection the PDE (5.4), where the r.h.s. vanishes for large |σ|.

In total, we were able to construct an explicit entropy function for the PDE and our exact RG
problem. This function further fulfills the requirements (5.19) and (5.20) for a C-function, while
Eq. (5.21) does not exist in zero dimensions because there exists no central charge and – as far as
we know – no fixed-point solution.2
Below, in Section 5.2.4, we also present a discretized version of this entropy function and provide
explicit numerical results for selected UV actions. In addition, we relate this entropy to the TVD
property and therefore argue that its existence hints at the existence of stable numerical schemes
as well as unique weak solutions.

5.1.5. The 1
N

-rescaled flow equations and the N → ∞ limit
For studying the N → ∞ limit or comparing finite-N and infinite-N calculations, it is advisable
to work with the 1

N -rescaled version of the RG flow Eqs. (5.3) and (5.4). In analogy to Eq. (3.17)
of Section 3.3, we rescale the fields, the O(N) invariant, and the effective potential,

σ 7→ x = 1√
N
σ , ρ 7→ y = 1

N ρ , U 7→ V = 1
N U . (5.30)

The RG flow equation in the formulation of the rescaled invariant y reads

∂tv(t, y) = d
dy

[
N − 1
N

1
2 ∂tr(t)

r(t) + v(t, y) + 1
N

1
2 ∂tr(t)

r(t) + v(t, y) + 2y ∂yv(t, y)

]
, y ∈ [0,∞) , (5.31)

while the RG flow equation in the formulation of the rescaled field x is

∂tv(t, x) = d
dx

[
N − 1
N

1
2 ∂tr(t)

r(t) + 1
x v(t, x)

+ 1
N

1
2 ∂tr(t)

r(t) + ∂xv(t, x)

]
, x ∈ (−∞,∞) . (5.32)

Note that the prefactors N−1
N and 1

N are the same for LPA flow equations of O(N) models in any
dimension, such that the following is general.

Inspecting the structure of the rescaled RG flow equations it is obvious that the PDE gets more and
more advection-dominated when N is increased, because the diffusive contribution is suppressed
by 1

N .

2Work on the general absence of zero-dimensional fixed-point solutions for the effective potential in RG flow
equations is in progress, but was not finished by completion of this thesis.
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In the N → ∞ limit, the above flow equations simply reduce to their inviscid limit,

lim
N→∞

∂tv(t, y) = d
dy

[ 1
2 ∂tr(t)

r(t) + v(t, y)

]
, y ∈ [0,∞) , (5.33)

and

lim
N→∞

∂tv(t, x) = d
dx

[ 1
2 ∂tr(t)

r(t) + 1
x v(t, x)

]
, x ∈ (−∞,∞) . (5.34)

Note that both equations are integrable by applying the method of characteristics as shown in
Section 5.1.7, which was already applied to their higher-dimensional counterparts in Refs. [75, 76,
101].
Furthermore, in Section 5.1.8 we use these equations to analytically analyze shock waves in field
space.

5.1.6. Another entropy function for the inviscid N → ∞ limit

In the context of our work on shock and rarefaction waves in the context of the 1
N -expansion [3],

we noticed that it is possible to also formulate an entropy function for the RG flow equation in
the N → ∞ limit, Eq. (5.33). Thus, similarly to the discussion of Section 5.1.4 we find,

C[v] = TV[v(t = 0, y)] − TV[v(t, y)] , (5.35)

where TV denotes the total variation (the arc length of v(t, y))

TV[v(t, y)] ≡
∫ ∞

0
dy |∂yv(t, y)| . (5.36)

Basically, the difference between the entropy functions for N = 1 and N → ∞ is the different
integration domain and the change from the square of the derivative to its absolute in the integrand.
Anyhow, so far we were not able to formulate a general entropy function for finite N > 1. Loosely
speaking, the reason is that for finite N > 1 the r.h.s. of the PDE always explicitly depends on
the position in the spatial domain, see, e.g., Eqs. (5.31) and (5.32). This dependence manifests
as a source/sink term after executing spatial derivatives and therefore additionally spoils the arc
length of u respectively v.
This is supported by literature from the field of CFD [200, 201, 202, 203, 204].
For further details we refer to our own Ref. [3, Appendix E].

5.1.7. Method of characteristics in the inviscid N → ∞ limit
A special method for the analytic solution of (quasi-)hyperbolic PDEs is the method of char-
acteristics. Characteristic curves (or oftentimes just characteristics) are parametric curves that
form solutions of a PDE. They are defined as those curves where functions of the solution or the
solution itself stays constant. The method is applicable to purely advective systems as long as the
“fluid” is only transported without “collision” of single fluid cells, hence without or in advance of
the formation of shocks.
Within the next paragraphs, we apply this method to the RG flow equations in the N → ∞
limit, i.e., Eqs. (5.33) and (5.34), which are of quasi-hyperbolic type, and construct their analytic
solutions.
In the context of the N → ∞ FRG flow equation this was first done by Tetradis and Litim [75, 76]
and later on by Aoki, Kumamoto, Sato, and Yamada [205, 91]. A comprehensive interpretation
of the characteristic curves in the context of CFD was first provided by Grossi and Wink [77] and
later on extended in Ref. [101].
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General considerations

The construction of the characteristic curves is rather simple, cf. Refs. [206, 207, 49]. The general
starting point is a quasilinear hyperbolic PDE of type,

0 = a(t, y, v) ∂tv(t, y) + b(t, y, v) ∂yv(t, y) + c(t, y, v) , (5.37)

where t is the temporal coordinate, y is the spatial coordinate, and v = v(t, y) is a fluid field. The
solution of this equation, if it exists, forms a surface (t, y, v(t, y)) ∈ R3. The characteristics are
therefore parametric curves (t(τ), y(τ), v(τ)) of some parameter τ lying on this surface, where we
assume that v stays constant. Thus, via the chain rule,

0 = d
dτ v(t(τ), y(τ), τ) = (5.38)

= ∂t(τ)
∂τ ∂tv(t(τ), y(τ), τ) + ∂y(τ)

∂τ ∂yv(t(τ), y(τ), τ) + ∂τv(t(τ), y(τ), τ) .

Comparing this equation to Eq. (5.37) we obtain the so-called Lagrange-Charpit/characteristic
equations [206],

∂t(τ)
∂τ = a(t(τ), y(τ), v(τ)) , (5.39)

∂y(τ)
∂τ = b(t(τ), y(τ), v(τ)) , (5.40)

∂v(τ)
∂τ = c(t(τ), y(τ), v(τ)) , (5.41)

which form a set of three coupled ODEs. The initial conditions for these equations are taken from
the original PDE problem,

t(τ = 0) = t0 , y(τ = 0) = y0 , v(τ = 0) = v0(t0, y0) , (5.42)

where t0 is the initial time. Hence, each point y0 in the domain of the PDE is a starting point
of a characteristic curve (t(τ), y(τ), v(τ)), which is described by the above three coupled ODEs.
Solving the ODE system for each starting point, we have access to the solution of the PDE.

Application to the N → ∞ flow equations

For the sake of simplicity, we work with the flow equation (5.33)3,

∂tv(t, y) = d
dy

[ 1
2 ∂tr(t)

r(t) + v(t, y)

]
= −

1
2 ∂tr(t)

[r(t) + v(t, y)]2 ∂yv(t, y) . (5.43)

Here, the y-derivative was already executed to match the shape of Eq. (5.37). Explicitly inserting
the regulator (4.4) we identify,

∂t(τ)
∂τ

= 1 , ∂y(τ)
∂τ

= − Λ e−t(τ)

2 [Λ e−t(τ) +v(τ)]2
,

∂v(τ)
∂τ

= 0 . (5.44)

The corresponding initial conditions of the RG flow equation are,

t(τ = 0) = 0 , y(τ = 0) = y0 ≥ 0 , v(τ = 0) = v(0, y0) . (5.45)

Integration of the first and last differential equation from Eq. (5.44) is trivial and we find

t(τ) = τ , v(τ) = v(0, y0) , (5.46)
3The absence of the explicit dependence on the spatial coordinate slightly simplifies the calculation in comparison

to starting with Eq. (5.34), which is also possible.
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where we simply identified t and τ by ignoring a possible irrelevant integration constant. Since
v(τ) = v(0, y0) = const. the r.h.s. of the remaining differential equation exclusively depends on τ
and is directly integrated to,

y(t) = y0 −
∫ t

0
dτ Λ e−τ

2 [Λ e−τ +v(0, y0)]2 = y0 − 1
2 [Λ e−t +v(0, y0)] + 1

2 [Λ + v(0, y0)] . (5.47)

These are the characteristic curves, where “the fluid” v keeps a constant value.

Applying the transformation y = 1
2 x

2 and using v(t, y) = ∂yV (t, y) = 1
x ∂xV (t, x) = 1

x v(t, x), the
solution in the 1

N -rescaled field reads,

x(t) = ±
√

2y(t) = ±
√
x2

0 − 1
Λ e−t +v(0,x0)

x0

+ 1
Λ + v(0,x0)

x0

, v(t) = v(0,x0)
x0

x(t) . (5.48)

Note, that here v(t) is no longer constant along the characteristics. Still, the ratio 1
x(t) v(t) remains

constant.

An useful application of this analytic solution is the simple prediction of the formation of shock or
rarefaction waves. A shock wave is formed if characteristic curves intersect and the solution gets
multi-valued. Afterwards, the characteristic curves no longer correspond to the correct solution
of the PDE.
A rarefaction wave is formed at a point where infinitely many characteristics originate and move
apart. Both phenomena have in common that v is non-analytic at the corresponding points and
times, see, e.g., Ref. [49] for details.

5.1.8. Rankine-Hugoniot condition and shock position in the inviscid
N → ∞ limit

As already anticipated above, non-linear (quasi-hyperbolic) PDEs of type

0 = ∂tv(t, x) + d
dx F [t, x, v(t, x)] (5.49)

tend to form non-analytic structures. One possible scenario is the formation of a shock wave.
If analyzed on the level of discretized fluid cells, e.g., in terms of Riemann problems, this hap-
pens when the fluid velocities of neighboring cells are directed towards each other or when one
fluid cell has higher velocity than its neighboring cell and would outpace the other cell. This
causes moving jump discontinuities in the solution. Their propagation can be described using the
Rankine-Hugoniot (jump) condition [208, 209], which is recapitulated in the following. For details
we refer to Refs. [104, 49, 50, 51] or Ref. [77] in the context of the FRG (even though already
Aoki, Kumamoto, Sato, and Yamada discussed shocks in their studies [205, 91], but without the
fluid-dynamical context).

Consider some (moving) interval [xL(t), xR(t)] in the domain of the PDE, which is supposed to
contain a single discontinuity in terms of a shock wave at the position ξs(t), i.e., xL(t) < ξs(t) <
xR(t). For this dynamic interval the integrated version of the conservation law (5.49) reads

∫ xR(t)

xL(t)
dx ∂tv(t, x) = −

∫ xR(t)

xL(t)
dx d

dx F [t, x, v(t, x)] = (5.50)

= −
(
F [t, xR(t), v(t, xR(t))] − F [t, xL(t), v(t, xL(t))]

)
.



66 5. FRG flow equations and (computational) fluid dynamics

Yet, by definition the integral on the l.h.s. of the equation contains the jump discontinuity. We
therefore split this integral about this shock position ξs(t) and find,∫ xR(t)

xL(t)
dx ∂tv(t, x) =

∫ ξs(t)

xL(t)
dx ∂tv(t, x) +

∫ xR(t)

ξs(t)
dx ∂tv(t, x) = (5.51)

= − v(t, ξs(t)) ∂tξs(t) + v(t, xL(t)) ∂txL(t) + d
dt

∫ ξs(t)

xL(t)
dx v(t, x) −

− v(t, xR(t)) ∂txR(t) + v(t, ξs(t)) ∂tξs(t) + d
dt

∫ xR(t)

ξs(t)
dx v(t, x) .

In the second step, the Leibniz integral rule was applied to extract the t-derivative from the
integral. Note that the first and fifth term cancel. This result replaces the l.h.s. of Eq. (5.50).
In the next step, we tighten the integration interval in Eqs. (5.50) and (5.51) and study the limits

xR(t) → ξ−
s (t) , xL(t) → ξ+

s (t) . (5.52)

The remaining integrals in Eq. (5.51) vanish and by introducing the definitions

vL(t) ≡ lim
xL(t)→ξ−

s (t)
v(t, xL(t)) , FL(t) ≡ lim

xL(t)→ξ−
s (t)

F [t, xL(t), v(t, xL(t))] , (5.53)

vR(t) ≡ lim
xR(t)→ξ+

s (t)
v(t, xR(t)) , FR(t) ≡ lim

xR(t)→ξ+
s (t)

F [t, xR(t), v(t, xR(t))] , (5.54)

we obtain an equation for the velocity of the shock – the Rankine-Hugoniot (jump) condition,

∂tξs(t) = FR(t) − FL(t)
vR(t) − vL(t) . (5.55)

This equation can be used to calculate the propagation of a shock wave.

A first application in the FRG context was presented by Ref. [77] for a three-dimensional O(N)
model in the N → ∞ limit. A similar application, which was inspired by Ref. [77], is presented be-
low for the zero-dimensional version of the limN→∞ O(N) model with the UV potential Eqs. (3.40)
and (3.41).

5.2. Numerical implementation
The problem of numerically solving FRG flow equations in various truncations is as old as the
Wetterich equation or earlier formulations of RG flow equations, because their analytic solution
is rarely possible. This leads to the development of a variety of numerical approaches. Espe-
cially for flow equations of effective bosonic local potentials in the LPA and beyond or truncations
including field-dependent couplings, there is a lot of literature, which suggests to use some self-
developed/adopted discretization schemes. These comprise naive finite-difference discretizations,
spline interpolations, or global expansions in terms of polynomials, e.g., Chebyshev polynomials,
etc., see Section 1.2.2.

However, in retrospect and from the discussion of the previous Section 5.1 it might be advisable
to rely on well-established and tested numerical schemes from experts on numerical mathematics,
which can cope with all types of non-analytic structures etc., if one heads for solving non-linear
conservation laws.
Therefore, when E. Grossi and N. Wink published their interpretation of the LPA of the O(N →
∞) model in terms of an advection equation, they proposed to use modern finite-element methods
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from the field of CFD [77]. In fact, they opted for a special sub-type, namely local DG methods,
and quantitatively demonstrated their outstanding performance in the context of RG flows. In
some follow-up works this framework was extended to coupled sets of PDEs containing a field-
dependent Yukawa coupling as well as systems at finite-N , which contain diffusive contributions
[101, 102, 103].

For our work we took another, related, and powerful approach from CFD to solve RG flows of
effective potentials – finite-volume methods. In the following we briefly sketch the general idea
behind the finite-volume methods and present the specific scheme, which we used for our compu-
tations, namely a Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL) in the
version of Kurganov and Tadmor [105]. This scheme is usually referred to as the KT (central)
scheme.

All adequate methods usually have in common that they rely on (quasi-)conservative formulations
of PDEs and include methods to avoid artificial oscillations, overshooting etc. in the vicinity of
non-analyticities.

5.2.1. Finite-volume methods
Consider a one-dimensional PDE of type

∂tu(t, x) + d
dx F [t, x, u(t, x)] = d

dx Q[t, x, u(t, x), ∂xu(t, x)] + S[t, x, u(t, x)] , (5.56)

where F is again an advection flux, Q denotes a diffusion flux, and S is a source-like term, on a fi-
nite computational domain Ω = V × [t0, tm]. Here, V ∈ R is the spatial domain/volume and [t0, tn]
the temporal domain. Further, we refer to u as the conserved quantity or more general a fluid field.

Of course, generalizations to systems of M conserved quantities u → {u1, . . . , uM} and to (d+ 1)
dimensional spacetime domains (t, x) → (t, x⃗ ) = (t, x1, . . . , xd) are possible, but shall not be dis-
cussed here.

In addition to the PDE itself and the domain, one needs to specify an initial condition u(t0, x)
and Dirichlet/Neumann boundary conditions, which specifies (∂x)u(t, x)

∣∣
x∈∂V , such that solving

the PDE constitutes a well-posed problem.
The central question is then how u(t, x) is numerically evolved from its initial value at t0 to its
final state at tm. Here, we motivate the rather popular class of finite-volume (FV) schemes, which
serve for this purpose. Theses schemes are rather popular due to their intuitive interpretation and
implementation in terms of balance and conservation laws [49, 50]. However, as already antici-
pated, there are also alternative high-resolution shock-capturing (HRSC) schemes in CFD, such
as finite-difference schemes including flux limiters and numerical viscosity, finite-element methods,
and mixtures thereof, see Refs. [104, 49, 51, 52] and references therein.

The central idea between all FV methods is a split of the computational domain Ω into a finite num-
ber of spacetime control volumes Vj × [ti, ti+1]. In general, the spatial control volumes Vj do not
need to be of the same size and can be of any shape in higher dimensions. The distribution and res-
olution of spatial cells can even be restructured within each time step by adoptive-mesh-refinement
(AMR) techniques. Anyhow, for this work we consider n equally spaced one-dimensional Vj of
size ∆x, which shall be centered at positions xj and are constant during the time evolution. The
cell boundaries are located at xj± 1

2
≡ xj ± ∆x

2 . For each of these cells, we further define the cell
average of the fluid field:

ū(t, xj) ≡ 1
∆x

∫ x
j+ 1

2

x
j− 1

2

dxu(t, x) . (5.57)
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Using this definition and integrating Eq. (5.56) over the spacetime control volumes Vj × [ti, ti+1],
one obtains

ū(ti+1, xj) = (5.58)

= ū(ti, xj) −
∫ ti+1

ti
dt
F
[
t, xj+ 1

2
, u(t, xj+ 1

2
)
]

− F
[
t, xj− 1

2
, u(t, xj− 1

2
)
]

∆x + . . . ,

due to the Gauss-Ostrogradski (divergence) theorem. The ellipsis denote the integrals over the
diffusion flux and source term. Introducing the abbreviation ūij ≡ ū(ti, xj) for the cell averages
the equation compactly reads

ūi+1
j = ūij −

∫ ti+1

ti
dt
F
[
t, xj+ 1

2
, u(t, xj+ 1

2
)
]

− F
[
t, xj− 1

2
, u(t, xj− 1

2
)
]

∆x + . . . , (5.59)

which is a discrete evolution equation for the cell averages ūij .
The challenge is now to evaluate the integral on the r.h.s. for each cell, which constitutes the
solution of a Riemann problem at each cell interface [210, 104, 49, 50, 51, 52]. Thereby, one
needs to calculate the fluxes between the cells, which requires a reconstruction of the fluid on the
cell interfaces, uj+ 1

2
(t) ≡ u(t, xj+ 1

2
), from the cell averages ūnj . This reconstruction is scheme

dependent and usually based on some type of polynomial interpolation including the neighboring
cell averages. The quality (order) of the reconstruction of course contributes to the overall error
of the numerical scheme and usually scales with some power of the cell size ∆x.
Still, even after reconstruction of the u(tn, xj+ 1

2
), it remains to solve the Riemann problem, which

is the exact evaluation of the time integral in Eq. (5.59). For some fluxes and specific types of
PDEs an exact evaluation might be feasible. However, in the FV framework one usually uses
approximate Riemann solvers [211, 212, 213] or schemes that do not rely on Riemann solvers at
all [105]. Within the next lines, we briefly present a specific FV scheme, the KT (central) scheme
[105], which is not based on a Riemann solver and is especially chosen because of its simplicity
and flexibility, while still being highly efficient and accurate. For details on alternative schemes
and pedagogic introductions to FV and HRSC methods, we refer to Refs. [49, 50, 52, 210].

5.2.2. The KT scheme
Here, we summarize the key aspects of the MUSCL scheme by Kurganov and Tadmor from
Ref. [105], which we implemented, as its developers suggest for (systems of) conservation laws
like Eq. (5.56), in terms of a black-box solver. For details we refer to the original literature and
the more detailed recapitulation in our own publication [1].
The key feature of the KT scheme is that the only additional information (apart from the PDE and
its initial and boundary conditions), which is required for the solution, is the spectral radius of the
Jacobian of F [u], which reduces to |∂F∂u | for a single fluid field u, and estimates the characteristic
fluid velocities. Because these advection velocities dominate the PDE, the core algorithm of the
KT scheme exclusively focuses on the correct handling of the advection fluxes. Diffusion and
source contributions are treated separately and we ignore them for the moment.

Advection

The KT scheme does not rely on a Riemann solver and the characteristic decomposition of the
advection flux. Instead, it is based on a direct evaluation of the flux integrals on the r.h.s. of
Eq. (5.59).
An interesting aspect of the KT scheme is that there is an exact limit of ti+1 − ti = ∆t → 0 for
Eq. (5.59) after evaluation of the flux integrals. In consequence, there is a semi-discrete version
of the KT scheme, which is continuous in time but discrete in space. This is of great advantage,
because the PDE (5.56) reduces to a coupled set of ODEs, which can be tackled with modern
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ready-made ODE solvers. These usually come with several different time-stepping methods and
automatic switching between them as well as step-refinement techniques, if this is needed. Usually
they can even cope with stiff problems, which is needed for PDEs from FRG in the IR.
In this respect, the KT scheme can be seen as an improvement of its fully discrete predecessor,
the Nessyahu-Tadmor scheme [214], which is based on the same piecewise-linear MUSCL recon-
struction [215]. Furthermore, w.r.t. the spatial accuracy, which is of second-order, it can be seen
as an improved version of the first-order accurate Lax-Friedrichs scheme [216, 217].

Let us now briefly sketch the steps which the KT scheme is made of.

0. The zeroth step, which is usually not mentioned in FV literature and not part of the original
KT literature [105], is to calculate the FV cell averages ū0

j for the initial condition u(t0, x)
via Eq. (5.57), before starting the time stepping at all. This step is crucial, especially if there
are discontinuities already present in the initial condition. Simply using u(t0, x) evaluated
at the cell centers xj to approximate ū0

j can lead to significant errors, because for cells which
contain discontinuities this procedure leads to a drastic over- or underestimation of the true
cell averages. The same happens, if ∆x is large compared to tiny structures in u(t0, x). Here,
an average over these structures is by no means identical to an evaluation at the cell center.
This averaging in the initial condition, which seems to slightly smear the initial condition and
is afterwards handed over to the solver, seems counterintuitive at first sight. Nevertheless,
having committed to a FV method this has to be taken serious, because otherwise the
reconstruction procedure yields wrong approximate results already in the first time step (see
1.).

Having said this, we turn to the real KT algorithm, which is performed within each time step of
the time integration.

1. Because the calculation is performed on the level of the cell averages ūij , the first step in each
time step is to reconstruct the function u(ti, x) from these cell averages, to have access to
the function at all positions x. This is done approximately, which is, why the reconstructed
function is called ũ(ti, x). Here, we use a piecewise-linear MUSCL reconstruction [215],
hence, for x ∈ [xj− 1

2
, xj+ 1

2
] (the jth cell),

ũ(ti, x) = ūij + (x− xj) · (∂xu)ij , (5.60)

where the approximate derivatives (∂xu)ij are given by

(∂xu)ij =
ūij+1 − ūij

∆x ϕ

(
ūij − ūij−1

ūij+1 − ūij

)
. (5.61)

The function ϕ(r) is a so-called TVD limiter and the entire reconstruction process is referred
to as a TVD reconstruction [49, 50, 218]. The idea behind the limiter is to prevent the
formation of spurious oscillations around discontinuities, by restricting the possible slopes
during the reconstruction process, which would otherwise lead to an over- or underestimation
of u(ti, x) by ũ(ti, x).
A list of possible TVD limiters is presented in Refs. [49, 50, 52, 219]. Even though we have
tested a lot of these limiters for our FRG applications, we could not identify any significant
differences (apart from runtime). Therefore we shall focus on the simplistic minmod limiter
[220] in the following:

ϕ(r) = max(0,min(1, r)) , (5.62)

which is also used in the original Ref. [105].
It is also possible to use higher-order reconstruction schemes (for the KT method) to improve
the spatial accuracy. This is not needed for this work and we refer to Refs. [221, 222, 223,
224, 225, 226, 227, 228, 229, 230] for further reading on this topic.
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2. As the next step within a time step, the previous reconstruction (5.60) is used to determine
ui
j+ 1

2
on the cell boundaries. Thereby one distinguishes between a reconstruction from the

left and the right,

ui,−
j+ 1

2
= ūij + ∆x

2 (∂xu)ij , ui,+
j+ 1

2
= ūij+1 − ∆x

2 (∂xu)ij+1 , (5.63)

These values are used to estimate the local maximal speed of propagation,

aij+ 1
2

= max
[
ρ

(
∂F

∂u

[
ui,+
j+ 1

2

])
, ρ

(
∂F

∂u

[
ui,−
j+ 1

2

])]
, (5.64)

where ρ(A) ≡ max{|λ1|, . . . , |λω|} is the spectral radius of the matrix A, if λk are its eigen-
values. For one-dimensional u and F , like for this work, the spectral radius simply reduces
to the absolute value.
Note that the estimate for the local velocities via Eq. (5.64) can be further refined, cf.
Refs. [231, 227]. In addition, if an explicit evaluation of ∂F

∂u is unfeasible, it is also possible
to approximate the local velocities, cf. Refs. [105, 232, 233]. Anyhow, for this work it turned
out that the estimates (5.64) are adequate.

3. Still, within a time step, using these local velocity estimates (5.64) a spacetime control volume
[xi
j+ 1

2 ,l
, xi
j+ 1

2 ,r
] × [ti, ti+1] around each cell interface xj+ 1

2
is calculated. It corresponds to

the region which can be causally influenced by the discontinuity at the cell boundary,

xij+ 1
2 ,l

= xj+ 1
2

− ∆t aij+ 1
2
, xij+ 1

2 ,r
= xj+ 1

2
+ ∆t aij+ 1

2
. (5.65)

This grid of staggered cells is used to successively evaluate the integral in Eq. (5.59) using
midpoint-rule approximations etc.. For details of these lengthy but rather simple steps of the
integral evaluation, we refer to the original publication [105], which also contains a detailed
sketch of the situation in its Fig. 3.2.
This integration step results in a fully discrete second-order accurate central scheme [105,
Eq. (3.9)]. Here, ūn+1

j is calculated via an algebraic formula from

{ūij−2, ū
i
j−1, ū

i
j , ū

i
j+1, ū

i
j+2} (5.66)

and the corresponding local velocity estimates {ai
j± 1

2
}, which are in turn formulae of the

sets (5.66).

This algorithm is repeated for every time step (except for step zero).

It is also shown in Ref. [105] that the numerical viscosity of this scheme is, in contrast to the
predecessor schemes [214, 216, 217] ∆t-independent and O(∆x3). This ∆t-independence allows
for a controlled ∆t → 0 limit, which results in the following semi-discrete form, which can be used
directly with standard ODE integrators:
Including exclusively the advection flux, the semi-discrete evolution equation of the jth cell average
reads

∂tūj(t) = −
Hj+ 1

2
−Hj− 1

2

∆x . (5.67)

The corresponding Hj+ 1
2

are

Hj+ 1
2

≡
F
[
t, xj+ 1

2
, u+
j+ 1

2

]
+ F

[
t, xj+ 1

2
, u−
j+ 1

2

]
2 −

aj+ 1
2

2
(
u+
j+ 1

2
− u−

j+ 1
2

)
, (5.68)

using Defs. (5.63) and (5.64). Still, despite its non-trivial structure also the semi-discrete scheme
has the overall structure of a five-point stencil and stays second-order accurate in ∆x.
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Note that without an explicit position dependence of the advection fluxes (and ignoring diffusion
and source terms), the scheme is conservative, which implies that detailed balance at the cell
interface is maintained and nothing of the fluid field u gets lost (which can even be checked
numerically to astonishing precision). Without the position dependence the KT scheme is also
proven to be TVD/total variation non-increasing (TVNI) for standard flux limiters.

Diffusion

As soon as non-linear diffusion enters the game, the conservation law exhibits potentially strongly
degenerate parabolic contributions, which can lead to non-smooth solutions, even without advec-
tion.
In Ref. [105], the advection and diffusion fluxes are strictly split and treated independently.
Kurganov and Tadmor suggest to use the following discretized version of the diffusion flux,

Pj+ 1
2

≡
Q
[
t, xj , ūj ,

ūj+1−ūj
∆x

]
+Q

[
t, xj+1, ūj+1,

ūj+1−ūj
∆x

]
2 , (5.69)

which enters Eq. (5.67) as follows

∂tūj(t) +
Hj+ 1

2
−Hj− 1

2

∆x =
Pj+ 1

2
− Pj− 1

2

∆x . (5.70)

This discretization mimics a kind of central difference approximation of the fluxes themselves, was
tested in Ref. [105] and also by ourselves with standard diffusion problems, and can be used for
problems with and without advection.

An alternative discretization of the diffusion term is presented in Ref. [234, App. B]. For diffusion
fluxes of type

Q[t, x, u, ∂xu] = φ[t, x, u] · Q̃[t, x, ∂xu] , (5.71)

like for our FRG problem, see Eq. (5.13), the Pj+ 1
2

in Eq. (5.70) are

Pj+ 1
2

= φ
[
t, xj+ 1

2
, 1

2
(
u+
j+ 1

2
+ u−

j+ 1
2

)]
· Q̃
[
t, xj+ 1

2
,
ūj+1−ūj

∆x
]
. (5.72)

Both versions of the discretized diffusion fluxes were tested within this work without finding sig-
nificant differences. All numerical results in this thesis and the corresponding Refs. [1, 2, 3, 4] are
calculated via the first version.

We remark that using schemes with higher-order reconstruction these usually also come with
higher-order discretization of the diffusion flux, e.g., Ref. [224].

Sinks and sources

The KT scheme also allows for a straightforward inclusion of sink/source terms of type S[t, x, u],
if they can be strictly split from advective and diffusive contributions [105].
For u-independent sources of type S[t, x] = ∂xs(t, x) the spatial integration over FV cells from
Eq. (5.56) to Eq. (5.59) can be performed analytically and the sink/source term contributes to
Eq. (5.70) as follows

∂tūj(t) = . . .+
sj+ 1

2
− sj− 1

2

∆x , sj+ 1
2

= s
(
t, xj+ 1

2

)
. (5.73)

Otherwise, for u-dependent sink/source terms, one may simply use S[t, xj , ūj(t)] as an approxi-
mation. For details in the FRG context, we refer to Ref. [4] and Part II of this thesis.
Ultimately, we find the full semi-discrete KT scheme,

∂tūj(t) +
Hj+ 1

2
−Hj− 1

2

∆x =
Pj+ 1

2
− Pj− 1

2

∆x + source . (5.74)
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Caveat of applicability to RG flow equations

As already mentioned in Section 1.2.2, care should be taken if numerical methods are run at
their edge of applicability. Therefore, we have to remark at this point that also the KT scheme
was designed in its original version by Kurganov and Tadmor in Ref. [105] solely for t- and x-
independent advection and diffusion fluxes, while FRG problems show t- and x-dependent fluxes.
(It is neither stated explicitly by the authors that the scheme works for such systems nor that it
is not applicable.)
We do not believe that the t-dependence of the fluxes (5.12) and (5.13) of our FRG problem
causes any trouble, because the highly complicated and non-linear dynamics in t is transferred to
the ODE time-stepper anyhow. Concerning the explicit x-dependence, things are more involved,
because it spoils the fundamental TVD/TVNI and conservative property of the advective part,
which is a fundamental feature of the KT scheme. However, to the best of our knowledge, the
x-dependence does not alter the correct estimation of the advection velocities via ∂F

∂u , such that
the core of the KT algorithm for the evaluation of the flux integrals is working properly.
In any case, using the KT scheme in an uncontrolled environment, like for general FRG ap-
plications, calls for detailed testing. This is done in Chapter 6 for our zero-dimensional O(N)
toy-models with challenging UV initial conditions. For all our tests, the KT scheme delivered
remarkably precise results in terms of extremely small relative deviations from exactly known
reference values. Therefore, we strongly believe that the KT scheme is safely applicable for t- and
x-dependent advection and diffusion fluxes, but we can not guarantee for this for general FRG
setups. Additional research is definitely indispensable.

5.2.3. (Discretized) boundary conditions
Solving a PDE is exclusively a well-posed problem, if, in addition to the PDE itself, its domain, and
its initial condition, there are well-defined boundary conditions [104, 49, 50, 51, 52]. Elliptic PDE
problems are therefore also called boundary-value problems, because normally there is no initial
condition and no time evolution. In the case of (non-linear) PDEs of hyperbolic and parabolic
type (like the RG flow equation of the local potential), one usually speaks about a Cauchy or
initial(-boundary)-value problem, because the initial (and boundary) condition(s) are needed to
propagate the solution to later times.
On the numerical level, it is further necessary that these Dirichlet and/or Neumann boundary con-
ditions are correctly translated to their discretized version. Otherwise it is impossible to obtain
correct weak solutions from numerical time stepping. For numerical schemes, like the previously
presented FV methods, this is usually done in terms of ghost/dummy cells, which are added arti-
ficially outside of the actual physical domain and control the in- and out-fluxes.

Unfortunately, in the FRG literature on flow equations for models and theories, which include a
PDE for a local effective potential, there is little discussion on the influence of boundary conditions
on the (numerical) solution and their detailed implementation. Some notable exceptions are for
example Refs. [84, 85, 235, 196, 82, 83]. Therefore, we also spend some paragraphs in this work
to discuss this important issue in great detail and present our reasoning and implementation of
boundary conditions for the RG flow equations (5.3) and (5.4).

Identifying the boundary conditions

The domains of the PDEs (5.3) and (5.4) that describe the RG flow of u(t, ϱ) = ∂ϱU(t, ϱ) in
ϱ and u(t, σ) = ∂σU(t, σ) in σ are R≥0 and R respectively. Therefore, the RG flow of u(t, σ)
represents a pure initial-value/Cauchy problem without explicit boundary conditions. For σ →
±∞ the problem is defined by the asymptotics of the initial condition and the PDE itself and it
(theoretically) suffices to know the initial condition to solve the problem. For the version of the
PDE in ϱ this is different, because, due to the use of the O(N) symmetry, a domain boundary is
introduced at ϱ = 0, where boundary conditions for u(t, ϱ) should be imposed. The same happens
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if one uses the remaining Z2 (anti)-symmetry,

U(t, σ) = U(t,−σ) , ⇔ u(t, σ) = −u(t,−σ) , (5.75)

to also reduce the domain of the PDE (5.4) to R≥0.4 (For the sake of simplicity, we choose σ ≥ 0
and not σ ≤ 0 for the remaining discussion.) Here, the boundary condition is clear by construction,
viz., u(t, σ) has to be anti-symmetric at σ = 0. However, for the formulation in ϱ, thus u(t, ϱ),
the correct specification of the boundary condition is not clear to us. At first sight, one might be
temped to argue that u(t, ϱ = 0) has to be zero, because by symmetry ϱ = 0 has to be a local
extremum of the potential. However, if the potential is non-analytic at ϱ = 0, which can easily be
realized, u(t, ϱ = 0) = ∂ϱU(t, ϱ = 0) is non-zero and can even diverge. The same is the case for
u(t, σ = 0) = ∂σU(t, σ = 0). Still, in the σ-formulation, there generally exist negative values of σ
which allows to cope with possible non-analytic behavior and the anti-symmetry, as is discussed
below.

Anyhow, for a numerical solution of the PDE, e.g., with FV methods, it is impossible to work
on non-compact domains and a compactification to an effective finite computational domain is
required. Basically, there are two options to reduce σ ∈ [0,∞) and ϱ ∈ [0,∞) to a finite domain.
Either one compactifies the domain by a mapping function, e.g., σ 7→ σ̃(σ), and u 7→ ũ(u), which
also renders ũ finite on this domain or, as is also popular in the FRG literature, see for example
Refs. [59, 236], one truncates the spatial domain (field space) at some finite σmax with a suitable
boundary condition.

Next, we discuss the σ = 0 = ϱ and σ → ∞ (ϱ → ∞) boundaries in detail.

σ = 0 boundary condition

We start with an analysis of the boundary condition at σ = 0 = ϱ. From the PDEs (5.3) and (5.4)
it might be appealing to use the ϱ-version of the flow equation, Eq. (5.3), because the advection
flux (5.10) does not explicitly depend on ϱ and one avoids the nasty 1

σ term in the denominator of
Eq. (5.12), which makes the flux diverge at σ = 0. In addition, the O(N) symmetry is manifestly
encoded already in the domain of the problem if one uses ϱ.
Nevertheless, we believe that a formulation in the background field σ is better suited for numerical
calculations, because of the following arguments.
As discussed, highly non-linear advection-diffusion problems tend to form non-analyticities. In
FRG, we know that this is indeed the case. For example, in a symmetry-broken phase in the IR
bosonic potentials become flat and convex for small field values, but still have non-trivial minima,
which can only be realized if the potential is non-analytic around these minima, see, e.g. Ref. [13].
The same applies to calculations at non-zero chemical potentials, which introduces moving RG-
time-dependent non-differentiable cusps into the potential and possible jumps in its derivative, cf.
Section 10.3 and Ref. [4]. In consequence, non-analytic behavior can also be present close to or
at σ = 0 = ϱ, such that even though U(t, σ) is symmetric and has a local extremum at σ = 0,
this point does not need to be analytic. It follows that u(t, σ) (being anti-symmetric) might be
discontinuous and jump from −u to u or even have a pole at σ = 0. Formulated in ϱ, u(t, ϱ) is
also not restricted and takes some arbitrary values at ϱ = 0 during the RG flow.

It remains the question why this (presently) disfavors the formulation in ϱ?

4If possible, this reduction of the domain is always advisable from a numerical point of view. As long as u(t, σ)
is perfectly odd about σ = 0 there is no additional information contained in the second half of the domain. As
it happens, spanning the computational domain over positive and negative σ might even introduce tiny numerical
errors from the floating-point arithmetic, which are not perfectly symmetric and do not balance, and can lead to
artificial symmetry breaking. In addition, using the Z2 anti-symmetry can significantly speed up the calculation,
because less cells are required to reach the same spatial resolution.
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This is seen best on the discrete level. For the FV scheme from the previous section the boundary
conditions have to be realized by two ghost cells at each boundary to control the in- and out-fluxes
from the physical domain. Other numerical schemes also require additional ghost grid points etc..
In any case, it has to be specified where these ghost cells/points are located and how the cell
averages of the ghost cells are (re-)constructed/chosen (from the physical cells).

ϱ-formulation In the ϱ-formulation it seems questionable to place the ghost cells outside the
physical domain at negative ϱ, because there is no notion of negative ϱ and it is presently unclear
to us how the cell averages ūj(t) should be chosen there.
So what about positioning the ghost cells inside the physical domain at positive ϱ close to ϱ = 0?
In this case the ghost cells are well defined, because ϱ ≥ 0 physically exists. However, the cell
averages ūj(t) in theses cells would have to be reconstructed from the cell averages at larger ϱ via
some kind of extrapolation. This, however, does not make sense at all, because the behavior of
u(t, ϱ) and the correct extrapolation is not known at small ϱ and finding its dynamics is part of
the original problem of solving the PDE. An extrapolation is especially dangerous, because the
fluid is in general propagated to smaller ϱ, cf. Eq. (5.14), where a lot of dynamics takes place.
Further, even the physical point might be located at ϱ = 0 and should therefore be part of the
solution and not of an extrapolation. If one also takes into account the diffusive contributions,
some hand-waving constructions about ϱ = 0 sounds even more questionable, because diffusion is
undirected and also transports information and possible errors from smaller to larger ϱ, especially,
if there was symmetry breaking in the first place. Hence, the artificial boundary condition at ϱ = 0
potentially influences all ϱ.
This discussion does by no means imply that there is no solution or workaround for this problem.
In fact, we believe that there has to be a valid formulation of a discretized boundary condition in
ϱ with ghost cells being located at some fictitious negative ϱ, but we were not able to find it for
general setups.
Still, there is an exception to our present objections against choosing ϱ as the spatial coordinate.
In the N → ∞ limit of the O(N) model one finds that information is strictly transported towards
ϱ = 0, because ∂F/∂u is always positive. In this scenario ghost cells can be positioned at negative
ϱ, because information is never propagated back into the physical domain. Here, we shall not
discuss this further, but refer to Refs. [77, 101] and Ref. [3, Appendix E & F] for details.

σ-formulation In this case, there is no problem at all to place ghost cells at negative σ. In
addition, from the anti-symmetry of u(t, σ) it is obvious that the cell averages of the ghost cells
simply need to be chosen as the negative of the first cells in the physical domain.
Still, there is the problem of the factor 1

σ in the advection flux (5.12), which diverges at σ = 0.
Furthermore, it would be required by the KT scheme to reconstruct the u(t, σ) on the cell interface,
which is also a problem if u(t, σ) is discontinuous at a possible cell interface at σ = 0.
At least within FV schemes there is a rather simple solution for both issues. If one of the ghost
cells or the first physical cell is positioned symmetric about σ = 0, one never has to evaluate
the advection flux at exactly σ = 0 because the advection flux is always calculated on the cell
interfaces, which has a distance of ± ∆σ

2 to the problematic σ = 0. Hence, the 1
σ -term no longer

causes problems and a reconstruction of uj+ 1
2
(t) is never required at σ = 0. In addition, we

can always fix the cell average ūj=0(t) to zero, because the average over an odd function always
vanishes, even if this function jumps or has a pole at σ = 0. Hence, we position our FV grid as
follows:
The zeroth cell has its center at σ0 = 0 and the centers of all physical cells are located at σj = ∆σ·j,
j ∈ N, while their interfaces are at σj+ 1

2
= ∆σ · (j + 1

2 ). In turn, the two ghost cells have their
cell centers at σ−1 = −∆σ and σ−2 = −2∆σ. The corresponding cell averages of the first three
cells are

ū−2(t) = −ū2(t) , ū−1(t) = −ū1(t) , ū0(t) = 0 , (5.76)
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Figure 5.1: Second-order accurate FV implementation of the spatial boundary condition for u(t, x)
or ūj(t) respectively, at x = 0. We use the fact that u(t, x) is an odd function in x by positioning
the first computational cell x0 at x = 0, such that the cell average is exactly zero ū0(t) = 0,
which is true for u(t, x) which are analytic (blue-dashed) as well as non-analytic (green-solid) at
x = 0. The ghost-cell averages can thus be fixed by setting ū−2(t) = −ū2(t) and ū−1(t) = −ū1(t).
Corresponding cell averages ūi(t) are depicted as horizontal bars (magenta-dashed and yellow-
solid). This boundary condition can be generalized to lower- and higher-order accurate FV schemes
as well as finite-difference or finite-element schemes, as well as to problems of two or more field-
space directions. From Ref. [1, Fig. 3].

for all times t. This forms a valid and stable implementation of the boundary condition, which
is valid for any ∆σ and all times t. For illustrative reasons, the situation is again sketched in
Fig. 5.1.

Large-σ boundary condition

Next, we turn to the artificial computational boundary condition at large field values. Due to the
previous discussion and w.l.o.g. we discuss this for positive σ ∈ [0,∞).
As already said, formally on the level of the PDE, there is no boundary condition required and the
initial condition suffices. This is seen as follows. The effective local potential has to be bounded
from below for all RG times and at least grows like σ2 for large σ. If U(t, σ) grows faster than σ2

the advection and diffusion flux (5.12) and (5.13) both vanish asymptotically, such that σ → ∞ is
a zero influx boundary condition and u(t, σ) keeps its initial UV asymptotic shape. If the asymp-
totic behavior of the UV potential is exactly proportional to σ2, both fluxes are asymptotically
independent of σ, which implies that there is constant in- and outflux in each discretized FV cell.
Also here, there is asymptotically no change of u(t, σ).

Anyhow, it is impossible to implement this directly for σ → ∞ and there are basically two options
to proceed numerically:

1. One could try to map the domain [0,∞) to the interval [0, 1) by rescaling σ with appropriate
rescaling of u(t, σ), to keep the values of the fluid field finite. Then, however, one needs to
implement the asymptotic boundary conditions at the right boundary of the finite interval,
which again brings up questions about the correct positioning of ghost cells and decent ex-
trapolation etc.. Further, in order to keep a high resolution of small σ to resolve the physical
region and the minimum, the mappings need to be highly non-linear. These distortions
come with additional parameters and modify the flow equation, which can lead to additional
numerical challenges. After some testing with different map functions, like versions of tanh,
arctan etc., we discarded this approach and turned to something much simpler – the second
option. (This does not imply at all that there are no smart mappings in general.)

2. Another simple and robust option is to split field space into the compact domain [0, σmax] and
a non-compact domain [σmax,∞). Thereby, σmax has to be chosen larger than the physically
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relevant region, but not too large. Approximately three times larger than the physically
relevant regions (e.g., defined by a (temporally) non-trivial minimum) turned out to be a
good first approach, but this needs to be tested again for every model. Explicit tests are
provided later on for zero-dimensional O(N) models and were also performed for the studies
of Part II of this thesis in Ref. [4, Appendix F]. Furthermore, we keep a direct identification
of the field space with the computational domain. In higher-dimensional calculations a
rescaling of field space with the characteristic energy scale (e.g., a condensate, the UV
cutoff, a critical temperature) to the appropriate power might be helpful, see again Part II
or Ref. [4].
Within the compact domain [0, σmax], one has to ensure a high resolution in terms of FV cells,
in order to capture the relevant dynamics. For the non-compact domain at large σ we suggest
to expand or approximate u(t, σ) in terms of a complete set of functions/polynomials with
RG-time-dependent expansion coefficients. As discussed, for large σ, we do not expect a lot
of dynamics and deviations from the initial conditions due to decreasing fluxes. Furthermore,
for most common UV initial potentials, we do not expect non-analytic structures at large σ,
such that a low-order expansion should work out.
Then at the point σmax the ghost cells for the FV method of the interval [0, σmax] can be
fixed via u(t, σ) from the asymptotic expansion in the non-compact interval.
The total RG-time evolution and solution consists of an evolution of the cell averages from
the first domain and the expansion coefficients of the second domain.
Interestingly, it turned out during our practical tests that the approximation of u(t, σ) in
[σmax,∞) is actually not needed, if the interval σmax is large enough to almost totally
suppress the fluxes. This is oftentimes found at surprisingly small σ but strongly depends
on the problem at hand. Of course, it also requires a rather large number of FV cells to keep
a high resolution via small ∆σ.
For this approach it turned out that a simple linear extrapolation of the two last physical
cells to the ghost cells, which are located at σmax + ∆σ and σmax + 2∆σ, suffices, as long as
∆σ is small to fix the cell averages in the ghost cells in each time step.5 Thus, we simply
use for all times t,

ūn(t) = 2ūn−1(t) − ūn−2(t) , ūn+1(t) = 3ūn−1(t) − 2ūn−2(t) , (5.77)

for the ghost-cell averages, if there are n physical cells centered at {σ0, σ1, . . . , σn−1} and
the last physical cell is labeled by σn−1 and centered at σmax. Explicit tests are provided in
Section 6.5.2.
Anyhow, if σmax has to be too large to suppress the influx, it is possible to keep a decent
resolution and sensible number of cells, to consider a concatenation of intervals [0, σ(1)

max],
[σ(1)

max, σ
(2)
max] etc., with different cell size ∆σ in each interval. This ensures high resolution

at small σ, while keeping the total computational domain large with a manageable total
number of cells and was done with the DG method in the context of the fluid-dynamical
approach to FRG [77, 101]. Furthermore, for future improvements one might also think of
moving meshes or AMR techniques [237]. Both improvements were not needed for this work.

5.2.4. Discrete formulation of the entropy function and the TVD prop-
erty

Lastly, before we study explicit tests, we turn to the discretized version of the entropy-/C-function
for the O(N = 1) model from Section 5.1.4. The task is to formulate Eq. (5.29) with Eq. (5.28)
within the FV discretization from Section 5.2.1 and use the discrete boundary conditions from the
previous Section 5.2.3.

5Higher-order polynomial extrapolation actually perform worse, because these can lead to spurious oscillations,
whose error is propagated to smaller σ.
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Discrete entropy function

As a first step, we restrict the infinite domains of the σ-integrals to our computational domain
[0, σmax]. As argued previously, the potential and its derivatives do not change for large field
values during the RG flow and as long as σmax is sufficiently large, we can ignore the contributions
from [σmax,∞) to the two integrals, because they cancel,

C[∂σu] = −2
∫ σmax

0
dσ
[
∂σu(t, σ)

]2 + 2
∫ σmax

0
dσ
[
∂σu(t = 0, σ)

]2
. (5.78)

In the next step, we discretize the spatial derivative using a simple forward finite-difference (FD)
stencil.6

∂σu(t, σi) ≃ ūi+1(t)−ūi(t)
∆σ + O(∆σ) . (5.79)

Lastly, the integrals are approximated by Riemann sums over the n FV cells and we obtain,

C[{ūi(t)}] = − 2
∆σ

n−1∑
i=0

(
ūi+1(t) − ūi(t)

1 + δi,0 + δi,n−1
− ūi+1(0) − ūi(0)

1 + δi,0 + δi,n−1

)
. (5.80)

The factor (1 + δi,0 + δi,n−1) is introduced to compensate for the fact that only the right half of
the zeroth cell and the left half of the last volume cell contribute to the integrals of Eq. (5.78).
The discrete entropy function Eq. (5.80) can be directly calculated on the discrete solution of the
RG flow.

Relation to the TVD property

Let us again emphasize that our entropy function is closely related to the total variation (TV) [218],
which is simply defined as the (discretized) arc length of u(t, σ) on the computational interval,

TV[u(t, σ)] ≡
∫ σmax

0
dσ |∂σu(t, σ)| , ⇔ TV[{ūi(t)}] ≡

n−1∑
i=0

|ūi+1(t) − ūi(t)| . (5.81)

Using the absolute value instead of the square in Eq. (5.78) and introducing a normalization as
well as a sign-flip solely constitute quantitative differences, while the qualitative interpretation
of the TV and entropy function stays the same: For each time step both functions are only
non-increasing/decreasing (depending on the sign) and somehow measure the arc length of u(t, σ).
The property of a solution of a PDE having an arc length that shrinks monotonically is usually
called TVD but should actually be denoted as TVNI, cf. Ref. [52]. It is fundamentally linked to
the existence of (weak) solutions in a huge class of hyperbolic and parabolic conservation laws
[238, 200, 104, 49, 50, 218, 51, 239, 52].
From the above construction of the entropy function and its direct relation to the TVNI property,
we conclude that the PDE for the RG flow of the effective potential of the zero-dimensional
O(N = 1) model is also TVNI. Further, we believe that this points towards a direct relation
between the concepts of (numerical) entropy on the level of the PDE and the formal C-theorem in
QFTs. For further discussions we refer to our publication [2].

6We are aware of the fact that a FD approximation of the derivative is ill-conditioned at non-analytic points in
u(t, σ). Hence, the absolute value of C[∂σu] will strongly depend on how the derivative hits possible discontinuities
etc., thus on the choice of ∆σ and σmax. Anyhow, we are not quantitatively interested in this absolute value but its
change during the RG flow. Furthermore, for our zero-dimensional toy models the corresponding IR potentials are
smooth, such that a FD approximation gets less problematic during the RG flow. Nevertheless, for future works
(in higher dimensions) it might be better to use some reconstructed values for the derivatives, like Eq. (5.61).
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Chapter 6

Tests, results, applications, and
conclusions

Abstract We test the framework of numerical fluid dynamics for FRG flow equations. Intro-
ducing challenging test cases, we benchmark the FV-KT scheme against exact reference solutions.
This includes tests of numerical parameters belonging to the discretization and FRG parameters
such as decent choices of cutoffs. Further, we discuss qualitative aspects of FRG flows from the
perspective of fluid dynamics.
Our numeric scheme is also quantitatively compared against an expansion scheme of the flow
equation. Here, the FRG Taylor expansion of the effective potential is tested in detail.
Further, we provide quantitative results and a discussion of the entropy function for the RG flow,
which was constructed in the previous chapter for the N = 1 limit of the O(N) model.
Afterwards, we turn to the inviscid limit, thus N → ∞. We discuss shocks and rarefaction waves
in the FRG flow equation and their relation to PTs. Then, we compare RG flows at infinite N
with flows at finite N and demonstrate that even at large N with only little diffusion the dynamics
is drastically changed. This is put into context with our previous discussion on the shortcomings
of the N → ∞ limit.
Finally, we summarize the discussion of Part I of this thesis and our novel findings and present
possible generalizations and applications.

Disclosure Also this chapter is almost entirely based on our own publications [1, 2, 3] and is
a compilation of their mostly novel results. The order of presentation and arrangement of the
discussion deviates from the publications, though the content (including figures) is almost the
same. Of course, there is some minimal text overlap or similar wording, because the text of these
publications was mostly written by M. J. Steil and myself in approximately equal shares and joint
work. Again, the discussion is also influenced by works of our collaborators [77, 101, 102, 103] and
the related Ref. [4].

6.1. Introductory remarks
In the preceding Chapter 5 we presented a theoretical framework for studying FRG flow equations
in terms of fluid-dynamical problems. Furthermore, we discussed several qualitative and quanti-
tative consequences of this interpretation and introduced a numerical scheme to solve the PDE
for local bosonic potentials in terms of conservation laws. However, all theory is nothing without
explicit testing. This is subject of this chapter.

Similar to Chapter 3 we use that zero-dimensional QFTs are exactly integrable via the path-
integral formalism, which provides explicit reference solutions, see Chapter 2. Hence, our novel
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fluid-dynamical setup, with numerical methods from CFD for solving the exact1 RG flow equation
of the effective potential, is benchmarked against these solutions. This is done by studying relative
deviations of vertex functions obtained from the FRG from their exact counterparts. These errors
are analyzed as functions of several parameters which concern the numerical scheme (e.g., the
spatial resolution or the size of the computational domain), but also parameters from the FRG
formalism (e.g., UV and IR cutoffs). In addition, we also test the correct implementation of
boundary conditions etc..
Supplementary, we also use this chapter to benchmark the FRG vertex/Taylor expansion as an ar-
tificial truncation of the exact Wetterich equation in zero dimensions. Also here, we discuss relative
errors from exact results for vertex functions, e.g., their dependence on the truncation/expansion
order.
To be precise, we always use∣∣∣∣Γ(2n)

test
Γ(2n) − 1

∣∣∣∣ (6.1)

to quantify the relative errors of vertex functions. Here, Γ(2n) denotes the exact result from
Eqs. (2.12) and (2.39) to (2.41) etc. and “test” indicates the respective vertex function that was
calculated via FRG flows in some test scenario.

However, all these tests require challenging setups, which push the methods to their limits. Other-
wise there is no evidence at all to trust the novel (numerical) approach in an unknown environment,
e.g., in higher-dimensional model calculations for theories where no exact solutions are available.
Therefore, we first introduce some explicit zero-dimensional toy models with O(N) symmetry in
terms of their corresponding classical UV action. These initial potentials are chosen and con-
structed in a way to cover various severe challenges, which can also be present in one or the other
way in RG flow equations of higher-dimensional O(N)-type models.

Afterwards, we turn to the explicit tests and studies of RG flows of these models. We start with
a more qualitative discussion of the fluid-dynamical interpretation of the calculated RG flows of
the models, but quickly move on to the above described quantitative checks.

In the second part of this chapter, the specific aspect of entropy production and irreversibility
of RG flows is presented from a quantitative perspective. We explicitly calculate the (numerical)
entropy along the lines of Sections 5.1.4 and 5.2.4 for our toy models in the viscous N = 1 limit
and discuss the results and their consequences.

As the grand final of this chapter, we return to the N → ∞ limit and its consequences. This
comprises a discussion of shock and rarefaction waves in the derivative of the effective potential
in field space and their relation to PTs. Furthermore, we explicitly demonstrate the drastic differ-
ence between large and infinite N and discuss the important role of the σ-mode for restoration of
convexity and smoothness.

We close this chapter and Part I of this thesis with concluding remarks and comments on possible
generalizations.

6.2. A testing ground in zero dimensions – some toy models
In this section, we present some specific UV potentials for our tests. Each test case is provided
in terms of its explicit UV initial condition for the RG flow as well as a formula to obtain exact
reference solutions for expectation values and vertex functions (if it exists in terms of a closed
analytic expression). Furthermore, the presentation of each UV potential is accompanied by some

1Here, “exact” refers to the fact that there is no truncation needed.
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(a) Test case I: Potential (6.2).
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(b) Test case II: Potential (6.5).
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(c) Test case III: Potential (6.6).
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(d) Test case IV: Potential (6.7).

Figure 6.1: The UV potentials U(σ) (red-dashed) and their first derivatives u(σ) = ∂σU(σ) (blue-
solid) evaluated on the constant background-field configuration. From Ref. [1, Figs. 4, 18, 27, 30].

remarks on the reasoning behind the choice/construction w.r.t. possible challenges, because there
is no physical phenomenology underlying these potentials in zero dimensions.
All potentials have in common that the parameters and the “physically” interesting dynamical
region is of order one. This choice is arbitrary, but it is convenient for a specification of regimes
that are larger and smaller scales in the UV and IR. For illustrative reasons Fig. 6.1 provides
visualizations of all the UV initial potentials and their derivatives (evaluated on a background-
field configuration), while Table 6.1 contains some reference values for the vertex functions which
are used in this chapter.

6.2.1. Test case I: Non-analytic initial condition

As our first toy model and test case, we present a non-analytic UV potential, which is defined
piecewise,

U(φ⃗ ) =



− 1
2 φ⃗

2 , for 0 ≤ |φ⃗ | ≤ 2 ,

−2 , for 2 < |φ⃗ | ≤ 3 ,

+ 1
2 (φ⃗ 2 − 13) , for 3 < |φ⃗ | .

(6.2)
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Table 6.1: The table lists exact results for various Γ(2n) of the O(N) model for selected N for
the initial conditions of our test cases (up to numerical integration errors). They are obtained
by a high-precision one-dimensional numerical integration of the expectation values ⟨(ϕ⃗ 2)n⟩ using
Mathematica’s numerical integration routine NIntegrate [240] with a PrecisionGoal and Accu-
racyGoal of 10. Here, we present the first ten digits only. From Ref. [1, Table I, II, III, IV] &
Ref. [2, Table I].

UV potential N Γ(2) Γ(4) Γ(6)

(6.2)
1 0.1768130358 0.0520549107 0.0865733100
3 0.3973542395 0.1408641479 0.2249964322
10 0.8451440328 0.1519326337 −0.0691341063

(6.5) (neg. mass) 1 0.1995098930 0.0622583604 0.1077442107
4 0.5064440744 0.1824153741 0.2802880035

(6.5) (pos. mass) 1 1.3324252475 0.6078986614 0.7714507237
4 1.5809246562 0.6118483669 0.5686310448

(6.6) 1 0.1740508127 0.0156179528 0.0134404864
4 0.2503331837 0.0481313248 0.0432822719

(6.7) 1 0.2046977422 0.0646818943 0.1128487619
3 0.4216739793 0.1535593029 0.2492523147

Asymptotically, it is quadratic in |φ⃗ |. For small |φ⃗ | it is also parabolic, but with negative sign.
For an intermediate region, 2 < |φ⃗ | ≤ 3, the potential is flat with an infinite number of degenerate
non-trivial minima. The points at |φ⃗ | = 2 and |φ⃗ | = 3 form non-analytic hyperspheres in field
space.
If formulated in the O(N) invariant the potential reads

U(ϱ) =



−ϱ , for 0 ≤ ϱ ≤ 2 ,

−2 , for 2 < ϱ ≤ 9
2 ,

+ϱ− 13
2 , for 9

2 < ϱ .

(6.3)

A plot of the potential and its derivative, evaluated for a constant background-field configuration,
is shown in Fig. 6.1a.

Exact solution

The QFT defined by this potential is exactly integrable in terms of transcendental functions. Using∫ ∞

0
dρ ρN2 −1 ρn e−U(ρ) (6.3)= (6.4)

=
(
N
2 − n

)−1
(

(−1)−(N2 −n) [Γ(N2 − n+ 1
)

−
(
N
2 − n

)
Γ
(
N
2 − n,−2

)]
+

+ e2
[( 9

2
)N

2 −n − 2N2 −n + e 9
2
(
N
2 − n

)
Γ
(
N
2 − n, 9

2
)])

,

all correlation functions (2.12) and vertex functions, e.g., Eqs. (2.39) to (2.41), can be computed
exactly. Nevertheless, for practical purposes a high-precision one-dimensional integration is used
to generate floating-point reference results.
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Remarks

The potential (6.2) was constructed this way for the following reasons.

1. The UV potential and initial condition for the RG flow start in the symmetry-broken phase.
Furthermore, it is non-analytic and non-convex, and comprises an infinite amount of minima.
According to Section 2.2 the IR potential has to be smooth, convex, and has exclusively a sin-
gle trivial minimum. The potential is therefore perfectly suited for studying the restoration
of the symmetry during the RG flow as well as the smoothening process.

2. Inspecting the initial condition for the RG flow, namely u(t = 0, σ) = ∂σU(σ) in Fig. 6.1a,
one further finds that the derivative of the potential contains two discontinuities. These
present challenging but soluble tasks for a modern numerical scheme from CFD, like the
KT scheme, but cannot be handled by schemes that come without flux/slope limiters or any
expansions etc..

3. In order to avoid complications and the possible influx of errors from the boundaries of the
computational domain, we choose a quadratic asymptotics, where linear extrapolation of
u(t, σ) at some large σmax should definitely be justified as well as smooth quadratic behavior
at the artificial σ = 0 boundary condition. This ensures that IR errors most certainly do not
stem from boundary conditions, but exclusively from the numerical scheme and parameters
like the cutoffs.

6.2.2. Test case II: ϕ4 potential
The second toy model is the zero-dimensional version of ϕ4-theory, see Section 3.2.1 and Eq. (3.7),
with positive and negative mass squared, where, for the sake of simplicity, we set m2 = ±1 and
λ = 1,

U(ϕ⃗ ) = ± 1
2 ϕ⃗

2 + 1
4! (ϕ⃗ 2)2 , U(ρ) = ±ρ+ 1

6 ρ
2 . (6.5)

A plot of the version with negative mass squared is presented in Fig. 6.1b.

Exact solution

Its exact solutions for correlation and vertex functions was already discussed in Section 3.2.1 and
the former can be expressed in terms of the integral (3.9). Again, numerical calculation of reference
values yields the same results as using this formula to the desired precision and we are interested
in floating-point reference values anyhow.

Remarks

If one is testing methods in QFT, there is of course no way to get around ϕ4-theory, because O(N)-
type models with such potentials are omnipresent, e.g., in the Anderson-Brout-Englert-Guralnik-
Hagen-Higgs-Kibble mechanism [141] in high-energy physics and solid-state theory. Anyhow, since
we already used a ϕ4-theory with positive and negative mass term in Chapter 3, to demonstrate
limitations of perturbation theory and motivate the use of non-perturbative methods, we in fact
almost have to show the superiority of FRG for this model.
Apart from these “traditional” reasons, there are of course also practical considerations.

1. In contrast to the previous example, there is a quartic asymptotic behavior of the potential.
Consequently, it is especially interesting to examine, whether our linear extrapolation (5.77)
at some σmax still works as an artificial large-σ boundary condition. Other numerical chal-
lenges, e.g., at the σ = 0 boundary condition or the interior of the domain [0, σmax], are not
expected, because the potential is already smooth in the UV. Hence, the dominating error
in the KT framework should stem from the cell size ∆σ, the large-σ boundary condition,
and cutoffs.
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2. Due to smoothness of the potential a FRG vertex/Taylor expansion seems to be justified (as
an artificial truncation) and at least in the UV a truncated Taylor series perfectly describes
the potential. Expanding about the IR minimum, which is trivial, we can check, whether
the FRG Taylor expansion with constant expansion point from Section 4.4 works for ϕ4-
theories with positive and negative mass term, respectively. These quantitative results can
be further compared to the numerical solution of the exact PDE for the full potential via the
KT scheme and the exact reference results. This might shed a different light on the notion
of “apparent convergence”, which is oftentimes used in the FRG community to justify vertex
expansion schemes as truncations of the Wetterich equation.

Note that, unless stated otherwise, we always use Eq. (6.5) with negative mass term for the
upcoming discussion.

6.2.3. Test case III: ϕ6 potential
As a third test case, we study a potential with (φ⃗ 2)3 asymptotic behavior. The global minimum
of the potential is trivial. In addition, the potential comprises a hypersphere of local non-trivial
minima,

U(φ⃗ ) = 1
2 φ⃗

2 − 1
20 (φ⃗ 2)2 + 1

6! (φ⃗ 2)3 , U(ϱ) = ϱ− 1
5 ϱ

2 + 1
90 ϱ

3 , (6.6)

For a visualization of the potential and its derivative, evaluated on a constant background-field
configuration, we refer to Fig. 6.1c.

Exact solution

To the best of our knowledge exact solutions for all correlation functions in terms of transcendental
functions do not exist. (At least some integral tables, we, and Mathematica [147] could not come
up with any.) Therefore, we simply use high-precision numerical integration to generate “exact”
reference solutions of desired high accuracy.

Remarks

1. Again, the potential can be used to study the quality of the linear extrapolation at the
large-σ boundary condition, similar to what is discussed for the ϕ4-theory.

2. Potentials with multiple minima are usually found in RG flows in the vicinity of first-order
PTs. Here, the global minimum is already trivial and the system is always in its symmetric
phase. Still, the local minima have to vanish during the RG flow to obtain a convex IR
potential. The question is, whether this dynamics can also be described in terms of a vertex
expansion of the potential, because the expansion point is unique during the entire RG flow.
Hence, the potential again allows to directly compare the FRG vertex/Taylor expansion
with the full solution of the PDE and the reference solution. As an advantage compared
to ϕ4-theory with negative mass term, the physical point does not move and always agrees
with the expansion point at φ⃗ = 0.

6.2.4. Test case IV: the σ = 0 boundary
The last test scenario is again a potential which is asymptotically proportional to φ⃗ 2 and defined
piecewise. The small-|φ⃗ | behavior is described by −(φ⃗ 2) 1

3 , which leads to a non-analyticity at
φ⃗ = 0 and |φ⃗ | =

√
8,

U(φ⃗ ) =


−(φ⃗ 2) 1

3 , for 0 ≤ |φ⃗ | ≤
√

8 ,

+ 1
2 φ⃗

2 − 6 , for
√

8 < |φ⃗ | .
(6.7)
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The latter is a discontinuity on the level of the derivative of the potential, while the cusp at φ⃗ = 0
leads to a pole in the derivative.
Rewriting this as a function of the O(N) invariant, we find

U(ϱ) =


−(2ϱ) 1

3 , for 0 ≤ ϱ ≤ 4 ,

+ϱ− 6 , for 4 < ϱ ,
(6.8)

and a plot of the situation is shown in Fig. 6.1c.

Exact solution

Interestingly, there is an exact expression for the integral∫ ∞

0
dρ ρN2 −1 ρn e−U(ρ) (6.8)= (6.9)

= (−1)−3(N2 +n) 2−(N2 +n) 3
[
Γ
(
3
(
N
2 + n

))
− Γ

(
3
(
N
2 + n

)
,−2

)]
+ e6 Γ

(
N
2 + n, 4

)
,

which can be used to calculate the correlation and vertex functions (2.12) and (2.39) to (2.41),
even though simple high-precision one-dimensional numerical integration is also an option.

Remarks

The obvious reason for the construction of this potential is to test the discrete version of the
(σ = 0)-boundary condition (5.76) for the FV scheme. A pole at σ = 0 is certainly the most
extreme case for a discontinuous odd function in σ. The discontinuity at σ =

√
8 is an additional

challenge, but is already covered by the first toy model (6.2). The linear asymptotic behavior of
u(t, σ) is again chosen to avoid errors from the large-σ boundary condition.

6.3. Final remarks on the numerical setup
Before we turn to a qualitative analysis of the RG flows for each of the four UV initial potentials,
we need to provide some final remarks on the numerical setup, which is used for the remainder of
this chapter and is specific to our FRG problems.

As discussed in Section 5.2, we directly identify the background field with the spatial coordinate
x = σ. We use the KT scheme from Section 5.2.2 for the spatial discretization and the boundary
conditions (5.76) and (5.77) for the cell averages of the FV method. In total, we use n cells on the
domain [0, σmax] and two additional ghost cells at each domain boundary, such that ∆σ = ∆x =
σmax
n−1 . The cell center of the zeroth cell is at σ = x = 0 and the cell center of the (n− 1)th cell is
at σmax.
The initial condition for the cell averages is calculated according to

ūj(t = 0) (5.57)= 1
∆σ

∫ σ
j+ 1

2

σ
j− 1

2

dxu(t = 0, σ) = (6.10)

= 1
∆σ

∫ σ
j+ 1

2

σ
j− 1

2

dx ∂σU(t = 0, σ) =

= 1
∆σ
[
U
(
t = 0, σj+ 1

2

)
− U

(
t = 0, σj− 1

2

)]
.
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The actual time stepping of the semi-discrete KT scheme is performed with the ODE solver
NDSolve of Mathematica [147] with PrecisionGoal and AccuracyGoal of 10. We used various
Mathematica versions higher than 12.0 but less than 13.0 on different machines, which all de-
livered identical results within the precision of this work. For estimates on the performance and
required wall time etc., we refer to Ref. [3, Appendices E & F].

After the time stepping, the potential U(t, σ) at the cell centers σi for arbitrary times t is recovered
from the cell averages by standard Riemann integration,

U(t, σi) = ∆σ
i∑

j=0

ūj(t)
1 + δj0 + δji

, (6.11)

where the special denominator compensates for the fact that only half of the first and half of the
last cell contribute to the integral. In addition, we ignore the integration constant – a normaliza-
tion which does not matter for this work.

The vertex functions Γ(2n) are extracted from the cell averages using numerical differentiation,
thus FD stencils on u(t, σ) at the cell centers. Thereby, we approximate u(t, σ) at the cell centers
σj by the cell averages ūj(t). If the vertex functions are evaluated at the IR physical point σ = 0,
which is almost always the case in this chapter, the Z2 anti-symmetry is used to simplify the FD
stencils and to gain one order of accuracy for free, e.g.,

Γ(2) = ∂σu(tIR, σ)
∣∣
σ=0 ≃ ū1(tIR) − ū−1(tIR)

2∆σ + O(∆σ2) = ū1(tIR)
∆σ + O(∆σ2) . (6.12)

The reason why we get one order of accuracy for free is that the last expression is actually identified
as the forward FD stencil, which is only first-order accurate,

Γ(2) = ∂σu(tIR, σ)
∣∣
σ=0 ≃ ū1(tIR) − ū0(tIR)

∆σ + O(∆σ) = ū1(tIR)
∆σ + O(∆σ) . (6.13)

Here, it is used that the cell average of the zeroth cell is always zero. For explicit FD formula
for higher-order derivatives, which are used in this thesis, we refer to the explicit list in Ref. [1,
Appendix A] and the corresponding Refs. [241, 242].
Now, we are readily prepared to start the discussion of our results.

6.4. Qualitative discussion of RG flows
We turn to the qualitative discussion of the RG flows of the four UV initial potentials (6.2)
and (6.5) to (6.7).
The explicit parameters that are used in the calculations are listed in the corresponding plots.
These are the model parameter N of the O(N) symmetry group, the FRG parameters, namely the
UV cutoff Λ, the IR cutoff rIR, which corresponds to some “final” time step tIR, and the numerical
parameters, i.e., the size of the computational domain σmax and the number of FV cells n, which
results in some ∆σ.
For this qualitative discussion, we simply claim that the FRG and numerical parameters are chosen
in a way such that errors are negligible. This statement is validated in the next section, where we
explicitly test the accurate choice of the parameters by inspecting relative errors.
We further remark that the color-coding in all plots is on purpose, and reddish curves etc. corre-
spond to the IR at late RG times, while bluish curves are in the UV at early RG times.
Having said this, let us focus on phenomenological description from the fluid-dynamical perspec-
tive first.

W.l.o.g. we first fix N = 3 for the two non-analytic UV initial potentials (6.2) and (6.7) and
N = 4 for the smooth initial potentials Eqs. (6.5) and (6.6). In consequence, we have advective
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and diffusive contributions in all RG flows of u(t, σ). Inspecting Fig. 6.2, we clearly observe
smoothening of u(t, σ) for all test cases and a restoration of the symmetry of the ground state.
All IR potentials at late t are convex, smooth, and have a single trivial minimum as expected for
zero-dimensional models, cf. Section 2.2. Remarkably, this also perfectly works out for test case
IV, which started with a pole at σ = 0 in u(t = 0, σ), see Fig. 6.2d.
Furthermore, we clearly observe for all test cases that almost all of the (visible) dynamics happens
approximately when the regulator r(t) reaches the model scales, which are roughly of order one
for all UV potentials. For earlier and later RG times there is almost no dynamics at all, as should
be the case. This is actually best seen in the three-dimensional versions of Fig. 6.2a, which are
plotted in Fig. 6.3.
As a direct consequence and at first glance, the huge UV cutoffs and tiny IR cutoffs, which lead to
an RG flow over several orders of magnitude, seem excessive. However, one should keep in mind
that it was explicitly required during the derivation of the (zero-dimensional) Wetterich equation
in Chapter 4 that r(t = 0) = Λ ≫ 1 and t → ∞ with lim

t→∞
r(t) = 0, while for practical calculations,

where t → ∞ is not possible, r(tIR) ≪ 1. In Section 6.5.4 we explicitly demonstrate that rather
large/small UV/IR cutoffs are indeed necessary to obtain high-precision vertex functions.

Next, let us turn to the dynamics on the level of u(t, σ). Especially, if we inspect the RG flows of
the non-analytic initial conditions, Figs. 6.2a and 6.2d, we observe that, as soon as the regulator
reaches the model scales, diffusion is present and immediately smears out the discontinuities. We
also observe diffusion in regions of negative slope of u(t, σ), e.g., in Fig. 6.2b at small |σ|. However,
we also find for all test cases that there is some bulk transport of u(t, σ) from large |σ| to smaller
|σ|. Especially for Fig. 6.2d it is interesting how bulk motion and diffusion eliminate the pole at
σ = 0.
To get a better intuition for the respective contributions of the diffusive σ-mode and the advective
contribution by the N − 1 “pions”, we plotted the RG flow of u(t, σ) for the initial condition
Eq. (6.2) for different N in Fig. 6.4. In the absence of advective contributions, N = 1, we find
that there is strong non-linear diffusion. The discontinuities are completely smeared out, and it
is clearly visible that information is propagated to larger and smaller |σ|. Increasing N to ten
or even 100 renders the problem more and more advection-dominated. For N = 100 we almost
find complete dominance of the advection and the slight smearing of the edges is barely visible.
In addition, comparing u(t, σ) for the different N at the same RG times, one observes that the
dynamics is much faster and the IR state is reached earlier for larger N . This can be seen as the
difference between approaching an equilibrium by diffusion or a state of steady flow by advection.
For large N we also observe what we discussed earlier on the level of the fluxes: The advective
contribution is uniquely directed towards smaller |σ| = 0, which can be seen at the discontinuities,
which move inwards. Similar behavior for different N can also be found for the other test cases
and plots of all test cases in the viscous N = 1 limit are presented in Figs. 6.10 and 6.11.

In total, we conclude on the qualitative level that the fluid-dynamical interpretation of u(t, σ) is
superior for the understanding of the underlying dynamics compared to the inspection of the RG
flow of the potentials U(t, σ) themselves. In addition, the flows of u(t, σ) do not show any signals of
numerical instabilities, like wiggles at the discontinuities or artificial over- or undershooting. The
FV discretization in terms of the KT scheme seems to perform well – at least by visual inspection.

6.5. Quantitative tests
Next, we turn to quantitative tests of our fluid-dynamical setup to solve the PDE for the effective
bosonic potential. These comprise tests of the spatial resolution ∆x = ∆σ, the size of the spatial
computational domain xmax = σmax, and boundary conditions, as well as tests of UV and IR
cutoffs. For all tests we already anticipate optimal parameter setups for the respective other
parameters that are presently not under investigation, e.g., for tests of the spatial resolution, we
fix the computational domain and cutoffs at some absolutely sufficient values. Note that within
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(a) For test case I: Potential (6.2).
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(b) For test case II: Potential (6.5).
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(c) For test case III: Potential (6.6).
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(d) For test case IV: Potential (6.7).

Figure 6.2: The RG flow of the effective potential U(t, σ) (upper panel) and its derivative u(t, σ) =
∂σU(t, σ) (lower panel) for different UV initial conditions and parameter setups (see panels). From
Ref. [1, Figs. 5, 19, 28, 31].



6.5. Quantitative tests 89

(a) The potential. (b) The derivative of the potential.

Figure 6.3: Three-dimensional rendering of the RG flow of Fig. 6.2a for the initial condition (6.2)
with N = 3. From Ref. [1, Figs. 6 & 7].
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Figure 6.4: The RG flow of the derivative of the effective potential u(t, σ) for test case I with
different N . From Ref. [1, Fig. 8].
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(a) For test case I: Potential (6.2).
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(b) For test case II: Potential (6.5).

Figure 6.5: The relative error of Γ(2m) for m = 1, 2, 3 as a function of the cell size ∆x = ∆σ for
two different UV initial potentials and parameter setups (see panels). From Ref. [1, Figs. 9 & 21].

this work, we present selected results for only some of our test scenarios, while all types of tests
were performed in detail for each individual UV initial condition.

6.5.1. Spatial resolution
First, we investigate the scaling of the relative errors for the vertex functions, Eq. (6.1), with the
spatial resolution of the KT scheme ∆x = ∆σ = σmax

n−1 . Here, we simply fix σmax = 10, which
turns out to be absolutely sufficient (see below) and successively increase the number n of FV
cells. For the explicit results, which are presented in Fig. 6.5, we use test cases I and II with UV
initial potentials 6.5a and 6.5b. The respective values for N , Λ, and tIR are listed in the plots.

From the KT scheme, we expect that the errors scale approximately with ∆x2, see Section 5.2.2.
Inspecting Fig. 6.5, we identify exactly this error scaling for Γ(2) for both initial conditions. Slight
deviations from an exact ∆x2-scaling are expected according to the original publication [105]. In
the case of test case I, we additionally observe two dip-like structures in the scaling plots, where
the error drastically undershoots its expected value. These stem from the discontinuities in the
initial condition, see Fig. 6.1a. Depending on the position of the discontinuities in the respective
FV cells, the cell-averaging yields better or worse approximations of the initial condition and can
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even lead to results that are by chance much more accurate than the error-scaling suggests.
We also observe almost perfect ∆x2-scaling of the relative errors of Γ(4) – at least for moderately
small ∆x, while for tiny ∆x and for the entire results of Γ(6) the scaling breaks down. The question
is, what is happening here and especially why we find relative errors at very small ∆x which are
scattered over all orders of magnitude.
The reason behind is actually rather simple and a fundamental problem of numerical mathematics.
In order to calculate Γ(2n), we numerically differentiate u(tIR, σ) at σ = 0. As previously explained,
this is done in terms of FD approximations on the level of the IR cell averages {ūj(tIR)}. Typically,
these FD stencils also come with an error scaling of some power of ∆x, see Eq. (6.12). However, FD
formulas are in general ill-conditioned and their error-scaling usually breaks down below a certain
∆x, because of rounding errors in the floating-point arithmetic, see, e.g., Ref. [243, Chap. 5.7].
The same happens if FD stencils are evaluated on noisy discrete data, which also causes spurious
cancellations. Here, both problems enter at the same time. Even though being extremely precise,
the final IR cell averages come with some numerical errors and present discrete “noisy” data.
Hence, it is absolutely expected that the error-scaling breaks down at a certain ∆x and errors are
of all orders of magnitude below. It is well-known that this problem is more severe and occurs
already at larger ∆x for higher-order derivatives. Also this can be seen in the data, because the
performance goes down from Γ(2) to Γ(4) and is even worse for Γ(6). It is clear that the fluctuations
in the relative errors for small ∆x in Γ(4) and Γ(6) stem purely from the FD stencils, which are
evaluated on top of the solution, and do not originate from the KT scheme and the numerical time
stepping, because exclusively a single cell average enters the formula of the numerical derivative
for Γ(2), see Eq. (6.12), such that spurious cancellations cannot occur. It is therefore absolutely
sufficient to use Γ(2) to benchmark the KT scheme in the FRG context, while it is of utmost
interest which additional problems pop up if one is interested in calculating vertex functions of
arbitrary order from the IR potential.

We conclude that we were able to run the KT scheme with its expected performance in an FRG
setup and observe the correct error-scaling ∼ ∆x2. We find that the KT scheme is extremely
precise, which is directly observed from the super-small relative errors of Γ(2), which can easily be
pushed below 10−5. Even for Γ(4) relatively small deviations from the exact results up to 10−4

are safely accessible as long as ∆x ≳ 0.025. Similar results are also found for the other two test
cases, which are not shown in Fig. 6.5.
For FRG calculations in higher-dimensional systems, which comprise the flow equation of an
effective local bosonic potential, this implies, when using the KT scheme with decent resolution,
that the dominant errors of IR observables do certainly not stem from the spatial discretization.
Instead, the relevant errors are most definitely linked to truncation errors, cutoffs etc.. Still, it is
required to test this explicitly and check for “independence” of the IR results from the FV cell
size. This can be done for example along the lines of Ref. [4, App. F]. Furthermore, we refer to
the more detailed discussion in Ref. [1].

6.5.2. Large-σ boundary condition and size of the computational do-
main

We continue the discussion of the spatial discretization and turn to the artificial restriction of the
the domain [0,∞) to the computational domain [0, σmax], which includes the linear extrapolation
(5.77) at σmax. Here, we probe with several of our test cases, whether it is possible to increase
σmax at constant resolution ∆x so much that the relative errors (6.1) become independent of σmax.
If this is possible, it also signals that the linear extrapolation works as a boundary condition or
that the explicit type of extrapolation is actually irrelevant, because the fluxes basically vanish
already.

Some selected results of these tests are presented in Fig. 6.6, where we plot the relative errors
for Γ(2), Γ(4), and Γ(6) as functions of σmax. The choices for the other parameters are explicitly
listed in the panels and are sufficient according to our other tests. Indeed, we find for all of the



92 6. Tests, results, applications, and conclusions

2 4 6 8 10
10-6

10-5

10-4

0.001

0.010

0.100

1

(a) Test case I: Potential (6.2) with N = 1.
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(b) Test case I: Potential (6.2) with N = 3.
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(c) Test case II: Potential (6.5) with N = 4.
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(d) Test case III: Potential (6.6) with N = 4.

Figure 6.6: The relative error for Γ(2m) for m = 1, 2, 3 as a function of the size of the computational
interval for different UV initial potentials and parameter setups (see panels). From Ref. [1, Figs. 10,
11, 22, 29].

tested examples that it is easily possible to increase σmax to values where the relative errors of
the vertex functions become independent of σmax and start to be dominated by other sources of
errors. For all test cases this decoupling of the relative errors from σmax happens approximately,
when σmax is considerably larger than the relevant structures in the UV potential, which were
all by construction of order one. Here, we are referring to factors 4 or 5 and not several orders
of magnitude. However, as soon as σmax is too small, we observe an exponentially increasing
error, which demonstrates the utmost importance of testing the independence of the IR results
from this boundary condition, which can also be done in setups without exact reference values,
by simply studying the dependence of the IR observables on σmax. Nevertheless, we could not
find any explicit test or comment on tests of this type in common FRG literature. In addition,
we have the strong impression that computational domains for similar calculations of RG flows
of local bosonic potentials are usually too small and we therefore expect a strong influence of the
artificial boundary condition at “large” σ on their results. We thereby hope that our tests may
serve as a paradigm for future FRG (model) studies.
Let us close the discussion by mentioning another detail of our own results: By comparing the
panels in Fig. 6.6 we find that the linear extrapolation boundary condition also works for the
potentials where u(t, σ) has a σ3 or a σ5 asymptotic behavior. Anyhow, for the test case with σ5

asymptotic behavior, we clearly observe from Fig. 6.6d that σmax needs to be significantly larger
than for the other test cases. We assume that here the suppression of the fluxes is more important
than a decent extrapolation.
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6.5.3. σ = 0 boundary condition

The outstanding precision for the vertex functions, i.e., the extremely low relative errors for Γ(2),
Γ(4), and Γ(6), observed in all other tests of this section, clearly demonstrate that the implementa-
tion of the boundary condition at σ = 0 is correct. In particular, the results for test case IV, which
comprises the pole at σ = 0 demonstrate, that our spatial discretization is capable of dealing with
challenges of this kind, see, e.g., Figs. 6.2d and 6.7b.

6.5.4. Cutoff tests
In Ref. [1] we present an extensive discussion on identifying the appropriate UV cutoff scales Λ
and sufficiently small (artificial) IR cutoffs rIR(tIR). Here, we summarize some key findings.

The UV cutoff

Recalling the construction of the (zero-dimensional) FRG from Sections 4.1.1 and 4.2.2, there is
absolutely no doubt that the UV cutoff Λ needs to be much greater than all relevant scales of the
classical UV action such that the effective average action Γ̄(t, φ⃗ ) is correctly initialized with the
classical action S(φ⃗ ). Still, for conceptual and numerical reasons it has to remain finite.
In higher-dimensional theories, this ensures that really all fluctuations and interactions from high
energy scales are incorporated in the effective couplings, which are “measured” at lower energy
scales. In zero dimensions, it is of course impossible to speak about energy scales or fluctua-
tions, but the concept of integrating out interaction processes stays conceptually the same and all
interactions must be included to obtain correct IR results.
For higher-dimensional theories, it is also easier to state what we mean by “larger than all relevant
model scales”: Here, we mean that the UV cutoff Λ has to be larger than all “internal” scales of
the model, e.g., dimensionful couplings, initial particle masses, vacuum condensates etc., but also
larger than “external” scales, like chemical potentials or temperatures.

In general, starting with a theory with meaningful UV limit, it should be ensured that the IR
observables do not depend on the explicit choice of the UV cutoff scale at which the RG flow is
initialized. Summarized in a compact equation, this simply reads

0 != Λ dΓ[Φ]
dΛ . (6.14)

(Here, we always assume that there is no artificial IR cutoff and we are able to integrate out all
fluctuations.) For example, for some theories, this can be achieved by considering the correct
perturbative running of couplings in the UV, cf. Part II and Refs. [244, 4], to increase the UV
coupling above some external model scales, e.g., a temperature. In general, the task is to send
the UV cutoff to larger values or infinity in a sensible way, if this is required, without altering the
IR physics. This correct initialization of RG flows at large RG scales, which ultimately ensures
Eq. (6.14), is called RG consistency and is discussed in detail in Ref. [244]. However, in lots of
practical FRG calculations for effective low-energy models little attention is payed to this issue
and UV cutoffs are oftentimes chosen too close to the corresponding model scales (cutoffs are for
example of the order of the temperature, the chemical potential or initial curvature masses). For
discussions on this and related issues, we also refer to Refs. [245, 246, 247, 248].
However, the question remains how Λ has to be chosen to fulfill Eq. (6.14).

An absolutely lowest limit for Λ is certainly set by the fact the denominators of the propagators
have to be manifestly positive by construction of the FRG and should never overshoot their pole,
cf. Refs. [86, 249]. In our case, this implies

Λ + 1
σ u(t = 0, σ) > 0 , Λ + ∂σu(t = 0, σ) > 0 . (6.15)
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(a) For test case I: Potential (6.2).
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(b) For test case IV: Potential (6.7).

Figure 6.7: The relative error of Γ(2m) for m = 1, 2, 3 as a function of the UV cutoff Λ for two
different UV initial potentials and parameter setups (see panels). From Ref. [1, Figs. 16 & 33].

Usually, this criterion is easy to fulfill, nevertheless it does not suffice to guarantee Eq. (6.14) at
all. In any case, if the UV initial condition u(t = 0, σ) contains discontinuities or even poles like
Eqs. (6.2) and (6.7), its derivative is formally infinite at these points, which also requires infinite Λ.
Luckily, on the discretized level, e.g., on the level of cell averages, the derivatives are always finite,
but can still be huge, such that very large Λ are already necessary from Eq. (6.15). Interestingly,
this implies that the choice of the UV cutoff is also directly linked to the desired resolution in field
space.
Unfortunately, in some model studies, even the simple condition (6.15) is sometimes ignored or
only just fulfilled, see, e.g., Ref. [86].

A much more reliable approach to the correct choice of the UV cutoff is of course to check Eq. (6.14)
explicitly, which is easily done for zero-dimensional QFT. Here, one keeps all other (numerical)
parameters as well as the artificial IR cutoff fixed and steadily increases Λ until the IR observables
do not change with Λ anymore. In this work, we therefore inspect the relative errors of Γ(2), Γ(4),
and Γ(6) in the IR as functions of Λ. These are plotted in Fig. 6.7 for the two test cases which
contain discontinuities in their UV initial condition. Inspecting these plots, we indeed observe that
it is possible to reach RG consistency in the sense that IR errors are dominated by other sources
than the cutoff, when Λ is increased to sufficiently large values. In fact, the cutoffs which are
necessary to achieve this are surprisingly large, i.e., several orders of magnitude above the typical
model scales. This is certainly also caused by the discontinuities and the rather small spatial
resolution. In any case, it is clearly visible, especially from Fig. 6.7b, that one has to exercise
caution when playing with the UV cutoff, and too small UV cutoffs can lead to huge errors in the
IR, which is certainly also of great importance in higher-dimensional setups. Explicit UV-cutoff
tests in a higher-dimensional model are presented for example in Ref. [4, Appendix F].

The IR cutoff

To be clear right from the beginning: The IR cutoff is – as already mentioned several times –
completely artificial. The effective IR action is uniquely defined as Γ(φ⃗ ) = Γ̄(t → ∞, φ⃗ ) and
therefore it does not make sense at all to calculate observables and vertex functions from Γ̄(t, φ⃗ )
at earlier times – or at least to relate them to physical values. Exactly the same holds true for
higher-dimensional FRG applications, where the IR effective action is only reached, when the RG
scale k → 0, where ultimately all fluctuations are integrated out.
Exclusively for practical and computational reasons it is of course not possible to exactly end up
at k → 0 or r(t → ∞) → 0 and one has to stop the integration at some non-zero IR scale – the
IR cutoff.
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Figure 6.8: Indicators of convergence in the IR exemplified for test case I with potential (6.2).
From Ref. [1, Figs. 12 & 17].

Admittedly, this fact is oftentimes abused to stop RG flows at rather large cutoff scales. The jus-
tifying argument is oftentimes that the RG flow of the effective potential or some other observable
is effectively frozen and does not change with the RG time anymore. Another reason to stop the
RG flow at rather high cutoff scales is the “numerical stability” of the PDE or related lines of
argumentation. The latter reason is of course absurd, because this and related works [1, 2, 3, 4,
77, 101] as well as for example Refs. [235, 84, 85, 249, 83] clearly demonstrate that it is possible
to reach extremely low RG scales or carefully extrapolate to k = 0, if decent numerical methods
are used.
However, also when it is argued that “quantities freeze” in the RG flow, some skepticism is usually
in place, if this is not explicitly tested in a given study. Usually different observables and vertex
functions freeze out at different RG scales, which can differ by several orders of magnitude. In
addition, it is usually better suited to inspect the RG-time derivatives of the observables than to
judge freezing by plain visual inspection of their flow itself.
To demonstrate this, we present two plots which are both based on the initial potential (6.2). In
Fig. 6.8a, we plot the RG flow of the unique minimum (after a unique minimum has formed from
the infinitely many minima) and the RG flow of the curvature mass at the flowing minimum. It is
clearly visible that the curvature mass still changes significantly over several orders in the RG scale
long after the minimum is already frozen. The change of the vertex functions and their freeze-out
at different scales is even better visible in Fig. 6.8b, where we plot the logarithmic changing rates
of the vertices at σ = 0. It is clearly visible from both plots that even though the dynamics of the
potential and its derivative seem to be frozen, see Figs. 6.2a and 6.3, this is not the case for the
vertex functions and observables.
Additional explicit plots concerning tests of appropriate IR cutoffs rIR(tIR) can be found in Ref. [1].

In any case, we conclude that it is of great importance to ensure that one really reaches the IR
RG scales, where all observables of interest are truly frozen, or to carefully extrapolate, once the
scaling regime is reached.

6.6. Benchmarking the FRG vertex/Taylor expansion

Having completed the numerical tests as well as the studies for decent UV cutoff and IR cutoff
scales, we shall now compare our novel (numerical) methods from CFD for the solution of the
exact PDE of the effective potential to artificial truncations of the Wetterich equation.
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(c) N = 1 with negative mass.
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(d) RG flow of vertices for N = 4 with negative
mass for ntrunc = 10.

Figure 6.9: Relative errors of the vertices of the FRG vertex/Taylor expansion for test case II with
UV potential (6.5) as functions of the truncation order/RG time. From Ref. [1, Figs. 23, 24, 25,
26].

As outlined and explained in detail in Section 4.4, there exists a version of the FRG vertex ex-
pansion which coincides with the Taylor expansion of the effective potential about φ⃗ = 0 in
zero spacetime dimensions. Taylor expansions of the effective potential are also used in higher-
dimensional model calculations, e.g., Refs. [86, 250, 88, 66, 71], such that benchmarking this
method seems advisable. Some (maybe too) simple benchmark tests were already performed for
example in Refs. [179, 107, 109, 108, 13]. Of course, by definition this scheme can only be applied
(if at all) to expandable UV potentials, which are the potentials (6.5) and (6.6) from our test cases.

In the following we therefore numerically solve the ODE system of the scale-dependent vertices,
Eqs. (4.43), (4.44), and (4.45), which is generated from the expansions (4.36) and (4.37) and
compare the IR results for the vertices to the exact reference values.
This is done for different truncation orders ntrunc, where Γ̄(2ntrunc) is the vertex of highest order,
which is included in the truncation. The initial conditions for the ODE systems are obtained
by comparing coefficients of the general expansion (4.36) with the UV initial potentials (6.5)
and (6.6). As UV and IR cutoffs, we use values which, according to the analysis with the KT
scheme in Section 6.5.4, turned out to be absolutely sufficient. These are listed in the result figures.
The ODE system is again solved using NDSolve of Mathematica [147] with PrecisionGoal and
AccuracyGoal of 10.
Our results are presented subsequently.
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6.6.1. Apparent convergence
W.l.o.g. we set N = 4 and start our analysis with the presumably most simple scenario, ϕ4-theory
with positive mass term, thus Eq. (6.5). The corresponding UV initial condition for the ODE
system of vertices is

Γ̄(2)(t = 0) = 1 , Γ̄(4)(t = 0) = 1 , ∀n > 2 Γ̄(2n)(t = 0) = 0 . (6.16)

Solving the ODE system repeatedly for increasing truncation order ntrunc, we obtain relative
errors for the IR values of Γ(2), Γ(4), and Γ(6), which are plotted in Fig. 6.9a as functions of the
truncation order.2 The minimal truncation order is ntrunc = 3 and we randomly stopped our
analysis at truncation order ntrunc = 20. One clearly finds that the relative errors are decreasing
with increasing truncation order and remarkably precise results are achievable already at low
truncation orders. Similar results are also found in Refs. [107, 13, 108, 109]. For this particular
example, the FRG vertex/Taylor expansion definitely outperforms the KT scheme for the full
solution of the PDE. Moreover, we can estimate the truncation error scaling with ntrunc and
find that the relative errors of Γ(2), Γ(4), and Γ(6) scale roughly with n−8.2

trunc, n−7.6
trunc, and n−7.3

trunc
respectively. Even though there is no proof, this is a clear sign of “apparent convergence” of the
Taylor expansion of the effective potential and the vertex expansion of the Wetterich equation.

6.6.2. Who said “convergence”?
Either way, ϕ4-theory with positive mass term cannot be considered as a really challenging test.
Neither the global minimum is moving nor is there any significant dynamics. The convex potential
simply remains convex and only minimally changes its slope, which is why we do not present any
plot. We refer to Ref. [2, Fig. 4] and Ref. [107, Fig. 13] for graphics of the corresponding RG flows.

In consequence, we turn to a slightly more difficult problem, namely ϕ4-theory with negative mass
term, i.e., the potential (6.5). The initial condition of the ODE system is

Γ̄(2)(t = 0) = −1 , Γ̄(4)(t = 0) = 1 , ∀n > 2 Γ̄(2n)(t = 0) = 0 . (6.17)

As a fixed expansion point we choose the IR minimum φ⃗ = 0. Again solving this system numeri-
cally with N = 4, we can calculate the relative errors of Γ(2), Γ(4), and Γ(6) in the IR as functions
of the truncation order ntrunc. This is plotted in Fig. 6.9b. From the plot it is obvious that
the “apparent convergence” disappeared and that the relative errors are no longer monotonically
decreasing with increasing ntrunc.
As a matter of fact, the FRG Taylor/vertex expansion does not work at all for ntrunc > 14.
During RG flows with ntrunc ≥ 15 we observe that the ODE system gets unstable at t ≈ 30,
slightly below the typical model scales (r(t ≈ 30) ≈ 0.09). The instability shows up in terms
of divergent expansion coefficients. In general the ODE system seems to be ill-conditioned with
vertex functions of all orders of magnitude. This can already be seen from Fig. 6.9d, where we
plot the running of some expansion coefficients over RG time for ntrunc = 10 (which can still
be integrated to the IR) and observe that there are drastic variations in the magnitude of the
coefficients and higher-order coefficients equilibrate at large relative errors.
The manifest instabilities at large truncation orders cannot be overcome by increasing the precision
of the solver and they were present in several independent implementations of the problem. To
be sure that this is not artificial, we also studied the same problem for different N , which lead to
conceptually identical results, see, e.g., Fig. 6.9c for N = 1. Here, the breakdown of the system is
observed for ntrunc > 15.
Anyhow, even for low-order truncations the relative errors are not systematically decreasing and
there is no indication of an “apparent convergence”. Also the observed absolute values for the

2Due to the tiny achievable relative errors, it is necessary to increase the PrecisionGoal and AccuracyGoal of
the time stepper to 12 for this example. Otherwise, the precision of the time stepper instead of the quality of the
truncation would set the accessible minimal relative error.
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errors, e.g., of Γ̄(2) is rather unimpressive compared to the error-scaling of the KT scheme, cf.
Fig. 6.5b.

The question is why the FRG Taylor/vertex expansion was working so well for ϕ4-theory with
positive mass term, but does not converge for negative mass term. A possible explanation is that
choosing φ⃗ = 0 as the expansion point throughout the entire RG flow might be a bad choice,
because the global minimum is in the beginning non-trivial and only moves to the expansion point
during the RG flow.
In order to exclude that the failure of the FRG Taylor/vertex expansion is linked to the fact that
we are not expanding about the moving minimum, we turn to yet another test case.

6.6.3. Total collapse instead of convergence
Hence, we perform the same analysis as before for the UV initial potential (6.6). The corresponding
UV initial condition for the ODE system is

Γ̄(2)(t = 0) = 1 , Γ̄(4)(t = 0) = − 6
5 , Γ̄(6)(t = 0) = 1 , ∀n > 3 Γ̄(2n)(t = 0) = 0 . (6.18)

The remarkable result is that the FRG Taylor/vertex expansion does not work at all for this
potential and we were not able to find a single choice for N and ntrunc where we could integrate
to the IR. Using the same UV cutoff as in Fig. 6.2c the RG flow was always breaking down at
t ≈ 28 (r(t ≈ 28) ≈ 0.69) (for N = 4), which is, if one inspects Fig. 6.2c, the RG time, where the
local minima disappear and the potential turns convex.
The interesting aspect is that for this potential it is not possible to argue that the correct expansion
point might have changed during the RG flow, because the global minimum is permanently located
at φ⃗ = 0.
So, what happened? Again, consulting the result from the KT scheme in Fig. 6.2c, it does not look
like there are any cusps appearing during the RG flow and the potential and its derivative seem
smooth for all times t. Still, an expansion fails. In consequence, it appears as if the global dynamics
of the potential is simply not describable by a local Taylor expansion. A reason behind could be
that the potential, even though being differentiable, turns non-analytic (at least for intermediate
t), such that an expansion does not converge and an infinite number of expansion coefficients
would be required. This can be related to the phenomenon of Wilbraham-Gibbs oscillations [251,
252, 253, 254] in the flat region of the potential at t ≈ 28, which was already anticipated before
in Ref. [85].
Again, we note that this result is not by accident and was carefully checked by our own indepen-
dent codes. This was also confirmed independently by J. Eser (private communication).

The very harsh conclusion which we draw from these zero-dimensional minimal examples is that a
Taylor expansion of local effective bosonic potentials is not trustworthy at all. This is even the case,
if the UV potential is smooth and expandable and even for RG flows of potentials that do not show
cusps of any type. Furthermore, there is no reason at all, why this should be completely different
in higher-dimensional setups. As soon as true non-analytic structures, such as chemical potentials,
non-analytic UV initial potentials or non-analyticities of IR potentials (due to non-trivial minima
and convexity) enter the game, Taylor expansions of the potential are ill-conditioned anyhow. In
total, we think that any kind of expansion that fundamentally relies on analyticity of the potential
should be avoided.

6.7. Entropy production in the viscous N = 1 limit
At this point, we turn to the quantitative evaluation of the entropy function (5.29) of Section 5.1.4
in terms of its finite-volume discretization by Eq. (5.80) from Section 5.2.4. Basically, we briefly
summarize the results of our own Ref. [2], where more details are presented.
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Figure 6.10: The (numerical) entropy function (top panel) and the RG flows of the effective
potential (middle panel) U(t, σ) and its derivative u(t, σ) = ∂σU(t, σ) (bottom panel) for the zero-
dimensional O(N = 1) model. From Ref. [2, Figs. 1, 2, 9, 10].

Again, we study all four test cases with the classical UV potentials (6.2) and (6.5) to (6.7). This
time, however, we fix N = 1 for the entire section, because so far we were not able to generalize
the entropy function (5.29) to an arbitrary finite integer N . In Figs. 6.10 and 6.11 we present the
corresponding RG flows of the effective potential and its derivatives (lower panels). Remember
that these flows correspond to the viscous limit without advection and are exclusively driven by
highly non-linear diffusion. In addition, we plot the numerical results for the (numerical) entropy,
which was calculated with Eq. (5.80) on the solution. The (numerical) parameters are provided
in the figure panels and present solid choices according to our previous analysis of Section 6.5.
Inspecting the numerical results for the entropy function in detail, we observe that the entropy
always starts off at zero in the UV. This is of course by construction, because we normalized the
entropy of u(t, σ) by subtracting its UV initial value. At some later RG time the entropy always
rises drastically and ultimately again settles on a plateau in the IR. The time when the entropy
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increases most is, as can be seen from the lower panels, exactly when the dynamics in the potential
and its derivative set in and when the RG scale approaches model scales. This is also when the
arc length of u(t, σ) changes most, which underlines a direct connection between the TVD/TVNI
property and the numeric entropy. The entropy stops increasing below the model scales. This can
be associated with the RG time where the RG flow of u(t, σ) approaches an equilibrium state and
the diffusion stops, similar to the thermal equilibrium that is approached by the heat equation
[168, 49, 170].
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Figure 6.11: The (numerical) entropy function (top panel) and the RG flows of the effective
potential (middle panel) U(t, σ) and its derivative u(t, σ) = ∂σU(t, σ) (bottom panel) for the zero-
dimensional O(N = 1) model. From Ref. [2, Figs. 3, 5, 7, 8].

For the non-analytic initial conditions the increase of the entropy sets in earlier, as can be seen
from Fig. 6.10. The reason is that the discontinuities are smeared out rather early in the RG
flows, because they correspond to huge gradients that enhance diffusion. For the analytic initial
potentials, one observes in turn in Fig. 6.11 that the entropy stays (almost) zero for quite some
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time, before it starts increasing. Noting that the UV cutoffs of the latter test cases were chosen
much larger, the immediate rise of the entropy for the former test cases points towards slightly
too small UV cutoff scales. Indeed, if we return to Fig. 6.7 we find that Λ = 106 and Λ = 108 are
only just on the plateau, which signals RG consistency and UV cutoff independence.
We conclude that the (numerical) entropy can be used to ensure that the UV cutoff was chosen
sufficiently large, but also that the artificial IR cutoff is sufficiently small. Otherwise, the system
does not have time to equilibrate and the IR is not reached.
Anyhow, we also associated the increase of the (numerical) entropy with irreversibility of the RG
flow and a loss of information about the initial condition and earlier RG times. Also this is un-
derstood rather intuitively from Figs. 6.10 and 6.11. First, the entropy increases drastically, when
there is strong non-perturbative dynamics by strong diffusion, while it stays constant when almost
nothing happens at all. For RG times where the entropy is approximately constant, we can go
back and forth in time without noting any significant change of the system. Hence, we are either
still in the UV Gaussian regime [177, 255] nor in the IR equilibrium. For both, there is no change
of the information which is contained in u(t, σ). On the other hand, the information contained
in the system changes a lot if u(t, σ) changes drastically. In general, we can identify the loss of
information about the initial state and the rising entropy with the excessive rise in the number of
couplings/vertices that would be necessary to describe the system or the number of vertices that
change their value during the flow. For example, only little information was necessary to define the
UV initial conditions, while in the IR we find an infinite number of vertex functions that encode
scattering processes of all orders in fields. Otherwise, for non-analytic UV initial conditions all
vertex functions change drastically during the RG flow.

Next, let us comment on the absolute changes of the numerical entropy for our test cases. We
clearly observe that the entropy increases most for the non-analytic initial conditions and littlest
for the ϕ4-theory. Considering ϕ4-theory with positive mass leads to an even smaller increase in
the numerical entropy than for all other test cases, see Ref. [2, Fig. 6]. This finding is rather
natural, if one thinks of the direct connection between our entropy function and the TV, i.e.,
the arc length of u(t, σ), which of course changes most for the u(t, σ) with larger gradients in a
purely diffusive setup. However, this difference in absolute numbers may also be interpreted as the
amount of information which is required to describe the system during the flow: In the previous
Section 6.6, we found that for ϕ4-theory with positive mass term a low-order Taylor expansion of
the potential suffices to capture the dynamics, while for ϕ4-theory with negative mass or ϕ6 theory
convergence of the series gets lost or the expansion does not work at all. Hence, a drastic increase
of the entropy function may also signal “how non-perturbative” a system is and how relevant
higher-order vertices are for its description. This might be of relevance for higher-dimensional
applications of the Taylor expansion of the potential.

In any case, we conclude that our numerical results confirm our analytic construction of the entropy
function and its properties. Furthermore, we believe that constructing similar entropy functions for
higher-dimensional (truncated) FRG flow equations might help to single out adequate truncations,
numerical schemes, but also decent UV and IR cutoffs etc..

6.8. Large vs. infinite N and shocks in RG flows
We close this chapter with another demonstration of the great power of the fluid-dynamical frame-
work for the calculation of RG flows of effective potentials. We show its superiority over other
(numerical) approaches by studying shock- and rarefaction waves in field space, which cannot be
described numerically without modern methods from CFD. We compare our numerical setup with
the analytic results from the method of characteristics and the prediction of the shock position
from the Rankine-Huguniot condition from Section 5.1.8.
In addition, this setup allows us to show direct connections between shock waves and phase
transitions. A lot of these concepts were already worked out for higher-dimensional systems in



102 6. Tests, results, applications, and conclusions

Refs. [77, 101], which greatly inspired our own work. Our own work was already presented in
Ref. [3].
Finally, we show that even very large N should by no means be confused with the infinite-N limit,
and results are not transferable, because the single diffusive σ-mode plays a significant role for the
restoration of convexity of effective potentials, such that the N → ∞ limit can lead to violations
of key features of a theory or model.

6.8.1. Returning to an instructive toy model
In order to discuss these topics, we return to our “instructive toy model” from Section 3.3.4. We
recall that we work in 1

N -rescaled quantities throughout the entire section, which are defined in
Eq. (5.30), in order to easily compare finite to infinite N . The same applies to the flow equations,
where we use Eqs. (5.31) and (5.32).
Anyhow, in contrast to Section 3.3.4 we work on the level of the rescaled field x = 1√

N
σ and not

the rescaled invariant y = 1
N ϱ. This is because of numerical reasons, i.e., the implementation

of the boundary condition at x = 0 in the KT scheme, cf. Section 5.2.3, and the extremely high
resolution which is required at x = 0, see below. The corresponding UV initial potential of our
model therefore turns from its y-formulation in Eq. (3.40) to

V (x) =



1
2 x

2 for |x| ≤ 2 ,

−a 1
2 x

2 + 2 (a+ 1) for 2 < |x| ≤ 4 ,

1
2 x

2 − 6 (a+ 1) for 4 < |x| .

(6.19)

Its field-space (spatial) derivative reads

v(x) = ∂xV (x) =



x for |x| ≤ 2 ,

−a x for 2 < |x| ≤ 4 ,

x for 4 < |x| ,

(6.20)

and forms the initial condition of our fluid-dynamical RG flow. Again, we study values a ∈ [0, 2ac],
where the critical value ac is given by Eq. (3.42). The role of the critical value ac in the FRG
context is discussed below. Plots of this UV initial condition are presented in Fig. 6.12.

6.8.2. RG flows at N → ∞
In the next step, we use the initial condition (6.20) to study the RG flow equation (5.32) in the
limit N → ∞, hence, Eq. (5.34), which reads

∂tv(t, x) = d
dx

[ 1
2 ∂tr(t)

r(t) + 1
x v(t, x)

]
, x ∈ (−∞,∞) . (6.21)

This is the inviscid limit of the flow equation, which exclusively describes bulk motion of v(t, x). In
this limit, we are able, in addition to numerically solving the system with the FV-KT scheme, to
analytically integrate the equation via the method of characteristics – at least until characteristic
curves intersect. This was discussed and calculated on a theoretical level in detail in Section 5.1.7.
In addition, we can analytically capture the position of a shock wave in field space from the
Rankine-Hugoniot condition. (The presence of a shock wave is obvious in the y-formulation,
where the initial condition presents a Riemann problem, cf. Fig. 3.3 and Ref. [77].)
Both analytic approaches can be directly compared to a full numerical solution, which presents
another test of the fluid-dynamical approach to FRG. On top of this, the discussion of the analytic
solution greatly helps to correctly interpret the dynamics which is observed in the numerical results.
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Figure 6.12: The potential V (x) from Eq. (6.19) (upper panel) and its x-derivative v(x) = ∂xV (x)
from Eq. (6.20) (lower panel) for different values of the parameter a and where ac is given by
Eq. (3.42). From Ref. [3, Fig. 3].

Characteristics

For our specific initial condition (6.20) and PDE (6.21) the characteristic curves of the fluid are
described by Eq. (5.48). These are parametric curves (t, x(t)) in the RG-time-field-space domain
[0,∞) × (−∞,∞), where v(t,x(t))

x(t) stays constant.3 It is possible to reconstruct the full solution
v(t, x) of the PDE from these expressions. However, usually this involves an inversion of the
expressions, which has to be performed numerically and is not needed for this work. This also
partially explains why the method of characteristics breaks down as soon as these curves inter-
sect: An inversion and reconstruction of the full solution is hardly possible if the solution is
multi-valued. After an intersection of characteristic curves, a shock is formed and the solution
of the PDE exclusively exists in a weak sense. Similarly, infinitely many characteristic curves
that originate at a single point and move apart are identified as a rarefaction wave and also form
a non-analyticity in the weak solution of the PDE. For details we refer to Refs. [104, 49, 50, 51, 52].

Anyhow, let us turn to the discussion of the results. In Fig. 6.13, we plot the characteristic curves
(5.48) for the initial condition (6.20) with a = 0 with an UV cutoff Λ = 1010. (The UV cutoff
was chosen after performing numerical benchmark tests for relative errors of Γ(2) with the KT
scheme and turned out to be absolutely sufficient, see below. Furthermore, we remark that plots
for different a > 0 look rather similar, which is why we exclusively present a figure for a = 0.)
We restrict the plot and most of our discussion to positive x, while the situation for negative x
is simply mirrored about the t-axis. For the moment, we exclusively focus on the colored lines,
which vertically originate at t = 0 from the x-axis.
At t = 0 the solution v(t, x(t)) on the parametric curve takes the values of the initial condition

3The same discussion on the level of y would lead to parametric curves (t, y(t)) in the domain [0, ∞) × [0, ∞),
where v(t, y(t)) remains constant.
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Figure 6.13: Selected characteristic curves (t, x(t)), see Eq. (5.48), for a = 0 and Λ = 1010 in
blue, green, and yellow, shock position ξs(t), see Eq. (6.28), as solid black line, and the tips of
the rarefaction fan ξ∓

r (t), see Eqs. (6.22) and (6.23) originating at (t = 0, ξ∓
r (0) = 4) as dashed

black lines. The changing color on the characteristic curves indicates the change of v(t, x(t)) along
them, see again Eq. (5.48), where blue corresponds to v(t, x(t)) = 0 and yellow corresponds to
v(t, x(t)) = 4.5. The shock wave and the rarefaction fan collide at (t, x) ≈ (25.718, 1.115) (the
time is marked with the red-dashed line) rendering the expressions ξ∓

r (t) and ξs(t) as well as the
characteristics that intersect with the shock and rarefaction wave invalid for later times. From
Ref. [3, Fig. 4].

Eq. (6.21). This is encoded in the colors of the characteristic curves, where blue corresponds
to v(t, x(t)) = 0 and yellow corresponds to v(t, x(t)) = 4.5. Values in between are depicted as
mixtures of blue and yellow, thus green. Following the characteristic curves, we find that a lot
of them significantly change their color, which implies that v(t, x(t)) changes along the curves.
However, by definition, the ratio v(t, x(t))/x(t) keeps its value along a characteristic curve.
We remember that the characteristic curves basically describe the motion of little portions of the
fluid. Hence, we find that in the beginning the fluid does not move at all. Incidentally, this
supports that the UV cutoff was chosen large enough, such that the advection flux is totally sup-
pressed. As soon as the regulator r(t) = Λ e−t is approaching the model scales at t ≈ 20 the
dynamics sets in: Overall we see that the characteristic curves are bent towards smaller |x| and
v(t, x(t)) only decreases (increases) at positive (negative) x. This agrees with the finding that the
fluid velocity ∂vF [t, x, v] is manifestly negative (positive) for positive (negative) x, cf. Eq. (5.14).
In fact, we find that characteristic curves from negative and positive x hit the t-axis and therefore
positive and negative waves of the fluid have to annihilate at x = 0.

Either way, this general behavior is superseded by some other dynamics: One finds that fluid
elements that start in the region 2 < |x| < 4 move much faster towards |x| than fluid elements
at smaller |x|. Their attempt to pass by the slower moving fluid portions leads to their collision.
Their characteristics intersect and a shock wave is formed. By construction of the initial condi-
tion, this already happens at t = 0 at |x| = 2. The shock wave propagates and more and more
characteristics join the shock and accelerate it towards x = 0. The position of the shock wave is
marked by the black solid line and its parametric curve is calculated explicitly below.

Anyhow, in advance of this calculation, we turn to another phenomenon which is happening at
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about |x| = 4. We already discussed that characteristics which start at |x| < 4 move fast towards
smaller |x|. On the other hand, we observe that characteristic curves at |x| > 4 only slightly bend
towards smaller |x| and then freeze, which is easily understood by inspecting Eq. (5.48) with the
initial condition. This results in a rarefaction wave in v(t, x) that originates at t = 0 and |x| = 4.
The rarefaction fan is analytically described by the characteristic curves

ξ−
r (t) = ±

√
16 − 1

Λ e−t −a
+ 1

Λ − a
, v−

r (t, ξ−
r (t)) = −a ξ−

r (t) , (6.22)

ξ+
r (t) = ±

√
16 − 1

Λ e−t +1 + 1
Λ + 1 , v+

r (t, ξ+
r (t)) = ξ+

r (t) , (6.23)

where ξ∓
r (t) is the position of a fluid cell that starts at minimally smaller/larger |x| right next

to |x| = 4 and v∓
r (t, ξ∓

r (t)) is the value of the fluid field on the rarefaction fan. Both curves are
plotted in Fig. 6.13 as black dashed lines.

Looking at the black solid and dashed lines for the shock and rarefaction fan in Fig. 6.13 one
actually finds that both curves intersect. This happens at (t, x) ≃ (25.718, 1.115), which is marked
by the red dashed line. Until this point, where the rarefaction wave catches up with the shock
wave, all characteristic curves which did not enter the shock yet are valid solutions and we could
in principle integrate backwards in RG time and reconstruct the UV potential. However, after
collision of the shock and rarefaction wave, there is some highly non-linear dynamics happening,
which cannot be captured by analytic calculations and one has to rely on numerical solutions of
the PDE.
This non-linear dynamics causes the manifest irreversibility of the RG flow and should in principle
produce entropy of some kind, similar to what was discussed for the purely diffusive systems in
Section 6.7. The shock and the rarefaction wave are imprinted already on the initial condition,
such that there is no “formation”, which could cause a rise of entropy. We come back to this
discussion below in the context of the numerical solution. Before, we insert the analytic detection
of the shock position.

A shock wave in field space – application of the Rankine-Hugoniot condition

Here, we use the results of Section 5.1.8 to analytically calculate the position of the shock front
in field space. For the sake of simplicity we restrict our discussion to positive x, while the result
for negative x is again simply mirrored.
The only thing we need to do at this point is to insert the left and right limits of the initial
condition at the shock position x = 2 into Eqs. (5.53) and (5.54) and combine these with the
Rankine-Hugoniot condition (5.55). The values of v(t, x(t)) directly left and right of the shock are

vL(t) = vUV,L

xUV,L
xL(t) = ξ−

s (t) , vR(t) = vUV,R

xUV,R
xR(t) = −a ξ+

s (t) , (6.24)

while the corresponding fluxes are

FL(t) = −
1
2 ∂tr(t)

r(t) + vL(t)
xL(t)

= −
1
2 ∂tr(t)
r(t) + 1 , FR(t) = −

1
2 ∂tr(t)

r(t) + vR(t)
xR(t)

= −
1
2 ∂tr(t)
r(t) − a

. (6.25)

Using Eq. (5.55), we obtain a differential equation for the shock position, the Rankine-Hugoniot
condition,

∂tξs(t) = 1
ξs(t)

1
a+ 1

[ 1
2 ∂tr(t)
r(t) − a

−
1
2 ∂tr(t)
r(t) + 1

]
. (6.26)
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Figure 6.14: Relative errors for Γ(2) for the UV initial condition (6.20) for N → ∞ and a = 2ac.
From Ref. [3, Figs. 12 & 13].

Here, we are allowed to set ξ+
s (t) = ξ−

s (t) = ξs(t). The differential equation is integrable and can
be rewritten in terms of the regulator function (due to its monotonicity),

∂r
(
ξ2
s (r)

)
= 1
a+ 1

(
1

r − a
− 1
r + 1

)
. (6.27)

Integrating this equation from the UV (r = Λ) to some arbitrary r(t) ≤ Λ, we find

ξs(t) =

√
ξ2
s,UV + 1

a+ 1

[
ln
(
r(t) − a

Λ − a

)
− ln

(
r(t) + 1
Λ + 1

)]
. (6.28)

The integration constant ξs,UV = 2 is the initial shock position. Plotting Eq. (6.28), we obtain
the black solid line in Fig. 6.13, which is valid until it intersects with the rarefaction fan.

Numerical results for the RG flow

Next, we turn to the fully numerical results for the purely advective RG flows of Eq. (6.21) with
initial condition (6.20).

Numerical setup Explicitly, we present results for three different choices of a, namely a = 0,
a = ac, and a = 2ac. All calculations are performed with a UV cutoff Λ = 1010 and IR cutoff
rIR(t = 60) ≈ 10−18 on a computational domain xmax = 5 with n = 1500 FV cells, and a
resulting cell size ∆x ≃ 0.003. It was explicitly tested that these parameters suffice to achieve
relative deviations from the exact Γ(2) in the IR which are of order 10−14 for a = 0 and a = ac
and of order 10−3 for a = 2ac and are therefore of extremely high quality. For a more detailed
analysis of the choice of numerical parameters and the performance of the KT scheme as well as its
first-order-accurate variant, we refer to our publication [3]. Here, however, we shall focus on the
phenomenology which can be resolved by the CFD approach to the flow equation. For reference,
we solely present plots for the UV-cutoff independence and the ∆x-scaling of the relative errors of
Γ(2) for the hardest case with a = 2ac in Fig. 6.14. The reason for the different performance for
a ≶ ac as well as the approximate ∆x0.83 instead of ∆x2 scaling becomes clear after the following
discussion.

Comparison of numerical and analytical results Our explicit numerical results from the
FV-KT scheme for the N → ∞ RG flows are plotted in Fig. 6.16a. For better visualization, we
also present two three-dimensional versions of the upper and the lower panel of Fig. 6.16a in the
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(a) Freezing shock waves for a = 0: The left tip
of the rarefaction fan and the shock are only
marked up to (t, x) ≃ (25.718, 1.115), where
they meet and the analysis based on the method
of characteristics and Rankine-Hugoniot condi-
tion breaks down.

(b) Annihilating shock waves for a = 2 ac: The
left tip of the rarefaction fan and the shock
are only marked up to (t, x) ≃ (25.718, 1.115),
where they meet and the analysis based on
the method of characteristics and Rankine-
Hugoniot condition breaks down.

Figure 6.15: RG flow of v(t, x) as 3D-plot corresponding to the flow displayed in the upper and
lower panel of Fig. 6.16a. The left and right tips (ξ∓

r (t), t, v(t, ξ∓
r (t))) of the rarefaction fan are

plotted as yellow lines, while the shock (ξs(t), t, v(t, ξs(t)±)) is marked with green lines. From
Ref. [3, Figs. 6 & 7].

separate Fig. 6.15. The other two plots of Fig. 6.16 can be ignored for the moment, because these
belong to the discussion of RG flows at finite N in Section 6.8.3. Color coding is analogous to the
previous sections: blue curves/regions correspond to the UV and red curves/regions are associated
to the IR scales.
Inspecting the plots, we clearly observe the dynamics which is predicted from the method of
characteristics: For all choices of a we find exclusively advective transport of v(t, x) from larger
to smaller |x|. The discontinuity, which starts at |x| = 2, propagates as a shock wave to smaller
|x|. The corresponding analytic reference solution for the shock position ξs(t) from Eq. (6.28) is
marked in Fig. 6.16a by little square dots as long as the analytic solution is trustworthy, while it
is indicated by green lines in Fig. 6.15. The same applies to the other discontinuity at |x| = 4,
which causes the rarefaction wave. Here, the analytical solution from Eqs. (6.22) and (6.23) of the
left and right characteristics ξ∓

r (t) of the rarefaction fan are marked with bullets in Fig. 6.16a and
yellow lines in Fig. 6.15 as long as the analytical solution is valid. For both, the shock position
and the rarefaction fans we find perfect agreement of the numerical and analytical results. This
would never be achieved without modern methods from CFD, which are capable of resolving
discontinuities with very high precision.

Colliding shocks, criticality, and phase transitions Having briefly discussed the high nu-
merical quality, let us turn to the phenomenology and its peculiar dependence on the choice of a.
From Fig. 6.16a, it is clearly visible that for all choices of a the inner rarefaction fan catches up
with the shock wave, which was already predicted and discussed from the method of characteristics
for a = 0. However, we find that depending on the precise value of a, which directly influences
the velocity of the rarefaction and shock wave as well as their interaction, the shock wave either
freezes at some |ξs(t → ∞)| ≠ 0 or it reaches x = 0. (This cannot be calculated from the method
of characteristics, which is no longer valid after the interaction of the rarefaction and shock wave.)
If the shock waves from positive and negative x make it to x = 0, they annihilate, which again
corresponds to a highly non-linear process. Again, this process has to cause a rise in entropy and
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is definitely irreversible.

Putting numbers on this process, we find that the shock wave freezes for a = 0 at |x| = |ξs(t =
60)| ≈ 0.496. This value was extracted from the numerical solution on the level of the cell averages
by performing computations at varying ∆x but fixed computational domain xmax as well as keeping
all other parameters fixed. Fitting 41 data points with n ranging from 64 to 2048 we find

|ξs(t → ∞)| ≃ |ξs(t = 60)| = 0.496 + 0.788 ∆x0.869 . (6.29)

Using the same fitting procedure, we find for a = ac,

|ξs(t → ∞)| ≃ |ξs(t = 60)| = 0.983 ∆x0.413 , (6.30)

which clearly shows that the shock exactly ends up at x = 0. Nonetheless, exclusively due to the
finite ∆x-resolution of our FV calculation, we observe in the middle panel of Fig. 6.16a a remnant
of a freezing shock at |x| ≈ 0.095, which is clearly a discretization artifact. For all a > ac, the
shock waves from negative and positive x truly collide and annihilate at x = 0.

Hence, it turns out that ac is a critical value for the dynamics and IR physics. A slight variation
of the “external” UV parameter a causes huge changes in the IR. On the level of the PDE, this
can be seen as a realization of a “butterfly effect”, where a minimal perturbation at some time t
causes great effects at later times and totally different locations.
Explicitly, as long as a < ac, there is a small region around x = 0 where the fluid v(t, x) remains
actually untouched throughout the entire RG flow and keeps its linear slope, while for larger |x|
extremely non-linear dynamics happens. The inner region is very similar to the eye of a cyclone,
which is not affected by the chaos around. For a = 0, this untouched region is exactly between
the freezing points of the shocks at |ξs(t → ∞)| ≃ 0.496. Thus, for values a < ac and for all times
t,

∂xv(t, x)
∣∣
x=0 = 1 , ∀n > 1 ∂nx v(t, x)

∣∣
x=0 = 0 . (6.31)

Yet, in the IR these derivatives are in one-to-one correspondence to the observables, the vertex
functions,

N
n−1

2 Γ(n+1) = ∂nx v(t → ∞, x)
∣∣
x=0 , (6.32)

which are those of a massive free theory. This is exactly the result which we obtained by exact
evaluation of the correlation functions as well as from the zeroth-order contribution of the saddle-
point expansion, see Sections 3.3.4 and 3.3.5. We recapitulate that a < ac corresponds to those
values of a where the saddle-point expansion is applicable.
On the other hand, if we turn to the lower panel of Fig. 6.16a, or in general a > ac, there is no
longer an “eye of the cyclone” and loosely speaking, the cyclone collapses. The rarefaction waves do
not hinder the shocks from annihilating at x = 0, and v(t, x) and its derivatives change drastically
after this collision at x = 0. Extracting the vertex functions functions numerically one finds (up to
numerical errors, see Fig. 6.14a) perfect agreement with the exact results of Eq. (3.48). First of all,
this implies that the numeric scheme is trustworthy also under “hard non-linear circumstances”,
even though the ∆x-scaling is drastically reduced because of the colliding shock waves, which does
not come unexpected by Ref. [105].
However, phenomenologically, we find that Γ(2) jumped from Γ(2) = 1 to Γ(2) = 1

16 in the IR due
to the collision of two shock waves.
On the level of the QFT this jump in the observable, which is caused by the tuning of an UV
and/or external parameter, here a, clearly corresponds to a first-order PT. Hence, there is a direct
link between PTs and freezing/annihilating shock waves. This clearly supports the findings of
Refs. [77, 101].4 (Our work can be seen as a refinement of some of their analysis.)

4Looking at the problem from Ehrenfest’s classification of PTs [148, 11] it is almost by definition that (moving)
discontinuities in derivatives of (thermodynamic) potentials are in direct correspondence to PTs.
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However, this fluid-dynamical FRG calculation also reveals another interesting connection: In our
analysis of Section 3.3.5 we found that the saddle-point expansion is doomed to fail for our toy
model as soon as a exceeds the critical value ac. Hence, also using the zeroth order approximation
in the 1

N -expansion is no longer justified. On the level of the saddle-point expansion, this was
signaled by the degeneration of minima or the non-analyticity of minima of the exponent (3.49),
see Fig. 3.4, as soon as a exceeds ac. In the FRG formalism, however, it is realized in terms of
irreversible non-linear dynamics of colliding shock waves. We believe that further research is in
order to better understand this connection.

“I really don’t care, do u?” Some exhausted readers might ask at this point why we should
care about these technical discussions and findings. Real-world physical problems in higher-
dimensional QFTs usually seem to be less pathological and the N → ∞ approximation is used
day in-day out without great doubts and seems to deliver great results.
Either way, maybe we should be more careful: Consider some O(N)-type model in a dimensionally
reduced setup, where the effect of temperature is mimicked by a coupling constant in the UV
action, e.g., Ref. [256], or where temperature is introduced via the Matsubara formalism, e.g.,
Ref. [257, 22, 13]. Such models are oftentimes analyzed to study PTs, which are triggered by
tuning the temperature. They are even discussed as minimal toy models for the chiral PT in
the QCD phase diagram, which is oftentimes considered to be of O(4) universality class. As a
first approach, these types of calculations are oftentimes performed in the 1

N -expansion. Usually,
the zeroth-order contribution, which agrees with the N → ∞ limit in rescaled quantities, is
considered to be a good first estimate and simplifies calculations drastically. For example, the
FRG flow equations of a d-dimensional O(N) model exactly reduce to the LPA flow equation with
exclusive contributions by Goldstone modes [74, 75, 76, 77]. Now, let us assume that we observe
some first- or second-order PT by tuning the “temperature” parameter. How can we actually
be sure that the order of the PT or the existence of this PT at all is not simply an artifact of
the approximation, especially the N → ∞ limit? Similar situations can also be constructed for
other types of theories or models, where exactly the same question arises, and all of them are
not too different from our “pathological” zero-dimensional setup: The parameter a could simply
be identified with a temperature and ac with the critical temperature of the first-order PT. Even
the non-analytic structures in the UV initial condition can easily be present in higher-dimensional
theories, e.g., by introducing a chemical potential.
Anyhow, checking the independence of the phenomenology by comparing different approxima-
tions and limits in higher-dimensional setups is usually expensive and cumbersome. Therefore,
our minimal and exactly solvable toy model might be better suited to generally discard certain
approximations for the investigation of PTs etc.. This is discussed in detail in the following
paragraphs, where we compare N → ∞ with finite-N results.

6.8.3. Lost in math: How the infinite-N limit leads physics astray
Before we turn to calculations at finite N , let us again examine the upper panel of Fig. 6.16a and
ask how the corresponding potential V (t, x) looks like. In fact, the shape of the potential during
the RG flow looks very similar to its initial condition in Fig. 6.12 (upper panel). Only the flat part
moves downwards a little bit. (For an illustration of a similar potential, see Ref. [77, Fig. 2b].)
In any case, the cusp at x = 2 remains and simply moves to smaller |x| and freezes in the IR,
because it is the integral of the shock wave in v(t, x). However, this violates fundamental properties
of zero-dimensional QFTs, which were discussed in detail in Section 2.2: The potential is neither
convex nor smooth in the IR. This can also be seen by calculating the x-derivative of v(t, x), which
is clearly negatively divergent at the shock position. Similar non-convex IR potentials are also
found in generic models with Yukawa-type interactions in their respective N → ∞ limit, e.g., the
bosonized Gross-Neveu (bGN) model in Part II or quark-/nucleon-meson models. Even though it
seems as if the N → ∞ limit violates a fundamental property of (thermodynamic) IR potentials,
this is usually not considered as a fundamental problem in QFT literature and observables, which
are calculated from these potentials, are compared to experiment without hesitation.



6.8. Large vs. infinite N and shocks in RG flows 111

Thus, let us demonstrate what already happens to the phenomenology of our simple toy model as
soon as N is considered to be finite but of arbitrary order.

Numerical setup for RG flows at finite N As soon as we study RG flows at finite N we have
to use again the RG-flow equation (5.32), which involves the diffusive contribution of the σ-mode.
We still use the KT scheme in the implementation of Section 5.2 as well as the same parameter
sets as before. The only difference is that we have to increase the size of the computational
domain. Choosing xmax = 10 guarantees that the diffusion does not reach the domain boundary
and boundary effects are not present in the results. In addition, it is no longer required to have
an extremely high resolution, e.g., to resolve a shock wave in great detail, because the diffusion
smears out the cusps anyhow. Thus, n = 1000 cells are perfectly fine for our purpose and still
present a high-resolution setup.

A (non-)trivial tautology: large N ̸= infinite N As examples for RG flows with the same
initial conditions including diffusion at finite N , we choose N = 2 and N = 32 and present the
results for a = 0, a = ac, and a = 2ac in Figs. 6.16b and 6.16c. From Fig. 6.16b for N = 2
the significant effect of the diffusive σ-mode is clearly visible. The shock and rarefaction waves
are completely smeared out and a difference of the shapes of v(t, x) for the different values of a
is absent by plain visual judgment. The first-order PT at ac completely disappeared and Γ(2)

continuously changes with a. This has already been discussed in Section 3.3.5, but was by no
means associated with the presence of a diffusive contribution in the RG flow in field space. In
addition, we clearly find that ∂xv(t → ∞, x) > 0 for all a at all positions x, such that convexity of
the IR potential V (t, x) is guaranteed. Also restoration of smoothness in the IR is rather obvious
from the plots.
Nevertheless, what happens if N is significantly increased? To gain a first insight, we plot the
same RG flows for identical a but N = 32 in Fig. 6.16c. Again, we immediately see the drastic
effect of the σ-mode: The discontinuity of the shock wave vanishes completely and only a remnant,
a moving, significantly smeared cusp, is visible in the flow of v(t, x). At the end of the RG flow
we again find smoothness and convexity of the potential and an absence of the first-order phase
transition.

We repeated this calculation also for higher values of N but could not identify any qualitative
changes of the results. It is simply the minimal diffusion which enters the RG flow equation via the
presence of the σ-mode that “totally changes the game”. Hence, common arguments that theories
with rather small N can be approximated rather well by the N → ∞ limit (the zeroth order of
a 1
N -expansion) are certainly only valid for some observables, but generally wrong. Especially,

if one is interested in studying PTs one should be extremely conservative in drawing conclusions
from strict approximations like sending N → ∞.

Another interesting aspect of these results is the following: In a lot of model calculations (ignoring
explicit symmetry breaking) symmetries are realized linearly, e.g., the linear sigma model, the
quark-meson-(diquark)-model etc.. Still, it is oftentimes assumed that the IR regime of RG flows
is completely dominated by the massless Goldstone modes and that “massive” radial σ-modes
do not contribute to the dynamics below certain energies/momenta. Usually this assumption is
transferred from frameworks like chiral perturbation theory, which is ultimately an IR theory of
only the lightest modes. However, our calculations clearly demonstrate that this assumption is
definitely not correct and that the contribution of the σ-mode even in the deep IR is of utmost
importance (independent of the number of Goldstone modes). Interestingly, taking chiral per-
turbation theory seriously, one should come to exactly the same conclusion: Integrating out the
σ-mode reduces the field space to a curved manifold, where the residual symmetry for the Gold-
stone modes is non-linearly realized. Thus, even though one is left with an IR theory of massless
Goldstone modes, the effect of the massive σ-field is always present in the IR vertices via the
geometric restrictions of the vacuum manifold.
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Figure 6.17: The RG flow of the (numerical) entropy/TV (5.35) corresponding to the RG flows of
Fig. 6.16a. From Ref. [3, Fig. 11].

6.8.4. More entropy(!)

Before we close the discussion of our results and summarize, let us briefly return to the N → ∞
results of this section. At several occasions we mentioned that entropy production is not exclusive
to diffusion, but is also present in purely advective systems as soon as non-analytic structures like
shock or rarefaction waves form or interact. Furthermore, we briefly discussed in Section 5.1.6
that in the y-formulation of the RG flow equation (5.31) it is natural to associate the difference
of the arc length/TV of v(t, y) in the UV and some later RG time with a (numerical) entropy of
the PDE. The obvious question is, whether Eq. (5.35) really behaves like an entropy function for
the RG flows of Fig. 6.16a.
There are various options to check this. For example, one could formulate Eq. (5.35) in x instead
of y via a variable transformation and then calculate the integral from the cell averages in the
x-formulation.
However, we combined the calculation of the entropy function with additional tests of a first-order
reduction of another numerical FV scheme, which, because of the manifestly negative advection
velocities ∂vF [t, v] in the absence of diffusion, can also be implemented for the y-formulation of
the flow equation, because it does not require a ghost cell at negative y. For details of these tests,
we refer to Ref. [3, Appendix E]. Here, we exclusively present the numerical results for the entropy
function (5.35) of the N → ∞ flows of the initial condition (6.20) for a = 0, a = ac, and a = 2ac
in Fig. 6.17.
Exactly as expected from our discussion, we observe for all choices of a that, in the beginning of
the RG flow, there is no entropy production at all. The shock and rarefaction wave are not formed
during the flow but imprinted in the initial condition, such that there is no loss of information
and exclusively bulk motion. As soon as the rarefaction wave catches up with the shock wave,
there is non-linear, irreversible, dissipative dynamics. This is clearly visible in Fig. 6.17 from the
rising entropy for all choices of a. However, going deeper into the IR, the differences between
the three setups are clearly visible. For a = 0 the interaction of the rarefaction and shock wave
simply causes the freezing of the shock wave, such that also the entropy growth comes to halt.
However, when the shocks from negative and positive x collide at x = 0 for a ≥ ac, we observe
another generation of entropy. For a = ac this rise is minimal but visible, while for a = 2ac the
entropy almost jumps. The latter is rather natural for the collision and complete annihilation of
two fast-moving shock waves.
This discussion certainly supports our earlier assertions that there are strong indications for a direct
connection of numerical entropy in the PDE, the TVD/TVNI property, and the C-/A-theorem in
QFT, which calls for additional research.
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6.9. Conclusion and outlook
Let us wrap up the discussion of this Section and Part I of this thesis and present some possible
applications, generalizations, and an outlook on prospective projects.

6.9.1. Conclusion
Let us begin with a brief summary of the discussion of Part I.

Summary

We started off in Chapter 1 with a general introduction and motivation for the need of alternative
methods to the brute-force calculation of functional integrals and expectation values in statistical
physics and QFT. It was discussed that all these methods require explicit benchmark tests in chal-
lenging setups, before an application to real-world problems is trustworthy. Furthermore, it was
noted that for certain methods, especially some truncation schemes of the FRG, there is significant
space for improvement concerning the theoretical formulation of the problem, the numerical setup,
and the testing. We mentioned already in the introduction that novel developments concerning
the improvement of the numerical approach to some FRG flow equations via concepts from CFD
are ongoing. Therefore, we also suggested the framework of zero-dimensional QFTs to continue
this work and qualitatively and quantitatively test this novel approach.

In Chapter 2 we provided a detailed introduction into zero-dimensional QFT – in particular the
zero-dimensional version of the O(N) model. Hereby, we focused on formal aspects, like the for-
mulation of generating functionals for several types of correlation and vertex functions as well as
formulae for their explicit calculation for the generation of exact reference values. This chapter
sets the formal playground for Part I. We closed the chapter with a discussion of special aspects of
QFT in zero dimensions, e.g., the absence of spontaneous symmetry breaking or the smoothness
of generating function(al)s.

In Chapter 3 we demonstrated how zero-dimensional QFT can be used to show that only strictly
non-perturbative methods are sufficiently powerful to present true alternatives to the brute-force
statistical integration of correlation functions. Furthermore, the chapter was used to become famil-
iar with the application of zero-dimensional QFT for method testing. In particular we presented
shortcomings of perturbation theory and limitations of the 1

N -expansion.

Afterwards, in Chapter 4, we completely turned to the FRG method and introduced it within our
zero-dimensional framework. In a step by step procedure we derived and discussed the correspond-
ing FRG flow equations for the different generating functionals in great detail. We demonstrated,
that these form closed PDEs in zero dimensions, but still keep the overall structure of truncated
systems of flow equations from higher-dimensional models. This promotes these PDEs to ideal
testing grounds for (numerical) solution methods. In addition, we discussed a common approx-
imation scheme – the FRG vertex/Taylor expansion – and its zero-dimensional version, which
presents an artificial truncation of the otherwise exact PDE of the effective potential.

Chapter 5 contains a main share of our own findings. Here, we present the extension of the fluid-
dynamical approach to certain FRG flow equations that was initiated by Ref. [77]. We showed,
how the RG flow equation of the local bosonic potential is turned into an advection-diffusion
equation – a conservation law – with all its consequences. The single advective and diffusive
contributions to the RG flow are discussed in detail. Furthermore, direct consequences of this
reformulation, such as the emergence of non-analyticities, like shock waves, irreversibility, entropy
production, etc. are addressed. A significant part of this chapter also deals with the consequences
for the solution of the corresponding PDE. Different limits of the flow equation are discussed and
the analytic method of characteristics as well as the Rankine-Hugoniot condition are introduced.
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Additionally, we present (numerical) entropy functions for the RG flow. The second half of the
chapter completely focuses on the numerical solution of the PDE, and a particular FV method,
the KT central scheme [258], is introduced and adopted to the FRG problem involving appropriate
discretization of boundary conditions.

Finally, in Chapter 6 we demonstrated in great detail the power of the fluid-dynamical approach
to the FRG flow equation of the effective potential. We qualitatively discussed the individual
contributions to the flow and presented quantitative benchmark tests, which showed the superiority
of this numerical approach over other commonly used methods. Tests and applications of the fluid-
dynamic methods were discussed in different limits of the flow equation. This comprises explicit
results for our entropy functions, but also the comparison of analytical and numerical results for
shock and rarefaction waves in N → ∞ RG flows, which showed perfect agreement. Lastly, we
returned to the shortcomings of the 1

N -expansion and the N → ∞ limit and their impacts on
predictions for PTs from the fluid-dynamical and FRG perspective.

Take-away massages

Even though this work was built entirely on a rather simplistic playground – the zero-dimensional
O(N) model – we strongly believe that there are some important outcomes of this work. Here, we
shall briefly recapitulate some of these.

First, our work clearly demonstrates that, if used correctly and beyond the minimal example of
ϕ4-theory with positive mass term, zero-dimensional QFT can serve as a serious testing ground for
methods in statistics and QFT. In addition, we hope that those readers who were not confronted
with this framework so far might be convinced that it is also of great pedagogical use for the
introduction of methods and technical problems in QFT, without having to bother with all kinds
of additional challenges which are unrelated to the methods themselves.

Concerning the FRG method, we hope that – despite all the critical remarks – our work is not
understood as a criticism of the FRG method itself. Exactly the opposite is the case: We hope that
our presentation of the FRG might have convinced some skeptics that the FRG is a truly exact
alternative to the brute-force calculation of expectation values and a real circumvention of the
path-integral formalism. We clearly demonstrated that it is even quantitatively competitive, as
long as the corresponding PDEs are not artificially truncated or truncations are chosen carefully.
However, we also learned and clearly showed that the FRG framework is much more than simply
deriving the corresponding flow equations and solving them somehow. The correct (re)formulation
and analysis – here as a fluid-dynamical conservation law – is of utmost importance to draw the
correct conclusions for the interpretation of the dynamics and – most importantly – for choos-
ing the correct numerical approach. We believe that our results should be understood as a clear
warning that for applications in higher-dimensional setups, where truncations are unavoidable,
great care has to be taken to choose a decent approximation, but on the other hand to also use a
powerful and tested numerical scheme to solve this truncated system.

Furthermore, we think that our work contributes to a general better understanding of the con-
cept of renormalization and integrating out interactions. Here, we are especially thinking of the
concepts of entropy production and irreversibility and their realization in terms of dissipative dy-
namics in field space, which we could demonstrate via the fluid-dynamical formulation. These
findings and partial rediscoveries could be of relevance for future research on C-/A-theorems.

Finally, we would like to mention our insights on the difference between large and infinite N
and problems of expansions in inverse numbers of degrees of freedom of the system. For sure, a
particularly interesting result is the strong effect of the N → ∞ limit on PTs, which is realized in
terms of highly non-linear dynamics in field space in fluid-dynamical RG flows.
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6.9.2. Generalizations and applications
Next, let us turn to some possible generalizations and applications.

Generalizations

Despite the fact that a strict distinction between generalization and application is not possible,
let us try to start with some direct generalizations.

Multi-dimensional field space First of all, we could expand our technical developments and
tests and stay in zero spacetime dimensions.
Here, a possible generalization would be to extend our discussion to problems where the background-
field configuration and therefore the spatial domain of the corresponding PDE for the effective
potential is no longer one-dimensional. This could be realized by simply not using the O(N)
symmetry of our model and keeping the background-field space N -dimensional. Otherwise it is
also possible to construct simple models with different symmetry groups and multiple invariants.

The most simple generalization is for sure to use the O(2) model and keep field space two-
dimensional, i.e., φ⃗ = (φ1, φ2). In the fluid-dynamical formulation this results in two fluid fields,
which correspond to the derivatives of the potential along the two field-space directions,

u(t, φ1, φ2) = ∂φ1U(t, φ1, φ2) , v(t, φ1, φ2) = ∂φ2U(t, φ1, φ2) , (6.33)

which evolve in the two-dimensional spatial domain spanned by φ1 and φ2. In total, one obtains
a coupled set of two non-linear diffusion equations for u and v, which can for example be solved
with a two-dimensional generalization of the KT scheme.
Such a setup can again be used to explicitly benchmark the numerical setup and formulate re-
quirements for trustworthy numerical implementations of general FRG problems, which call for
more than one field-space dimension. Work on this generalization is almost completed.

Fermions and field-dependent couplings Another generalization in zero spacetime dimen-
sions is the introduction of fermion-like degrees of freedom. This is realized via the introduction
of Grassmann numbers and additional interaction terms with bosonic fields [124]. On the level
of the partition function correlation and vertex functions can still be calculated exactly. Here,
Grassmann fields are first integrated out and afterwards one is again confronted with ordinary
integrals over boson fields, such that exact reference solutions are accessible.
In the FRG formulation the flow equations still form a finite and closed set of coupled PDEs for
the effective potential and some field-dependent fermion-boson couplings. This system, however,
is highly non-linear and constitutes a numerically challenging problem. We already formulated
such systems and also derived appropriate flow equations. Some results are presented in the PhD
thesis of M. Steil [6]. However, their explicit formulation in terms of conservation laws without
assuming any truncations is missing. The same applies to their full numerical solution.
The reason why such systems are of great interest are:

1. We might learn from these minimal examples how to formulate generic FRG flow equations
of fermion-boson systems as advection-diffusion-source/sink equations in conservative form
to apply ready-made modern methods from CFD. This could help to further improve the
developments started by Ref. [101].

2. Again, we can use these minimal models to test certain truncation schemes. For example,
one could study the quality of the results, if Yukawa-type interactions are assumed to be
field-independent or expanded in a Taylor series, like we did for the FRG vertex/Taylor
expansion of the effective potential in Section 6.6.

Also here, work is in progress [259] and first quantitative results are expected soon.



116 6. Tests, results, applications, and conclusions

Periodic field space The framework of this chapter could also be generalized to models which
are periodic in field space. This is of great interest for sine-Gordon-type systems or Polyakov-loop
models in QCD in higher dimensions [260, 261, 262, 263]. In zero spacetime dimensions, however,
testing of the fluid-dynamical framework and numerical methods is much easier and it is surely
possible to construct zero-dimensional analogues of higher-dimensional models with non-trivial
topology in field space, which are also describable by exact (untruncated) flow equations and
exact reference solutions.

Complex actions Especially, if one thinks about the severe problems which are caused by
complex-valued probability distributions in higher-dimensional systems, e.g., due to chemical po-
tentials, a direct generalization of our findings is their application to actions which comprise com-
plex couplings, parameters, and/or field space. A first step into this direction was already taken
by Ref. [102] but there is definitely room for further testing with zero-dimensional toy models like
those of Refs. [133, 264].

2-PI formalism It would be interesting to study whether the fluid-dynamical reformulation of
certain flow equations can be generalized to the two- or n-PI formalism for FRG [265]. Here,
a great starting point are Refs. [136, 137, 138], which present and test the formalism in zero
spacetime dimensions. The obvious question therefore is whether their flow equations are also
malleable into advection-diffusion equations.

Other flow equations Already several times within this work we mentioned that there are flow
equations from the “pre-Wetterich era”, like Polchinski’s or related equations [171, 94, 96, 97, 98,
99], which – even though not being exact – can also be formulated in terms of conservation laws
and were discussed in terms of diffusion equations (at least in the LPA). It would be interesting
to derive exactly these PDEs for zero-dimensional models and to study these equations in the
same fluid-dynamical setup which was used for the Wetterich equation in this work. Furthermore,
their zero-dimensional formulation would probably allow for an easier comparison and mapping
between these flow equations. A starting point could be Ref. [266].

6.9.3. Applications
Anyhow, the original goal of this PhD project was not to study zero-dimensional FRG and to
push some numerical methods in this setup to their limits. Of course, we were originally and
are still interested in simply using the FRG as a non-perturbative tool to study the effects of
bosonic fluctuations in low-energy effective models for QCD at non-zero temperature and chemical
potential. After clearing up the numerical approach to the corresponding flow equations, we are
now in a position to systematically and without great reservations address the PDE of the effective
potential in generic fermion-boson systems.

Higher-dimensional O(N) models in the LPA and beyond Of course the first direct
application (and in some sense also generalization) is to apply our fluid-dynamical framework to
higher-dimensional O(N) models in the LPA. In parts, this was already done by Ref. [77] with
the three-dimensional O(N) model in the infinite-N limit. However, it would be interesting to
study O(N) models at finite N . Of course, then the LPA constitutes a truncation of the infinite
set of PDEs. Nevertheless, it would be interesting to repeat certain O(N) model studies, like
Refs. [256, 267, 268, 269, 270, 271, 272], in this truncation with state-of-the-art numerical schemes
and compare the results to earlier findings or to extend the truncation by first including a field-
independent wave-function renormalization or even higher-derivative couplings. Also trying to
formulate a flow equation in conservative form for a field dependent wave-function renormalization
would be of great interest.
All these studies could additionally be performed in a finite or infinite physical volume and at
zero or non-zero temperature. Hence, the framework could even be used to reanalyze earlier works
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on critical exponents or to compare FRG to lattice Monte-Carlo simulations to obtain higher-
dimensional benchmark tests.

Fermion-boson systems in LPA Of course another direct application of our findings is to use
the fluid-dynamical framework and the numerical methods from CFD to investigate fermion-boson
systems with Yukawa interactions. Models of these types are the quark-meson model (QMM) [273,
59, 66, 274, 70, 275, 276], the quark-meson-diquark model (QMDM) [71, 88, 277, 278] or meson-
nucleon models [279, 280, 72, 281], and their variants and extensions. Similar models are also
found in lower spacetime dimensions, where they are mostly used for applications from solid-state
theory, see Part II. In any case, the LPA of all these models at (non-)zero temperature and density
has always rather similar structure and can be recast into a system of PDEs for derivatives of the
effective local bosonic potential w.r.t. some condensate directions. The contributions from the
fluctuating boson fields can be classified as advective or diffusive contributions, while fermions
show up as source/sink terms.
In advanced truncations this changes slightly. For example in Ref. [101], the field dependence of
a Yukawa coupling was taking into account. This amounts to an additional fluid field (in the
fluid-dynamical formulation) which evolves in field space (the spatial domain).

A particular example of an application to a fermion-boson system is presented in Part II of this
thesis, where we study the effect of bosonic fluctuations in the GN model at non-zero temperature
and (non-)zero chemical potential.

Phase transitions, shocks, condensation phenomena and all that Independently of the
particular model under consideration, we are now well equipped to study all kinds of non-analytic
structures which can show up in field space in effective bosonic potentials. Furthermore, we now
know how to address such structures in other field-dependent quantities [101]. In particular this
means that our methods in general enable us to study the deep IR region of RG flows, where
potentials need to turn convex, but might show non-analytic points, if the ground state of the
system is non-trivial. If, despite the new discretization schemes, one is still not able to robustly
integrate to the deep IR, we do have the tools to systematically analyze the underlying reason and
eventually trace instabilities back to other issues, such as insufficient truncations.
Moreover, we can systematically address problems which are caused by “external shocks”, such
as chemical potentials, which suddenly enter the RG flows in terms of cusps in the derivative
of effective bosonic potentials. In general, the CFD schemes are able to handle such structures,
such that problems or unphysical behavior of a system, e.g., thermodynamic instabilities, may be
systematically traced back to other reasons, such as bad choices of truncations or bad choices of
regulator shape functions.

In any case, fluid dynamics simply provides a framework which allows to address previously asked
questions concerning the quality and predictability of FRG model calculations more systematically.
Finally, it is also possible to include this framework for the effective potential in much more com-
prehensive FRG setups, which for example start off in the gluonic sector of QCD and dynamically
switch over to an effective theory of hadrons.
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Chapter 7

Introduction

Abstract We start by presenting the main motivation and research questions that triggered
this work. Phenomenologically these are all related to the dynamics and mechanisms of symmetry
breaking and restoration in strongly interacting QFTs at zero and non-zero temperatures and
densities. On a mathematical and technical level, the research questions focus on the necessities
of an adequate formal and numerical description of these phenomena as well as the strong impact
of assumptions and approximation schemes on the results.
Afterwards we give an overview about the GN model, which is used as a playground to address
our research issues. Hereby, we first contextualize the model with other QFTs from high-energy
particle physics and solid state theory. Thereby, its prominent role as a prototype model for
various physical phenomena and its recurrence as the limiting scenario of several theories and
models in QFT is emphasized.
Furthermore, we recapitulate the well-known phenomenology of the GN model (in the infinite-N
approximation) and summarize the arguments and predictions for its phenomenology beyond this
approximation.

Disclosure This introduction partially follows the introductions of Refs. [4, 5]. Both publica-
tions – text and results – are produced by my coauthors and myself in almost equal shares. This
also holds true for the introductions to these works.
In the introduction to the publications as well as this thesis the aim was to provide a rather
comprehensive overview of the milestones and seminal publications in the context of the GN
model. Nevertheless, the sheer number of publications (at present almost 2000 listed on INSPIRE
HEP) solely directly referring to the original publication by D. J. Gross and A. Neveu somehow
limits this aspiration. Especially the discussion of literature that deals with the spectrum and the
famous result for the S-matrix, e.g., Refs. [282, 283, 284, 285, 286], as well as generalizations of
the GN model fall victim to these restrictions.
Also in the motivational parts and especially in the overview on QCD in medium and the comments
on four-fermion theories, we can only provide a small selection of references, which underpins our
arguments or serves as an example. The research field is by far too large to provide a comprehensive
picture and a choice of references that is completely unbiased by the technical methods of own
preference and the own affiliation.

7.1. The motivation, the scope, and the research questions
The motivation for this work is indeed many-faceted and it is worth starting with a few paragraphs
on the original goal of my PhD project and research area. This may help understanding why my
colleagues and I put so much effort in the better understanding of a model and its phenomenology
(the GN model), which seemed to be understood and has – at first sight – little to do with
real- world high-energy particle physics, which is our main profession. Besides that it serves as a
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brief report on my route through my PhD project and is therefore of slightly different style and
intonation than the remaining parts of this thesis.
Readers who are not interested in this “report” are encouraged to skip the next two subsections,
and continue reading the listed summary of the main research questions that are covered by Part II
this thesis in Section 7.1.3.

7.1.1. The original project – spatially inhomogeneous condensation in
QCD at non-zero temperature and non-zero baryon chemical po-
tential

Originally, the objective of my PhD project was to contribute to a better understanding of QCD
at moderate non-zero temperature T and non-zero baryon chemical potential µb, which is maybe
the most challenging region of the QCD phase diagram. This is because lattice Monte-Carlo
simulations, which are the number-one tool to directly study QCD at µb ≃ 0 and arbitrary
T , suffer at µb ̸= 0 from the QCD sign problem. Simply speaking, complex-valued probability
distributions in the partition function impede conventional and advanced statistical simulation
techniques, see, e.g., Refs. [287, 288, 289, 16, 290, 291] for details. As we will see, my PhD project
indeed contributed to a better understanding of QFTs in medium, but differently than intended
in the beginning.

The phase diagram of QCD However, from QCD calculations at very large chemical potential
as well as innumerable model studies for QCD it is expected that the low-temperature but non-
zero-density region of the QCD phase diagram has a rather rich structure and phenomenology,
cf. Refs. [292, 293, 294, 295, 296]. It is argued that by increasing the chemical potential, the
phase structure will change via several PTs or crossovers, starting off with a gas of hadrons, which
consists of equal shares of matter and anti-matter. At µb ≃ 1 GeV there is a transition to a
nuclear liquid phase, which is dominated by a liquid of mesons, glueballs, and predominantly
baryons, which forms ordinary nuclear matter. This feature is rather robust from an experimental
and theoretical perspective, see for example Refs. [297, 298, 281] and references therein. Already
the question “what comes after the nuclear-liquid phase on the journey towards larger matter-anti-
matter asymmetry” is subject of ongoing debate and research. At least most particle physicists
agree that the precise phase structure is not known yet and state-of-the-art phenomenological
predictions strongly depend on the specific models, their particle content, and the approximations.
An aspect which is very well established from a theoretical perspective is the existence of some
PT, where chiral symmetry, which is (spatially homogeneously) broken at small chemical potential
by the chiral condensate, which in turn gives rise to some fraction of the hadron masses, but most
importantly to the mass splitting of hadrons, gets restored for large µb.
A scenario in the low-T region which is compatible with a chiral PT is that there is a PT/crossover
from the nuclear-liquid phase to a so-called quarkyonic phase, where hadrons, especially pions,
are still the dominant degrees of freedom, but densities are so high that nucleons overlap and
quarks become “quasi free” and relevant degrees of freedom [299, 300, 301]. It is argued that
the chiral PT, where quarks become massless and hadron masses of the same flavor multiplets
degenerate, lies somewhere inside the quarkyonic matter region. The confinement-deconfinement
PT is generally not expected to follow the chiral PT at large µb. Recent studies, i.e., Ref. [302]
and references therein, show that – contrary to what was believed for many years – it seems that
also at small µb and under the assumption of vanishing bare quark masses the chiral PT and
the confinement-deconfinement PT do not coincide (not even approximately). It is likely that the
confined phase completely engulfs the phase of broken chiral symmetry but also comprises large
regions where chiral symmetry is already restored. If and where the confinement-deconfinement
PT touches the T = 0 axis or if it simply absconds approximately parallel to the µb axis at large
µb is also not settled yet.
For large chemical potential and small temperatures, implying large matter-anti-matter asymme-
try, it is also predicted that there is a phase where quark-quark pairing is energetically favored over
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quark-anti-quark pairing and the conventional mesons are ousted by all kinds of diquark states.
In analogy to superconductivity in condensed-matter systems, so-called color-superconductivity
and diquark condensation is studied intensively, see, e.g., Refs. [293, 295, 278, 166, 303, 304].

Spatially inhomogeneous phases Also provoked by calculations from solid-state theory1 and
supported by various (model) studies in rather rough approximation schemes in high-energy
physics, it is also speculated about phases of so-called spatially inhomogeneous condensation,
where chiral, diquark etc. condensation is no longer expected to be homogeneous in space, but
comes with some spatially oscillating crystalline-like structures, see Ref. [313] for a review. First
works trace back to Ref. [314] in the context of nuclear matter for inhomogeneous pion condensa-
tion and Refs. [315, 316, 317] for models of quark matter. From model calculations and calculations
in low-dimensional relativistic QFTs it is found that such phases, if they exist, are predominantly
located in the region where, when inhomogeneous condensation was excluded in the calculations,
the chiral PT is originally located [318]. Hence, they are expected to be variants of the quarkyonic
phase at low T and moderate µb.
Usually inhomogeneous condensates somehow interpolate between regions in the µb-T -plane with
spatially homogeneous condensation and the corresponding symmetric phase: Their shape changes
with µb, e.g., kink-like profiles, which can be seen as domain walls between regions of spatially
homogeneous condensation of opposite sign (similar to magnetic domains), change towards rapidly
oscillating profiles with rather short wavelength and decreasing amplitudes. The typical crystal
momentum is proportional to µb, which sets the dominant energy scale at low T , while the
amplitude usually decreases towards the symmetric phase. This is only one possible scenario for
inhomogeneous condensation. Other options for example comprise so-called chiral spirals, where
the direction of condensation in field space rotates, i.e., the Goldstone modes are not the same
everywhere in space, or combinations thereof, see Refs. [319, 320].
Also competing or overlapping phases of various (inhomogeneous) phases are possible.

All of these scenarios for the phase structure of QCD at low temperatures are of great relevance
for the structure and properties of the matter in our universe and especially the composition of
compact stellar objects, like neutron stars. Here, however, also other “external” energy scales, like
isospin chemical potential or strong magnetic fields play a crucial role [321, 322], which introduce
additional axes in the QCD phase diagram and allow for more complicated (spatially inhomoge-
neous) phases, which is nevertheless not discussed in this thesis. See Refs. [61, 62, 281, 323] for
recent works using functional methods.

My original PhD project Anyhow, as already anticipated, most of the above predictions for
the QCD phase diagram for large µb strongly rely on model calculations in rather rough approxi-
mation schemes, like the mean-field approximation, large-Nf or large-Nc expansions, perturbative
arguments or plain four-fermion formulations. Simply speaking, most of the calculations artificially
suppress thermal and quantum fluctuations (the back reaction and self interaction) of mesons or
diquarks and exclusively incorporate the fluctuations of the fermions (or in the high-µb region
perturbative corrections from the gluons). The reason for these approximations is mostly with-
out stating this too explicitly in the literature, the manageability of the calculations, which get
rather involved already in simple approximations, especially when studying position-dependent
condensates. This is absolutely reasonable, however, from a phenomenological perspective, the
light mesons are expected to be the dominant driving forces of the dynamics of low-energy QCD
and usually work against condensation phenomena. Real-world physics might therefore strongly
deviate from these model predictions.

1The first predictions of such structures in condensed-matter physics go back to P. Fulde, R. A. Ferrel, A. Larkin,
and Y. Ovchinnikov in the context of superconducting materials at large magnetic fields [305, 306]. See also Ref. [307]
for a review or Refs. [308, 309, 310, 311, 312] as typical applications.
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Therefore, the main goal of the PhD project was to study the influence of bosonic fluctuations on
possible inhomogeneous chiral condensation in the QCD phase diagram at low T and moderate µb
by applying non-perturbative functional methods in advanced truncations to effective low-energy
models for QCD.
To fall back on well-established effective low-energy models for QCD, like the QMM and its ex-
tensions, has several advantages. First, it is widely expected that this circumvents the QCD
sign problem and allows for direct calculations at low T and moderate µb. Additionally, these
models are extensively studied without and with the inclusion of bosonic fluctuations (under the
assumption of spatially homogeneous condensation). Furthermore, a lot of these models allow for
spatially inhomogeneous condensation if bosonic fluctuations are ignored. Hence, benchmark and
limiting results are available as good starting points. Second, the application of non-perturbative
functional methods, more specifically the FRG, allows for a rather natural and self-consistent
treatment of fermionic and bosonic thermal and quantum fluctuations in infinite volumes and the
continuum. It was already applied to all kinds of low-energy models for QCD in the past, but
never w.r.t. the search and stability of spatially inhomogeneous condensation2.

One of the drawbacks of this approach is of course that the gluon dynamics is completely omitted in
the calculations. Another one traces back to the structure of the FRG: In the FRG framework it is
extremely challenging to work with so-called ansatz functions for the possible spatial dependence of
inhomogeneous condensates, which is oftentimes the starting point of many mean-field calculations.
The first point is an unavoidable shortcoming of model calculations and has to be accepted3. The
second issue can be bypassed by not studying inhomogeneous condensates directly from ansatz
functions for the spatial modulation or a direct prediction of their shape, but by analyzing the
stability of the symmetric phase w.r.t. momentum-dependent perturbations. This can be done via
a so-called stability analysis of the bosonic two-point functions, which ultimately provides possible
PT lines in the µb-T -plane to phases of spatially inhomogeneous condensation. Additionally, as
a by-product, one obtains estimates for the dominating wave vector of the spatial modulation of
the condensate and thereby gets some estimates for the shape. This technique or variants thereof
were applied several times before within mean-field approximations and seemed to deliver decent
results, see, e.g., Refs. [327, 328, 329, 330, 331, 332, 333, 334] for applications in advance of this
project and Ref. [5] for an overview.

In summary, the program was rather clear and settled. However, shortly after the start several
pitfalls appeared, which led to the drastic change in the scope and goals of our4 research.

7.1.2. The troubles and redefinition of research objectives
In the following, we sketch several issues which popped up while working through this program,
as well as the resulting new research questions, which had to be settled before returning to the
main program.

Unreliable numerical schemes for FRG flow equations in the existing literature As
already mentioned, our approach to the detection of inhomogeneous phases is grounded on a
stability analysis of spatially homogeneous condensation, respectively the symmetric phase, by
analyzing the momentum structure of the bosonic two-point function. Therefore the basis of this
machinery has to be a trouble-free and reliable determination of the “common” phase structure
of a model under the assumption of homogeneous chiral condensation. In widely used simple
truncations5 of the FRG this is done by solving the corresponding RG flow equations for the

2First attempts can be found in parallel works [274, 324].
3One way to include at least some aspects of the gluon dynamics in effective models is to build in the Polyakov-

loop potential, which models some aspects of the confinement-deconfinement PT, cf. Refs. [325, 326, 318].
4By “our” and “we” I am predominantly referring to the close cooperation with M. J. Steil, but also other direct

collaborators.
5More advanced truncations usually build on this truncation, such that they inherit the issues discussed here.
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bosonic potential numerically for each point in the µb-T -plane and by extracting the position of
its minimum (the condensate) from the solution at the end of the RG flow. Mathematically this
flow equation is a highly non-linear (integro-)partial differential equation, which is of first order
in the RG time and (in the LPA) up to second order in space.
Because this first part of the project seemed to be fully understood and under control, we com-
pletely relied on existing literature and used the common numerical implementations from the
community of “FRG practitioners” (which I would also call myself!).
However, when we tried to reproduce existing results we repeatedly failed miserably. The infor-
mation appears often to be incomplete in the FRG literature.
In a lot of publications crucial information about the exact implementation, e.g., the handling
of boundary conditions, the number of spatial discretization points, the termination time of the
integrator etc. was simply missing and reproducibility was not guaranteed. In other works the
numerical solution of the flow equations was simply not stable against slight variations of numerical
parameters, like the number of grid points or the order of interpolating polynomials, the choice of
coordinates etc..
To make a long story short: At a certain point it turned out that a huge amount of the applied nu-
merical schemes (local Taylor expansions, naive finite-difference discretizations, global Chebyshev
approximations, global spline interpolations, self-constructed schemes etc.) were after all based
on the fundamental assumption that the solution of the PDE (the local potential) is smooth in its
spatial direction (field space). This, however, is not necessarily the case for the effective bosonic
local potential, especially in regions of symmetry breaking or in presence of chemical potentials.
In fact the effective potential is non-analytic in the IR or at intermediate RG times for most points
in the µb-T -plane.
The drastic consequence is that a discretization scheme which calls for analyticity or at least
smoothness of the solution is no longer guaranteed to converge against the correct solution of the
PDE, if the exact solution does not fulfill these requirements6. In retrospect this also explains the
lack of convergence while refining the spatial resolution etc..

Independent and almost parallel to the observations by M. J. Steil and myself our colleagues
E. Grossi and N. Wink experienced basically the same issues. However, slightly earlier than we
they came up with a much deeper explanation and solution of these phenomena, which comes in
terms of a complete reformulation and reinterpretation of the RG flow equations: It is possible
to reshape the flow equation for the potential in terms of a conservation law – an advection-
diffusion-source equation, which can be seen as a common fluid -dynamical problem with all its
consequences, such as non-analytical behavior, e.g., in terms of shock waves. Such phenomena
are well understood in fluid dynamics and adequately handled by modern numerical schemes from
the field of CFD. Interestingly, it turns out that parts of these discoveries are actually rediscov-
eries and can be found for example in literature on RG flow equations from the “pre-Wetterich
era”. Here, we refer to Part I and Refs. [77, 101, 1, 2, 3, 4] for all the details on these developments.

Hence, before studying effective models for QCD, we decided to work out the consequences of these
findings and transfer the techniques from CFD to FRG problems by using reliable, well-known
test cases. Besides the extensive studies in the context of exactly solvable zero-dimensional QFTs
in Part I of this thesis, the idea came up to study the GN model in 1 + 1 dimensions in medium
for this purpose. In its bosonized version, in terms of the Gross-Neveu-Yukawa (GNY) model,
it shares a lot of similarities with common low-energy effective models for QCD, but has several
advantages. It is a prototype model for (chiral) symmetry breaking (and possibly also symmetry
restoration, if bosonic fluctuations are included). Similarly to effective models, it describes the
interaction of fermions and bosons via a Yukawa interaction. However, contrary to the effective
models it constitutes a fully fledged QFT in 1 + 1 dimensions with a well-defined weakly coupled
UV limit and well-known unique reference results in the infinite-N limit, such that there is no

6This does by no means imply that all existing results that are based on such assumptions must be wrong.
However, there is also no guarantee at all that they are close to the correct weak solutions of the PDE.
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artificial parameter dependence. Further arguments to turn to the GN model first are presented
in the next paragraphs and sections.

Counterintuitive results in related lattice Monte-Carlo studies The (1 + 1)-dimensional
GN model takes a special role in the context of related projects on inhomogeneous chiral conden-
sation of our collaborators. It is one of the rarely known fully integrable QFTs in the infinite-N
limit. Here, its phase diagram for non-zero µ and non-zero T is completely understood and pos-
sesses regions of spatially inhomogeneous condensation. Also variants of the model, with larger
symmetry groups, show inhomogeneous condensates in 1+1 dimensions and these one-dimensional
modulations of the condensates even turn out to be the energetically favored solutions in higher-
dimensional QFTs.
The GN model and its variants can therefore be seen as the prototype models for spatially inho-
mogeneous condensation and may therefore serve as testing fields for methods in the context of
inhomogeneous condensates. (For details, we also refer to the next (sub)sections.)
However, it is expected for several reasons, which are discussed in detail in Section 7.4, that
condensates of any kind are not stable in a single spatial dimension at non-zero temperature, if
the large-N limit is relaxed and bosonic fluctuations are taken into account – independently of
the specific model. This peculiar feature does of course not generalize to dimensions d ≥ 2 and/or
T = 0.
In that sense it was rather surprising when colleagues from associated projects detected signals
of possible spatially homogeneous as well as inhomogeneous condensation in lattice Monte-Carlo
simulations of the GN model at various finite N [335, 336, 337, 338]. Similar results were also
reported in the past by other authors in older studies, see below.
These counterintuitive results triggered our interest for several reasons: In terms of a benchmark
model, we anyhow planned to test the FRG machinery in the infinite-N limit and at finite N
including the stability analysis of the bosonic two-point function with the GN model due to
the aforementioned reasons. However, when searching the literature, we found that most of the
arguments against symmetry breaking beyond the infinite-N limit are of qualitative nature and
reliable calculations that explicitly show symmetry restoration or breaking for all T ̸= 0 on a
quantitative level in the continuum are not known.
Hence, this opened the opportunity to tackle several interesting questions at the same time: We
could test the newly introduced numerical methods for FRG flow equations from CFD within a
more realistic QFT and study how symmetry breaking and restoration as well as how effects from
the chemical potential and temperature are realized within the fluid-dynamical framework.
Additionally, the GN model makes it possible to study the drastic scale dependence (and separation
or interplay) of the various effects (scales of symmetry breaking via fermion interactions; scales at
which µb and T start to impinge on the dynamics in the RG flow; scales where bosonic quantum
fluctuations set in etc.). This analysis of the same problem using a continuum and infinite-volume
method like FRG and a method that relies on spacetime discretization and finite-size simulation,
like lattice Monte Carlo, both including full bosonic quantum fluctuations, also allows to better
understand lattice artifacts of the results, but also the effects of truncations in FRG studies.
Currently there is even work in progress where the FRG studies of this and related works [7, 8, 6]
and the corresponding publication [4] are generalized by artificially introducing a finite-sized box
and spacetime grid for the GN model.

Insufficient tests of the stability analysis and how the infinite-N results help to un-
derstand advanced FRG truncations Another topic that led to a reshaping of the project
relates to the aforementioned stability analysis of homogeneous condensation via the momentum
structure of the bosonic two-point function. Although being applied already several times in the
past in the context of spatially inhomogeneous condensation, we recognized that a full-featured
and pedagogic benchmark study on the reliability of this method seemed to be missing. Existing
studies mostly focus on the phenomenology of inhomogeneous phases, sidelining the details and
limitations of the applied technique. This pertains especially to the analysis of the momentum
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structure of the two-point function and wave-function renormalization in comparison with ana-
lytically known solutions for inhomogeneous condensates and an open discussion of the caveats of
the entire method.
Hence, we decided that returning to the GN model also in the context of the stability analysis
was worth the effort, in order to set a trustworthy basis and guidance for more involved studies.
Again, possessing completely understood analytical solutions for all µb and T the GN model is
the ideal playground for this type of analysis and review.

Interestingly, without previous planning, there was a spin-off product of these infinite-N studies
of the GN model, which actually allowed for a much better understanding of advanced trunca-
tion schemes of FRG studies of this and other models: Because the RG flow in the GN model is
dominated by the fermion-loop contribution in the beginning in the UV, even in calculations that
involve bosonic fluctuations at finite N , the RG flow always looks like an infinite-N calculation
approximately up to the symmetry-breaking scale. Hence, the full momentum structure of the
bosonic two-point function and the bosonic wave-function renormalization from the infinite-N cal-
culations can be used to estimate the requirements that need to be fulfilled by advanced truncations
to capture exactly this momentum structure and adequately describe the bosonic back-reaction.

7.1.3. Research questions
In summary this thesis therefore aims to contribute to answering the following research questions,
which all concern calculations for QFTs in medium.

Phenomenological questions

1. Is it possible to have PTs in a system in a single spatial dimension? In other words: Is
there a different state of aggregation than a disordered gas- or liquid-like state for one-
dimensional systems of elementary particles at non-zero temperature? Does this change at
zero temperature?

2. The answer to the previous question seems to be partially settled by the CMWHB theorem,
which forbids continuous symmetry breaking at non-zero temperature in less than two spatial
dimensions. Some qualitative arguments by L. D. Landau and others (see below) seem to
also rule out discrete symmetry breaking in 1 + 1 spacetime dimension at non-zero T . Still,
there are conflicting results to the latter arguments in literature. Is there a way to resolve
this puzzle also by quantitative calculations?

3. What is the influence of different approximation schemes on quantitative investigations of
the previous question(s)?

4. How does the phase diagram of the GN model look like beyond the infinite-N approximation?

5. What are the typical (RG) scales of symmetry breaking (restoration) and the dominance of
fermion/bosonic thermal and/or quantum fluctuations?

6. Is the GNY model an appropriate approximation for the GN model? The models differ in
its UV initial value for the wave-function renormalization. How large is the influence of the
ex-/inclusion of a dynamical wave-function renormalization (and Yukawa coupling) on the
phenomenology?

Technical questions

1. What are the necessities and limitations of a stability analysis of the spatially homogeneous
ground state?
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2. How is dynamical symmetry breaking and restoration (PTs) realized within the fluid-dynamical
reformulation of FRG flow equations? What are the roles of the bosons, the fermions, and
the chemical potential in the fluid-dynamical framework?

3. What are the numerical necessities for a trustworthy description of symmetry breaking
and/or restoration on the level of a dynamic bosonic effective local potential within the
FRG framework?

4. How can we systematically improve the truncations of FRG calculations? What can we
actually learn from the infinite-N calculations for better truncations?

General questions

1. What can we learn from (1 + 1)-dimensional calculations in strongly interacting systems for
non-perturbative descriptions of higher-dimensional QFTs?

2. What are the requirements for an appropriate investigation of the (non-)existence and
(in)stability of spatially inhomogeneous condensates under the influence of bosonic quan-
tum fluctuations in relativistic QFTs, especially QCD?

3. What can we learn from simple approximations of QFTs and how can we transfer the relevant
knowledge to construct stable, improved truncations, especially in the context of the FRG
method?

4. How can we understand recurrently appearing imaginary contributions to the β-functions
(RG flow equations) of fermionic vertex functions at non-zero µ and non-zero T and how
should we handle them?

7.2. The Gross-Neveu model – an overview and contextu-
alization

The GN model was originally introduced in 1974 by D. J. Gross and A. Neveu [158]. It is
constructed as a relativistic QFT, which describes the dynamics of massless Dirac fermions, that
are self-interacting via local two-to-two scatterings in one spatial dimension. The model was built
as a (1+1)-dimensional version of the (3+1)-dimensional Nambu-Jona-Lasinio (NJL) model [339,
340], which in turn was constructed in 1960 to describe a relativistic theory of mesons and nucleons
via analogies to the Bardeen-Cooper-Schrieffer theory of superconductivity [341]. (We come back
to this connection of high-energy physics and non-relativistic condensed-matter physics within the
next paragraphs.)
More precisely, D. J. Gross and A. Neveu proposed three versions of their model, featuring either a
continuous chiral symmetry (with four-fermion interaction in the scalar and pseudoscalar channel)
or a discrete chiral symmetry (exclusively in the scalar channel). In contemporary literature the
version with discrete chiral symmetry is usually referred to as the GN model, while the two versions
with continuous chiral symmetry are mostly denoted as SU(N) Thirring model [342] and chiral
Gross-Neveu (χGN) model7. Furthermore, the designation “GN model” is also used for the single
scalar-channel version in an arbitrary number of spacetime dimensions. Today, QFTs like the GN
or NJL model can be considered as the most prominent representatives of a huge class of relativistic
models of fermions in an arbitrary number of spacetime dimensions, whose dynamics is driven by
four-point interactions, thus scattering processes, and which can be seen as generalizations of the
most simplistic GN model. Other important and early representatives of this class of QFTs are
the Soler model [344] or the Thirring model [345].

7For an overview of the different models see also Ref. [343]. Here the SU(N) Thirring model is referred to as
NJL2 model and the χGN model is referred to as isoNJL2 model.
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7.2.1. Four-fermion models and their applications
Models that are based on four-fermion interactions have a wide field of applications in QFT. Due
to our own background, we mainly focus on high-energy physics, more specifically QCD.

High-energy particle physics In the context of relativistic particle physics theories of four-
fermion interactions are predominantly used to model the strong nuclear force at a mesoscopic
level, thus QCD at moderate and low energy scales in 3 + 1 spacetime dimensions, see, e.g.,
Refs. [293, 295, 346, 347, 348, 349, 350, 351, 352, 353, 354, 303, 355] for various approaches.
In a lot of models, the gauge-field dynamics of the gluons is oftentimes considered to be integrated
out and absorbed in the four-fermion couplings. The four-fermion couplings are therefore assumed
to be effective couplings, which are generated by gluon exchange between quarks in various inter-
action channels depending on the quantum numbers, kinematics etc., e.g., Refs. [346, 293, 303].
However, these effective four-fermion couplings, which then drive the quark interactions do not
form a macroscopic description of QCD yet. At sufficiently low energies QCD is dominated by
quark confinement and the degrees of freedom are hadrons. Hence, four-fermion models serve as
effective but still microscopic description at intermediate energy scales between the weakly cou-
pled high-energy regime of QCD, where quarks and gluons are the relevant degrees of freedom,
and the strongly coupled low-energy regime of QCD, where hadrons as the effective degrees of
freedom dominate the dynamics. Therefore, integrating out the dynamics of the quarks from the
four-fermion interaction results in a low-energy description of QCD.
This can be done – at least to a certain extent – on the purely fermionic level or via bosonization
techniques at low energies in the IR. This transition from high to low energies and the correspond-
ing change in the relevant degrees of freedom is realized as a PT or crossover transition, which is
associated to the breaking of symmetries of the microscopic theory and condensation phenomena,
if external energy scales like the temperature and the chemical potentials are not too large. In the
context of QCD and four-fermion models this affects mostly the UL(Nf)×UR(Nf) flavor symmetry
of QCD, which is, apart from anomalies and explicit symmetry breaking by bare quark masses, the
symmetry group of the fermionic sector of QCD at high energies. Four-fermion models are ideal
tools to describe this process of dynamical symmetry breaking and restoration. One approach is
to study the four-fermion couplings themselves, by analyzing their interplay and energy depen-
dence8. (Possible divergences of these couplings signal resonant channels, where condensation and
associated symmetry breaking is likely.)
Oftentimes one also uses (partial) bosonization techniques, where the four-fermion interactions
are replaced by effective bosonic degrees of freedom. Here, the dynamical symmetry breaking and
restoration is usually modeled on the level of an effective bosonic local potential, whose shape is
determined by fermion and boson self-interactions as well as fermion-boson interactions and which
can be directly related to thermodynamic observables.
Modern approaches to a full-fledged description of QCD, especially in the context of functional
methods like DSE and FRG, combine these techniques by dynamical hadronization methods in
the IR regime. On the other hand, four-fermion models are also directly coupled to full QCD
calculations in the UV sector. Here, the starting point is the original QCD action, while the four-
fermion interactions are dynamically generated from the quark-gluon dynamics. See Refs. [348,
350, 351, 352, 353, 354, 303] for recent works.
In fact, in any of these approaches, it turns out that the scalar and the pseudoscalar four-fermion
interaction channel play an extremely dominant role in the low-energy regime of QCD. The diver-
gence of the scalar four-fermion coupling is associated to the scalar quark-anti-quark condensate,
which gives rise to some fraction of the quark masses and massless Goldstone modes9 – the pions,

8By “energy dependence”, we refer to external energy scales set by the temperature or chemical potential, but
also the RG scale, which is used to smoothly integrate out the fluctuations from the UV to the IR into effective
renormalized physical couplings.

9The pions are massive in Nature [356]. However, their mass originates from the explicit chiral symmetry
breaking by the bare quark masses, which stem from the Higgs mechanism in the electroweak sector at much higher
energy scales and have nothing to do with QCD.
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which are the lightest stable10 states in QCD [19, 18].
In total, four-fermion models form a perfect tool for investigations of the strong interaction un-
der extreme conditions and provide access to calculations at non-zero temperatures and non-zero
quark densities – the QCD phase diagram.

Interestingly, as already mentioned above, four-fermion models, like the NJL model, where orig-
inally proposed as effective descriptions of baryons (especially nucleons) and, in their bosonized
version, of meson-nucleon interactions. Even today they are still used in this manner, cf. Refs. [280,
72, 281, 279]. However, the association of the fermions with quarks seems to dominate modern
literature.

A drawback of four-fermion models in 3 + 1 dimensions is that they are neither perturbatively nor
non-perturbatively renormalizable [158, 357, 346, 358]. Therefore, they lack a well-defined UV
(microscopic) limit like asymptotic freedom or safety scenarios. This implies that they need to be
considered as effective field theories with a defining scale, the UV cutoff, that is manifestly part
of the model. This is cured if an asymptotically free/safe theory like QCD is considered as their
UV limit, where the four-fermion couplings are initially not existing and only emerge dynamically.
However, as stand-alone models for symmetry-breaking mechanisms they suffer from this fact.

Conceptual aspects of field theories The aspect of non-renormalizability is, however, strongly
tied to 3 + 1 dimensions and does not generalize to other spacetime dimensions. This was also
the reason for D. J. Gross and A. Neveu to turn to (1 + 1)-dimensional four-fermion models. In
1 + 1 dimensions the GN model is perturbatively renormalizable and asymptotically free for any
number N of fermions. This was studied for the four-fermion coupling up to fourth order in loop
corrections in a purely fermionic or partially bosonized setup [359, 360, 361, 177, 362, 363]. Also
(perturbative) corrections at (in)finite N to the effective bosonic potential [364, 365] or critical
exponents [366, 367], as well as the relation between boson and fermion mass [368] have been
considered. However, inspecting the corresponding β-functions at different loop order, one clearly
finds that a perturbative approach to the GN model is more or less useless, if one leaves the UV
regime of extremely small coupling, where perturbation theory might be justified, independent of
N , cf. Ref. [363, Fig. 2 & 3].

At this point it is noteworthy and interesting that the (2+1)-dimensional version of the GN model
is perturbatively non-renormalizable. Still, it is shown that it is non-perturbatively renormalizable
[369, 370, 371, 357, 372, 373], e.g., via the FRG method, and can be used as a prototype model
to study asymptotic safety [374, 375]. Moreover, (2 + 1)-dimensional four-fermion theories are
also interesting from a phenomenological perspective, because they are commonly used to model
two-dimensional solid-state systems, e.g., graphene layers, nanotubes, or fullerene (depending on
the spatial topology). We briefly comment again on the 2+1 dimensional GN modelin Section 9.3,
but otherwise refer to the broad spectrum of literature on this topic.

Returning to the (1 + 1)-dimensional GN model: Another remarkable feature, which makes this
model extremely interesting, is that similar to QCD with massles quarks, it is scale/conformally
invariant and asymptotically free in the UV, but undergoes dimensional transmutation during
the RG flow towards the IR – the emergence of a dimensionful scale in a theory which has only
dimensionless couplings in its UV action [376, 19, 377]. It indeed gets strongly coupled resulting
in a mass gap, which breaks dilatation invariance. Again similar to QCD, the mass gap is a
manifestly non-perturbative result and was predominantly studied in the large- and infinite-N
approximation [158, 378, 177].
Either way, at zero temperature it seems that the mass gap is still a robust feature of the GN
model at finite N – as already proposed by D. J. Gross and A. Neveu [158]. This was studied for
example at next-to-leading order in the 1

N -expansion [368, 379, 380, 381, 382], by the Gaussian
10Pions are stable w.r.t. the strong interaction. Nevertheless, they can decay via electroweak interactions [356].
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approximation with the functional Schrödinger technique [383, 384, 385], an investigation of the
exponential fall-off of the two-point function [386], the δ-expansion [387] (which however seems to
be inconclusive for small N), working with the 2PI expansion up to second loop order [388], and
various lattice simulations, see, e.g., Refs. [389, 390, 391, 392, 393, 394, 395, 396]. An exact result
for the vacuum mass gap in terms of the cutoff ΛMS (in the modified minimal subtraction scheme)
is provided in Ref. [397] for all N , from studying the S-matrix and free energy in comparison with
loop corrections of the perturbative β-function,

m = 1
(4 e)2N−2

1
Γ(1 − 1

2N−2 )
ΛMS . (7.1)

It turns out that the deviations from this exact result for the mass gap from next-to-leading order
calculations in the 1

N -expansion or loop expansions etc. are ranging approximately from 20% to
50% for the smallest N = 2, but converge rapidly for larger N . In general bosonic fluctuation
exclusively lower the fermion mass gap in comparison to the infinite-N result.

Another interesting conceptual aspect of the GN model is that it can be used to study the equiv-
alence of four-fermion theories with Yukawa-type theories, here, the GNY model. The underlying
question affects the kinetic term(s) of the boson fields, because a Hubbard-Stratonovich trans-
formations [398, 399] exclusively transforms four-fermion interactions into Yukawa interactions of
the fermion fields with auxiliary bosonic fields, such that a bosonized four-fermion model a priori
lacks the bosonic kinetic term in the UV or on the level of the functional integral, see Section 8.2.1.
On the other hand, Yukawa models and related non-linear σ-models usually come with kinetic
terms for the boson fields by definition. From an RG perspective this amounts to a difference in
the initial UV value or asymptotic behavior for the bosonic wave-function renormalization, which
is either zero or non-zero. As can be seen from Refs. [400, 401, 378, 177] it is a long-standing
discussion, whether these models are equivalent in the IR w.r.t. their phenomenology. Within this
work, we will also contribute to this ongoing discussion.

In addition, let us mention that we are not the only ones who are not exclusively interested
in the phenomenology of the GN model, but also considered it as a perfect testing ground for
mathematical and numerical methods in QFT. For example Ref. [402] used it to study and test
the method of Lefschetz thimbles. Due its conformal invariance in the UV sector and its well-
known infinite-N limit, the GN model is also of interest for investigations on holographic aspects of
QFTs, see, e.g., Refs. [403, 404]. Other examples where the GN model serves as a test field for the
study of conceptual aspects of QFTs comprise the influence of spacetime curvature on symmetry
breaking/restoration phenomena [405, 406, 407, 408] or the study of entanglement entropy [409].
It was even used to conceptually study the freeze-out in heavy-ion collisions [410] – just to name
a few examples.

7.2.2. Contextualization of the GN model with other QFTs
More importantly and as already previously stated, the GN model is also interesting from the
perspective of (non-relativistic) condensed-matter physics. It turns out that the GN model (and
related four-fermion models in 1+1 dimension) emerge as limiting scenarios from several (discrete)
theoretical solid-state systems.
Very recently it was shown [411, 412, 413] that one-dimensional probabilistic cellular atomata in
their continuum limit are equivalent to relativistic QFTs of fermions. Hereby, the classical bits,
respectively cells, are interpreted as Ising spins.
This already hints at a deeper connection to solid-state physics, that was already found years ago:
In the N → ∞ limit it can be shown [414] that the lattice-field theory version of the (1 + 1)-
dimensional Euclidean GN model is equivalent to a (square lattice) two-dimensional Ising model,
where the temperature of the Ising model is identified with the four-fermion coupling of the GN
model T = 4g2. The latter model was first solved by L. Onsager [415] and one finds an ordered
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and a disordered phase, which are separated by a second-order PT. This directly translates to the
formation of a condensate in the Euclidean discretized GN model in vacuum, and it is explicitly
shown in Ref. [416] that this is due to the Bardeen-Cooper-Schrieffer mechanism [341]. Hence, the
infinite-N lattice version of the GN model can be seen as a model for superconductivity, where
left-moving fermions are coupled to right-moving anti-fermions and vice versa [416].
A similar relationship also exists for the lattice-field theory version of the (1 + 1)-dimensional
Euclidean SU(N) Thirring model and the XY model11 [414]. However, due to the CMWHB the-
orem [151, 152, 153, 154, 155] there are no Nambu-Goldstone bosons [156, 157, 144] in systems of
dimension two or smaller at non-zero temperature, such that there is no symmetry breaking and
long-range order in the XY model. Nevertheless, it was shown by V. Berezinskii, J. M. Kosterlitz,
and D. J. Thouless [154, 155, 417] that there is still a transition from a disordered high-temperature
state to a quasi-long-range ordered low-temperature state mediated by vortex-anti-vortex pairs.
This calls into question the (continuum) infinite-N result for the SU(N) Thirring model, where
spontaneous symmetry breaking and a Nambu-Goldstone particle is found, as discussed by E. Wit-
ten [342].
Note that the Ising and the XY model are both special versions of the N -vector model of spins
on a crystalline lattice [418] and prototype condensed-matter (toy) models.
In this context let us also mention that the infinite-N GN model has certain similarities with sys-
tems of cold atoms in optical lattices, which are described by so called rotor Jackiw-Rebbi models,
as pointed out by Ref. [419]. This does not seem accidental, because there is a direct link to the
physics of ultra-cold atoms: The thermodynamic limit of the imbalanced Creutz-Hubbard model
[420] can be written as a one-dimensional Wilson-fermion Hamiltonian on the lattice, which is in
turn a discretized version of the GN model [421].

Next, we consider the opposite limit: For N → 1 the GN model is equivalent to the Thirring
model [345] model. This accordance is shown using Fierz identities [19, 422, 177, 423]. The
Thirring model, however, is the continuum limit of the one-dimensional spin- 1

2 Heisenberg model
[424] – correspondingly the lattice version of the Thirring model describes a chain of antiferro-
magnetic spins [416, 423]. On the other hand, the Thirring model emerges as the infinite-volume
limit of the Luttinger model with strictly local interactions [425] describing the one-dimensional
Tomonaga-Luttinger liquid [426, 427], see Ref. [423] for further details. Interestingly, there is an-
other connection of the Thirring model to condensed-matter physics. The continuum limit of the
Frenkel-Kontorova model [428] is the sine-Gordon model, which was shown to be equivalent to the
massive Thirring model [429, 430]. Note that the equivalence between the bosonic sine-Gordon
model and the Thirring model is based on bosonization transformations, which is a feature that
is often employed in (1 + 1)-dimensional QFT theories [423, 430].

There are even more direct connections between condensed-matter theory models and the GN
model. It can be shown [431] that the continuum limit of the Potts model [432], also known as
the Ashkin-Teller model [433] for certain cases, is the GN model. This is again not accidental,
because the N -vector model, discussed above, is a generalization of the latter.
One of the principles behind the connection of spin systems and fermionic QFTs in 1 + 1 dimen-
sions is the mapping of spin operators using the so-called Jordan-Wigner transformation [434], see
also Ref. [423]. In turn, bosonization techniques may be used to transform the fermionic QFT into
bosonic QFT to study, understand, and even solve these systems, cf. Refs. [423, 435, 342, 430, 429].

Furthermore, it turns out that the GN model seems to be a decent description of polymers, more
specifically (trans-)polyacetylene, which is a chain of CH groups (CHx) and understood as follows,
cf. Refs. [436, 437, 437, 438, 439, 440, 441, 442]. At first, it seems as if there is one free electron
per site (C-atom) and therefore a half-filled band. Due to the Peierls instability the electrons form
pairs (double bonds), such that polyacetylene is an insulator and not a metal. This is drastically
changed and polyacetylene behaves like a metal after doping.

11This model also goes under the name “classical rotor model”, “planar model”, or “O(2) model”.
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The reason is that the formation of the double bonds, the dimerization, is not unique, because
taking the view of one CH chain link, the double bond can either go left or right. For a chain
of infinite extent this corresponds to two degenerate ground states, because the same pattern
continues for the entire chain. On the other hand, the doping leads to CH chain links, which
have no or two double bonds, which can be interpreted as domain walls, between regions of the
distinct degenerate ground states. These impurities can move and scatter like solitons and lead to
conductivity. See Ref. [441] for a review. This is described by the Su-Schrieffer-Heeger model [436]
and its continuum limit, the Takayama-Lin-Liu-Maki model [443]. It is shown by Refs. [437, 444,
438] that the latter model and the N = 2 GN model are identical, which explains that the GN
model is an approximate description of (trans-)polyacetylene. This is also easy to understand, by
identifying the degenerate minima of the vacuum potential of the GN with the degenerate ground
states of the CH chain and the doping impurities with the soliton solutions of the GN model. The
doping concentration is in turn associated with the chemical potential [445, 439].

For more connections between relativistic QFTs and condensed-matter systems we refer to Refs. [446,
423, 442].

Finally, let us mention another interesting connection between (experimental) solid state physics
and high-energy particle physics in the context of the GN model. Only recently photonic waveguide
arrays were used to study spatially inhomogeneous multi-fermion bound state solutions of the
equations of motion of the GN model – the solitons – in the infinite-N limit [447].

7.3. Phenomenology of the Gross-Neveu model

So far we introduced the GN model as a prototype model to study conceptual aspects of QFTs
and reported on its generic features as well as its role in connection with other models and theories
of relativistic high-energy particle and condensed-matter physics. Next we turn to the presently
established phenomenology of the GN model – especially at non-zero chemical potential µ and
non-zero temperature T . Most of these theoretical predictions are based on calculations in the
lowest order of the 1

N -expansion. Beyond this approximation there is little secure knowledge about
the phenomenology, besides the vacuum results, which were already mentioned previously.

Before we turn to the in-medium phenomenology, we should nevertheless briefly return to the
GN model in vacuum. Already shortly after D. J. Gross and A. Neveu proposed their model
R. F. Dashen, B. Hasslacher, and A. Neveu studied the spectrum of bound states in the semi-
classical Wentzel-Kramers-Brillouin approximation [282]. They found a rich spectrum of fermion-
antifermion and multi-fermion bound states, some of which are so-called time-(in)dependent kink
(soliton-like) solutions and can be associated with baryon-like states. This particle spectrum and
especially the dynamics of the solitonic solutions was studied extensively with various methods,
see, e.g., Refs. [448, 449, 450, 451, 452, 453]. Generically, they seem to be a rather robust feature of
all kinds of low-dimensional QFTs. Using semi-classical approximations like the Wentzel-Kramers-
Brillouin method or Hartee-Fock method, it is shown that the problem of finding these solutions
is oftentimes the same as self-consistently solving a scattering problem of fermions in a poten-
tial, which is formed by the fermions itself. These scattering problems, which are formulated in
terms of the Schrödinger/Lamé equation, oftentimes fall in the class of super-symmetric quantum-
mechanical problems [454, 455]. The corresponding Lamé potentials are ultimately associated to
hadrons in the original QFT.
The reason why this is important in the context of the in-medium phenomenology of the GN model
and this thesis is as follows. At low temperatures and large chemical potentials baryon-like states
become important, meaning that they are energetically favored and certainly influence the vacuum
structure. This becomes highly relevant in the context of spatially inhomogeneous condensation
in the next paragraphs.
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Figure 7.1: The phase diagram of the GN model in the N → ∞ limit. The dashed red curve
corresponds to the first-order phase boundary that is obtained if spatially homogeneous conden-
sation is assumed [456, 457, 458]. The solid blue lines correspond to second-order PTs, if spatially
inhomogeneous condensation is taken into account [446, 459, 460, 461]. From Ref. [5, Fig. 1].

7.3.1. The phase diagram of the GN model at infinite N

Finally, we turn to the phase structure of the GN model in medium.
The obvious question that arose already shortly after the initial publications on the vacuum
properties of the GN model was how robust the formation of a fermion-anti-fermion condensate is
against thermal fluctuations and an imbalance of matter and anti-matter. Another question that
is directly related to the previous one concerns the dependence of thermodynamic state variables
like the density, the pressure, the energy density, the entropy density, susceptibilities etc., on the
temperature and chemical potential. These questions were dealt with and answered in the infinite-
N approximation step by step in numerous publications and culminated in a complete picture of
the phase diagram of the (massive) GN model presented by O. Schnetz, M. Thies, and K. Urlichs,
see Fig. 7.1. In the next paragraphs we summarize the highlights of these developments.

Spatially homogeneous condensation Starting off from the established infinite-N results in
vacuum, it was obvious (1) to keep the assumption of spatially homogeneous condensation for the
sake of simplicity, (2) to continue working in the infinite-N approximation, and (3) to study the
influence of temperature and chemical potential separately.
Using the methods of Ref. [462] it was demonstrated by Refs. [463, 464, 465], that, while cranking
up the temperature and keeping µ = 0, the chiral condensate starts to “melt” and one finally
reaches a critical temperature Tc where the condensate completely vanishes and the discrete chiral
Z2 symmetry is restored. This PT was determined to be of second order and the Tc is uniquely
related to the vacuum fermion mass by the factor eγ

π
.

In parallel Refs. [465, 466] argued that at T = 0 the Z2 symmetry gets also restored and the con-
densate is destroyed, if the chemical potential is larger than half the vacuum fermion mass. Quali-
tatively they were right and one finds a critical chemical potential µc where symmetry restoration
takes place. Nevertheless, their calculation was implicitly based on the assumption of a second-
order PT. This assumption is incorrect for spatially homogeneous condensation and one actually
finds a first-order PT at µc = 1√

2 , while µ = 1
2 is merely the T = 0 endpoint of the so-called

spinodal line (all dimensionful quantities are expressed in units of the vacuum fermion mass).
This false determination of the point (µc, 0) was resolved in Ref. [458]. Moreover Ref. [458]
revealed the entire phase structure in the µ-T -plane (including the spinodal lines). It turns out
that the second-order PT at µ = 0 extends until it reaches a critical (respectively Lifshitz) point
at (µcp, Tcp) ≃ (0.608, 0.318). There the PT between the phases of symmetry breaking and
restoration turns into a first-order PT line that approaches (µc, 0) = ( 1√

2 , 0). The spinodal lines
engulf the region in the µ-T -plane, where the effective potential exhibits trivial and non-trivial
minima. See, e.g., Ref. [458, Fig. 4] for sketches or the discussions in Refs. [4, 5, 467].
At this point it is important to say that the entire infinite-N phase diagram and physics of the GN
model is unique, meaning that all dimensionful quantities can be expressed in terms of a single
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observable like Tc, µc, the vacuum mass of the fermions etc.. Hence, it is renormalization-scheme
independent!
Interestingly, as discovered by Ref. [446] it seems that the infinite-N phase diagram of the GN
model for spatially homogeneous condensation is actually older than the GN model itself. Refer-
ence [456] presents the phase diagram for a model where a uniform magnetic field is acting on the
spins of the conduction electrons in a superconductor already in 1963. Identifying the strength of
the uniform magnetic field with the chemical potential of the GN model, the phase diagrams in
units of the respective energy gaps are identical. It is even more remarkable that also the wrong
interpretation of the spinodal line with a second-order PT line was resolved already by Ref. [456]
22 years in advance of Ref. [458] and 11 years in advance of the model proposal by D. J. Gross
and A. Neveu. Hence, the model was solved before it existed.

Apart from the above mentioned references there are various other works who contributed to a
better understanding of the GN phase diagram under the assumption of spatially homogeneous
condensation or used the well-established results to test methods in QFT. For example, Ref. [468]
presents the dependence of the chiral condensate (the fermion mass) on the temperature using
Schwinger’s proper-time method and the so-called tadpole formalism. It also provides the tem-
perature dependence of amplitudes of elastic scattering. Another study that reproduces parts of
the above results, is Ref. [469], which deals with symmetry breaking and restoration by analyzing
the fermion mass along the lines of Refs. [339, 340]. There are also various studies that calculated
thermodynamic properties, like entropy densities, baryon-number densities, susceptibilities etc.,
e.g., Refs. [470, 457].

Spatially inhomogeneous condensation One of the natural follow-up questions is what hap-
pens to the infinite-N phase diagram, if the strong restriction of spatially homogeneous conden-
sation is relaxed and spatially varying condensates are taken into account.
Inspired by various model studies at non-zero baryon density but zero temperature, which demon-
strated that ground states at large µ might break translational invariance V. Schön and M. Thies
studied this phenomenon in the χGN model [471]. In this work they also raised the question
whether similar phenomena take place in the conventional massless GN model. The idea behind
this deviation from a spatially homogeneous phase structure stems from the rich bound-state struc-
ture, especially baryons, which should strongly influence the phase structure at small temperature
and moderate matter-anti-matter asymmetry, as mentioned earlier.
The starting point of the actual investigation seems to be Ref. [472], where the authors demon-
strated that a ground state (a gap), that breaks translational invariance and Z2 symmetry, is
always energetically favored over the translational invariant and Z2-symmetric ground state at
T = 0. As an ansatz for the spatial dependence of the condensate they chose a concatenation of
the single repulsive baryon solutions from the spectrum of the vacuum model of Refs. [451, 282].
It is found that this crystalline-like ground state of equally spaced baryons is even energetically fa-
vored over spatial homogeneous condensation for some µ < µc, such that the former first-order PT
is covered by a phase with an spatially inhomogeneous ground state. In their concluding remarks
the authors already anticipate that at large chemical potentials their crystal of equally spaced and
distinct baryons – although being energetically favored over a vanishing condensate – will not be
the minimal-energy solution. This was reasonable, because at higher densities spatially distinct
baryons are an unrealistic assumption12. Nevertheless, since already this crucial approximation is
energetically favored over a symmetric phase, the authors conclude that the true shape of the con-
densate at arbitrarily high densities has to have some periodic oscillatory spatial dependence. This
spatial dependence of the true ground state was ultimately worked out analytically in Ref. [473]
by mapping the Hartee-Fock Dirac equation to a supersymmetric Lamé equation [452, 454, 453].

Slightly earlier M. Thies and K. Urlichs already published a revised version of the infinite-N
phase diagram [327] of the GN model, partially relying on numerical minimization, where they

12Actually this is the same assumption that lead to the prediction of a quarkyonic phase [299, 301] in QCD.
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find exactly this kind of spatially inhomogeneous condensation at large chemical potential but also
T ̸= 0, without presenting the full analytic solution of the ground state for all µ and T .
By generalizing the analytic solution from Ref. [473] from zero to non-zero temperature, the full
phase structure and true ground state for the GN model and massive GN model was then ulti-
mately worked out in a series of publications by the former authors and O. Schnetz [446, 459, 460]
and the phase structure derived semi-numerically in Ref. [327] was confirmed.

The resulting phase diagram is presented in Fig. 7.1 and ultimately consists of three phases with
spatially homogeneous broken Z2 symmetry (HBP), spatially inhomogeneous broken Z2 symmetry
(IP) (additional breaking of continuous translational invariance) and a symmetric phase (SP). All
phase boundaries constitute second-order PT lines and the former first-order PT is completely
engulfed by the so-called inhomogeneous phase that extends to µ → ∞.
The shape of the inhomogeneous phase can be exactly expressed in terms of Jacobi elliptic func-
tions. For increasing µ one finds that the shape of the condensate transforms from a kink-anti-
kink-like structure to a sine-like shape. Furthermore, the amplitude of the oscillations decreases
with µ, while their frequency increases. Increasing the temperature also leads to a continuously
decreasing amplitude.

Again, the above publications triggered also other authors to use the exact result for the phase di-
agram with spatially inhomogeneous condensation as a test field for methods for the detection and
analysis of inhomogeneous phases in a general context. Some prominent examples are Refs. [332,
333, 474, 475], where lattice field-theory methods were tested with the GN model for the search
of inhomogeneous phases and also the influence of the restriction of the spatial dimension to a
finite volume was studied. For analytical works, see, e.g., Ref. [476], which invented the so-called
“fermion-doubler trick” that is based on a doubling of the fermion degrees of freedom and an ex-
pansion of the action about a condensate with cosine-background field dependence, or Ref. [467],
that studies the (in)homogeneous phase via a systematic Ginzburg-Landau expansion.

Variations and generalizations Before we continue with our main program, we briefly com-
ment on various generalizations and variants of the above infinite-N calculations. Concerning
the phase diagram of the GN model (assuming spatially homogeneous condensation), there is
for example Ref. [477] that generalizes the phase diagram to continuous spacetime dimensions
2 ≤ d+ 1 < 4, or Ref. [478] that uses the GN model at T = 0 on a spatial ring S1 with chemical
potential to study multiple phases of a Peierls insulator. A similar study [479] analyzes the GN
model for non-zero µ on a torus formed by a periodic spatial dimension and the temperature. Also
the generalization to the massive GN model were studied already before M. Thies and collabo-
rators solved it in full generality [480]. Generalizations that considered more possible interaction
channels, the possibility of a true superconducting phase in the relativistic QFT framework or
more than one condensate can be found in, for example, Refs. [481, 482, 483, 484, 485, 486].

7.4. To break or not to break – Z2 symmetry at finite N

Having said all this, the careful reader might object that even if the above results are highly
relevant and interesting, the infinite-N limit is extraordinarily special: It completely suppresses
all kinds of bosonic fluctuations and thus any direct backreaction of bosonic bound states on the
fermions. In addition, and more importantly, all bosonic self-interactions are ignored. This seems
to be a crude assumption, because especially in a single spatial dimension it is rather obvious
that fluctuations will spread over large distances and easily destabilize long-range order, hence
condensation.
Therefore the question is whether Z2-symmetry breaking and condensation of fermion-anti-fermion
pairs is still a robust feature of the (1+1)-dimensional GN model at finiteN and especially non-zero
T .
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At first sight, this question seems to be answered and there are indeed a bunch of arguments why
we should not expect any kind of condensation phenomena at non-zero temperature under the
influence of bosonic thermal and quantum fluctuations. However, on closer inspection things are
not as clear as they appear to be or as they are communicated at conference dinners... .

7.4.1. Continuous vs. discrete symmetries
The first argument that is usually played off against symmetry breaking is the CMWHB theorem
[153, 151, 152, 154, 155]. This theorem forbids the formation of Nambu-Goldstone bosons [156,
157, 144] in less than two spatial dimensions at non-zero temperature. However, Nambu-Goldstone
bosons arise by dynamical symmetry breaking of continuous symmetries, which is not the case
for the GN model, which has a discrete Z2 symmetry. In conclusion the theorem does exclusively
apply to extensions of the GN model, e.g., the χGN model. This was for example discussed by
E. Witten [342], who also argues that the infinite-N limit violates the CMWHB theorem, but
discusses the possibility for a phase of Berezinski-Kosterlitz-Thouless type [154, 155, 417] of quasi-
longe-range order. See also Refs. [487, 488, 489] for recent related works on the χGN model, which
address this issue. Note that generically the theorem is restricted to T ̸= 0, such that symmetry
breaking in vacuum and for µ ̸= 0 is always possible.

7.4.2. Landau’s argument
Another – maybe the most powerful – argument against any symmetry breaking in all kinds of
one-dimensional systems at non-zero temperature was already put forward by L. D. Landau in
1950 and is presented by L. D. Landau and E. M. Lifshitz in Ref. [490, § 163]: Consider a generic
bistable system of two possible phases in a single spatial dimension at non-zero temperature. Let
us further assume that space is split into M equally sized cells. Each cell either belongs to one or
the other phase, such that adjacent cells may form domains of the same phase. In consequence
there are also N interfaces (or rather contact points in a single dimension), where neighboring
cells belong to different phases. These phase boundaries are oftentimes called domain walls.
The Boltzmann entropy of a possible domain configuration therefore is

S = ln
(

M !
N !(M−N)!

)
≃ M ln(M) −N ln(N) − (M −N) ln(M −N) , (7.2)

where we used Stirling’s approximation. Assume that each interface comes with a constant energy
ε, which is reasonable in one dimension, since interface sizes should not depend on the domain
size – they are always point-like. The inner energy of the system is thus given by U = εN and the
free energy by

F = U − T S . (7.3)

Lets us study how this thermodynamic potential changes with N for fixed M ,

∂F
∂N = ε+ T ln

(
N

M−N
)
. (7.4)

For N ≪ M the logarithm is large and negative. Hence, the free energy is lowered, if N is
increased. Consequently, the system will automatically produce more and more interfaces and
domains of different phases. This process continues until Eq. (7.4) vanishes, i.e.,

N = 1
exp( εT )+1 M . (7.5)

If the domain-wall energy ε is small compared to the temperature, N approaches the same order
of magnitude as M . For large systems, this means that “the two phases will tend to intermingle
in shorter and shorter sections, and therefore cannot exist as separate phases” [490, § 163]. From
the above it is clear that this argument no longer holds true at zero temperature or if the ε

T is
no longer small. The latter is the case in the infinite-N limit of the GN model, cf. Ref. [465]
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and below. Landau’s argument also fails, if the domain-wall energy is assumed to grow with the
domain size. Indeed this is the reason why it does not generalize to d > 1, where the size of the
cell interfaces depends on the domain size [465]. For further details, we also refer to Ref. [491]
that discusses (the absence of) symmetry breaking in small dimensions from various perspectives.

7.4.3. Kink configurations in the partition function
Actually, already in 1975 R. F. Dashen, S. Ma, and R. Rajaraman confirmed Landau’s argument
for the GN model on a qualitative level and predicted that Tc = 0 for a finite number N of fermions
[465]. (The authors exclusively discuss the situation of finite N for µ = 0 and do not comment on
µ ̸= 0.)
They deduced that field configurations σ(x) ∼ ψ̄(x)ψ(x) that are spatially oscillating in terms
of kinks and anti-kinks, which “interpolate” between the homogeneous vacua of the infinite-N
potential, essentially contribute to the partition function – also at low temperatures. Even though
each kink comes with a finite energy, which can be interpreted as Landau’s domain-wall energy,
these configurations are energetically preferred due to an entropic gain and consequently lead to
a net vanishing expectation value for ⟨ψ̄ ψ⟩ = 0, because kinks and anti-kinks average to zero. In
addition it was shown that each kink energy is proportional to N , such that large values of N
make the occurrence of kinks more and more unlikely (for µ = 0). Ultimately, for N → ∞, the
number of kinks is zero and ⟨ψ̄ψ⟩ ̸= 0 – allowing for spontaneous symmetry breaking. The same
applies to the zero-temperature limit, where the entropic gain does no longer exist and the kink
energies therefore disfavor oscillating configurations in the partition function13 .
Hence, Ref. [465] is in agreement with Ref. [490], because Landau’s argument also exclusively
applies to finite interface energies and non-zero temperature.

7.4.4. Temperature reinterpreted as a spatial box
Another argument which is put forward against symmetry breaking relates to the special structure
of Euclidean (1+1)-dimensional QFTs at non-zero temperature. On a formal level it is impossible
to distinguish a (1 + 1)-dimensional Euclidean QFT in a spatial box at zero temperature from the
same QFT in an infinite spatial volume at non-zero temperature, if the temperature is identified
with the inverse box size and boundary conditions are matched accordingly. Of course, this kind
of duality is restricted to µ = 0. Then again, it is generally assumed that spontaneous symmetry
breaking in finite-sized systems is impossible, see, e.g., Ref. [18, 139], which directly translates to
the absence of spontaneous symmetry breaking in the GN model at non-zero temperature [458,
457].
Still, certain details of the thermodynamic and/or infinite-volume limit, the inclusion of (infinites-
imal) explicit symmetry breaking, as well as studying extremely large volumes might spoil this
theoretically strict argument in practical calculations and lead to false signals of spontaneous
symmetry breaking. See, e.g., Ref. [492] for details on this topic.

7.4.5. Explicit calculations at finite N

Sometimes decades of qualitative discussions simply call for explicit quantitative investigations.
These may either support the theoretical arguments or yield controversial results, which call for
further studies and discussions. In the context of the GN model the latter was the case.

Non-perturbative corrections to the infinite-N result Anyhow, let us start by presenting
some rather uncontroversial and expected results at finite N . Using a thermodynamic Bethe

13Even though the kink configurations are closely related in shape to the inhomogeneous condensates at non-zero
µ in the infinite-N limit, they do not refer to vacuum expectation values for the scalar field in this context. For the
arguments of Ref. [465] it is crucial to differentiate between expectation values and the actual field configurations
that contribute predominantly to the partition function.
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ansatz A. Chodos and H. Minakata present the first-order 1
N -correction to the critical chemical

potential at zero temperature in terms of the vacuum fermion mass [382],

µc = 1√
2

(
1 − 0.47

N ) + O(N2) . (7.6)

Hence, their calculation predicts, in accordance with the above discussions and references, that
condensation still takes place at zero temperature and finite N , though the critical chemical po-
tential µc is lowered by the bosonic fluctuations compared to the infinite-N result. For example,
for N = 2, which is the most extreme case, the first-order correction (7.6) is approximately a 20%
effect.

Next, we turn to higher-order 1
N -corrections at non-zero temperature. Here, S. K. Gandhi and

M. B. Pinto used a non-perturbative δ-expansion up to third order to study corrections to the
infinite-N result for Tc at µ = 0 [493]. Their calculation shows that Tc is drastically lowered by
including these corrections, which include terms of various orders in 1

N . Even though they argue
that their results point towards Tc = 0, the calculations can only be seen as an indication. Sim-
ilarly, J.-P. Blaizot, R. M. Galain, and N. Wschebor studied the next-to-leading order correction
in the 1

N -expansion of the effective potential [494]. They reported complementary results at very
low temperatures, where their results seem to resemble the infinite-N results, and at very high
temperature, where the 1

N -correction agrees with perturbative corrections to a free gas. However,
for intermediate temperatures the 1

N -expansion seems to break down. Still, their results indicate
that Tc is lowered by decreasing N [494, Fig. 14].
Other works that also used the δ-expansion, which is also called optimized perturbation theory,
find similar results at non-zero µ and non-zero T . In Refs. [495, 496, 440] corrections to the
leading-order 1

N result are studied, which lead to a lowering of the temperature of the second-
order phase transition, including Tc and the critical point. All authors agree that their results
point at Tc = 0, even though they do not provide a systematic analysis of convergence properties
of the δ-expansion or 1

N corrections.

Lattice Monte-Carlo studies at finite N On the other hand, there is a significant number of
brute-force lattice simulations of the GN model at finite N . Not long ago some of our collaborators
and colleagues used lattice Monte-Carlo simulations [335, 336, 337, 338] to search for spatially
inhomogeneous condensation in the GN model in medium at finite N . There it turned out that the
three phases from Fig. 7.1 still seem to be present, even though the phase of spatially homogeneous
condensation appeared to shrink by lowering N . These results are in agreement with older lattice
Monte-Carlo simulations at finite N [391, 392, 497, 389], which also found regions with signals of
spatially homogeneous condensation in the µ-T -plane.
Since these results in parts contradict the above arguments against symmetry breaking in 1 + 1
dimensions at T ̸= 0, the question arises where the discrepancies come from. Indeed, most of
these lattice studies do not provide careful continuum extrapolations. Also the infinite-volume
limit is usually not performed accurately. Hence, finite-volume and discretization artifacts might
spoil the calculations and question their predictive power for the GN model in an infinite volume
and continuum. See also Refs. [416, 498, 393, 390, 394, 499, 500] for lattice discretization artifacts
in the GN model.
As a matter of fact, we speculated in Ref. [4] that the artificial finite volume of the lattice Monte-
Carlo studies might have suppressed infrared fluctuations of the bosons, which are important
for symmetry restoration. Ongoing FRG investigations of the GN and GNY model in a finite-
sized box in continuum indicate that this is not the case and that the presence of (inhomogeneous)
condensates in lattice Monte-Carlo simulations might either be related to the spatial discretization
(UV) artifacts or statistical problems.
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Chapter 8

The Gross-Neveu model, the
bosonized Gross-Neveu model,
and the Gross-Neveu-Yukawa
model

Abstract In this chapter we discuss the field-theoretical formulation of the GN model in detail.
In the first part the action of the original model in (d+ 1)-dimensional Minkowski spacetime and
its translation into Euclidean spacetime is presented. Furthermore, the symmetries of the model
are discussed. Then baryon chemical potential as well as temperature are introduced to enable
calculations in medium.
The second part deals with the Hubbard-Stratonovich transformation to a bosonized version of
the model – the bGN model. In addition the GNY model is introduced and its relation to the
bGN model is discussed. The chapter ends by demonstrating how the symmetries of the purely
fermionic theory translate to the bosonized models.
Readers who are familiar with the GN model are encouraged to merely skim over this chapter to
familiarize with the notation of this work.

Disclosure None of the concepts discussed in this chapter is really new, though its presentation
and compilation is original to the author. Similar material can be found in generic publications
on the GN model or related QFTs and we mostly refrain from citing all kinds of standard QFT
calculations and techniques. The presentation and compilation in this chapter is partially based
on our own publications [4, 5].

8.1. The Gross-Neveu model

The starting point is the presentation of the purely fermionic GN model. We introduce the field-
theoretical formulation of the model in terms of an action in Minkwoski and Euclidean vacuum and
discuss its generalization to non-zero temperature and non-zero chemical potential. Throughout
the discussion we mostly keep the number of spatial dimensions general and comment on some
peculiar features of the model in different dimensions.

8.1.1. The Gross-Neveu action in vacuum
Let us start with the vacuum formulation of the GN model.
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Minkowski spacetime

In a (d + 1)-dimensional Minkowski spacetime, where d is the number of spatial dimensions, the
original action of the GN model is given by [158],

S[ψ̄, ψ] =
∫ ∞

−∞
dd+1x

[
ψ̄ i/∂ ψ + 1

2N g2 (ψ̄ ψ)2] . (8.1)

Hereby g2 is the four-fermion coupling and N is the number of fermion species (oftentimes denoted
as colors or flavors in the GN model literature). The rescaling of the four-fermion coupling by
2N is convention and simplifies calculations at various N – including N → ∞. The fields ψ
consist of N copies of spinors that transform under representations of the Lorentz group of the
respective spacetime. Hence, one has to exercise caution when d is altered, because with d also
the spacetime symmetry groups change their properties and so does the spin group and the spinor
representations [501]. In particular this leads to significant differences between even- and odd-
dimensional spacetimes, see, e.g., Ref. [502, App. A].
We work in Cartesian coordinates and use the conventions of Appendix A.2 for the metric. (Note
that we associate the (d+1)th coordinate with the temporal direction.) Hence, Eq. (8.1) is actually
a compact notation for

S[ψ̄, ψ] =
∫ ∞

−∞
ddx

∫ ∞

−∞
dt
[
ψ̄a1c1(t, x⃗ ) (1)c1

c2
i(γµ)a1

a2
∂µ ψ

a2c2(t, x⃗ ) − (8.2)

− 1
2N g2 [ψ̄a1c1(t, x⃗ ) (1)c1

c2
(1)a1

a2
ψa2c2(t, x⃗ )

]2]
,

where t is the time, x⃗ are the d spatial coordinates, the indices ci ∈ {1, . . . , N} label the N fermion
species, and ai ∈ {1, . . . , dγ} are the spinor indices, that attach the spinors to the members of the
Clifford algebra, the γ-matrices γµ. Here, dγ is the dimension of the representation of the Clifford
algebra. (For our two-dimensional calculations, we choose the lowest-dimensional representation,
dγ = 2, and use the Weyl basis.) The γ-matrices also carry a Lorentz index µ ∈ {1, . . . , d + 1},
that labels the basis vectors of the Minkowski space.

Let us also briefly comment on the physical dimensions of the fermion fields ψ̄ and ψ as well as
the coupling constant g2. In natural units it is straightforward to deduce their canonical energy
dimension,

[ψ] = energy
(d+1)−1

2 , [g2] = energy−(d+1)+2 . (8.3)

We find that the four-fermion coupling has negative energy dimension for d > 1, which underpins
the previous statements from Section 7.2 on perturbative non-renormalizability of any four-fermion
couplings in spacetime dimensions larger than two.

So far we exclusively presented the microscopic action, which describes the fermions at some UV
scale. In order to calculate macroscopic observables in terms of vacuum expectation values or
rather correlation functions, we define the generating functional for n-point correlation functions
(up to an irrelevant normalization factor) as usual in QFT [19, 422, 18, 20, 142],

Z[η̄, η] ∝
∫

[dψ̄,dψ] exp
(

iSM[ψ̄, ψ] + i
∫ ∞

−∞
dd+1xM (η̄ ψ + ψ̄ η)

)
. (8.4)

Without the artificially introduced fermionic source terms η̄ and η the generating functional cor-
responds to the path or functional integral of the model. Hence, Eq. (8.4) sums (integrates over)
all possible microscopic field configurations, which are in turn weighted according to their action.
By taking derivatives w.r.t. the sources and by evaluating at vanishing source fields afterwards,
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one generates expectation values, respectively correlation functions of fermion fields.

However, the interpretation of the integrand in Eq. (8.4) as an ordinary probability distribution
is limited due its complex highly oscillatory nature. Furthermore, the scope of this work is the
thermodynamics of the GN model. In any case and without going into detail, one therefore needs
to change the spacetime structure from a Minkowski space to a Euclidean spacetime to obtain a
conventional probability distribution in the sense of statistical physics. For details, we refer to
Refs. [503, 22, 142, 504, 13, 505].

Euclidean spacetime

The change from Minkowski to Euclidean spacetime can be done on a formal level via the following
simple “substitutions”, where M indicates Minkowski and E Euclidean quantities,

xd+1
M = tM 7→ xd+1

E = itM = ixd+1
M , (8.5)

∂d+1,M 7→ ∂d+1,E = −i∂d+1,M , (8.6)

γiM 7→ γiE = iγiM , i ∈ {1, . . . , d} . (8.7)

while all other objects of the QFT are unchanged. These “substitutions” are indeed a special case
of a so-called Wick-rotation [506] in the complex plane of the temporal coordinate. On a more
fundamental level the actual procedure of linking a “Minkowski path integral” with an “Euclidean
partition function” and vice versa is more involved and still subject of todays research in QFT.
One might think of this connection in terms of an exchange of integration contours using analytic
continuation into the complex plane of the temporal coordinate under the application of Chauchy’s
(residue) theorem. Details for fermionic QFTs are provided for example by Ref. [507].
Anyhow, in the following chapters of this work, we are almost exclusively interested in properties
of the GN model in medium and we simply do not need any additional knowledge about the
connection between the Minkowski and Euclidean spacetime than the above substitutions.
We therefore continue by applying Eqs. (8.5) to (8.7) to Eq. (8.1) and start by analyzing the
kinetic term of the fermions in detail,

/∂M = γµM ∂µ,M = γiM ∂i,M + γd+1
M ∂d+1,M = (8.8)

= − γiM ∂iM + γd+1
M ∂d+1

M =

= iγiE ∂iE + iγd+1
E ∂d+1

E = iγµE ∂µ,E = i/∂E .

Using this intermediate result, we find that the Minkowski and the Euclidean action can be related
as follows,

SM[ψ̄, ψ] =
∫ ∞

−∞
dd+1xM

[
ψ̄ i/∂M ψ + 1

2N g2 (ψ̄ ψ)2] = (8.9)

= − i
∫ ∞

−∞
dd+1xE

[
− ψ̄ /∂E ψ + 1

2N g2 (ψ̄ ψ)2] = iSE[ψ̄, ψ] ,

where the Euclidean action is defined by,

SE[ψ̄, ψ] ≡
∫ ∞

−∞
dd+1xE

[
ψ̄ /∂E ψ − 1

2N g2 (ψ̄ ψ)2] . (8.10)
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On the level of the path integral (8.4), we find that this transforms the highly oscillatory complex-
valued integrand into an (apart from infinities) well-behaved probability distribution. The result-
ing partition function in the presence of sources is,

Z[η̄, η] ∝
∫

[dψ̄,dψ] exp
(

− SE[ψ̄, ψ] +
∫ ∞

−∞
dd+1xE (η̄ ψ + ψ̄ η)

)
= (8.11)

=
∫

[dψ̄,dψ] exp
(

−
∫ ∞

−∞
dd+1xE

[
ψ̄ /∂E ψ − 1

2N g2 (ψ̄ ψ)2 − η̄ ψ − ψ̄ η
])

.

After regularization, this expression can be used for a direct computation of correlation functions.
In order to recover their counterparts in Minkowski spacetime or for the calculation of spectral
functions, one would need to analytically continue the latter, cf. Refs. [508, 509, 180, 510, 511,
167] for some recent works in the context of functional methods.

8.1.2. Symmetries of the Gross-Neveu action
Before we continue with the introduction of temperature and a matter-anti-matter asymmetry, we
return to the action (8.1) and discuss its properties and symmetries.
We start our presentation with some comments on chirality and the discussion of the discrete
symmetries and turn to the continuous symmetries afterwards. In the context of continuous
symmetries, Noether’s theorem becomes relevant and we repeatedly use the generic expressions for
the energy-momentum tensor Θ and the Noether current J for fermionic theories. Componentwise
these are [20, 24, 19],

Θµ
ν = (∂νψ̄) ∂L

∂(∂µψ̄)
+ ∂L
∂(∂µψ) (∂νψ) − δµν L , (8.12)

Jµ ∝ δψ̄
∂L

∂(∂µψ̄)
+ ∂L
∂(∂µψ) δψ − Θµ

ν δx
ν + Fµ , (8.13)

Here, Fµ denotes the components of a vector whose divergence vanishes (a surface term).

Within this subsection, we focus on d = 1, if not explicitly stated otherwise.

Chirality and chiral symmetry in two dimensions

As stated before, we focus on the lowest-dimensional non-trivial representations of the Clifford
algebra, which has dγ = 2. These are 2 × 2 γ-matrices. The associated spinors that transform ac-
cording to this representations are therefore two-component objects (apart from their flavor/color
structure),

ψ =
(
ψL
ψR

)
, ψ̄ = ψ†γd+1 = (ψ†

L, ψ
†
R)
(

0 1
1 0

)
= (ψ†

R, ψ
†
L) . (8.14)

The entries are denoted with “left-” (L) and “right-handed” (R), which is a slightly misleading
denotation and is explained within the next lines. (We keep using the adjoint symbol (†) in-
stead of the complex conjugation symbol (∗) for the two spinor components, because the implied
transposition also targets the flavor/color space.)
In order to project the spinor onto its left- or right-handed components, we can use the so-called
chiral projectors,(

ψL
0

)
= γLψ =

(
1 0
0 0

)(
ψL
ψR

)
,

(
0
ψR

)
= γRψ =

(
0 0
0 1

)(
ψL
ψR

)
, (8.15)

(ψ†
R, 0) = ψ̄ γL = (ψ†

R, ψ
†
L)
(

1 0
0 0

)
, (0, ψ†

L) = ψ̄ γR = (ψ†
R, ψ

†
L)
(

0 0
0 1

)
. (8.16)



8.1. The Gross-Neveu model 145

The projectors and their properties are defined in Eqs. (A.15) to (A.18). In terms of these left-
and right-handed spinors, the GN action (8.1) reads

SM[ψ̄, ψ] = (8.17)

=
∫ ∞

−∞
d2x

[
ψ̄ i/∂ ψ + 1

2N g2 (ψ̄ ψ)2] =

=
∫ ∞

−∞
d2x

[
ψ†

R i(∂x + ∂t)ψR + ψ†
Li(−∂x + ∂t)ψL + 1

2N g2 (ψ†
RψL + ψ†

LψR)2] .
Discarding the four-fermion interaction for a moment, we find that the free action completely
splits into left- and right-handed components. The equations of motion for these free spinors are

0 = (∂x + ∂t)ψR , 0 = (−∂x + ∂t)ψL , (8.18)

which are advection equations for right- and left-moving waves that do not disperse. (The same
applies to the equations of motion for the adjoint spinors.) These are the (1 + 1)-dimensional
analogues of the Weyl equation. Since there is no real concept like spin and chirality in 1 + 1
dimensions, “left” and “right” simply refer to direction of motion of the particles and correspond
to the two irreducible representations of the Lorentz group, see below.
In addition, without the four-fermion interaction, transformations of the left-handed spinors would
not affect the right-handed once and vice versa. Here, we refer to global U(N)L/R transforma-
tions, thus complex rotations of the left- or right-handed fermion species among each other. This
symmetry is usually denoted as (full) chiral symmetry.
Anyhow, the four-fermion term leads to an interaction of left- and right-movers by local scattering
and breaks the global U(N)L/R-symmetry explicitly to its discrete global Z2 subgroup. The
corresponding transformations read,

ψ 7→ ψ′ = γch ψ , ψ̄ 7→ ψ̄′ = −ψ̄ γch . (8.19)

On the level of the left- and right-handed spinors, this is even more instructive,

ψL 7→ ψ′
L = −ψL , ψR 7→ ψ′

R = ψR . (8.20)

The transformation of the hermitian adjoint spinors is analogous. We observe that chiral symmetry
is realized in the GN model in terms of a discrete Z2 symmetry, which flips the sign of the wave
function of the left-handed1 spinors.

Discrete symmetries

The action (8.1) is invariant under the following discrete symmetry transformations. Here, the
transformation law for the adjoint spinor always follows directly from the transformation rule for
the spinor itself via ψ̄ = ψ†γd+1 = ψ†γ2.

Parity Studying a reflection of the spatial coordinates, while keeping the temporal coordinate
untouched,

x 7→ x ′ = −x , t 7→ t′ = t , (8.21)

1The choice of the minus sign in front of the left-handed spinor is convention and can be moved to the right-
handed spinor via a global U(1) transformation, which is another symmetry of the system, see below.
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we can derive that the GN action (8.1) is invariant, if the fermion fields transform as follows under
these parity transformations2,

ψ(t, x ) 7→ ψ′(t, x ) = P ψ(t,−x ) , P = γd+1 = γ2 . (8.22)

This transformation law holds up to a phase factor. On the level of the left- and right-handed
spinor components of Eq. (8.14) the parity transformation by γ2 simply exchanges left- and right-
moving spinors.

Time reversal It is also possible to show that the GN action (8.1) is invariant under inversion
of the temporal coordinate,

x 7→ x ′ = x , t 7→ t′ = −t , (8.23)

in addition with the transformation,

ψ(t, x ) 7→ ψ′(t, x ) = T ψ(−t, x ) , T = γd+1 = γ2 . (8.24)

(Note that in addition to these transformation rules the Dirac operator undergoes complex con-
jugation.) Again, we could have added a random phase to the transformation law. Note that the
time-reversal operator, whose properties are listed in Eq. (A.21), is chosen identical to the parity
operator. This is absolutely reasonable in a two-dimensional world, where time reflection leads to
a movement in the exactly opposite spatial direction.

Charge conjugation Furthermore, the action (8.1) is invariant under charge-conjugation. The
spinor is mapped to its charge conjugated counterpart by,

ψ(t, x ) 7→ ψ′(t, x ) = C ψ̄T (t, x ) , C = γ1 , (8.25)

where C is the charge conjugation matrix, whose properties are listed in Eq. (A.20). Again, we
simply fixed the additional phase factor.

CPT Because the GN action (8.1) is already separately invariant under charge conjugation
(8.25), parity transformations (8.22), and time-reversal transformations (8.24), also their con-
catenation constitutes a symmetry transformation [515, 516, 18] and the GN model fulfills the
CPT-theorem. In particular the concatenated transformation reads

x 7→ x ′ = −x , t 7→ t′ = −t , (8.26)

for the coordinates and

ψ(t, x ) 7→ ψ′(t, x ) = −γch ψ∗(−t,−x ) , (8.27)

for the spinor. In addition a complex conjugation of the Dirac operator is required. Interestingly,
the matrix which maps the spinor to its transformed version is (the negative of) the chiral gamma
matrix and the mapping is the discrete chiral symmetry transformation (8.19).

Continuous symmetries

Next, we turn to the continuous symmetry transformations which leave the GN action (8.1) in-
variant.

2For an odd number of spacetime dimensions the situation is more involved. In 2 + 1 spacetime dimensions, for
example, the transformation (8.21) turns out to correspond to a rotation by π and it is appropriate to reflect only
one of the spatial coordinates to study parity. For details on parity transformations in four-fermion theories in odd
dimensions, see, e.g., Refs. [502, 512, 513, 514]. This is one of the reasons why we limit ourselves to d = 1 in this
subsection.
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Unitary transformations of degree N As already anticipated in the discussion about the
chiral symmetry, we note that the GN model is invariant under global unitary transformations of
degree N , which act on left- and right-handed fermions simultaneously. This symmetry is realized
by unitary transformations that mix the fermion species, where members of the U(N) group act on
the spinors in terms of their matrix representation by matrix-vector multiplications. In particular,
the spinors are supposed to transform as objects that belong to the fundamental representation,

ψ 7→ ψ′ = U ψ , ψ̄ 7→ ψ̄′ = ψ̄ U† , (8.28)

componentwise,

ψc1 7→ ψ′c1 = Uc1
c2
ψc2 , ψ̄c1 7→ ψ̄′

c1
= ψ̄c2 (U†)c2

c1
. (8.29)

Here,

U = exp(−iϑnTn) ∈ U(N) , (8.30)

are the elements of the group. These are constructed from the N2 group parameters ϑn that
parameterize the group manifold, which is spanned by the basis elements of the tangent space Tn ,
the generators, such that the indices n ∈ {0, 1, . . . N2 − 1}.
It is convenient to split this group into pure global phase transformations and special unitary
transformations U(N) = U(1) × SU(N), where

U = exp(−iϑmTm) ∈ SU(N) , m ∈ {1, . . . N2 − 1} , (8.31)

and

exp(−iα)1 ≡ exp(−iϑ0T0) ∈ U(1) . (8.32)

Here, we set α = 1√
2N ϑ0. Furthermore, we choose

T0 = 1√
2N 1 , (8.33)

where 1 is the N × N unit matrix. The remaining generators Tm of Eq. (8.31) form the su(N)
algebra[

Tm1 , Tm2

]
− = ifm3

m1m2
Tm3 ,

{
Tm1 , Tm2

}
+ = 1

N δm1m21+ dm3
m1m2

Tm3 , (8.34)

where fm3
m1m2

and dm3
m1m2

are the (anti-)symmetric structure constants of su(N). To be con-
sistent with Def. (8.33) we choose the fundamental representation in terms of matrices that fulfill

tr(Tn1Tn2) = 1
2δn1n2 , n1, n2 ∈ {0, 1, . . . , N2 − 1} . (8.35)

These are N×N traceless Hermitian matrices, that are usually chosen in a fashion that generalizes
the Pauli and Gell-Mann matrices for N > 3. For more details on the group-theoretical aspects
we refer to Refs. [516, 19].

According to Noether’s theorem, these symmetries come with conservation laws. The conserved
current that is associated to the global U(1) symmetry is

J µ = ψ̄ γµ ψ , (8.36)

while the conserved current which comes along with the global U(N) symmetry reads

J µ
m = ψ̄ γµ Tm ψ , m ∈ {1, . . . , N2 − 1} . (8.37)

Depending on the context, both are denoted as vector currents. We come back to these cur-
rents when we introduce the GN model in medium. For the moment, we turn to the spacetime
symmetries.



148
8. The Gross-Neveu model, the bosonized Gross-Neveu model, and the Gross-Neveu-Yukawa

model

Translations The GN action (8.1) is invariant under spacetime translations. Here, the (in-
finitesimal) transformation of the coordinates are as follows,

xµ 7→ x′µ = xµ + aµ , xµ 7→ x′µ = xµ + δaµ , (8.38)
while the spinor conventionally does not transform when moved from one position to the other

ψ(x) 7→ ψ′(x′) = ψ(x) . (8.39)
However, studying the transformation from the same viewpoint in spacetime, one clearly observes
the passive transformation of the shifted field

ψ(x) 7→ ψ′(x) = ψ(x) − iδaµPµ , Pµ = −i1∂µ , (8.40)
which involves the generator Pµ of translations, that is identical for all types of fields. From
Eq. (8.13) we find that the associated conserved current is the energy-momentum tensor

Θµ
ν = 1

2
[
ψ̄ iγµ (∂νψ) − (∂νψ̄) iγµ ψ

]
− δµν

[
ψ̄ i/∂ ψ + 1

2N g2 (ψ̄ ψ)2] . (8.41)
Using the equations of motion it can be shown that its trace vanishes Θµ

µ = 0.

Lorentz transformations Next, we consider the (1 + 1)-dimensional Lorentz transformation.
We start analogous to the well-known higher-dimensional case by specifying the (infinitesimal)
transformation law of the coordinates that leaves the line element invariant,

xµ 7→ x′µ = Λµνxν , xµ 7→ x′µ = xµ + δωµν x
ν . (8.42)

The boost matrix reads

Λ = (Λµν) =
(

cosh(ω) sinh(ω)
sinh(ω) cosh(ω)

)
, (8.43)

where ω is the rapidity. As expected in 1 + 1 dimensions, there is only one boost and one boost
parameter ω. The intrinsic transformation law of the fermion fields is

ψ(x) 7→ ψ′(x′) = S ψ(x) , (8.44)
and the GN action (8.1) is invariant under boosts if the standard relation

S−1 γµ S = Λµν γν (8.45)
holds true. Hence the transformation matrix and the generator read

S = exp
(

− i
2 ω

µνIµν
)
, Iµν = i

4
[
γµ, γν

]
− = − i

2 γ
ch εµν . (8.46)

where we used Def. (A.9). The two-dimensional tensor ωµν is antisymmetric. Thus, we define
ω ≡ ω12 = −ω21 = ω21 = −ω12 and find

S = exp( 1
2 ω γ

ch) = exp
(

−ω
2 0

0 ω
2

)
=
(

e−ω
2 0

0 eω2

)
(8.47)

for boosts of the fermion fields, cf. Ref. [501]. This result is rather intuitive. Left-moving fermion
fields get exponentially suppressed, while right-moving fields are scaled by an exponential enhance-
ment factor. If the direction of the boost is inverted, ω → −ω, one finds the opposite result.
The infinitesimal transformation law of the spinor is

ψ(x) 7→ ψ′(x) = ψ(x) − i
2 δω

µνMµν ψ(x) , Mµν = i1(xµ∂ν − xν∂µ) + Iµν , (8.48)
where we also included the passive transformation which is identical for any type of field (note the
different arguments of ψ′ in Eqs. (8.44) and (8.48)). Finally, we present the conserved current,
the total spin-angular momentum tensor,

Mµαβ = Θµα xβ − Θµβ xα , (8.49)
where Θµν is given by Eq. (8.41). As already anticipated, the contribution from the spin tensor
vanishes. This is because the spin tensor is proportional to ψ̄

{
γµ, Iαβ

}
+ ψ, cf. Ref. .[517], which

is zero in 1 + 1 dimensions, due to Eqs. (8.46) and (A.14). In conclusion, there is no notion of spin
and handedness in a single spatial dimension.
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Lorentz transformations in Euclidean spacetime In contrast to the other continuous space-
time symmetries, which are formulated in principle equivalently in a Euclidean space, the Lorentz
transformations are fundamentally related to the metric signature of the spacetime. Therefore, a
comment on the consequences for Euclidean spacetime is appropriate.
Taking into account the Wick rotation Eq. (8.5), we can rewrite Eq. (8.42) as follows(

x′
E

−iτ ′
E

)
=
(
x′

M
t′M

)
=
(

cosh(ωM) sinh(ωM)
sinh(ωM) cosh(ωM)

)(
xM
tM

)
= (8.50)

=
(

cosh(ωM) sinh(ωM)
sinh(ωM) cosh(ωM)

)(
xE

−iτE

)
,

where “M” indicates Minkowski and “E” Euclidean quantities. Moving the factor −i to the trans-
formation matrix and defining the Euclidean coordinates (xµE) ≡ (xE, τE), we find(

x′
E
τ ′

E

)
=
(

cosh(ωM) −i sinh(ωM)
i sinh(ωM) cosh(ωM)

)(
xE
τE

)
(8.51)

However, we also know that rotations instead of boosts are isometric transformations in the Eu-
clidean spacetime, thus transformations(

x′
E
τ ′

E

)
=
(

cos(ωE) sin(ωE)
− sin(ωE) cos(ωE)

)(
xE
τE

)
(8.52)

leave the line element invariant. In consequence, we find (up to a parity transformation) the
additional relation ωM = iωE. Inserting this result into Eq. (8.47), the transformation matrix S
for the fermion field turns into

S = exp( i
2 ωE γ

ch
E ) =

(
e− iωE

2 0
0 e

iωE
2

)
, (8.53)

because γch
M = γch

E by construction. In total, these are simultaneous U(1) phase transformations
of ψL and ψR with exactly opposite phase.
It is straightforward to check the invariance of the Euclidean action under these transformations.

Scale transformations We can also consider scale transformations. For the coordinates these
are

xµ 7→ x′µ = eλ xµ , xµ 7→ x′µ = xµ + δλ xµ , (8.54)

where (δ)λ is the (infinitesimal) scaling parameter. In order to have the free part of the GN action
Eq. (8.1) (without the four-fermion interaction term) invariant under this dilatation3, the spinors
need to transform as follows under scale transformations,

ψ(x) 7→ ψ′(x′) = eλ∆ψ ψ(x) , ψ(x) 7→ ψ′(x′) = ψ(x) + δλ∆ψ ψ(x) , (8.55)

where the scaling dimension has to be

∆ψ = − (d+1)−1
2 . (8.56)

On the other hand, one finds

∆ψ = −d+1
4 , (8.57)

3Note that a scale transformation affects the volume element of the spacetime integral as well as the derivative
in the kinetic term in addition to the fermion fields themselves.
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if one additionally claims scale invariance of the four-fermion interaction part of the action (8.1).
Both requirements are exclusively fulfilled for d = 1 with scaling dimension ∆ψ = − 1

2 , implying
that the GN model is scale-invariant in 1+1 dimensions. Note that the scaling dimension ∆ψ = − 1

2
agrees with the canonical length (inverse energy) dimension of the field, see Eq. (8.3). Viewing
the scale transformation from the original non-scaled position in spacetime, we observe

ψ(x) 7→ ψ′(x) = ψ(x) − iδλDψ(x) , D = i1(∆ψ − xµ∂µ) , (8.58)

where D is the generator of dilatations.
Also the scale transformations come with a conserved current [518], which reduces to

Jµ = Θµ
ν x

ν . (8.59)

where Θµ
ν is again the stress-energy-momentum tensor from Eq. (8.41).

Special conformal transformations Lastly, there are special conformal transformations. For
the coordinates these read,

xµ 7→ x′µ = xµ + cµ x2

1 + 2c · x+ c2 x2 , xµ 7→ x′µ = xµ + δcν (δµν x2 − 2xµxν) , (8.60)

which leave the Minkowski line-element invariant up to a position-dependent scaling factor. In
fact, special conformal transformations are a succession of an inversion, a translation, and another
inversion, i.e.,

x′µ

x′2 = xµ

x2 + cµ . (8.61)

Special conformal transformations can also be interpreted in terms of a transformation into an
accelerated reference frame [519]. However, it is convenient to discuss special conformal transfor-
mations directly for infinitesimal transformations of the fields,

ψ(x) 7→ ψ′(x′) = ψ(x) − iδcµ 2xν(i∆ψηµν − Sµν)ψ(x) . (8.62)

(A formal reason is that finite special conformal transformations not necessarily preserve causality.)
This transformation leaves the GN action Eq. (8.1) invariant.
Again, if one fixes the viewpoint and includes the passive transformation, one finds

ψ(x) 7→ ψ′(x) = ψ(x) − iδcµKµ ψ(x) , (8.63)

where the full generator reads,

Kµ = i(x2∂µ − 2xµxν∂ν) + 2xν(i∆ψηµν − Sµν) . (8.64)

The corresponding conserved current is

Kµν = 2Θµρxρx
ν − Θµνx2 , (8.65)

because the spin tensor Sµν vanishes.

Global conformal symmetry The just discussed continuous global spacetime symmetry trans-
formations effectively form a larger group, viz. the global conformal symmetry group and the
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generators (8.40), (8.48), (8.58), and (8.64) fulfill the conformal algebra. All non-vanishing com-
mutators of the algebra read [520, 518]

[
Mαβ ,Mγδ

]
− = i(ηβγMαδ + ηαδMβγ − ηαγMβδ − ηβδMαγ) , (8.66)

[
Pα,Mγδ

]
− = i(ηαγ Pδ − ηαδ Pγ) , (8.67)

[
Kα,Mγδ

]
− = i(ηαγ Kδ − ηαδKγ) , (8.68)

[
D,Pβ

]
− = iPβ , (8.69)

[
Kα, Pβ

]
− = 2i(ηαβ D −Mαβ) , (8.70)

[
D,Kα

]
− = − iKα (8.71)

for spacetimes with Minkowski-type metric signature. This algebra is generic for the generators
of conformal transformations in any dimension. Indeed, also QCD with massless quarks shows
conformal symmetry in the UV. For the special case of 1+1 dimensions the commutation relations
(8.66) to (8.68) and (8.70) further simplify, because there is only a single generator for boosts,

Mαβ = εαβ L , L = − 1
2 ε

αβMαβ . (8.72)

For these, we find

[
L,L

]
− = 0 ,

[
Pα, L

]
− = −iεαβ P β , (8.73)

[
Kα, Pβ

]
− = 2i(ηαβ D − εαβ L) ,

[
Kα, L

]
− = −iεαβKβ . (8.74)

In general the structure of the global conformal group is as follows. The basis is formed by
the subgroup of Lorentz transformations, which consists of rotations (for d > 1) and boosts.
In connection with spacetime translations, one obtains the Poincaré subgroup, which form the
isometries of (d + 1)-dimensional Minkowski spacetimes. As soon as one relaxes the requirement
for the preservation of length, one can add pure scale transformations to the Poincaré group and
one again finds a closed subgroup of the full conformal group. If also scale and/or special conformal
transformations are considered as symmetries of a system, exclusively angles and entities that move
on the light-cone with worldlines ds2 = 0 are preserved.
Going from Minkowski to Euclidean signature, small modifications of the above algebra are re-
quired, due to the changes in the metric. The generic form is almost similar. However, instead of
boosts and rotations, there are exclusively rotations.

Interestingly, one finds that the conformal symmetry group of a (d+ 1)-dimensional spacetime is
isomorphic to the SO(d+ 1, 1 + 1) symmetry group of a ((d+ 1) + (1 + 1))-dimensional spacetime
with d + 1 spatial and two temporal directions and Minkowski-type metric signature. Usually a
field theory that exhibits conformal symmetry can therefore be formulated as a higher-dimensional
field theory that is exclusively Lorentz invariant.
It might therefore be an interesting exercise to repeat some of the calculations of the GN model
in this higher-dimensional framework and thereby link the results of the (1 + 1)-dimensional GN
model to a strongly constrained (2 + 2)-dimensional QFT, respectively (3 + 1)-dimensional QFT
if one starts from Euclidean two-dimensional spacetime. This might also be of interest for the
connection of conformal (quantum) field theories and field theories on anti-de Sitter spaces, i.e.,
the AdS/CFT correspondence, where conformal QFTs in their infinite-N limit are mapped to field
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theories in constantly negatively curved spaces.

At this point we also have to comment on another peculiar feature of two-dimensional conformal
QFTs. Conformal field theories in 1+1 dimension usually exhibit a local conformal symmetry with
infinite-dimensional Witt algebra in addition to the above discussed global conformal symmetry
[520]. This is because the conformal Killing equation reduces to the Cauchy-Riemann equations.
Thus, all analytic coordinate transformations are Killing vector fields and there are infinitely many.
However, two-dimensional conformal field theory is a giant topic on its own and a huge research
field, which cannot be addressed in this thesis even though it might be of some relevance. A
certainly oversimplified argument why it might be justified to ignore this field of research and their
results is that we are mainly interested in in-medium calculations, where external energy scales
like the chemical potential and temperature break any kind of conformal symmetry explicitly, as
is discussed below.

O(2N) symmetry In addition to the previously discussed continuous symmetries, it was shown
in Ref. [282] that the GN model is actually invariant under O(2N) rotations, such that the pre-
viously discussed U(N) symmetry emerges from the O(2N) group in terms of a subgroup. To
show the invariance of the GN action (8.1) it is useful to follow Ref. [282] and change the basis of
γ-matrices from a Weyl to a Majorana basis. We use the matrices

S =
(

i 0
0 1

)
, S† =

(
−i 0
0 1

)
, (8.75)

and

γµM = S γµW S† , (8.76)

to switch the basis. Here, “W” denotes the Weyl and “M” denotes the Majorana basis. We find

γ1
M =

(
0 i
i 0

)
, γ2

M =
(

0 i
−i 0

)
, γch

M =
(

−1 0
0 1

)
, (8.77)

The crucial point in switching the representation of gamma matrices is that γ2 is now anti-
symmetric, thus (γ2)T = −γ2, while (γ1)T = γ1 and γch keeps its form.
The spinors transform according to

ψM = S ψW , ψ̄M = ψ̄WS
† , (8.78)

such that the GN action in the Majorana basis has the same shape as in the Weyl basis, although
the spinors are different. (For the following arguments we entirely stay in the Majorana basis and
we therefore drop the label “M” again.)
In addition to the basis transformation, let us split the spinors in the Majorana basis into real and
imaginary parts,

ψ = ψRe + iψIm , ψ† = ψTRe − iψTIm , (8.79)

where ψRe and ψIm are real-valued two-component fields in Dirac space and N -component fields
in color/flavor space.
Rewriting the GN action (8.1) in the Majorana basis in terms of these fields, we find

S[ψ̄, ψ] =
∫ ∞

−∞
d2x

[
ψ̄ i/∂ ψ + 1

2N g2 (ψ̄ ψ)2] = (8.80)

=
∫ ∞

−∞
d2x

[
iψTRe (1 ∂t + γch ∂x)ψRe + iψTIm (1 ∂t + γch ∂x)ψIm +

+ 1
2N g2 (ψTRe γ

2 ψRe + ψTIm γ2 ψIm)2] .
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Here, we used integration by parts in the kinetic terms as well as that transposing fermion bilinears
results in an additional factor of minus one, because fermions are Grassmann numbers. Note that
1 and γch are invariant under these transpositions, while γ2 switches its sign.
Now the O(2N) symmetry is apparent, because we can simply merge ψRe and ψIm to a single
O(2N) vector and observe the usual v⃗ T ·v⃗ structure of O(N)-invariant scalar products of Euclidean
vectors v⃗. In fact, this O(2N) symmetry plays a crucial role in the classification of the (bound)
states in the GN model [282] or mappings to related theories [284].

8.1.3. The Gross-Neveu action at non-zero temperature and non-zero
chemical potential

So far we discussed the GN model in the Minkowski and Euclidean vacuum. Anyhow, in this
thesis we are interested in the in-medium properties of the model at non-zero density and non-zero
temperature. Therefore we introduce a matter-anti-matter asymmetry using a chemical potential
and compactify the temporal direction to heat up the system.

Chemical potential

To study how an excess of matter over anti-matter (or vice versa) influences the properties of the
GN model, one needs to constrain the energy that is required to add another (anti-)matter particle
to the system, which is already full of particles of exactly this species, but allow for particle-number
fluctuations. The species of particles can be labeled and counted via their quantum numbers, which
are in turn linked to conserved charges and currents. A conserved charge that all N fermions have
in common is the baryon number, which is associated to the temporal component of the vector
current and derived from the U(1) symmetry of the GN action. This is because global U(1) phase
transformations are identical for all N fermions and so is their baryon number. Integrating the
temporal component of the associated current over spacetime (and implicitly summing over all N
fermion species) therefore gives the total particle number (which agrees with the baryon number
up to a proportionality constant).

N =
∫ ∞

−∞
dd+1x ψ̄ γd+1 ψ . (8.81)

This number is supposed to fluctuate, while we keep the energy per additional particle in the
system fixed – the chemical potential µ.

The chemical potential in the partition function On the level of the partition function
this is realized as follows. The chemical potential is introduced in terms of a Lagrange multiplier
that associates a probability to configurations with particular particle numbers. The possible fluc-
tuations of the particle number are realized by the functional integral over all field configurations.
Hence, analogous to conventional partition functions from classical statistical physics we find [521,
522, 523],

Z[η̄, η] ∝ (8.82)

∝
∫

[dψ̄,dψ] exp
(

−
∫ ∞

−∞
dd+1x

[
ψ̄ (/∂ − µγd+1)ψ − 1

2N g2 (ψ̄ ψ)2 − η̄ ψ − ψ̄ η
])

.

This modification of the partition function has some consequences for the symmetries of the system.
Working with a matter-anti-matter asymmetry, µ ̸= 0, it is natural that the classical action is no
longer invariant under charge conjugation. Exchanging particles and antiparticles corresponds to
a mapping of µ 7→ −µ. Anyhow, because the definition of (anti-)matter is arbitrary, (at least the
absolute values of) all physical observables should be the identical under replacements of µ 7→ −µ
in Eq. (8.82). Therefore, w.l.o.g. one can assume µ ≥ 0 for practical calculations.
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Other symmetries that are explicitly broken by the chemical potential are (Euclidean) Lorentz
invariance, scale invariance, and invariance under conformal transformations. The reason is rather
simple and understood immediately in Minkowski spacetime. Having a charged ensemble of par-
ticles, the charge is perceived as a current from another boosted frame of reference. Formally, the
µ-dependent term in (8.82) is simply not Lorentz covariant. The same applies in Euclidean space-
time. The chemical potential also breaks scale invariance and, thereby, automatically conformal
invariance [518], because it introduces an explicit external energy scale to the problem and can be
viewed as a coupling constant with non-zero energy dimension on the mathematical level.

The Silver-Blaze property Anyhow, introducing µ also comes with a symmetry and some
special properties of correlation functions [524, 525]. This is discussed in great detail in Refs. [348,
166] and references therein in the context of FRG. Here, we simply recapitulate some aspects of
the discussion from these two references:
Analogous to electrodynamics, one can study local instead of global U(1) phase transformations.
More specifically, the transformation

ψ 7→ ψ′ = e−iατ ψ , ψ̄ 7→ ψ̄′ = eiατ ψ̄ , µ 7→ µ′ = µ+ iα , (8.83)

leaves the partition function (8.82) invariant, where τ is the Euclidean temporal coordinate and
µ transforms like the temporal component of an electromagnetic potential.
Fourier-transforming the action in the partition function (8.82) using the conventions of Ap-
pendix A.3 for T = 0 and choosing α = iµ, one finds that µ can be completely eliminated from the
partition function if one shifts the Euclidean temporal momentum pd+1 7→ p′d+1 = pd+1 +iµ. This
is possible if Z is analytic and done by analytic continuation of pd+1 to the complex plane. The
same holds true for other generating functionals like the Schwinger functional and the effective
action as well as the resulting correlation and vertex functions.
The reason why we still observe the chemical potential (at least for certain values) is that the
analytic continuation to complex pd+1 is restricted to |pd+1| ≤ m, where m is the pole mass of
the lightest state that carries baryon number.
In consequence and simply speaking, one observes that all correlation functions are supposed to
be independent of the chemical potential and identical to their (Euclidean) vacuum counterparts
as long as µ is smaller than the mass of the lightest particle that carries baryon number.
Strictly speaking this is exclusively valid for T = 0, because a complex shift of the Matsubara
frequencies in the summation is ill conditioned. This somewhat weird property is named “Silver-
Blaze” after a Sherlock Holmes story [524].

Now, one might ask why this is an important constraint rather than an incidental feature. The
reason is that practical calculations and especially regularization schemes are required to respect
this property at T = 0 and µ ̸= 0 to deliver correct results for correlation functions. As discussed
in detail in the previously mentioned references it is actually not easy to incorporate this constraint
without violating other demands for symmetry etc..

Temperature

Next, we introduce temperature. Instead of providing an excessive discussion of the formalities,
we present a motivation why temperature is identified with the inverse of the radius of the com-
pactified temporal direction in Euclidean QFTs.4 Similar arguments can also be found elsewhere.
For further details and technicalities we refer to the literature on thermal QFT, e.g., Refs. [503,
22, 142, 504, 13, 505].

First of all, temperature is an undirected external source of energy, which affects all particles,
independent of their specific properties. Secondly, working in a heat bath in equilibrium implies

4This motivation explicitly addresses non-experts and students, like I was when I started working on QFT in
medium and was confused about the way temperature entered QFTs. Experts can simply skip the discussion.
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that there is no longer a global time evolution of the system but only local fluctuations and
microscopic processes. Therefore it is reasonable to introduce temperature via a modification of
the spacetime manifold, more specifically the temporal direction, because the spatial properties of
the spacetime manifold should be identical at T = 0 and T ̸= 0, but adjustments in the temporal
direction still affect all particles. The question is how the temporal direction has to be modified.
To this end, we recapitulate some quantum mechanics. Studying the Schrödinger equation in
an infinite volume, one finds a continuous spectrum, while its solution in a spatial box (or more
generally on a compact manifold) results in a discrete spectrum, which stems from the discrete
spatial momenta and the finite domain (boundary conditions). Therefore the allowed momenta
are proportional to the inverse box size and there is a minimal momentum.
The same mechanism can formally be used to pump thermal energy into a system. Constraining
the Euclidean temporal domain of the quantum fields leads to a minimal energy, which is inversely
proportional to the size of the domain. Associating this energy with the temperature, one finds that
the minimal energy of the fields is set by their thermal fluctuations, which is reasonable. Therefore
we can identify the temperature with the inverse of the temporal box size (up to additional
constants). It remains to specify the exact compactification.
If we really introduce a temporal box into a QFT, we need appropriate boundary conditions for
the quantum fields and/or their derivatives. However, this leads to artificial “scattering” of the
fields with the domain walls. Another option are (anti-)periodic boundary conditions of a compact
temporal domain, so that the entire spacetime manifold turns into a (d + 1)-dimensional cylin-
der of infinite length. Here, the fields are exclusively self-interacting, which is rather natural, if
one thinks of a thermodynamic ensemble. The rate of scatterings, hence the amount of thermal
fluctuations is of course proportional to the radius of the cylinder, viz. proportional to the inverse
temperature (small radius = many thermal fluctuations; large radius = little thermal fluctuations).

A final argument which underpins this identification is as follows. Assume we wished to experi-
mentally measure some observable in an ensemble at high temperature. Due to the huge number
of thermal fluctuations we only have to wait for a short time until we obtain a reasonable expec-
tation value for the observable from our measurement. On the other hand, for a system at very
low temperature, the rate of fluctuations is small, which entails a long measuring time to obtain
a reliable average value for the observable. Hence, it is sensible to identify inverse (measurement)
time with temperature.

Formally, these arguments result in the simple replacement∫ ∞

−∞
dd+1x 7→

∫ ∞

−∞
ddx

∫ β= 1
T

0
dτ (8.84)

for the spacetime integration of the action, where β is the inverse temperature and associated with
the radius of the cylinder. Additionally, we enforce periodic boundary conditions for bosons and
anti-periodic boundary conditions for fermions. The reason for this choice is simple. Consider a
two-point function ⟨Φ(τ ̸= 0, x⃗ ) Φ(0, x⃗ )⟩ of two generic fields and study the substitution τ 7→ τ+β.
This moves the first particle exactly once around the cylinder. Thereby it passes the second
particle, which results in a minus sign, if the fields are Grassmann-valued. Hence, in order to have
generically non-vanishing two-point functions – which is a reasonable assumption – we should
establish the above (anti-)periodic boundary conditions for (fermions) bosons.
In total, we find that the GN partition function and action at non-zero T and non-zero µ are
generalized to

Z[η̄, η] ∝
∫

[dψ̄,dψ] e−S[ψ̄,ψ]+
∫∞

−∞
ddx
∫ β

0
dτ (η̄ ψ+ψ̄ η)

, (8.85)

S[ψ̄, ψ] =
∫ ∞

−∞
ddx

∫ β

0
dτ
[
ψ̄ (/∂ − µγd+1)ψ − 1

2N g2 (ψ̄ ψ)2] , (8.86)
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which is the QFT analogue of the grand canonical ensemble.

Finally some remarks are in order.

1. In Fourier space these adjustments lead to so-called discrete Matsubara frequencies for the
temporal Euclidean momenta and corresponding momentum integrals are replaced by Mat-
subara sums. Details can be found in Refs. [503, 22, 142, 504, 13, 505], while we present our
conventions in Appendices A.3 and B.

2. The introduction of temperature (already at µ = 0) naturally breaks symmetries of the
vacuum theory. Most obvious is again the explicit breaking of scale and conformal invariance
due to the explicit external energy scale. In addition, one loses invariance under (Euclidean)
boosts, while invariance under purely spatial rotations is still preserved in d > 1, where these
exist. Furthermore, invariance under translations along the temporal directions is reduced
to translational invariance with periodicity. Also time-reversal symmetry is lost.

3. Having introduced the compactification it has to be checked that for T → 0, hence β → ∞
the vacuum results as well as its symmetries are recovered. In fact, shifting τ 7→ τ ′ + β

2
and sending β → ∞ restores the vacuum theory and a continuum of Euclidean temporal
momenta.

4. To be honest, this rather sloppy introduction of temperature, which is easily outperformed by
textbooks and publications, is dangerous and actually more care should be taken, if one starts
manipulating the spacetime manifold of a QFT. The reason is that fields are directly tied to
the representations of the spacetime symmetry groups, such that it is a priori not obvious that
objects like gamma matrices on a cylinder are identical to those in a non-compact Euclidean
vacuum. The same applies in particular to fermions themselves. However, a mathematically
rigorous discussion is beyond the scope of this work and fortunately it turns out that our
heuristic arguments seem to be mathematically justified [507]. The underlying reason why
we are not confronted with more fundamental problems by switching our spacetime to a
cylinder traces back to the fact that a cylinder is still a flat spacetime with a metric identical
to a Euclidean space, if certain quantities are rescaled by the cylinder radius, cf. Ref. [4,
App. ]

8.2. The bosonized Gross-Neveu and Gross-Neveu-Yukawa
model

In order to study condensation effects in a four-fermion theory one of the standard techniques
which was already used by D. Gross and A. Neveu [158] is to partially bosonize the model. For the
Gross-Neveu model this means that the purely fermionic GN model is mapped onto the so-called
bGN model – a model of the same fermions, which additionally involves an “ultra-massive” scalar
constraint field in the UV, that turns dynamical in the IR. Here, we formally derive the relation
between the GN model and bGN model. Afterwards we briefly comment on the consequences of
the bosonization for the symmetries of the purely fermionic theory.

8.2.1. Bosonization – Hubbard-Stratonovich transformation

For the sake of simplicity we demonstrate the bosonization in the Euclidean vacuum and study
the partition function (8.11). We also ignore all types of source terms, which can be reintroduced
after bosonization. The generalization to non-zero µ and T is straightforward. Within the next
lines we follow our own presentation of Ref. [4, App. B].
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Bosonization of the partition function

The bosonization is performed by a so-called Hubbard-Stratonovich transformation [399, 398],
where the Gaussian partition function of an auxiliary/constraint field ξ = ξ(x),

1 = #
∫

[dξ] e−
∫∞

−∞
dd+1x 1

2 ξ
2

, (8.87)

is introduced. We choose # as suitable normalization factor such that the r.h.s. evaluates to one.
This identity is inserted into the original partition function (8.11) as follows,

Z ∝
∫

[dψ̄,dψ] exp
(

−
∫ ∞

−∞
dd+1x

[
ψ̄ /∂ ψ − 1

2N g2 (ψ̄ ψ)2]) = (8.88)

=
∫

[dξ,dψ̄,dψ] exp
(

−
∫ ∞

−∞
dd+1x

[
ψ̄ /∂ ψ − 1

2N g2 (ψ̄ ψ)2 + 1
2 ξ

2]) ,
which does not modify the theory. The actual trick is to shift the newly introduced integral over
the auxiliary-field configurations by the fermion bilinear ψ̄ ψ, thus to substitute,

ξ = h
g ϕ+ g√

N
ψ̄ ψ . (8.89)

The resulting partition function and classical action for the bosonized model reads

Z ∝
∫

[dϕ, dψ̄,dψ] e−S[ϕ,ψ̄,ψ] , (8.90)

S[ϕ, ψ̄, ψ] =
∫ ∞

−∞
dd+1x

[
ψ̄
(
/∂ + 1√

N
h ϕ
)
ψ + 1

2g2 h
2 ϕ2] , (8.91)

where the four-fermion interaction was traded for a Yukawa-type interaction of the fermions with
a static massive bosonic field. The factor h, the Yukawa coupling, is introduced because of the
following reason. Thinking in terms of an RG flow, the theory will also dynamically generate a
kinetic term for the bosons ∼ (∂µϕ)2. To have a dimensionless coefficient in front of this term,
namely the bosonic wave-function renormalization, the bosonic field ϕ has to take its canonical
energy dimension, i.e.,

[ϕ] = energy
(d+1)−2

2 . (8.92)

On the other hand, the original constraint field ξ has by definition energy dimension d+1
2 . This

mismatch needs to be compensated by the introduction of the Yukawa coupling, which has di-
mension

[h] = energy
4−(d+1)

2 . (8.93)

This also ensures that the entire Yukawa-interaction term has the correct energy dimension.

Note that in conventional infinite-N calculations fluctuations of the bosons are suppressed, such
that it is oftentimes practical to absorb the Yukawa coupling in the bosonic field. Contrarily,
in this thesis we are ultimately interested in a distinct RG-scale evolution of the bosonic wave-
function renormalization, the Yukawa coupling, and all local bosonic self-interaction terms, such
that it is reasonable to stick to the canonical energy dimensions of the fields.

In total we turned a purely fermionic theory with local fermion-fermion scattering into a theory
where fermion-scattering is mediated by the exchange of a massive scalar particle. Due to the
absence of propagation of the boson on the level of the classical action (in the UV) the exchange
of the scalar particle is basically “ultra-massive”, thus point-like. This visualizes the agreement of
both theories.
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Correlation functions

Next, let us briefly comment on the implications of the Hubbard-Stratonovich transformation of
correlation functions. In the purely fermionic GN model it was only possible to calculate corre-
lation functions of fermion fields. This is different on the level of Eq. (8.90), where the study of
purely bosonic or mixed expectation values is possible. However, these new types of correlation
functions are not independent from those from which they originate, that exclusively consist of
fermion fields, and there are direct relations between them. These relations could be denoted as
Ward-Takahashi identities. In fact, there is a one-to-one mapping. For a detailed derivation of
several such identities we refer to Ref. [526, Sec. 1.3.1]. Here, we merely sketch the strategy and
present the relation between the expectation value of the scalar field and the fermion-anti-fermion
correlation function, which is of relevance for this work and also presented in Ref. [526, Sec. 1.3.1].

Consider an infinitesimal shift

ϕ(x) 7→ ϕ′(x) = ϕ(x) + δϕ(x) (8.94)

of the bosonic field in Eq. (8.90). In the partition function (8.90) are integrating over all bosonic
field configurations including all values of the field, so that this shift is supposed to leave the
theory invariant. If we ignore terms of order O(δϕ2), we find

Z ′ = Z −
∫

[dϕ,dψ̄,dψ]
(∫

dd+1xh δϕ
(

1√
N
ψ̄ ψ + 1

g2 h ϕ
))

e−S[ϕ,ψ̄,ψ] = (8.95)

= Z −
∫

dd+1xh δϕ
(

1√
N

⟨ψ̄ ψ⟩ + 1
g2 h ⟨ϕ⟩

)
,

The infinitesimal shift is arbitrary and therefore the integrand in the last line has to vanish to
have Z ′ = Z. It follows, that

1√
N

⟨ψ̄ ψ⟩ = − 1
g2 h ⟨ϕ⟩ . (8.96)

This is an identity between the fermion-anti-fermion correlation function and the expectation value
of the scalar field.
An equivalent relation is obtained on the level of the (classical) UV fields from the equations of
motion of the classical action S[ϕ, ψ̄, ψ] of Eq. (8.91).
We conclude that it is sufficient to study certain bosonic correlation functions to gain information
about the full theory.

The generating functional of the bGN model at non-zero µ and T

Lastly, we provide the final expression for the partition function and generating functional at
non-zero µ and T , which sets the basis for most of our calculations. (Re)introducing the source
fields, the resulting generating functional is,

Z[J, η̄, η] ∝
∫

[dϕ, dψ̄,dψ] exp
(

−
∫ ∞

−∞
ddx

∫ β

0
dτ
[
ψ̄
(
/∂ − µγd+1 + 1√

N
h ϕ
)
ψ (8.97)

+ 1
2g2 h

2 ϕ2 − J ϕ− η̄ ψ − ψ̄ η
])

,

where we introduced the chemical potential and the temperature along the lines of the purely
fermionic discussion. The classical action that corresponds to this bGN model in medium with a
non-dynamic boson field is

S[ϕ, ψ̄, ψ] =
∫ ∞

−∞
ddx

∫ β

0
dτ
[
ψ̄
(
/∂ − µγd+1 + 1√

N
h ϕ
)
ψ + 1

2g2 h
2 ϕ2] . (8.98)
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8.2.2. The bosonized Gross-Neveu model and the Gross-Neveu-Yukawa
model

So far, two absolutely equivalent formulations of the same theory have been introduced. To
distinguish both formulations, we strictly denote the purely fermionic formulation (8.86) as the
GN model and the bosonized version (8.98) as the bGN model. Anyhow, during this thesis, we will
need yet another model, which is closely related to the latter models, namely the GNY model. The
only difference to the bGN model is the by-hand introduction of the standard kinetic term for the
bosons already in the classical UV action. As already anticipated before, this term is generated
during RG flows in any case, though it is a clear modification of the UV theory. Until today
there is an ongoing debate whether the by-hand introduction of the kinetic term of the bosons
manifestly alters the IR vertex functions and observables [400, 401, 378, 177]. For the moment,
we postpone this discussion to later chapters and only define what we denote as the GNY model,
namely the classical action

S[ϕ, ψ̄, ψ] =
∫ ∞

−∞
ddx

∫ β

0
dτ
[
ψ̄
(
/∂ − µγd+1 + 1√

N
h ϕ
)
ψ − 1

2 ϕ (□ϕ) + 1
2g2 h

2 ϕ2] , (8.99)

where □ is the Euclidean d’Alembert operator – a Laplace operator.

8.2.3. Symmetries of the bosonized GN and GNY model
Before we end the formal introduction of the QFTs which are discussed in this thesis we briefly
return to some symmetry considerations. The question that is addressed within the next lines is
how the symmetries of the GN model translate to the bGN and GNY model. For this purpose,
we again focus on the theories at µ = 0 and T = 0 but stick to Euclidean spacetime. In contrast
to the GN model we abstain from explicitly presenting conserved currents.

Discrete chiral symmetry

Considering the transformation law for the fermion fields under discrete chiral transformations,
Eqs. (8.19) and (8.20), as well as the relation between the expectation value of the boson field
and the fermion two-point correlation function (8.96) (or its classical analogue), we find that the
boson field transforms as follows,

ϕ(x) 7→ ϕ′(x) = −ϕ(x) , (8.100)

which leaves the classical actions of the bGN and GNY model invariant and better explains the
denotation (discrete chiral) Z2 symmetry.
However, Eq. (8.96) also implies that a non-vanishing expectation value of the bosonic field, thus
a non-trivial ground state, signals the breaking of discrete chiral symmetry. This is reasonable
because the Yukawa interaction term then acts like an effective fermion mass term (with fixed
h ϕ), which leads to an interaction of left- and right-moving fermions that breaks the symmetry,

ψ̄ 1√
N
h ϕψ = 1√

N
h ϕ (ψ†

R ψL + ψ†
L ψR) . (8.101)

Discrete chiral symmetry on the level of the classical microscopic UV action is not altered at
non-zero µ and non-zero T .

CPT transformations

The fermion bilinear ψ̄ ψ and therefore also the scalar field ϕ transform trivially under separate
and consecutive C, P, and T transformation. Therefore the bGN and GNY models are C, P, and
T invariant. (This is consistent with the fact that the ground state of the vacuum GN model is
given by ψ̄ ψ condensation, thus a non-trivial expectation value (8.96). Generally, the vacuum
state has to be CPT-invariant if CPT symmetry is not explicitly broken in the classical action. )
Introducing non-zero µ or T , we are confronted with the same explicit breaking of CPT invariance
as for the GN model, see above.
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Continuous symmetries

U(N) symmetry From ϕ ∼ ψ̄ ψ, which holds classically or on the level of the expectation values,
it is directly deduced that the scalar field transforms trivially under global U(N) transformations
(8.30) and the bGN and GNY model are still invariant under global U(N) transformations, also
at non-zero µ and non-zero T .

Poincaré transformations The denotation “scalar field” already refers to the trivial represen-
tation of the Lorentz group. Using ϕ ∼ ψ̄ ψ it follows from the transformation laws of the spinor
fields (8.39) and (8.44) that indeed

ϕ(x) 7→ ϕ′(x′) = ϕ(x) , (8.102)

for translations and Lorentz transformations (as well as rotations in Euclidean spacetime).
Note that one still experiences the passive transformations of the scalar fields with generators
Pµ = −i∂µ and Mµν = i(xµ∂ν − xν∂µ) as for any field, if one does not transform the observation
point.
In consequence, the bGN and GNY model are invariant under (Euclidean) Poincaré transforma-
tions, while µ ̸= 0 and T ̸= 0 still break this symmetry as discussed before.

Scale and special conformal transformations To figure out how the scalar field is supposed
to transform under scale transformation, one might be tempted to use again

1√
N
ψ̄ ψ = − 1

g2 h ϕ . (8.103)

However, h has non-zero energy dimension, such that we should not conclude the scaling dimension
from this equation and the transformation law of the fermions (8.55) alone.
Moreover, we should take into account that a kinetic term for the bosons∫

dd+1x 1
2 (∂µϕ)2 (8.104)

is supposed to have a dimensionless coefficient, which entails

ϕ(x) 7→ ϕ′(x′) = eλ∆ϕ ϕ(x) , (8.105)

where

∆ϕ = − (d+1)−2
2 , (8.106)

which is the canonical length (inverse energy) dimension of the scalar field and the natural scaling
dimension for scalar bosons. In d = 1 we find ∆ϕ = 0, implying that the scalar field does not scale
at all.
In consequence, studying the Yukawa interaction term in the bGN and GNY models, the Yukawa
coupling needs to scale like

h 7→ h′ = eλ
(d+1)−4

2 h , (8.107)

to have a scale-invariant theory. On the level of the classical action the Yukawa coupling does not
scale, which means that exclusively in d = 3 dimensions this interaction term is scale-invariant and
scale invariance is broken in d = 1 dimension. Inspecting the classical equation of motion (8.103)
of the bGN model or the respective equation for the expectation values (8.96), we find that scale
invariance is actually broken in any dimension. One can also argue similarly for the mass term of
the bosons ∼ ϕ2. One finds that also this term breaks scale invariance in d = 1 dimension.
The breaking of scale invariance automatically entails breaking of conformal invariance [518] and
the Yukawa coupling naturally introduces a mass scale, which is anyhow required for renormal-
ization. This emergence of an energy scale in a scale-invariant theory can already be interpreted
as a first sign of dimensional transmutation.
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O(2N) symmetry Again we can conclude from ϕ ∼ ψ̄ ψ that the scalar fields transform trivially
and that the bGN and GNY model are invariant under the O(2N) transformations. This is seen
best from the four-fermion interaction in Eq. (8.80), which contains the O(2N)-invariant fermion
bilinears ψ̄ ψ.
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Chapter 9

The (one-loop) β-function of the
four-fermion coupling in the GN
model in medium

Abstract In this chapter we study the (one-loop) β-function of the momentum-independent four-
fermion coupling in the purely fermionic GN model. We derive and discuss explicit expressions for
the renormalized four-fermion coupling at (non-)zero temperature and (non-)chemical potential
within different approximations.
Based on these results we present “phase diagrams” for the purely fermionic GN model, by iden-
tifying regions of finite or diverging renormalized IR four-fermion coupling in the µ-T -plane. We
determine the dependence of the size and shape of these regions on the number N of fermions as
well as the external fermion energies that enter the corresponding loop diagrams via the lowest
Matsubara modes.
We work in the FRG framework, which allows for a non-perturbative treatment in any number of
spacetime dimensions. Additionally, it keeps the calculations structured and as close as possible to
later investigations of the bGN and GNY model. In analogy to common mean-field (MF) studies
and to avoid a violation of the Silver-Blaze property, we work with one-dimensional Litim type
regulators, which exclusively regulate the spatial loop momenta but lead to other shortcomings,
which will be discussed.

Disclosure This chapter shares several similarities with Refs. [527, 346, 528, 347, 348, 350,
351, 355], which also study the “phase structure” of models with four-fermion interactions by
analyzing the resonant (diverging) four-fermion interaction channels. It is a technique that is
also common in theoretical condensed-matter physics [529, 530]. In fact, our work is much more
simplistic than these publications, because we are only analyzing a single scalar channel. Hence,
on a conceptual level the approach is not original to this work and is in parts contained in the
above references by reducing their work to the one-channel approximation and two spacetime
dimensions. In consequence the presentation of this topic was primarily planned as an introduction
and motivation for condensation and bosonization.
However, while working out the details of the calculation we found that there are still open
questions and subtle issues, which seem to be unresolved in the literature. These are related to the
evaluation points of the external fermion lines in the corresponding loop diagrams in Matsubara
frequency space – especially at finite N . Depending on the choice of the Matsubara modes at
which the β-function is evaluated in medium, the β-function is altered drastically and can even
gain complex contributions. This is a well-known phenomenon for generic FRG/loop calculations
of fermionic correlation functions, cf. Refs. [531, 66, 275]. By reducing the problem of four-fermion
flows to the one-channel approximation – the GN model – we incidentally discovered how one might
treat these complex contributions correctly. To the best of our knowledge this discussion is new,
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complements existing literature, and could influence future investigations that are based on flow
equations which include Feynman diagrams with external fermion lines.

9.1. Motivation and introduction

One issue from our list of research questions in Section 7.1.3 is whether there is condensation and
symmetry breaking in the GN model at finite N . Another one concerns the influence of different
approximation schemes on the answer to this question.

Concerning these two questions the most natural approach is, to start investigating the most
simplistic approximation scheme which one can think of. In QFT this is usually the analysis of
the (perturbative) one-loop corrections to the microscopic classical action, which of course only
provides a rough idea of the true IR physics. For the GN model this implies that it is reasonable
to start with the original purely fermionic formulation and calculate the β-function of the four-
fermion coupling and the scale evolution of the coupling itself as well as other possible corrections,
e.g., to the kinetic term – the wave-function renormalization.

In vacuum, this is a standard QFT textbook exercise [19, 422] and also the derivation of higher-
order loop corrections is rather tedious work than conceptually complicated, see also Refs. of
Section 7.2.1. However, as we will see below, performing these calculations in medium leads to
additional difficulties, already on the level of the first-order correction. These problems are all
related to the occurrence of external fermion lines in the corresponding loop diagrams, which can
cause complex contributions to the β-function(s) at non-zero µ and non-zero T . Maybe this also
explains why a lot of authors in high-energy physics prefer to work in the partially bosonized
framework, while those works that are based on a direct calculation of the four-fermion interac-
tions cannot resolve this issue and usually need to construct workarounds. We hope that this
chapter might contribute to a better understanding of these technical issues, which is also the
reason why we decided to present the calculations in great detail.

The question that was not addressed so far is how we can extract information about the phase
structure of the GN model from the β-function and the RG flow of the four-fermion coupling. The
argument is as follows: In those regions of the phase diagram where the four-fermion interaction
is attractive and strong, we expect (at least temporarily for certain RG scales) the formation of
a ψ̄ ψ condensate, i.e., a non-trivial expectation value (8.96). This is associated with a diverging
four-fermion coupling in the IR, which signals strong attraction of fermions and anti-fermions and
the change of the relevant degrees of freedom to bound states of the latter. In regions of the
phase diagram where the four-fermion coupling stays finite in the IR condensation is generally not
excluded, but more unlikely.

In total, the study of the µ-T -plane via the four-fermion coupling yields a first rough picture of
the phase structure, but is inconclusive, because the dynamics of possibly formed ψ̄ ψ states etc. is
not incorporated in the description. In parts, this drawback can be compensated by also resolving
the non-trivial momentum structure of the four-fermion coupling and the generation of additional
four-fermion channels, which is ignored in this work.

We will start our discussion by setting up the FRG framework for the GN model in medium. This
includes a presentation of our minimalist truncation and the choice of regulator as well as the
flow equations (the β-functions). We continue by checking consistency of our flow equation with
established vacuum results. Afterwards we turn to our in-medium evaluation of the β-function,
where we discuss results for infinite and finite N and different strategies for evaluating external
fermion lines.
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9.2. The Gross-Neveu model in the FRG formalism
We start our discussion by deriving the β-function of the GN model in the FRG formalism. In this
section we do not repeat the details of the FRG approach to QFT and the details of the calcula-
tions. For this purpose and for readers who are not familiar with the FRG we prepared multiple
comprehensive appendices, which contain every single detail of the calculations.1 Furthermore,
we refer to Part I of this thesis or introductory literature and reviews on the FRG, e.g., Refs. [53,
54, 55, 56, 57, 100, 13, 35, 1, 58].
In this section, we shall simply present the ansatz and initial condition for the effective average
action that needs to be specified for FRG calculations. It defines an approximation and effectively
presents a truncation of the (infinite) tower of coupled ODEs for the running couplings which is
derived from the ERG equation, see Appendix C.2.4.
Furthermore, we briefly discuss the regulator that is used throughout this work. The regulator is
an essential ingredient for all FRG calculations, but usually comes with some “trouble”, since it
modifies the original theory in one or the other way.
We close the section by providing and discussing some aspects of the β-function of the four-fermion
coupling, which is obtained from the FRG calculation.
The explicit integration, renormalization, and analysis of the β-function is set aside for the fol-
lowing sections.

9.2.1. The ansatz for the effective average action
The starting point of every FRG calculation is the ansatz for the effective average action. First
of all, the ansatz has to be consistent with the microscopic UV action that specifies the model or
theory at some UV energy scale kUV. It simply has to have the same shape at kUV as the action
that enters the partition function, cf. Appendix C.2.3 or Section 4.2.2. In our case, this is the
original action of the GN model at non-zero µ and non-zero T , thus Eq. (8.85).
Additionally, an effective action contains all kinds of terms that are in accordance with the (UV)
symmetries of the model or theory [54, 57, 18].2 As it is not possible to incorporate all of them,
one has to decide which of the possible interaction terms are taken into account and on top of
that which are considered to be scale-dependent. This decision forms a truncation.
Here, we consider the following ansatz for the effective average action,

Γ̄t[ψ̄, ψ] =
∫ ∞

−∞
ddx

∫ β

0
dτ
[
ψ̄ Zψ(t) (/∂ − µγd+1)ψ − 1

2N g2(t) (ψ̄ ψ)2] . (9.1)

It comprises a scale-dependent wave-function renormalization Zψ(t). Also the four-fermion cou-
pling in the scalar channel g2(t) is considered to by scale-dependent. Instead of the RG scale k,
we used the RG time t to indicate the scale dependence, which is defined in Appendix D.1. At the
UV initial scale kUV we choose Zψ(t = 0) = 1 and g2(t = 0) = g2

UV to recover the classical action
(8.85).
Our ansatz (9.1) is simplistic, but contains already a rather rich phenomenology as is discussed
below. However, we should list what is ignored by the ansatz (9.1):

1. The ansatz does not take into account that other four-fermion interaction channels could be
dynamically generated during the scale evolution to the IR, which is usually the case – at
least at finite N , cf. Refs. [348, 350, 351, 355].

1Appendix C introduces the field-space formalism and DeWitt notation. It includes a derivation of the ERG
equation in this formalism for arbitrary QFTs and provides details on the generic calculation of flow equations for
vertex functions. In Appendix D we record our conventions for the RG scale and RG time and their interrelation.
Furthermore, multiple (integral) identities for the bosonic and fermionic Litim-regulator shape functions are listed
and derived. We also introduce shorthand notations for bosonic and fermionic propagators and integral identities
for these objects, which are oftentimes called threshold functions in the FRG literature. Ultimately, in Appendix E
we provide a detailed derivation of the flow equations of the GN and GNY model.

2Note that these are not only the symmetries of the classical action, but the symmetries of the partition function,
which makes a huge difference for gauge theories or theories with anomalies etc..
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2. Higher-order and momentum-dependent fermion interactions are not taken into account.

3. Higher-order momentum dependences are not considered in the kinetic term. Therefore the
ansatz (9.1) can be considered as the lowest order of a derivative expansion.

4. A splitting of the scale-dependent quantities into parts which are parallel and perpendicular
to the heat bath is not taken into account by our truncation.

These are crucial restrictions and they all limit the predictability of the model. Still, our ansatz
is a reasonable approach and good starting point for a first understanding of the phase structure.
During the discussion of this chapter, we return to these assumptions and explain which limitations
are related to the latter.

9.2.2. A necessary evil – the choice of the regulator
Handling infinities in QFTs usually calls for some regularization and renormalization scheme. The
FRG is overall a framework for the structured regularization of divergences and the renormalization
of vertices via a smooth transition between the UV and IR regime to ultimately calculate IR
observables.
This regularization is basically done by introducing an RG scale and a possibly momentum-
dependent mass-like term in the partition function – the regulator, which has to fulfill certain
properties, see Appendix C.2.1 for details. Still, there is some freedom and the particular con-
struction or choice of the regulator is up to the user and should be adopted to the specific problem
at hand. Broadly speaking, it is most important that the regulator has a suitable UV behavior that
can be matched with the microscopic description and that it indeed acts as an IR regularization.
In addition, the regulator is supposed to be local in momentum space and it should not violate
any symmetries of the theory. (In the context of this work the symmetries are those discussed in
Sections 8.1.2 and 8.2.3.) Again we refer to Appendix C.2.1 and for example Refs. [273, 162, 163,
532, 165, 348, 166, 167, 533] for further details on regulators and abstain from going into great
detail here.
In an ideal world where we could solve the ERG equation without a truncation, like for the zero-
dimensional models in Part I or the O(N) model in the infinite-N limit, where the LPA truncation
is exact [74, 77], the specific choice of the regulator does not influence the results in the IR by
construction, as long as the above specifications are fulfilled. This is the case even though the
(unphysical) RG flows between the UV and the IR through theory space (the space of all couplings)
may look totally different for different regulators. However, the picture drastically changes if one
works with truncations of the ERG equation, which is almost always required to do computations
at all. Here, different regulators, although they might all fulfill the regulator specifications of
Appendix C.2.1, can lead to different results in the IR. This is certainly the case for the FRG
calculations in Part II of this work.
On top of that it is sometimes practical or simply not possible to circumvent the breaking of sym-
metries or a violation for some requirements for the regulator, because there are usually competing
demands and properties, see Ref. [167, Fig. 1] for a sketch. For sure it is not by chance that this is
oftentimes the case for models and physical situations where also the application of other technical
and mathematical methods are getting doubtful or cause great challenges, e.g., in calculations at
moderate chemical potentials and low temperatures or in calculations where the preservation of
gauge invariance is required.

To make a long story short: Also within this work and the related publication [4] we fall back to
a regulator that violates more requirements than presumably necessary. We simply traded a loss
of accuracy for practicability of the calculations, which is explained in a moment.
To be precise, we use a regulator that belongs to the class of so-called dimensionally reduced
regulators. These types of regulators exclusively work on the spatial momenta, but do not affect
the Matsubara frequencies at all. The direct consequence is that the regulator is no longer local
in Euclidean momentum space, but takes into account Matsubara modes of all orders at any RG
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scale k. Recently, this peculiarity was related to the so-called “back-bending phenomenon” in
the quark-meson model [533]. A similar phenomenon is observed in Fig. 12.17 in Section 12.4 at
non-zero RG scales k. However, this discussion is beyond the scope of this work and we comment
on this elsewhere.
In addition, this class of regulators breaks Poincaré invariance of the theory. At large non-zero T
and non-zero µ this might be of minor importance, because Poincaré invariance is strongly broken
anyhow. However, close to the vacuum (T ≃ µ ≃ 0) such regulators will surely alter results
quantitatively. Hence, one has to exercise caution w.r.t. quantitative predictions, which is why
we sometimes wonder about the finetuning of parameters to reproduce experimental data, while
predictions are altered anyhow if the truncation is improved or the type of regulator is changed.
The reason why we still use this type of regulator is that the Matsubara sums in the loops become
completely independent of the regulator and are easily evaluated. In addition, purely spatial
regulators straightforwardly ensure that the Silver-Blaze property is not violated in the limit
T → 0, because the temporal momenta are not touched by the regulator at all.
A less important reason in using these type of regulators is the direct comparability of calculations
in the FRG formalism in and beyond the infinite-N limit with conventional infinite-N calculations
for the GN model, which commonly rely on an exclusive regularization of spatial momenta.

Moreover, we choose the Litim (flat) regulator for the spatial momenta. Also here, the reason is
mainly driven by practical considerations. Using Litim regulators it is usually possible to evaluate
the remaining loop integration over spatial momenta by pen-and-paper calculation. Together with
the complete evaluation of Matsubara sums this results in expressions for RG flow equations that
are PDEs instead of partial-integro-differential equations. This turned out to be a big advantage
for a first structured analysis of the fluid-dynamical properties of the RG flow equations and the
classification of the single contributions along the lines of Part I.
Also note: The role, which is played by flat regulator w.r.t. to optimization of RG trajectories,
see Refs. [162, 163, 165], was not of any relevance for our choice and we strongly believe that this
aspect is oftentimes used as a superficial reason in some FRG literature to justify the use of the
Litim regulator, while the actual reason is similar to ours: manageability and simplification of the
equations. This does by no means imply that there is anything wrong about its use. However,
one has to keep in mind, that for advanced truncations like derivative expansions O(∂4) or larger,
like in Refs. [64, 65, 534, 63, 270, 70, 69, 71, 73], the non-analytic shape of the regulator strongly
limits its applicability in practical calculations.
In addition, it seems as if the seemingly simple structure of RG flow equations in the LPA trunca-
tion that is caused by this regulator lead to its inflationary use, while it was widely ignored that
one is still facing a highly non-linear partial differential equation with all its mathematical and
numerical challenges.

We conclude this digression by explicitly recording our choice for the regulator: The regulator
(insertion) is given by Eqs. (E.5) to (E.7) in combination with the regulator shape function of
Appendix D.2.2.

9.2.3. The RG flow equation of the four-fermion coupling
Using the above ansatz (9.1) for the effective average action as well as the regulator that was
discussed in the previous paragraphs, we are ready to derive the explicit flow equations within our
truncations, respectively β-functions for Zψ(t) and g2(t).
This lengthy and tedious calculation is actually outsourced to Appendix E.1 and the appendices
that are referenced therein. These appendices provide every detail of the derivation and explicitly
address FRG novices, which is why we directly continue presenting the results.

The fermion wave-function renormalization The first flow equation that is obtained from
Appendix E.1.1 is the (vanishing) scale evolution of the fermion anomalous dimension, respectively
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the fermion wave-function renormalization, cf. Def. (C.62),

ηψ(t) = ∂t lnZψ(t) = 0 . (9.2)

This simply implies that the fermion wave-function renormalization is constant throughout the
scale evolution and keeps its UV initial value from the classical action,

∀t Zψ(t) = 1 . (9.3)

For experts this result is hardly surprising. A wave-function renormalization is defined as the
lowest-order Taylor coefficient of the two-point function expanded in momentum space [19]. Hence,
its RG flow equation is extracted by deriving the flow equation of the two-point function w.r.t.
the external spatial momentum p⃗ that enters the respective Feynman diagram, and by evaluating
the result at vanishing momentum, see Eqs. (E.11) and (E.13) and the corresponding discus-
sion. However, as long as all scale-dependent quantities in the ansatz (9.1) are considered to be
momentum-independent, the external momentum does not enter the loop in Eq. (E.11) via the
four-fermion vertex, such that the two-point function is independent of the external momentum.
In consequence all derivatives w.r.t. the spatial momentum vanish and so does the β-function
for Zψ(t). This is a generic feature of tadpole-type diagrams and is explained in detail in Ap-
pendix E.1.1.
It is also the first effect where we are confronted with shortcomings of our truncation – the
momentum independence of Zψ(t) and g2(t). However, it is not expected that this drastically
spoils the phenomenology, because fermion wave-function renormalizations are not expected to
have a strong RG evolution [66, 63, 70, 535, 71].3

The four-fermion coupling A direct consequence of Eq. (9.3) is that within our truncation
the RG flow of the so-called renormalized coupling g2

r (t) and the bare coupling g2(t) are identical,

g2
r (t) = Z−2

ψ (t) g2(t) = g2(t) . (9.4)

The renormalized coupling is introduced when the effective average action (9.1) is expressed in
terms of renormalized effective IR fermion fields

ψ̄r = Z
1
2
ψ (t) ψ̄ , ψr = Z

1
2
ψ (t)ψ , (9.5)

and the wave-function renormalization Zψ(t) is completely eliminated, see, e.g., Refs. [63, 70, 69,
71, 72].
Using this as well as Eq. (9.3) the RG flow equation for the four-fermion coupling, the flow equation
(E.26) which is derived in Appendix E.1.2, “simplifies” to

∂tg
2(t) = (9.6)

= −Ad
2
N

dγN−2
dγN−1 g

4(t) kd+2 × (9.7)

× 1
β

∞∑
n=−∞

1
k2 (νn + iµ)[2(νn+nII−nIII + iµ) − (νn + iµ)] + 1

1
k2 (νn+nII−nIII + iµ)2 + 1

1
[(νn + iµ)2 + k2]2 +

+Ad
2
N (dγN − 1) g4(t) kd+2 × (9.8)

× 1
β

∞∑
n=−∞

1
k2 (νn + iµ)[2(νn+nIV−nIII + iµ) − (νn + iµ)] + 1

1
k2 (νn+nIV−nIII + iµ)2 + 1

1
[(νn + iµ)2 + k2]2 −

3In addition, we will find that even in the bosonized version of the GN model the fermion wave-function renor-
malization keeps its UV value (at least for d = 1), although the corresponding Feynman diagrams which enter the
flow of the fermion two-point function are no longer all of tadpole type, see Eq. (E.89).
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−Ad
2
N

1
(dγN−1) g

4(t) kd+2 × (9.9)

× 1
β

∞∑
n=−∞

− 1
k2 (νn + iµ)[2(ν−n+nI+nIII + iµ) + (νn + iµ)] + 1

1
k2 (ν−n+nI+nIII + iµ)2 + 1

1
[(νn + iµ)2 + k2]2 .

A few remarks are in order:

1. The prefactor Ad is the typical spacetime-dimension-dependent prefactor in RG flow equa-
tions and defined in Eq. (A.7). Table A.1 lists explicit values for various d.

2. dγ still denotes the dimensionality of the fermion representation and stems from the trace
over γ matrices.

3. The flow equation was obtained by a projection on the scalar four-fermion channel, by
contracting the open indices of fermion legs ψI and ψ̄II as well as ψIII and ψ̄IV in Eq. (E.19).
For details we refer to Eq. (E.20) and the corresponding discussion.

4. The flow equation was evaluated at vanishing external spatial momenta, which is reasonable
because our ansatz Eq. (9.1) can be seen as the lowest order of a derivative expansion in
fermion momenta, which should be valid at p⃗ = 0.

5. The three contributions on the r.h.s. of Eq. (9.6) correspond to the three different types of
Feynman diagrams, see Eq. (E.19). The first and last diagram in Eq. (E.19) result in the
first term (9.7), while the second and third diagram are summarized in the second summand
(9.8). The last summand corresponds to the fourth diagram. The three types of diagrams
are the s-, t-, and u-channel of fermion anti-fermion scattering processes. Therefore one
could interpret the fermion loop as an exchange of an ψ̄ψ state (a scalar boson) in the s-
and t-channel (the first two contributions), while the scattering in the u-channel (the last
contribution) can be interpreted as an exchange of a diquark state.

6. The Matsubara-frequency sums are not evaluated yet, because external Matsubara frequen-
cies which enter the diagrams in Eq. (E.19) are not specified. We will use the formulae from
Appendix B, after setting nI to nIV to explicit values. Here, we have to keep in mind that the
four-fermion scattering has to conserve energy and momentum. The prefactor δnII+nIV,nI+nIII

on both sides of Eq. (9.6) was dropped for sake of readability, but has to be respected. It
ensures energy conservation and sets the constraint nII + nIV = nI + nIII for the “index” of
the Matsubara frequencies.

9.3. Consistency check and vacuum results
Caution: In this section d does not exclusively denote the number of spatial dimensions but is
mostly used as the total number of spacetime dimensions!

Before we start with a detailed analysis, integration, and renormalization of the β-function (9.6) in
medium, it is crucial to crosscheck that our derivation of the RG flow equations in Appendix E.1
is consistent with the well-known vacuum result(s) for the β-function of the GN model [359, 360,
361, 19, 422, 177, 362, 363].

9.3.1. Consistency check
Naively one might expect that the vacuum phenomenology is directly recovered by studying the
µ → 0 and T → 0 limits of Eq. (9.6). As a matter of fact, we cannot expect that this is the
case. The reason lies in the choice of our regulator, which solely damps the spatial momenta
and breaks Poincaré invariance explicitly. We argued in Section 9.2.2 that this effect might be
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mild at sufficiently large temperatures or chemical potentials, where Poincaré invariance is broken
anyhow. However, by approaching the zero-temperature limit, it can be expected that we will not
recover the “correct” vacuum flow equations, which used covariant regularization throughout their
derivation.
Therefore, we crosscheck our results differently:

1. We set µ = 0.

2. We ignore all aspects in Eq. (9.6) that are related to non-zero temperature. Hence, we simply
drop the frequency sums including the factor 1

β and set all Matsubara frequencies νn to zero.

3. Afterwards the three different contributions can be combined into one term.

The result reads,

∂tg
2(t) = 2Ad

(
dγ − 2

N

)
g4(t) kd−2 . (9.10)

This equation is the RG flow equation of the d-dimensional GN model in vacuum, where all d
momenta are regulated and treated on the same footing. The Litim regulator does not break
Euclidean Poincaré invariance anymore, because all d Euclidean momenta are regulated on the
same footing.
To study the β-function it is standard to work with dimensionless couplings. Therefore we rescale
g2 by appropriate powers of k according to its canonical energy dimension, see Eq. (8.3) (with
d+ 1 7→ d). We define the dimensionless four-fermion coupling as follows,

ḡ2(k) ≡ kd−2 g2(k) , (9.11)

such that the β-function reads

β(ḡ2) = k ∂kḡ
2(k) = (d− 2) ḡ2(k) − 2Ad

(
dγ − 1

N

)
ḡ4(k) . (9.12)

This is a well-known result, see, e.g., Ref. [374, Eq. 14]4.

9.3.2. Remarks for two spacetime dimensions
Let us now consider d = 2. Here, ḡ2(k) = g2(k) and the first term on the r.h.s. of Eq. (9.12) drops
out. Indeed, Eq. (9.10) is the RG flow equation of the (1 + 1)-dimensional GN model in vacuum
in a Euclidean spacetime.
Additionally choosing dγ = 2 and using Def. (D.2), we recover its famous β-function, cf. Refs. [422,
19, Sec. 12.2]

β(g2) = k ∂kg
2(k) = − 1

π

(
1 − 1

N

)
g4(k) . (9.13)

In Fig. 9.1 we drew a sketch of this β-function for N > 1.5 (For higher-order corrections, see
Ref. [363, Figs. 2 & 3].) As we can see from the sketch and Eq. (9.13) the β-function in 1 + 1
spacetime dimensions is manifestly negative. Increasing k therefore leads to a lowering of g2 and
vice versa. The same behavior of the (one-loop) β-function is also observed in various other strongly
interacting systems, e.g., in QCD [537, 538, 539, 540, 541]. One refers to this as asymptotic free-
dom, because the coupling, that mediates the interaction, becomes negligible at extremely large
RG scales/energies, respectively small distances. Asymptotic freedom goes hand in hand with a
so-called repulsive Gaussian UV fixed point6 of the β-function. Among other things this feature

4Note that there seems to be a typo in the definition of the rescaled coupling in Ref. [374, Eq. (13)].
5For N = 1 the β-function vanishes. In this case the GN model is identical to the massless Thirring model,

cf. Section 7.2.2. This can be shown via Fierz identities [422]. The massless Thirring model is known to have a
vanishing β-function for one species of fermions [536, 345], because the Grassmann nature of the fermions leads to
a vanishing four-fermion vertex.

6A fixed point is a point in the space of dimensionless couplings where the RG flow comes to halt, because all
β-functions vanish. These fixed points can be attractive or repulsive, depending on whether a small perturbation
of the dimensionless couplings about the fixed points starts growing or dies off. The Gaussian fixed point is the
trivial fixed point, where the β-functions vanish due to vanishing couplings.
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0

0

Figure 9.1: Sketch of the (one-loop) β-function (9.13) of the GN model for arbitrary N in vacuum.
The dashed line indicates that the β-function is expected to be valid only for sufficiently small g2

close to the UV. For larger values of g2 non-perturbative higher-order effects are of relevance and
modify the slope.

of the GN model was one reason for its proposal by D. J. Gross and A. Neveu [158]: Having a
simple toy model to study asymptotic freedom without the complications of gauge theories, but
taking advantage of knowledge about four-fermion theories from solid-state physics.

9.3.3. Comment on higher dimensions

However, note that asymptotic freedom in the GN model is strongly tied to 1 + 1 spacetime di-
mensions. Switching to a larger number of spacetime dimensions the four-fermion coupling has
negative energy dimension, see Eq. (8.3), and the β-function of the dimensionless coupling ḡ2 is
no longer manifestly negative, see Eq. (9.12). Here, the negative parabola in Fig. 9.1 is moved to
the right and upwards (still intersecting the origin), such there is a region where the β-function is
positive, cf. Ref. [374, Fig. 1]. This opens the possibility for another non-trivial repulsive UV fixed
point, while the trivial Gaussian fixed point turns into an attractive IR fixed point. Having a non-
trivial repulsive UV fixed point is a possible realization of a so-called asymptotic-safety scenario,
which also constitutes a well-defined microscopic limit of a model or theory7. Asymptotic-safety
scenarios are manifestly non-perturbative, since the UV fixed point is a (strongly) interacting
fixed point. This kind of UV limit was discovered by K. G. Wilson [176], G. Parisi [542], and
S. Weinberg [543, 544] and is a promising candidate for a microscopic theory of gravity [545]. In
the context of the GN model a first analysis for d > 2 is found in Ref. [546], while an extensive and
instructive discussion is presented in Ref. [374]. We conclude that we expect a totally different
dynamics and phenomenology of the GN model in d > 2 than in d = 2.

9.3.4. Scale dependence of the four-fermion coupling

Nevertheless, in this thesis we are mainly interested in the GN model in 1+1 spacetime dimensions
at non-zero µ and non-zero T . Therefore we return to d = 2 in vacuum for the moment and see
what we can already anticipate for our later investigations in medium.
By integrating the β-function (9.13) analytically from some UV reference scale kUV towards the

7These are necessary conditions for asymptotic safety but they are not sufficient. Higher-order corrections,
bosonization etc. can rule out asymptotic safety as is the case for the GN model for d > 3 [374].
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IR we find,

−
∫ g2

UV

g2
d(g2) 1

g4 = 1
π

(
1 − 1

N

) ∫ kUV

kIR

dk 1
k . (9.14)

Here, g2
UV stands for the initial coupling at kUV and g2 is the physically “observable” coupling in

the IR at kIR. The previous integral equation is solved by
1

g2
UV(kUV) − 1

g2(kIR) = 1
π

(
1 − 1

N

)
ln
(
kUV
kIR

)
. (9.15)

Note that formally we need to remove the UV and IR cutoff scales by sending kUV → ∞ and
kIR → 0. However, we observe that only one of the two divergences of Eq. (9.15) can be cured by
an appropriate renormalization prescription. This can be done by specifying some scale in the IR
where the four-fermion coupling is supposed to diverge, and removing the UV cutoff. However,
this means that the IR divergence of the four-fermion coupling g2 is manifest – at least in the
vacuum at µ = 0 and T = 0. This is absolutely reasonable, since there is no other physical scale
which regulates the IR modes and prevents the coupling from diverging in the purely fermionic
setup.
In fact, this IR divergence of the attractive four-fermion interaction channel signals a resonance
– the formation of a bound state – and condensation phenomena [158, 348, 350, 351], as we will
also see below. In consequence, the fermionic degrees of freedom are no longer sufficient for an
adequate description of the IR physics, such that the IR divergence of g2 cannot be resolved at zero
µ and zero T in a purely fermionic framework. However, it can be cured in a partially bosonized
framework, because the Yukawa coupling effectively introduces a scale, cf. Section 8.2.3.
Note that these findings are indeed independent of the (in)finite number N of fermions and con-
densation is expected anyhow – at least for certain RG scales.

9.4. The four-fermion coupling at non-zero chemical poten-
tial and non-zero temperature

Next, we study the flow equation of the four-fermion coupling, Eq. (9.6), at non-zero µ and non-
zero T .
In a first step we consider an infinite number N of fermions. This presents as a drastic approxi-
mation, but makes our results directly comparable to partially bosonized calculations in the same
limit. As a first indicator for the phase structure of the GN model, we search for regions in the
µ-T -plane where the four-fermion coupling diverges and signals the formation of a condensate.
In a second step, we work at a finite number N of fermions and repeat the infinite-N investigation
in medium.
At finite N , however, the evaluation point of external fermion energies becomes relevant.

9.4.1. The four-fermion coupling at infinite N

Let us start with our discussion in the N → ∞ limit. From Eq. (9.6) we find that this limit
suppresses the contributions (9.7) and (9.9) and we are left with the term (9.8) on the r.h.s..
Hence, the N → ∞ flow equation reads,

∂tg
2(t) = (9.16)

= + 2Ad dγ g4(t) kd+2 ×

× 1
β

∞∑
n=−∞

1
k2 (νn + iµ)[2(νn+nIV−nIII + iµ) − (νn + iµ)] + 1

1
k2 (νn+nIV−nIII + iµ)2 + 1

1
[(νn + iµ)2 + k2]2 .
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On a more physical level this could be roughly interpreted as follows: For the derivation of the
flow equation, we contracted the external fermion legs ψI and ψ̄II as well as ψIII and ψ̄IV, see
Eqs. (E.19) and (E.20), to project onto the scalar interaction channel. Hence, looking at the
diagrammatic expression for the flow equation in Eq. (E.19) these may be viewed as an effective
scalar bosonic particle ϕ ∝ ψ̄ ψ that is either propagating bottom-top or top-down. The fermion
loops can be considered as processes within this scalar particle on the level of its constituents –
the fermions. On this level, the first and the last diagram in Eq. (E.19) (contribution (9.7)) are
related to a simultaneous creation and annihilation of a scalar boson, while the fourth diagram
(contribution (9.9)) can be seen as the creation and annihilation of a diquark state, which both
mediate some force between the fermions. The second and third diagram (contribution (9.8)) are
mere propagations of the fermions in the direction of the effective ϕ-particle (vertically). The
infinite-N limit, however, suppresses all kinds of bosonic fluctuations, which eliminates the boson
exchange processes. This ultimately becomes clear later on, when we work with the bGN and
GNY model.

The remaining question is, how to choose nIII and nIV in Eq. (9.16). Because we contracted the
external fermion legs ψIII and ψ̄IV it seems reasonable to choose nIV = nIII, which means that
their energies are identical. It follows via energy conservation, nII +nIV = nI +nIII, that nI = nII.
In total the loop is independent of the external energies, see diagram two and three in Eq. (E.19).
Although on a formal level we could choose any nIII = nIV, the derivative expansion of our ansatz
(9.1) strongly suggests to consider the smallest possible fermion energies, which are νn

∣∣
n=0 =

2π
(
n+ 1

2
)
T
∣∣
n=0 = πT (at least for µ = 0). We return to this issue below, when we consider

finite N .
For the moment, we have

∂tg
2(t) = 2Ad dγ g4(t) kd+2 1

β

∞∑
n=−∞

1
[(νn + iµ)2 + k2]2

(B.20)= (9.17)

= 2Ad dγ g4(t) kd+2 1
4k3

[
1 − nf

(
k+µ
T

)
− nf

(
k−µ
T

)
+

+ k
T

[
n2

f
(
k+µ
T

)
+ n2

f
(
k−µ
T

)
− nf

(
k+µ
T

)
− nf

(
k−µ
T

)]
,

where Eq. (B.20) was used to evaluate the Matsubara sum.

Before integrating and renormalizing this β-function let us discuss which kind of phenomenology
is expected at non-zero µ and non-zero T . This helps in choosing an appropriate renormalization
point.
Firstly, for almost any system in Nature, one expects that the state of aggregation is gas-like at very
high temperatures, because thermal fluctuations destroy any ordering and work against attractive
interactions. On the other hand, we discussed in Section 9.3 that the renormalized IR four-
fermion coupling diverges in vacuum and that we expect a formation of bound states, respectively
condensation, especially in the N → ∞ limit, where bosonic fluctuations are suppressed and
cannot destabilize the condensate. Therefore we conclude that there should be a PT (or cross-
over) from a gas-like phase with finite renormalized four-fermion coupling g2 in the IR to a phase
where bound states of fermions and anti-fermions dominate. Presumably this will happen at some
non-zero temperature T↑. As an indicator for this PT at T↑, we use the divergence of the four-
fermion coupling, which signals a definite breakdown of the purely fermionic theory. (The upwards
arrow in T↑ stands for the divergence of the coupling.) Note that this is not a sufficient criterion
to correctly locate a true PT line, because the description of the entire system by a single coupling
is surely inadequate already before this coupling diverges.
Analogously, one can argue that there should also be a PT if the chemical potential µ is increased
significantly, because varying the net baryon density introduces an imbalance of matter and anti-
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matter, such that a condensate in the scalar four-fermion interaction channel is destabilized. Above
some critical µ↑ a suitable matching of fermions and anti-fermions is no longer possible. This can
even be anticipated from the second and third Feynman diagram in Eq. (E.19). The chemical
potential introduces an asymmetry between the fermion and the anti-fermion in the loop, which
can be interpreted as an effective destabilization of the loop and the bosonic ϕ-particle, which we
associated to the ψ̄ ψ pair.
These considerations also generalize to a simultaneous variation of µ and T .

Consequently, we are actually expecting a region of finite physical IR four-fermion coupling g2(kIR)
for kIR → 0 and a transition line in the µ-T -plane, where this coupling diverges. The region that
is engulfed by this line at smaller |µ| and smaller T is not accessible by inspecting the four-
fermion coupling alone, because the UV degrees of freedom (the fermions) are no longer sufficient
to describe the corresponding state of matter.

Integration Having this in mind, we return to the analysis of the in-medium β-function (9.17).
Integrating this equation from some UV scale kUV to an IR scale kIR one finds,

1
g2

UV(kUV) − 1
g2(kIR,µ,T ) = (9.18)

=Ad
dγ
2

∫ kUV

kIR

dk kd−2 [1 − nf
(
k+µ
T

)
− nf

(
k−µ
T

)
+

+ k
T

[
n2

f
(
k+µ
T

)
+ n2

f
(
k−µ
T

)
− nf

(
k+µ
T

)
− nf

(
k−µ
T

)]
.

Note that g2
UV(kUV) is chosen to be independent of µ and T and the UV scale kUV has to be much

larger than µ and T to ensure RG consistency [244, 4, 547, 6]. This is anyhow the case after the
renormalization, when the cutoff kUV can be safely sent to infinity and is removed from the IR
results.
From now on, we also set d = 1.
Before turning to the actual renormalization procedure, we consider Eq. (9.18) for vanishing
temperature, thus β|µ| → ∞ and βk → ∞. We use Eq. (B.21) and find

1
g2

UV(kUV) − 1
g2(kIR,µ,0) = (9.19)

= dγ
2π

∫ kUV

kIR

dk 1
k

(
1 − Θ

( |µ|
k − 1

)
− k

|µ|
[
δ
(
k

|µ| + 1
)

+ δ
(
k

|µ| − 1
)])

=

= dγ
2π

∫ kUV
|µ|

kIR
|µ|

dt 1
t (Θ(t− 1) − t [δ(t+ 1) + δ(t− 1)]) =

= dγ
2π
[

ln
(
kUV
|µ|
)

− 1
]
.

While evaluating the integral, we assumed that |µ| > kIR, which is justified because ultimately
the IR cutoff is sent to zero, kIR → 0. Hence, contrarily to the vacuum result (9.15) the chemical
potential regulates the integral in the IR and makes it executable. The reason, why we are study-
ing the zero-temperature limit separately will become clear within the next paragraphs.

Returning to Eq. (9.18) we introduce the dimensionless variable t = k
T and use the relation (B.4)
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for the Fermi-Dirac distribution function. Integration by parts yields,

1
g2

UV(kUV) − 1
g2(kIR,µ,T ) = (9.20)

= dγ
2π

∫ tUV

tIR

dt 1
t

([
1 − nf

(
t+ µ

T

)
− nf

(
t− µ

T

)]
−

− t ∂t
[
1 − nf

(
t+ µ

T

)
− nf

(
t− µ

T

)])
=

= − dγ
2π

∫ tUV

tIR

dt t ∂t
( 1
t

[
1 − nf

(
t+ µ

T

)
− nf

(
t− µ

T

)])
=

= − dγ
2π

([
1 − nf

(
t+ µ

T

)
− nf

(
t− µ

T

)]tUV

tIR
−

−
∫ tUV

tIR

dt 1
t

[
1 − nf

(
t+ µ

T

)
− nf

(
t− µ

T

)])
=

= dγ
2π

(
nf
(
tUV + µ

T

)
+ nf

(
tUV − µ

T

)
− nf

(
tIR + µ

T

)
− nf

(
tIR − µ

T

)
+

+ ln
(
tUV
tIR

)
− lim
s→−1

∫ tUV

tIR

dt ts
[
nf
(
t+ µ

T

)
+ nf

(
t− µ

T

)])
.

Next, we study this expression in the limits kIR → 0 and kUV → ∞. For some of the terms the
limits can by executed straightforwardly, while other terms require careful treatment. To this end,
we express the remaining integral in terms of the (incomplete) Fermi-Dirac integral Eq. (A.85)
respectively the (incomplete) polylogarithm Eq. (A.61),

lim
tUV→∞

1
g2

UV(tUV) − 1
g2(µ,T ) = (9.21)

= dγ
2π

(
− 1 + lim

tUV→∞
lim
tIR→0

ln
(
tUV
tIR

)
+

+ lim
tIR→0

lim
s→0

Γ(s)
[

Lis
(
tIR,− e

µ
T

)
+ Lis

(
tIR,− e− µ

T

)]) (A.94)=

= dγ
2π

[
− 1 + lim

tUV→∞
ln(tUV) + γ + DLi0

(
µ
T

)]
.

In the last step, we used Eq. (A.94) and the discussion of Appendix A.4.6 to resolve the IR diver-
gence.

Similarly, we can formally consider the kUV → ∞ and kIR → 0 limit of Eq. (9.19) at vanishing
temperature,

lim
tUV→∞

1
g2

UV(tUV) − 1
g2(µ,0) = dγ

2π

[
lim

tUV→∞
ln
(
kUV
|µ|
)

− 1
]
. (9.22)

Renormalization Next, we turn to the actual renormalization procedure. So far, the scale-
dependent quantities in our formula for g2 comprise the chemical potential µ, the temperature T ,
as well as the UV and IR cutoffs kUV and kIR. However, it is somewhat meaningless to assign
values to these quantities, as long as there is no real physical reference scale where we fix the
coupling g2.
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Of course, we could just choose some random g2
UV(kUV) at the scale kUV – as is oftentimes done

in FRG calculations. However, it is more reasonable to choose a physical and observable reference
scale for the model and instead remove the UV cutoff from the theory. Such a reasonable physical
IR scale, could be a critical temperature and/or chemical potential. Here, this is when the IR
four-fermion coupling g2 diverges, when varying µ and/or T over a critical threshold.
Although we could in principle use any point (µ, T ) as reference point, it is more convenient to
choose either (µ↑, 0) or (0, T↑) as reference scales.

Renormalization at zero chemical potential As a first choice, we consider µ = 0 and choose
T↑ as the temperature where four-fermion coupling diverges in the IR. Hence, we set 1

g2(0,T↑) = 0
and use Eq. (A.83) to simplify Eq. (9.21). At T↑ we have,

lim
kUV
T↑

→∞

1
g2

UV(kUV) = dγ
2π
[

− 1 + lim
kUV→∞

ln
(
kUV
T↑

)
+ γ − ln

(
π
2
)]
. (9.23)

This is the renormalization condition, which can be used to remove the UV cutoff kUV and UV
coupling from the physical observables. By simply reinserting Eq. (9.23) into Eqs. (9.21) and (9.22),
we find

1
g2(µ,T ) = dγ

2π


ln
( 2T
πT↑

)
− DLi0

(
µ
T

)
, if T ̸= 0 ,

ln
( 2|µ|
πT↑

)
+ γ , if T = 0 .

(9.24)

Hence, we express the four-fermion interaction g2(µ, T ) exclusively by µ and T and the reference
scale T↑. The same is done for example in Ref. [348, Figs. 3 & 5].

Renormalization at zero temperature Another common renormalization prescription is to
study the case where T = 0 and set the physical scale via some critical µ↑. Here, we define |µ↑|
as the chemical potential where g2(µ↑, 0) diverges. Thus we use Eq. (9.22) and find,

lim
kUV
|µ↑| →∞

1
g2

UV(kUV) = dγ
2π

[
lim

kUV→∞
ln
(
kUV
|µ↑|
)

− 1
]
.

This result can be inserted into Eq. (9.21), such that the renormalized inverse four-fermion coupling
reads

1
g2(µ,T ) = dγ

2π


ln
(
T

|µ↑|
)

− γ − DLi0
(
µ
T

)
, if T ̸= 0 ,

ln
( |µ|

|µ↑|
)
, if T = 0 .

(9.25)

Again, we observe that the IR value of the coupling solely depends on µ and T and the reference
scale µ↑.

Note that we can relate the scales µ↑ and T↑ from the different renormalization conditions by
comparing Eqs. (9.30) and (9.25). We conclude

µ↑ = π
2 e−γ T↑ . (9.26)

Phenomenology at infinite N Now that we have derived formulae for the inverse four-fermion
coupling in the IR for arbitrary µ and T , we can start investigating the “phase structure” of the
purely fermionic Gross-Neveu model for N → ∞.
Hence, w.l.o.g. we choose T↑ as our reference scale and evaluate Eq. (9.24) numerically in the
µ-T -plane. In doing so, we can formally use any numerical value for T↑. All other dimensionful
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0 0.1 0.2 0.3

Figure 9.2: Inverse four-fermion coupling as a function of µ and T . The solid red is the line of
diverging four-fermion coupling g2(µ, T ). In the crosshatched region the investigation of the four-
fermion interaction breaks down. The blue color map indicates the strength of the four-fermion
interaction. The numerical values are calculated with Eq. (9.24). The T - and µ-axis have the
same scale.

quantities (here µ and T ) are measured w.r.t. T↑.8 Our result is plotted in Fig. 9.2. As expected,
there is a region in the µ-T -plane at large |µ| and T where the four-fermion coupling g2(µ, T ) is
always finite. As it happens, it tends to zero for very large |µ| and/or T . This is another realization
of asymptotic freedom – vanishing interactions for asymptotically large energies. In this region
the system is in a gas-like state and can be approximately described (perturbatively) by the single
four-fermion coupling. Our truncation (9.1) is reasonable there.
On the other hand, for sufficiently low |µ| and T there is a region where the four-fermion coupling
diverges. In this region the approximation breaks down and other degrees of freedom, momentum
structure etc. might become relevant. This is the region where we expect some condensation phe-
nomena – at least temporarily during the RG flow.

Readers who are familiar with the phenomenology of the infinite-N GN model might find the
shape of this region rather familiar. Let us already mention at this point that the 1

g2(µ,T ) = 0 line
is exactly the spinodal line, see, e.g., Refs. [4, 467], which is discussed later on.

9.4.2. The four-fermion coupling at finite N

Next, we study the four-fermion coupling, respectively its flow equation (9.6), at finite N . In con-
sequence, now all three processes from the Feynman diagrams in Eq. (E.19) contribute. Generally
we expect that there is still condensation (a region of diverging four-fermion coupling) within the
purely fermionic framework – at least temporarily for some RG scales. However, the region in the
µ-T -plane where this might happen is expected to be smaller, since the different types of diagrams
in Eq. (E.19) can come with opposite signs in (9.6). Also on a phenomenological level this is
expected. Relaxing the N → ∞ limit allows for fluctuations of bound states, which destabilize
condensation, as we will see below.

However, before starting the calculations, we have to return to the intriguing question which are
the correct evaluation points for the external fermion lines in Matsubara-frequency space, thus

8We used T↑ = eγ
π

for our numerical calculations (in arbitrary energy units), which implies µ↑ = 1
2 . This specific

choice becomes clear in Chapter 11, where we study the bosonized theory. The numerical result was obtained using
an AMR algorithm – a two-dimensional bisection in the µ-T plane.
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how to choose nI, nII, nIII, nIV in Eq. (9.6). In the literature, several approaches are discussed. All
rely on the fact that truncations like Eq. (9.1) form some kind of derivative expansion. Unlike
bosonic fields, a derivative expansion for fermionic fields comes with two main difficulties, which
both concern the temporal direction – the fermion energies. At non-zero temperature a Matsubara
zero-mode does not exist for fermions and the smallest fermion energy is πT . In addition, at non-
zero chemical potential (even if the temperature is zero) the fermion energies get shifted by iµ.
Both facts violate the idea of a derivative expansion about zero spatial momenta and energies.
On top of that, a suitable evaluation of the diagrams that enter our flow equation has to respect
the Silver-Blaze property. The situation is even made complicated by the specific choice of the
fermion regulator, which can in principle spoil a suitable evaluation point. Discussions of this
issue are presented for example in Refs. [548, Sec. II B], [348, App. B], [66, Sec. III B & App. B].
Here, we shall simply present two approaches for the evaluation of external fermion lines,

1. Let us first take the concept of the derivative expansion seriously. We naively expand the
effective average action about νn + iµ = 0 analogous to what is required in vacuum to fulfill
the Silver-Blaze property. At non-zero T this leads to the following evaluation point for the
fermion lines,

0 = νn + iµ = 2π
(
n+ 1

2
)
T + iµ , ⇒ n = − iµ

2πT − 1
2 . (9.27)

This seems to be at odds with n ∈ Z, but is closest to an expansion about the Fermi-
surface at T = 0. Indeed, without stating it explicitly, this evaluation is oftentimes used in
the literature. Thereby, the argument is usually that the temporal Euclidean momentum
at T = 0 is analytically continued to the complex plane, such that the expansion point is
pd+1 + iµ = 0. After all formulas are derived for T = 0 this relation is simply extended to
νn + iµ = 0 and non-zero T .

2. Another option is to choose n ∈ Z, which is the correct option on a mathematical level and
evaluate the flow equation on the lowest lying Matsubara frequency ν0 = πT . This in turn
spoils the concept of the derivative expansion, because the flow equations are not evaluated
at zero energy. In addition, this version is known to introduce complex contributions to the
flow equations of fermionic n-point functions.

We can just test both options in our simple model due to the simplistic truncation.

Evaluation at the Fermi surface We start by evaluating Eq. (9.6) for

nI = nII = nIII = nIV = − iµ
2πT − 1

2 . (9.28)

Here, all three contributions sum up to a rather familiar flow equation for the four-fermion coupling,

∂tg
2(t) = 2Ad

(
dγ − 2

N

)
g4(t) kd−2 1

β

∞∑
n=−∞

1
[(νn + iµ)2 + k2]2 . (9.29)

Up to a replacement dγ 7→ dγ − 2
N in the prefactor on the r.h.s. it is identical to the infinite-N

flow equation (9.17).
The renormalized four-fermion coupling is therefore simply obtained by exchanging the prefactor
in Eq. (9.24) and we find,

1
g2(µ,T ) = 1

2π
(
dγ − 2

N

)
ln
( 2T
πT↑

)
− DLi0

(
µ
T

)
, if T ̸= 0 ,

ln
( 2|µ|
πT↑

)
+ γ , if T = 0 .

(9.30)

Of course the critical temperature T↑ is different for each value of N , because each N effectively
stands for a separate model. Nevertheless, the region where the four-fermion coupling diverges
will have the same shape for all N and look like the one for N → ∞ in Fig. 9.2. Additionally, for
N → ∞ Eq. (9.30) reduces to Eq. (9.24).
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Evaluation at πT If we evaluate Eq. (9.6) at

nI = nII = nIII = nIV = 0 , (9.31)

hence all fermion legs at energy πT , we obtain,

∂tg
2(t) = (9.32)

= −Ad
2
N

dγN−2
dγN−1 g

4(t) kd+2 1
β

∞∑
n=−∞

1
[(νn + iµ)2 + k2]2 +

+Ad
2
N (dγN − 1) g4(t) kd+2 1

β

∞∑
n=−∞

1
[(νn + iµ)2 + k2]2 −

−Ad
2
N

1
dγN−1 g

4(t) kd+2 ×

× 1
β

∞∑
n=−∞

−(νn + iµ)[2(ν−n + iµ) + (νn + iµ)] + k2

(ν−n + iµ)2 + k2
1

[(νn + iµ)2 + k2]2 .

Interestingly, the first two contributions (9.7) and (9.8) become proportional to the standard
Matsubara sums, which we already encountered before. The third contribution (9.9) is of different
shape. This is expected, if we return to the corresponding Feynman diagrams in Eq. (E.19) and
consider them as physical processes (scattering or the “vertical” propagation of ϕ ∝ ψ̄ ψ state):
Since the chemical potential introduces an asymmetry between matter and anti-matter, it is clear
that the first, second, third, and fifth diagram are affected equally by the chemical potential.
These four diagrams involve internal fermion lines that run in opposite directions (from vertex to
vertex) and can be viewed as propagation of a (virtual) fermion and a (virtual) anti-fermion in
the same direction. However, fermions and anti-fermions are influenced differently by a matter-
anti-matter imbalance. This is reflected in the Fermi-Dirac distribution functions, which emerge
from the Matsubara sums and come with corresponding arguments β(k ± µ), cf. Eq. (B.20).
Then again there is the fourth diagram, where the internal fermion lines point into the same
direction (from one vertex to the other). Here, the chemical potential should not have an influence
on this diagram, which we prove below.
Either way, even if µ = 0, we observe that the Matsubara sum in the third term of Eq. (9.32)
differs from the others. This is also understandable by returning to the diagrams in Eq. (E.19). If
we consider the diagrams as scattering processes at µ = 0, we find that in the case of the fourth
diagram, the energy 2πT has to flow somehow through the fermion loop, while for the other
diagrams the external energies πT never enter the loop. Scattering at zero-momentum/energy
transfer is – in contrast to the vacuum – not possible for the fourth diagram and the minimal
momentum/energy transfer is set by the temperature.

Integration With this we turn to the integration of the β-function Eq. (9.32), which formally
reads

1
g2

UV(kUV) − 1
g2

IR(kIR,µ,T ) = (9.33)

=Ad
2
N

1
dγN−1 ×

×
[
[(dγN − 1)(dγN − 2) + 1]

∫ kUV

kIR

dk kd+1 1
β

∞∑
n=−∞

1
[(νn + iµ)2 + k2]2 −
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−
∫ kUV

kIR

dk kd+1 1
β

∞∑
n=−∞

−(νn + iµ)[2(ν−n + iµ) + (νn + iµ)] + k2

(ν−n + iµ)2 + k2
1

[(νn + iµ)2 + k2]2

]
.

The first Matsubara sum and k-integral is evaluated analogously to Eqs. (9.17), (9.20), and (9.21).
The tricky part is the second Matsubara sum and k-integration. The corresponding Matsubara
sum was evaluated using mathematica. Reshaping of the result as well as taking the µ → 0 limit
is presented in Appendix B.2.3. One finds,∫ ∞

0
dk k2 1

β

∞∑
n=−∞

−(νn + iµ)[2(ν−n + iµ) + (νn + iµ)] + k2

(ν−n + iµ)2 + k2
1

[(νn + iµ)2 + k2]2 = (9.34)

= − 1
8

∫ ∞

0
dk k ∂

∂k

[(
k+µ

(k+µ)2+(πT )2 tanh
(
k+µ
2T
)

+ k−µ
(k−µ)2+(πT )2 tanh

(
k−µ
2T
))

+

+ iπT
(

1
(k+µ)2+(πT )2 tanh

(
k+µ
2T
)

− 1
(k−µ)2+(πT )2 tanh

(
k−µ
2T
))]

,

This result entails that the β-function (9.32) is manifestly complex for non-zero µ and non-zero
T , because the k-integration is not evaluated yet. This was also checked explicitly for random
numerical values of µ and T . However, for µ = 0, it is shown in Eq. (B.37) that the imaginary
part of the β-function vanishes.
In general, a complex β-function seems to be a puzzling result, because the β-function/RG flow is
supposed to describe the change of a coupling while changing the energy scale k. Why should there
be a complex contribution? Is the imaginary part physical? Still, similar results are found and
discussed for example in Refs. [531, 548, 66, 549, 275] in the context of fermion-two-point functions.
Basically, all of these references argue that the imaginary part of the flow equation is unphysical.
Their arguments are based on expansions in µ

T or µ
k (or their inverse counterparts) and/or exploit

the symmetry of the theory under the substitution µ 7→ −µ. Usually, this symmetry is not
fulfilled by the imaginary contribution. It is mainly argued that the emergence of the imaginary
parts traces back to ignoring momentum and frequency dependences of the couplings.
In the following, we present a calculation which may point at a slightly different resolution of the
problem, which is not based on any approximation or heuristic argumentation etc..

Assume that the imaginary part of the β-function manifestly exists. However, a β-function is not
observable and is in general even regularization-scheme dependent – at least at higher-loop level
or for non-perturbative corrections. The physical quantities are the renormalized IR couplings,
which can be related to one-PI-n-point-vertex functions and therefore to scattering amplitudes
etc., see for example Ref. [72].
Therefore, we should look at the integrated β-function in the limit of vanishing IR cutoff kIR → 0
and infinite UV cutoff kUV → ∞. Here it can actually be shown that there is no imaginary
contribution to the IR four-fermion coupling, thus the k-integral over the imaginary part vanishes
exactly. This is shown by studying the imaginary and real part of Eq. (9.34) separately.
Indeed, the imaginary part vanishes

Im (9.34) = (9.35)

= − π
8 T

∫ ∞

0
dk k ∂
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[
1
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(
k+µ
2T
)
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(k−µ)2+(πT )2 tanh

(
k−µ
2T
)]

=

= − π
8 T

[
k

(k+µ)2+(πT )2 tanh
(
k+µ
2T
)

− k
(k−µ)2+(πT )2 tanh

(
k−µ
2T
)]∞

0
+

+ π
8 T

∫ ∞

0
dk
[

1
(k+µ)2+(πT )2 tanh

(
k+µ
2T
)

− 1
(k−µ)2+(πT )2 tanh

(
k−µ
2T
)]

=
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= π
8 T

[ ∫ ∞

µ

dk 1
k2+(πT )2 tanh

(
k

2T
)

−
∫ ∞

−µ
dk 1

k2+(πT )2 tanh
(
k

2T
)]

=

= − π
8 T

∫ µ

−µ
dk 1

k2+(πT )2 tanh
(
k

2T
)

=

= 0 ,

while the real part becomes independent of µ as anticipated from the diagrams and our discussion,

Re (9.34) = (9.36)

= − 1
8

∫ ∞

0
dk k ∂

∂k

[
k+µ

(k+µ)2+(πT )2 tanh
(
k+µ
2T
)

+ k−µ
(k−µ)2+(πT )2 tanh

(
k−µ
2T
)]

=

= − 1
8

[
k (k+µ)

(k+µ)2+(πT )2 tanh
(
k+µ
2T
)

+ k (k−µ)
(k−µ)2+(πT )2 tanh

(
k−µ
2T
)]∞

0
+

+ 1
8

∫ ∞

0
dk
[

k+µ
(k+µ)2+(πT )2 tanh

(
k+µ
2T
)

+ k−µ
(k−µ)2+(πT )2 tanh

(
k−µ
2T
)]

=

= − 1
4 + 1

8

∫ ∞

0
dk
[

k+µ
(k+µ)2+(πT )2 tanh

(
k+µ
2T
)

+ k−µ
(k−µ)2+(πT )2 tanh

(
k−µ
2T
)]

=

= − 1
4 + 1

8

[ ∫ ∞

µ

dk k
k2+(πT )2 tanh

(
k

2T
)

+
∫ ∞

−µ
dk k

k2+(πT )2 tanh
(
k

2T
)]

=

= − 1
4 + 1

8

∫ ∞

−∞
dk k

k2+(πT )2 tanh
(
k

2T
) (B.2)=

= − 1
4 + 1

4

∫ ∞

0
dk k

k2+(πT )2

[
1 − 2nf

(
k
T

)]
=

= − 1
4 + lim

kUV→∞
1
8 ln

(
k2

UV+(πT )2

(πT )2

)
− 1

2

∫ ∞

0
dk k

k2+(πT )2 nf
(
k
T

)
.

In the last step, we reintroduced the UV cutoff, because the integral is UV divergent. This will
be cured by renormalization.
Combining the results, we find

lim
kUV→∞

1
g2

UV(kUV) − 1
g2(µ,T ) = (9.37)

= 1
π

1
2N

1
dγN−1 ×

×
(

[(dγN − 1)(dγN − 2) + 1]
[

− 1 + lim
kUV→∞

ln
(
kUV
T

)
+ γ + DLi0

(
µ
T

)]
−

−
[

− 1 + lim
kUV→∞

1
2 ln

(
k2

UV+(πT )2

(πT )2

)
− 2

∫ ∞

0
dk k

k2+(πT )2 nf
(
k
T

)])
,

which is real.
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At this point, one might ask how this generalizes to calculations with more than one four-fermion
interaction channel or fermionic two-point functions in theories with Yukawa interactions. So far,
we do not have a definite answer to this question, but work on this topic is already in progress.
Currently, we speculate that couplings are generally allowed to gain complex contributions dur-
ing RG flows. In systems of several couplings, which form coupled ODEs, we therefore expect
interference phenomena but ultimately vanishing imaginary parts in the IR.

Renormalization at zero chemical potential Next, we can simply repeat the steps of Sec-
tion 9.4.2 for the renormalization procedure. We choose µ = 0 and T = T↑ as the renormalization
point. Again, this is supposed to be the point where the four-fermion coupling diverges first, when
the temperature is lowered along the T -axis of the phase diagram. Of course, in principle each N
has its own T↑. Still, the renormalization procedure is the same for all N .
At T↑ the inverse IR four-fermion coupling vanishes, 1

g2(0,T↑) , such that

lim
kUV→∞

1
g2

UV(kUV) = (9.38)

= 1
π

1
2N

1
dγN−1 ×

×
(

[(dγN − 1)(dγN − 2) + 1]
[

− 1 + lim
kUV→∞

ln
(
kUV
T↑

)
+ γ − ln

(
π
2
)]

−

−
[

− 1 + lim
kUV→∞

1
2 ln

(
k2

UV+(πT↑)2

(πT↑)2

)
− 2

∫ ∞

0
dk k

k2+(πT↑)2 nf
(
k
T↑

)])
,

where we used Eq. (A.83) to simplify the derivative of the polylogarithm. By reinserting this
result in Eq. (9.37) we find the final result for the IR four-fermion coupling in the µ-T -plane,

1
g2(µ,T ) = (9.39)

= 1
π

1
2N

1
dγN−1 ×

×
(

[(dγN − 1)(dγN − 2) + 1]
[

ln
( 2T
πT↑

)
− DLi0

(
µ
T

)]
−

−
[

ln
(
T
T↑

)
− 2

∫ ∞

0
dk k

k2+(πT↑)2 nf
(
k
T↑

)
+ 2

∫ ∞

0
dk k

k2+(πT )2 nf
(
k
T

)])
.

We were not able to solve the remaining two integrals analytically. Still, these can be straightfor-
wardly evaluated numerically using standard integration routines.
Before studying the area of diverging four-fermion coupling in the µ-T -plane from Eq. (9.39), note
that this equation has the correct N → ∞ limit, where it reduces to Eq. (9.24).

Phenomenology at finite N To study the lines of diverging four-fermion coupling at finite N
using Eq. (9.39) we proceed as follows. There is no other dimensionful scale which distinguishes
calculations at different N , thus we choose the same T↑ for all N of our calculations. For sake of
convenience, we use T↑ = eγ

π
, which becomes clear below. The actual calculation of the 1

g2(µ,T ) = 0
lines is based on bisections in µ-direction up to an accuracy of ∆µ = 0.001. The bisections are
performed at constant temperatures in steps of ∆T = 0.001.
The results of these calculations are shown in Fig. 9.3. We clearly find that by increasing N the
curves clearly approach the N → ∞ result, which was plotted before in Fig. 9.2. For small N there
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Figure 9.3: Lines of diverging four-fermion coupling for N ∈ {2, 3, 5, 8, 12, 21, 34, 55, 89,∞} (from
left to right). All curves are normalized to the same T↑. All curves for finite N end in µ = 0 at
T = 0, while the curve for N = ∞ ends in µ = 0.5 at T = 0. The N = ∞ curve agrees with
Fig. 9.2.

is a significant deviation from the N → ∞ line, especially for small temperatures. Another crucial
difference between all finite N and the infinite-N curve is that for N → ∞ the curve terminates
at non-zero chemical potential for T → 0, while for any finite N the lines end at µ = 0, T = 0.
These differences are exclusively driven by the contribution of the fourth diagram in Eq. (E.19),
which is independent of µ and gains in importance for small N .

What does this say about our initial question about the presence or absence of symmetry breaking
and condensation in the GN model at finite N? From Fig. 9.3 we deduce that generically the
region of diverging four-fermion coupling, which is an indicator of condensation, shrinks while N
is reduced. Nevertheless, the difference between N = 2 and N = ∞ does not seem too large.
However, if we take into account that T↑ itself will change in the real world, if we exclusively
change the number N of fermions in the GN model, the effect will be more drastic. In fact the
size of the region will shrink in µ- and T -direction, because less fermions leads to less attractive
interactions that can work against thermal and bosonic fluctuations. In general, these results are
in qualitatively good agreement with earlier investigations of the GN or bGN model at finite N ,
which we discussed in Section 7.4.5.

9.5. Concluding remarks

In this section we used the FRG approach to calculate the β-function of the purely fermionic
GN model in medium. After integration and renormalization we studied the IR four-fermion
coupling as a function of µ and T at (in)finite N and its dependence on the external energies
– the Matsubara modes that enter the corresponding loop diagrams. We observed that finite-
and infinite-N results strongly deviate, especially for low temperatures and that the region with
signals of condensation of ψ̄ ψ pairs significantly shrinks for small N . Furthermore, we observed a
significant dependence of the region where the four-fermion coupling diverges on the choice of the
external energies. In this way, however, we were able to show that commonly appearing complex
contributions in flow equations of fermionic vertex functions might not be artifacts which need to
be ignored, but can possibly be handled systematically by including them in the RG flows.
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Concerning the original objective of this work, to study the GN model at finite N , we conclude
that the approximation of this section is insufficient and inconclusive. Thus, from here there are
basically two routes to proceed:

1. We could start enlarging the basis of four-fermion coupling channels and study Fierz-
complete sets of couplings like in Refs. [348, 350, 351]. Here, we could even distinguish
contributions, which are parallel and perpendicular to the heat bath. In addition, another
improvement would be to resolve the momentum structure of the four-fermion couplings
and to include higher-order derivative couplings. If one chooses this route, one should also
think about exchanging the dimensionally reduced flat regulator by some covariant smooth
regulator, which still guarantees the Silver-Blaze property, but has a better vacuum limit.
In this setup, with an enlarged space of couplings, we can repeat our studies at finite and
infinite N .

2. Another route is to switch to the partially bosonized description of the GN model, the GNY
model. Here, it is much simpler to study condensation phenomena, because ψ̄ ψ pairs form
bosonic bound states, which are explicitly included in the calculation and interact with the
fermions via Yukawa couplings. Also here it is possible to work at finite and infinite N and
compare the system with and without bosonic fluctuations.

Even though there is already some work in progress on the first option, we focus on route two
throughout the remainder of this thesis.



Chapter 10

The Gross-Neveu-Yukawa model
via the Functional
Renormalization Group

Abstract In this chapter we summarize the formal setup for FRG calculations for the GNY
model. This sets the basis for investigations within different truncation schemes as well as an
infinite-N analysis of the bGN model. The discussion is supported by comprehensive appendices
involving explicit derivations.
Furthermore, the resulting RG flow equations are analyzed w.r.t. their fluid-dynamical character.

Disclosure The generic structure of the FRG flow equations for boson-fermion systems with
Yukawa interaction is well-known for general spatial dimension d ≥ 2, also in medium. However,
we are not aware that the special case d = 1 with its peculiar features was discussed in the
literature. Furthermore, depending on the respective publication, we find agreement of their
and our flow equations w.r.t. the truncation order, the interaction channels, the in-vacuum or
in-medium equations, the regulator etc., but never all features at once. Therefore, none of the
specific flow equations is really new, but our compilation for d = 1 is.
On the other hand, the second part of this chapter is original to the author and his collaborators.
Large parts of this chapter are based on Ref. [4] and are also inspired by Refs. [77, 101, 1, 2, 3] and
discussions with their authors. This mostly affects the fluid-dynamical interpretation and analysis
of the RG flow equations and the resulting numerical setup for their solution.

10.1. Motivation and introduction
In the previous chapter the GN model was analyzed in the µ-T -plane by studying the behavior
of the four-fermion coupling. It was found that the position of the line of diverging four-fermion
coupling, which was interpreted as a signal of condensation, depends on the number of fermion
species N and the fermion energies that enter the loop diagrams via external fermion lines. A
dependence on the choice of regulator was not discussed but is certainly present, cf. Ref. [348].
Even though the divergence of the four-fermion coupling indicates condensation phenomena, the
purely fermionic consideration is inconclusive without studying more than one interaction channel
and ignoring their momentum structure.
At this point there are basically two options to proceed. Either one tries to improve the truncation
on the fermionic level along the lines of Refs. [348, 350, 351] or one turns to the well-established
partially bosonized bGN or GNY model. Of course, the best variant is to combine both approaches,
which however presently exceeded the capacities of the people involved in the project, but might be
of future interest. We decided for the partially bosonized approach and leave the advanced purely
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fermionic approach for future investigations. This is because we are particularly interested in
bosonic fluctuations and bosonic self-interactions in the deep IR region, whose description should
contain some local effective bosonic potential.
Hence, we turn to the bGN and GNY model in this section, see Section 8.2. Still, this section will
not provide any explicit phenomenological and numerical results. Instead, it sets the formal basis
for all later calculations in different truncations. Methodical we stick to the FRG formalism. In
contrast to the one-loop/FRG analysis of the GN model, the technicalities are more demanding,
which is why we spend an entire chapter on their setup.

We therefore start by presenting again the truncation and the regulator. We further comment
on the initial conditions for the FRG calculations as well as the concept of dynamical symmetry
breaking. The explicit derivation of the RG flow equation is again outsourced to the extensive
Appendix E.2.
In the second half of this chapter, we analyze the formal structure of the RG flow equations,
especially w.r.t. their fluid-dynamical properties. In particular this affects the RG flow equation
of the bosonic local potential, which is decomposed into non-linear diffusive contributions and
source-sink terms. We close the chapter with remarks on the role of the chemical potential as
a “shock wave” in bosonic field space and briefly recapitulate some aspects of the numerical
implementation from Chapter 5.

10.2. The Gross-Neveu-Yukawa model in the FRG formal-
ism

As demonstrated in Section 8.2 it is possible to partially bosonize the GN model via a Hubbard-
Stratonovic transformation to obtain the bGN model, which forms an equivalent description of
this QFT on the level of the partition function. On the other hand, it is known and discussed
in Appendix C.2 or Refs. [550, 54, 57, 100] that during RG flows all possible interaction terms
which are compatible with the symmetries of the model are generated on the level of the effective
(average) action. Thus, without the artificial truncation of the effective (average) action, we
would anyhow end up with an IR theory of interacting fermions and bosons that is most certainly
dominated by bosonic self-interactions, irrespective of the starting point being the GN or bGN
version.
Hence, the task is to construct a truncation which captures this dynamics best, without going
beyond our computational abilities.

10.2.1. The formal setup – the ansatz for the effective average action
and the regulator

Having said this, we need a truncation which is on the one hand compatible with the UV theory
(either the GN action (8.86) or the bGN action (8.99)) and on the other hand able to describe
bosonic and fermionic interactions as well as condensation on all RG scales.

Truncation We choose the following ansatz for the effective average action,

Γ̄t[ψ̄, ψ, φ] = (10.1)

=
∫ ∞

−∞
ddx

∫ β

0
dτ
[
ψ̄
[
Zψ(t) (/∂ − µγd+1) + 1√

N
h(t, φ)φ1

]
ψ − Zφ(t) 1

2 φ (□φ) + U(t, φ)
]
,

It comprises a scale-dependent local bosonic potential U(t, φ), scale-dependent wave-function
renormalizations Zψ(t) and Zφ(t) for the fermions and bosons, and a scale- and field-dependent
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Yukawa coupling1. This truncation can be seen as the first-order contribution of a derivative
expansion of the effective average action, where all orders of bosonic self-interactions are consid-
ered, but fermion-boson interactions as well as momentum-dependent terms are only included at
lowest non-trivial order. The reason why we expect this to be a promising approach to answer the
research questions of Section 7.1.3 is the following:
We are especially interested in the low-energy/-momentum limit of the GN model (for external
energy scales, µ and T , and deep IR-RG scales), such that a “Taylor-expansion” in powers of
derivative couplings seems to be justified.2 (As we will see, this assumption seems to be violated
already at rather small chemical potential, while large temperatures seem not to be in conflict with
the truncation.) If already at small µ and T condensation is not found in the IR, it is unrealistic
to find condensation at all.
Since there is only a single spatial dimension, we further expect that once bosonic bound states
have formed during the RG flow, the dynamics is dominated by local bosonic scattering. Particles
can only go left or right in a single dimension, which implies that also high-order boson self-
interaction terms are non-negligible, because particles cannot bypass each other, since there is only
one spatial momentum direction. This is where the GN model drastically differs from QCD, where
a decent energy and momentum resolution of quark and gluon (self-)interactions is much more
important, though higher-order scatterings are simply more unlikely due to the dimensionality
and therefore seem to be of minor importance [551, 552, 553, 35]. Oversimplified: the phase space
is totally different for different spacetime dimensions. The most extreme example is certainly
zero-dimensional QFT, which can be interpreted as an ultra-local QFT in a single point, where
self-interaction terms of all orders are of equal relevance, see Part I.
Another advantage of our truncation is that condensation is straightforwardly detected by a non-
trivial global minimum of U(t → ∞, φ), as is discussed in Section 10.2.3.
A splitting of the wave-function renormalizations into components which are orthogonal and per-
pendicular to the heat bath is not considered in this work, but might be of future interest, see,
e.g., Refs. [554, 555].

Truncation continued: matching the UV theory Using the ansatz (10.1) also enables to
make contact to the bGN model in terms of the classical microscopic action (8.99) in the UV.
Hence, for t = 0, which corresponds to k = Λ (the UV cutoff scale), the local bosonic effective
potential should approach a purely parabolic shape, i.e.,

U(t = 0, φ) = 1
2g2 h

2 φ2 . (10.2)

In addition, the Yukawa coupling is supposed to be field-independent and takes its UV initial
value,

h(t = 0, φ) = h . (10.3)

Ultimately, for the bosonic and fermionic wave-function renormalizations we need

Zψ(t = 0) = 1 , Zφ(t = 0) = 0 , (10.4)

in order order to match the bGN action (8.99).3
It remains to choose suitable initial values for h and g2 that possibly depend on the UV cutoff Λ.
In principle this choice should be unique, because the running of the four-fermion coupling with
energy is uniquely defined after fixing some reference energy scale, cf. the discussion in Sections 9.3
and 9.4. We come back to this issue below, after discussing the RG flow equations as well as the
renormalization procedure for the unique infinite-N results.

1Already at this point we remark that while deriving RG flow equations for a field-dependent Yukawa coupling,
we restricted our entire numerical analysis to a field-independent but scale-dependent Yukawa coupling.

2This is for example supported by Ref. [71], which shows that in vacuum it is important to include dynamical
wave-function renormalizations, while higher momentum dependences seem to be of secondary importance.

3Note that for numerical calculations it is not possible to choose exactly Zφ(t = 0) = 0 as becomes clear from
the flow equations. Hence, we choose a negligibly small value for practical considerations, cf. Refs. [372, 373, 374].
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The regulator Working in the FRG formalism necessitates the choice of a regulator function
for the handling of (IR) divergences. For the fermions, we utilize the same regulator as for the
four-fermion calculation of Chapter 9. It remains to choose a regulator for the bosons. Here,
we also choose a dimensionally reduced Litim regulator, which solely acts on the bosonic spatial
momenta, while keeping the Matsubara modes untouched, see Eqs. (E.38) to (E.40).
Instead of repeating the reasoning for this choice, we refer to the discussion in Section 9.2.2
and Appendices C.2.1 and D.2 as well as Ref. [4, Sec. III C].

10.2.2. The RG flow equations
Next, we shall present the RG flow equations that result from the ansatz (10.1). A detailed
derivation of these equations is presented in Appendix E.2, but is partially also found elsewhere.
(The respective references are cited in the appendix.)
However, before we present explicit results, we introduce renormalized and rescaled quantities.
The so-called renormalized fields and the renormalized Yukawa coupling are indicated by the
letter “r” and defined as follows, see, e.g., Refs. [556, 374, 66],

φr ≡ Z
1
2
φ φ , ψr ≡ Z

1
2
ψ ψ , ψ̄r ≡ Z

1
2
ψ ψ̄ , hr ≡ Z−1

ψ Z
− 1

2
φ h . (10.5)

(Function(al) arguments are dropped for the sake of readability.) In addition, we define the field-
dependent fermion mass and its renormalized counterpart,

m ≡ 1√
N
h φ , mr ≡ 1√

N
hr φr = 1√

N
Z−1
ψ Z

− 1
2

φ h Z
1
2
φ φ = Z−1

ψ m . (10.6)

Furthermore, it is convenient to work in so-called 1
N -rescaled quantities to allow a connection

between finite-N and infinite-N results. A similar approach was taken in Sections 3.3 and 6.8 We
therefore substitute

φ 7→ φ̌ = 1√
N
φ , U(t, φ) 7→ Ǔ(t, φ̌) = 1

N U(t, φ) (10.7)

on the level of the bare fields. The substitution is analogous for the renormalized fields. In
addition, we introduce the constant background-field configuration

φ̌ren(τ, x⃗ ) = σ̌r = const. , (10.8)

which is used to reduce the FRG flow equations to a systems of ODEs and PDEs. (The renormal-
ized constant field configuration σ̌r still depends on the RG time t.)
Having these definitions at hand, we are ready to present and analyze the RG flow equations of
the GNY model in d = 1.4

Local bosonic potential

The RG flow equation for the local bosonic effective potential is given by Eq. (E.51) and is derived
in Appendix E.2.1,

∂tǓ(t, σ̌r) + 1
2 ηφ(t) σ̌r ∂σ̌rǓ(t, σ̌r) = (10.9)

= − 1
π

[
1 − ηφ(t)

3

]
1
N k3 1

β

∞∑
n=−∞

1
ω2
n + k2 + ∂2

σ̌r
Ǔ(t, σ̌r)

+

+ 1
π

[
1 − ηψ(t)

2

]
dγ k

3 1
β

∞∑
n=−∞

1
(νn + iµ)2 + k2 +m2

r (t, σ̌r)
.

4Flow equations for d ̸= 1 are also found in the corresponding appendices.
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It comprises a boson and fermion loop contribution and is given on a diagrammatic level by
Eq. (E.47). The Matsubara sums can be further evaluated using Eqs. (B.13) and (B.15), which is
not done here for the sake of readability. The RG flow equation of the effective potential depends on
the scale evolution of the anomalous dimensions, respectively the wave-function renormalizations
and the Yukawa coupling, which is absorbed in the fermion mass.

Bosonic anomalous dimension

The corresponding scale evolution of the bosonic anomalous dimension is found from Eq. (E.78),

ηφ(t) = + 1
π

1
N

[
∂3
σ̌r
Ǔ(t, σ̌r)

]2
k3 1

β

∞∑
n=−∞

1
[ω2
n + k2 + ∂2

σ̌r
Ǔ(t, σ̌r)]4

+ (10.10)

+ 2 1
π
dγ
[
∂σ̌rmr(t, σ̌r)

]2 ×

×
[

− 2m2
r (t, σ̌r) k3 1

β

∞∑
n=−∞

1
[(νn + iµ)2 + k2 +m2

r (t, σ̌r)]4
+

+ 1
4 k

1
β

∞∑
n=−∞

1
[(νn + iµ)2 + k2 +m2

r (t, σ̌r)]2

]
.

The anomalous dimension is related to the wave-function renormalization by Eq. (C.62) and the
derivation of this flow equation is presented in Appendix E.2.2. The diagrammatic equation for
the RG flow of the two-point function, Eq. (E.53), does not perfectly match the structure of
Eq. (10.10), because additional momentum derivatives and an evaluation at vanishing external
momentum is required to arrive at the latter equation. Again Eq. (10.10) still contains Matsubara
sums, which can be further evaluated using Eqs. (B.24), (B.20), and (B.25). Further, note that
the r.h.s. of this flow equation still depends on the background field σ̌r, while the l.h.s. is field-
independent. This traces back to the fact that we consider a field-independent wave-function
renormalization. Hence, the r.h.s. has to be evaluated at a single specific σ̌r. We come back to the
choice of the evaluation point below. We also remark that the RG flow equation of the bosonic
anomalous dimension, apart from the standard differences in the prefactors and powers of k etc.,
strongly depends on the number of spatial dimensions d, as is discussed in Appendix E.2.2.

Fermionic anomalous dimension

Next, we present the scale evolution of the fermionic anomalous dimension, see Eq. (E.114) from
Appendix E.2.4, which is in fact trivial in d = 1,

ηψ(t) = 0 . (10.11)

This implies that the fermionic wave-function renormalization keeps its initial value, Eq. (10.4).
In addition it drastically simplifies the other flow equations. The diagrammatic equation from
which this result is derived is Eq. (E.89).

Yukawa coupling – fermion mass

The same (diagrammatic) equation is used to derive Eq. (E.109), thus the RG evolution equation
of the field-dependent fermion mass, which is equivalent to the field-dependent flow equation of
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the Yukawa coupling, reads

∂tmr(t, σ̌r) + ηψ(t)mr(t, σ̌r) + 1
2 ηφ(t) σ̌r ∂σ̌rmr(t, σ̌r) = (10.12)

= − 2 1
π

[
1 − ηφ(t)

3

]
1
N

[
∂σ̌rmr(t, σ̌r)

]2
mr(t, σ̌r) k3 ×

× 1
β

∞∑
n=−∞

1[
ω2
n + k2 + ∂2

σ̌r
Ǔ(t, σ̌r)

]2 1
(νn+m + iµ)2 + k2 +m2

r (t, σ̌r)
−

− 2 1
π

[
1 − ηψ(t)

3

]
1
N

[
∂σ̌rmr(t, σ̌r)

]2
mr(t, σ̌r) k3 ×

× 1
β

∞∑
n=−∞

1
ω2
n−m + k2 + ∂2

σ̌r
Ǔ(t, σ̌r)

1[
(νn + iµ)2 + k2 +m2

r (t, σ̌r)
]2 −

− 1
π

[
1 − ηφ(t)

3

]
1
N

[
∂2
σ̌r
mr(t, σ̌r)

]
k3 1

β

∞∑
n=−∞

1[
ω2
n + k2 + ∂2

σ̌r
Ǔ(t, σ̌r)

]2 .
Note that the r.h.s. of this PDE still depends on the “index” m of the external Matsubara mode
that enters the loops via the fermion legs.
In complete analogy to the discussion in Section 9.4.2 in the context of the β-function of the
four-fermion coupling, we need to choose some m. Again, an evaluation at the Fermi surface with
m = − iµ

2πT − 1
2 renders the Matsubara sums and the entire flow equation real, due to Matsubara

sums (B.18), (B.22), and (B.23). However, as already discussed in Section 9.4.2 this evaluation
seems to be questionable, because an integer is evaluated at a complex number.
However, choosing m = 0 generates complex contributions to the RG flow equations, because
the Matsubara sums contain bosonic and fermion frequencies, see Eqs. (B.32) and (B.34). The
appearance of complex contributions in this type of flow equations or loop calculations at non-
zero µ and T is well-known and discussed at various occasions, cf. Refs. [531, 548, 66, 549, 275].
Usually these discussions are valuable but ultimately seem to be inconclusive and mostly lead
to some motivational arguments for a certain handling of this issue. In order to study this flow
equation numerically it is usually argued in one or the other way that the imaginary part should be
ignored and only the real part has to enter the system of ODEs and PDEs. From our discussion in
Section 9.4.2 we generally believe that it is not correct to simply ignore the imaginary contribution
to the RG flow, because interference effects between various complex contributions may be present
at non-zero RG scales k. However, we agree that the IR couplings should be real after RG evolution.
Still, imaginary parts may be present during the flow and influence the real parts, e.g., because
the fermion mass enters the fermion propagators in all flow equations quadratically.
However, here, in contrast to the Section 9.4.2, we are facing a system of PDEs and ODEs and we
were not able to show that the imaginary part adds up to zero after the RG flow, which might be
a problem of an inconsistent truncation or incomplete basis. Anyhow, for the moment we leave
this highly interesting and relevant topic for future investigations, because it exceeds the scope of
this work and we simply take the same approach as everybody else: We drop the imaginary part
on the r.h.s. of Eq. (10.12) by hand and hope for the best.

Further remarks on the PDE-ODE system

In total, within this truncation, the above RG flow equations form a system of two PDEs,
Eqs. (10.10) and (10.12), and an algebraic equation, Eq. (10.10), where the RG time plays the
role of the time – the evolution parameter – and the constant background field (space) can be
interpreted as the spatial domain.
Working in bare (unrenormalized) fields, the algebraic equation (10.10) turns into an ODE for
the wave-function renormalization and the PDEs are slightly modified. (Actually we will use the
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second version for our numerical computations as explained within the next paragraphs.)

It is also possible to further simplify this system by studying even more streamlined truncations
and approximations. Within the next Chapters 11 and 12 we are going to analyze the above
equations in a bunch of different approximations schemes, which are improved and compared to
each other little by little.

However, before diving into these calculations, we need to comment on two leftover topics. The first
affects the signals and the detection of discrete chiral Z2 symmetry breaking and/or restoration
within our truncation, which is discussed within the next paragraphs. The other topic concerns a
detailed analysis of the specific type of PDEs and ODEs that we are confronted with as well as the
resulting numerical implementation that is needed for their adequate solution. This is discussed
in the next Section 10.3.

10.2.3. Discrete chiral symmetry breaking during RG flows and in the
IR

In Section 8.2.3 we briefly discussed that the breaking of the discrete chiral Z2 symmetry of the GN
model is detected on the level of the bosonized partition function via a non-vanishing expectation
value for the boson field ⟨ϕ⟩ ≠ 0.
In the FRG formalism this translates to a non-trivial ground state of the IR effective action. This
means that after solving the RG flow equations, one has to search for the field configuration that
minimizes the IR effective action Γ[Φ] to detect the vacuum state of the system [18, 42, 550].
This vacuum field configuration may either break or be symmetric under discrete chiral symmetry
transformations (8.19) and (8.100).
On a formal level, e.g., for the specific truncation (10.1), one searches for solutions of the quantum
equations of motion for the mean fields ψ̄, ψ, and φ,

0 != δΓ̄tIR [ψ̄, ψ, φ]
δψ̄

=
[
Zψ(tIR) (/∂ − µγd+1) + 1√

N
h(tIR, φ)φ1

]
ψ , (10.13)

0 != δΓ̄tIR [ψ̄, ψ, φ]
δφ

=
[

1√
N

[
h(tIR, φ) + φ∂ϕh(tIR, φ)

]
ψ̄ ψ− (10.14)

− Zφ(tIR)□φ+ ∂φU(tIR, φ)
]
,

(where the equation for ψ̄ was not listed separately) and studies these solutions.

Spatially homogeneous symmetry breaking/restoration

Usually one studies these equations for vanishing fermion mean fields, ψ̄(τ, x⃗ ) = ψ(τ, x⃗ ) = 0,
and further assumes that the ground-state field configuration of the bosonic field is constant in
spacetime, φ(τ, x⃗ ) = const. = σ, thus translationally invariant. In this approximation one arrives
at the condition

0 != ∂σU(tIR, σ) . (10.15)

Furthermore, one needs 0 < ∂2
σU(tIR, σ) at this extremum to ensure that it is a minimum and

that the vacuum is stable, viz. has a positive IR curvature mass for the bosonic field. Hence,
in the FRG framework one detects spatially homogeneous discrete chiral Z2-symmetry breaking
by looking for (non-)trivial global minima of the effective local bosonic potential in the IR – the
chiral condensate. For a trivial minimum σmin = 0 the system is in the symmetric phase, while
for σmin ̸= 0 the system is in the symmetry-broken phase.
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Within this thesis and the associated publication [4] we are not only interested in the symmetry
of the system in the IR, but also in the dynamics of symmetry breaking and restoration, which
can be studied during the RG flow.
From the discussion of the purely fermionic GN model in Chapter 9 and various infinite-N calcu-
lations, cf. Section 7.3.1, we expect dynamical symmetry breaking at some RG scales during the
RG flow by attractive fermion interactions for sufficiently low µ and T . However, based on the
arguments from Section 7.4 long-range bosonic fluctuations may also destroy any kind of conden-
sate at non-zero T , such that the Z2 symmetry is again restored in the deep IR. This is studied
by looking at the RG scale-dependent minimum σmin(t) of U(t, σ) during the RG flow.
Condensation and vaporization during a single RG flow is a realization of the so-called precon-
densation phenomenon, which is discussed in Refs. [557, 558, 559, 560, 561, 278] in the context of
FRG applications.

Spatially inhomogeneous condensation

One might wonder whether the restriction to ground states with ψ̄(τ, x⃗ ) = ψ(τ, x⃗ ) = 0 and
φ(τ, x⃗ ) = const. = σ is too restrictive and more involved solutions of the quantum equations
of motion (10.13) and (10.14) with even smaller effective action exist. Furthermore, one might
ask whether it is always justified in the FRG formalism to assume a constant background-field
configuration for the calculation of the IR effective action.
At least in certain approximations there is evidence that so-called spatially inhomogeneous con-
densates exist, which minimize the effective action, see Sections 7.1.1 and 7.3.1 and Refs. therein,
and that these field configurations emerge as self-consistent solutions, where the calculation of the
IR effective action already includes them in terms of background fields. Even the possibility of
so-called time crystals was discussed in (semi-)classical approximations, cf. Refs. [562, 563, 564],
where the ground state is formed by an oscillatory condensate. Therefore the answer is certainly
that the assumptions are too restrictive.

On the other hand it strongly depends on the specific research question: Sometimes it is sufficient
to assume a homogeneous background-field configuration and a homogeneous ground state, e.g.,
at large T where condensation is absent, and to study perturbations of the homogeneous trivial
ground state in terms of a stability analysis. By successively lowering T and µ one detects regions,
where this method predicts an instability of the homogeneous solution. This is a perfectly valid
approach to detect second-order PTs to regions of spatially homogeneous and inhomogeneous con-
densation and is discussed and analyzed in detail in Section 11.3.

Another occasion where the assumption of a spatially homogeneous background-field configuration
as well as homogeneous ground state might be justified is the following: If there are regions in a
phase diagram where inhomogeneous condensation is already excluded in approximations without
bosonic fluctuations (infinite-N), e.g., at very low T and µ in the GN model, it is highly unlikely
that beyond this approximation any kind of inhomogeneous condensate forms in this region of the
phase diagram.

Within this work we are therefore always working with a spatially homogeneous background
field and under the assumption of spatially homogeneous condensation. Spatially inhomogeneous
condensation is exclusively detected/predicted indirectly via the instability of the homogeneous
ground state.5

5Another formal reason for this approach is that working with position-dependent background-field configura-
tions in the FRG formalism is highly complicated due to the non-trivial momentum structure and off-diagonal
contributions in the two-point functions that need to be inverted. Currently there are some advances by deploying
properties of very special oscillating background-field configurations such as chiral spirals [6, 547]. Notwithstanding
these successes it is unlikely that more complicated field configurations can be used for FRG calculations, because
the inversion of the two-point functions is either analytically or numerically far too demanding.
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10.3. The FRG and (numerical) fluid dynamics
In the second part of this chapter we turn to the formalities of the system of PDEs and ODEs
that is formed by the RG flow equations (10.9) to (10.12) and its numerical implementation. Here
we use recently (re)discovered analogies between (computational) fluid dynamics and RG flows,
cf. Chapter 5 and Refs. [77, 1, 2, 3, 4], which also form the basis of this discussion. The primary
observation of these works was that the flow equation for the effective local bosonic potential
of a huge class of models and QFTs can be recast into a conservation law – more specifically
an advection-diffusion-sink/source equation, where the RG time plays the role of the temporal
direction and field space takes the role of the spatial coordinates. Similar considerations are put
forward for the flow equation of a field-dependent Yukawa coupling in Ref. [101]. Based on the
formulation in terms of conservation laws and coupled ODEs one can adapt advanced methods
from the field of CFD as already discussed in Chapters 5 and 6 for the case of the O(N) model.

10.3.1. The LPA′ truncation as a non-linear heat equation with sink/source
terms

The starting point of our discussion is formed by some additional modifications and simplifications
of Eqs. (10.9) to (10.12).

1. Within this work we will not numerically investigate the RG evolution of a field-dependent
Yukawa coupling or fermion mass, but restrict ourselves to a field-independent but scale-
dependent Yukawa coupling. The simple reason are ongoing technical developments [101]
which are not covered by this work. Therefore Eq. (10.12) is evaluated at a specific point in
the background-field space, which still needs to be specified.

2. Another modification affects the background-field space itself. Working with renormalized
fields and couplings (10.5) has two direct consequences. First, in contrast to RG flow equa-
tions for bare fields there are additional terms on the l.h.s. of Eqs. (10.9) and (10.12), which
modify the character of the equations and fluid-dynamical analogy. The second consequence
is seen from the UV initial condition for the bosonic wave-function renormalization (10.4).
When it changes from zero (or a numerically extremely small value) to non-zero values that
are numerically several orders of magnitude larger during the RG evolution, the field-space
is completely rescaled according to Eq. (10.5). Hence, huge domains in renormalized field
space would be required for an adequate description of the bosonic local effective potential,
because the physically interesting region is expected to move simply by rescaling of the fields.
This is not the case if Eq. (10.9) is solved on the level of bare fields, which also allows for
better comparison with conventional infinite-N calculations. The price one has to pay for
working in bare fields is that Eq. (10.10) turns into an ODE for Zφ(t), which also appears
explicitly in the other flow equations.

Taking into account these two modifications, the actual PDE-ODEs system that is studied in this
work is

∂tǓ(t, σ̌) = − 1
π

[
1 − ηφ(t)

3

]
1
N k3 1

β

∞∑
n=−∞

1
ω2
n + k2 + 1

Zφ(t) ∂
2
σ̌Ǔ(t, σ̌)

+ (10.16)

+ 1
π
dγ k

3 1
β

∞∑
n=−∞

1
(νn + iµ)2 + k2 + h2(t) σ̌2 ,

∂tZφ(t) = + 1
π

1
N

1
Z2
φ(t)

[
∂3
σ̌Ǔ(t, σ̌)

]2
k3 1

β

∞∑
n=−∞

1
[ω2
n + k2 + 1

Zφ(t) ∂
2
σ̌Ǔ(t, σ̌)]4

+ (10.17)

+ 2 1
π
dγ h

2(t)
[

− 2h2(t) σ̌2 k3 1
β

∞∑
n=−∞

1
[(νn + iµ)2 + k2 + h2(t) σ̌2]4 +
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+ 1
4 k

1
β

∞∑
n=−∞

1
[(νn + iµ)2 + k2 + h2(t) σ̌2]2

]
.

∂th(t) = − 2 1
π

1
N

1
Zφ(t) h

3(t) k3 Re
([

1 − ηφ(t)
3

]
× (10.18)

× 1
β

∞∑
n=−∞

1[
ω2
n + k2 + 1

Zφ(t) ∂
2
σ̌Ǔ(t, σ̌)

]2 1
(νn + iµ)2 + k2 + h2(t) σ̌2 +

+ 1
β

∞∑
n=−∞

1
ω2
n + k2 + 1

Zφ(t) ∂
2
σ̌Ǔ(t, σ̌)

1[
(νn + iµ)2 + k2 + h2(t) σ̌2

]2
)
.

where we refrained from listing the trivial flow equation for Zψ(t). Still, the latter two equations
need to be evaluated at a specific σ̌, which turns them into ODEs. Oftentimes this truncation and
system of FRG flow equations is denoted as local potential approximation prime (LPA′), which
can be seen as the first correction to the famous LPA truncation. However, sometimes LPA and
LPA′ are also used for truncations that include field-dependent Yukawa couplings, since these still
exclusively comprise local-non-derivative interaction terms, see, e.g., Refs. [66, 35, 72, 565, 101,
276] for details.

In total, one simply ends up with a single PDE and two coupled ODEs. Next, one proceeds
analogously to what is done in Section 5.1: One takes another derivative of Eq. (10.16) w.r.t. σ̌
and defines

ǔ(t, σ̌) ≡ ∂σ̌Ǔ(t, σ̌) . (10.19)

The resulting equation has conservative form

∂tǔ(t, σ̌) = d
dσ̌ Q

[
t, ∂σ̌ǔ(t, σ̌), Zφ(t), ∂tZφ(t), h(t)

]
+ S

[
t, σ̌, Zφ(t), h(t)

]
, (10.20)

whereQ is a diffusion flux and S a source term. (If our QFT also involves Nambu-Goldstone modes,
these enter the flow equation in terms of an advection term.) On this level the interpretation of
the RG time t ∈ [0,∞), cf. Eq. (D.1), as a temporal variable and σ̌ ∈ (−∞,∞) as the spatial
domain is rather natural, if the “conserved quantity” ǔ(t, σ̌) is viewed as some abstract fluid field
that moves in field space.

The boson loop – diffusion in field space

First, we turn to the bosonic contribution to the flow equation. If we use the formula (B.13) for
the Matsubara sum the diffusion flux explicitly reads

Q
[
t, ∂σ̌ǔ(t, σ̌), Zφ(t), ∂tZφ(t), h(t)

]
= − 1

π

[
1 − ηφ(t)

3

]
1
N

k3(t)
2Eφ

[
1 + 2nb

(Eφ
T

)]
, (10.21)

where the bosonic “energy”

E2
φ ≡ k2(t) + 1

Zφ(t) ∂σ̌ǔ(t, σ̌) , (10.22)

is introduced for the sake of readability.
The interpretation of Q in Eq. (10.20) as a diffusion flux becomes apparent by performing the
field-space derivative in Eq. (10.20),

d
dσ̌ Q

[
t, ∂σ̌ǔ(t, σ̌), Zφ(t), ∂tZφ(t), h(t)

]
= (10.23)

=D
[
t, ∂σ̌ǔ(t, σ̌), Zφ(t), ∂tZφ(t), h(t)

]
∂2
σ̌u(t, σ̌) .
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In the absence of the source term S the RG flow equation for the effective local bosonic potential
has turned into a heat equation with a highly non-linear diffusion coefficient D.
Interestingly, there are some direct consequences of this reformulation of the RG flow equation.
As discussed in detail in Section 5.1.3, the reinterpretation of the bosonic contribution to the RG
flow in terms of highly non-linear diffusion in field space shows the irreversible character of the RG.
Because diffusion is a dissipative process, the bosonic term clearly introduces a “thermodynamic
arrow of time” [170] into the RG flow. In total this may be interpreted as a realization of Kadanoff’s
irreversible block-spin transformations [185] and the impossibility of integrating backwards in RG
time, thus to smaller scales and higher energies, cf. Refs. [161, 285, 99]. Furthermore, from this we
also expect that it might be possible to identify a quantity, which can be interpreted as an entropy
function for the PDE and RG flow, similarly to Section 5.1.4. However, as discussed in this context
the presence of sink/source terms violates properties like TVD/TVNI, which is usually needed for
the definition of monotonically increasing/decreasing (global) functionals for a PDE.
Another immediate consequence is that the interpretation of the flow equation in terms of a
(non-linear) heat equation strongly restricts the particular (numeric) values that can be taken
by the factors that enter the diffusion flux, respectively the diffusion coefficient. Actual diffusion
equations require manifestly positive diffusion coefficients, here D, to ensure existence of a (weak)
solution and stable convergence against this solution while solving the PDE [168].

The fermion loop – source-sink terms in field space

Second, we present the sink-source term, which contributes to the PDE (10.20). In LPA′ truncation
without field dependences of the Yukawa coupling and wave-function renormalizations, the fermion
loop enters the RG flow of the effective local bosonic potential in terms of a sink-source term in
field space, which is (RG-)time and (field-space-)position dependent, i.e.,

S
[
t, σ̌, Zφ(t), h(t)

]
= d

dσ̌

(
1
π
dγ

k3(t)
2Eψ

[
1 − nf

(Eψ+µ
T

)
− nf

(Eψ−µ
T

)])
, (10.24)

where we also defined the fermionic “energy” for the sake of readability,

E2
ψ ≡ k2(t) + h2(t) σ̌2 , (10.25)

and used Eq. (B.15) for the evaluation of the Matsubara sum. Note that this term does not
depend on the fluid field u(t, σ̌) itself. As a direct consequence, the fermion contribution to the
RG flow is basically independent of the evolution of the effective potential itself – at least in the
LPA truncation, where the indirect back-reaction of the potential via the Yukawa coupling und
bosonic wave-function renormalization is artificially suppressed.
It is also interesting that the source term (10.24) is on a formal level a classical potential of a
conservative (external) force field, which acts on the fluid, e.g., like a Newtonian gravitational
potential [105].
If the σ̌ derivative in Eq. (10.24) is evaluated, one finds a positive contribution to the RG flow for
σ̌ < 0 – a source – and a negative contribution for σ̌ > 0 – a sink – for µ = 0. For non-zero µ the
situation is more involved and the term no longer strictly positive or negative definite. Especially
for small or zero temperatures the chemical potential introduces additional sinks and sources in
terms of “moving spikes” into the problem, which are superimposed on the structure with opposite
sign. This is discussed within the next paragraphs and interpreted as a kind of shock wave in field
space.

(Computational) boundary conditions in field-space

If and only if there are well-defined initial and boundary conditions for a PDE the actual problem
of solving the PDE is well-posed. As discussed in detail in Section 5.2.3 the problem at hand
presents a pure initial-value problem on R, because the domain of the RG flow equation for u(t, σ̌)
is σ̌ ∈ (−∞,∞). Hence, formally, there are no boundary conditions required and the problem
is fully defined via (the derivative of) the UV initial condition (10.2). However, for a numerical
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treatment, we explained in detail that it is sensible to deploy the Z2 symmetry and introduce
an artificial reflective boundary condition for the derivative of the effective potential via its anti-
symmetry,

u(t, σ̌) = −u(t, σ̌) , (10.26)

to restrict the problem to σ̌ ∈ [0,∞). Furthermore, it is necessary to restrict this infinite domain
to a finite computational domain by introducing another artificial boundary condition at some
σ̌max via some extrapolation.
For details we refer to Section 5.2.3 and Ref. [1, Sec. IV D].

The chemical potential as a “shock wave” in field space

Analyzing the RG flow equation of the derivative of the effective potential in terms of a non-linear
diffusion equation with sink-source terms also allows for a better formal understanding of the role
of the chemical potential on the level of the PDE. Within the next lines, we argue that the chemical
potential presents a kind of external shock wave that enters the problem at a certain (RG-)time
and (field-space-)position. This is particularly relevant for very small or zero temperatures, which
is why we exemplify the effect for T = 0 and T = 0.01. Furthermore, we start our discussion
by ignoring the diffusive contribution to the RG flow of the effective potential (the boson loop),
because µ primarily enters the dynamics via the fermionic sink-source term.6

δ-peaks in the fermionic source-sink term We begin by plotting the sink-source term (10.24)
for different values of µ, each at several RG scales k, in Fig. 10.1 for T = 0 and T = 0.01. The RG
scales are chosen to be approximately near the model scales, which are set by the dimensionful
Yukawa coupling, that was fixed to h = 1. In order to make sense of this plot and the underlying
dynamics, we focus on the T = 0 case7, where according to Eq. (B.16) the source term reads,

S
[
t, σ̌, Zφ(t), h(t)

]
= d

dσ̌

(
1
π
dγ

k3(t)
2Eψ Θ

(
Eψ
|µ| − 1

))
. (10.27)

As expected, one clearly finds that the chemical potential does not enter the dynamics as long as
E2
ψ ≥ µ2, where the flow is identical to the µ = 0 scenario. However, at E2

ψ ≈ µ2 the chemical
potential becomes relevant as can be seen by inspecting the Heaviside function in Eq. (10.27). The
relevant inequality therefore is

E2
ψ

(10.25)= k2 + h2σ̌2 ≲ µ2 . (10.28)

The first time this inequality is fulfilled is at k ≈ 0.5 and k ≈ 1.0 for the middle and lower panel
of Fig. 10.1 at σ̌ ≈ 0. Further lowering k implies that also larger |σ̌| are affected by µ. The
largest value of σ̌ that is ever directly affected by µ is therefore at h2σ̌2 ≈ µ2, for t → ∞ and
k(t) → 0 in the deep IR. We conclude that the information about the presence of the chemical
potential propagates from σ̌ = 0 to large |σ̌|. The associated peaks in the plot are located at
σ̌ ± 1

h

√
µ2 − k2(t) for µ2 > k2(t).

The reason why µ shows up in terms of peaks in the sink-source term is rather obvious from
the structure of Eq. (10.27), where the σ̌-derivative hits the Heaviside Θ-function and thereby
produces a δ-peak, which is smeared out for T ̸= 0.

The informed reader might wonder why this spectacular effect was never discussed this way before.
The reason could be the following: As long as bosonic fluctuations are completely suppressed by
the N → ∞ limit, there is

6Within this discussion we ignore that the chemical potential also contributes via the flow equations of the
Yukawa coupling and bosonic wave-function renormalization, because this is expected to be a sub-leading effect as
long as h(t) and Zφ(t) are field-independent.

7The approximate signs within this discussion hold for small non-zero temperatures and become exact for T = 0.
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Figure 10.1: Source-sink term of Eq. (10.24) with Yukawa coupling h = 1 at zero (solid lines)
and small temperature T = 0.01 (dashed lines) at various RG scales k (close and below the model
scales) between k = 1.25 in blue and k = 0 in red at µ = 0 (upper panel), µ = 0.5 (middle panel),
and µ = 1.0 (lower panel). From Ref. [4, Fig. 1].

1. no reason to work on the level of the derivative of the effective potential.

2. all points in field space decouple and the RG flow can be solved independently for each σ̌,
which is rather natural, if the fermion-loop contribution is identified as a local source term
in field space.

Together this means that the chemical potential indeed shows up in terms of cusps in the local
bosonic potential, due to the Heaviside Θ-functions, though without having any further conse-
quences for mean-field calculations.

The interplay with bosonic fluctuations This is different as soon as bosonic fluctuations
are taken into account. Here, as we have just learned, the boson loop introduces a non-linear
diffusion and couples points in field space. In the vicinity of jumps or cusps gradients are large,
which implies huge diffusive dynamics.8 In fact, a cusp in u(t, σ̌) leads to a jump in ∂σ̌u(t, σ̌),
which however has drastic consequences for the stability of the PDE. This is understood easily
by inspecting the bosonic energy (10.22). For the sake of simplicity, we assume Zφ(t) = 1, which

8The highly non-linear structure of the diffusion flux (10.21) also leads to a non-linear diffusion, which is indeed
driven by the gradients of u(t, σ̌), but strongly depends on the interplay of the single contributions in Eq. (10.21).
Therefore it can even enhance cusps and gradients in contrast to an ordinary heat equation.
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corresponds to the LPA truncation, i.e.,

E2
φ = k2(t) + ∂σ̌ǔ(t, σ̌) . (10.29)

As just said, the chemical potential starts entering the dynamics of the RG flow if µ2 ≈ k2 in terms
of δ-distributions in the source term, which lead to jumps/cusps in u(t, σ̌). These lead to jumps in
∂σ̌u(t, σ̌) with negative sign, as can be seen from the sign of the source terms in Fig. 10.1. In total,
this results in a negative bosonic energy (10.29) at k2 ≈ µ2 for certain points σ̌ in field space.
This should not be allowed by construction, because the poles of the Euclidean propagators should
never be overshot during the RG flow. Here, however, the chemical potential enters the dynamics
in terms of an external “shock”, which cannot be cushioned smoothly by the PDE, such that the
PDE turns ill-conditioned. This is also experienced in numerical computations, see Chapter 12,
and as discussed later on, we do not believe that including the dynamics of the scale-dependent
Yukawa coupling and wave-function renormalization help much, as long as their field dependences
are ignored.
Of course, this effect is only strictly present for the T → 0 limit of the flow equation, because
already very small T ̸= 0 leads to a smearing of the δ-peaks in the source term and smearing
of cusps and jumps in the effective potential and its derivatives. Nevertheless, the smaller T the
harder it gets to resolve this dynamics numerically.
The two questions which are immediately arising from this analysis are the following:

1. Why was this effect not discussed before in the context of FRG calculations in the LPA
approximation of fermion-boson systems at (non-)zero T and non-zero µ in structurally
similar systems like the QMM?

2. Where does this effect come from and is it curable?

A possible explanation why this problem was not described before in numerous FRG model studies
at non-zero chemical potential might be that calculations were usually performed on the level of the
effective potential itself, where this effect is only visible in terms of (smeared) cusps. Furthermore,
on top of this, the effective potential was usually discretized in field space via numerical methods
which rely on smoothness or even analyticity, see references in Section 1.2.2. In order to make them
work at all in the vicinity of possible non-analytic dynamics, oftentimes an extremely low resolution
in terms of a little number of grid points or expansion coefficients was chosen. In consequence,
details of the potentials were washed out and buried under low resolution. Furthermore, we have
the impression that this also led authors to stop RG flows at rather large IR cutoffs and avoid
computations at really low temperatures and non-zero chemical potentials, due to instabilities.
However, even if one chooses a decent discretization scheme, which is in general capable of resolving
discontinuities of all kinds, the problem is still present, because it is manifest to the PDE. We are
not sure how this problem can be resolved ultimately, but we believe that it will be a combination
of improvements of the regulators and truncation. We come back to this discussion in Section 12.4.

Numerical implementation

For all details of the numerical implementation of the PDE for the effective potential we refer the
reader to Section 5.2 of this thesis and Refs. [4, Sec. IV E] and [1, Sec. IV B-D], which shall not
be repeated here.

10.3.2. The N → ∞ limit – suppression of diffusion and decoupling in
field space

As a last point, before we turn to the explicit calculations in different approximations, let us
formally study what happens to the PDE-ODE system (10.16) to (10.18) in the N → ∞ limit
from the field-theoretical and fluid-dynamical perspective.
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Due to the 1
N -rescaling from Eq. (10.7) we find that all contributions to the RG flow equations

which involve internal boson lines are accompanied by prefactors of 1
N . Hence, taking the N → ∞

limit is straightforward and we end up with,

∂tǓ(t, σ̌) = 1
π
dγ k

3 1
β

∞∑
n=−∞

1
(νn + iµ)2 + k2 + h2(t) σ̌2 , (10.30)

∂tZφ(t) = 2 1
π
dγ h

2(t)
[

− 2h2(t) σ̌2 k3 1
β

∞∑
n=−∞

1
[(νn + iµ)2 + k2 + h2(t) σ̌2]4 +

+ 1
4 k

1
β

∞∑
n=−∞

1
[(νn + iµ)2 + k2 + h2(t) σ̌2]2

]
.

∂th(t) = 0 . (10.31)

As a first result, we observe that the bare Yukawa coupling is no longer evolving with RG time and
keeps its UV initial value. The renormalized Yukawa hr coupling is still trivially running, if Zφ
changes with RG time, due to Def. (10.5). The same would have happened in a truncation with
a field-dependent Yukawa coupling, see Eq. (10.12). As a direct consequence, one can simply use
the value of the Yukawa coupling in the UV as a reference scale of dimension energy and express
all other dimensionful quantities in terms of the Yukawa coupling. This effectively corresponds
to absorbing the Yukawa coupling in the background field and working with a dimensionful back-
ground field configuration, as is usually done in MF calculations, cf. references in Section 7.3. For
the moment, however, we keep the Yukawa coupling explicit but drop its RG-time dependence.
Furthermore, we find that the remaining flow equations for the effective potential and the wave-
function renormalization decouple. On top of that, the PDE for Ǔ(t, σ̌) reduces to an ODE for
each σ̌, because Ǔ(t, σ̌) and its field-space derivatives no longer appear on the r.h.s. of the equation.
Hence, the flow equations for the effective potential and the bosonic wave-function renormalization,
i.e.,

∂tǓ(t, σ̌) = 1
π
dγ k

3 1
β

∞∑
n=−∞

1
(νn + iµ)2 + k2 + h2 σ̌2 , (10.32)

∂tZφ(t) = 2 1
π
dγ h

2
[

− 2h2 σ̌2 k3 1
β

∞∑
n=−∞

1
[(νn + iµ)2 + k2 + h2 σ̌2]4 + (10.33)

+ 1
4 k

1
β

∞∑
n=−∞

1
[(νn + iµ)2 + k2 + h2 σ̌2]2

]
,

can be simply integrated separately, which is done in the next Chapter 11.
From the fluid-dynamical perspective the N → ∞ limit completely suppresses the diffusion. This
is analogous to what was found for the N → ∞ limit of the zero-dimensional O(N) model in
Sections 5.1.5 and 6.8, where N → ∞ also suppresses the diffusion in the fluid-dynamical picture.
In contrast to the O(N) model, where we remain with purely advective contributions from the
pion modes, the GNY model does not include pions. Here, we end up with the contribution of
the fermion loop, thus exclusively source-sink terms. Now, from this point of view the decoupling
in field space is rather natural: The “fluid” is simply too viscous to move, but some fluid is
added/removed locally. Already at this point it is obvious that this approximation will spoil
fundamental properties of the system, similar to what was found and discussed in Section 6.8.
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Chapter 11

The Gross-Neveu(-Yukawa) model
at infinite N

Abstract We discuss the phenomenology of the bosonized Gross-Neveu (bGN) model at N →
∞. We start with the integration and renormalization of the flow equation of the effective bosonic
potential. From this, the phase structure under the assumption of spatially homogeneous conden-
sation is calculated. In addition, we present various thermodynamic quantities as functions of µ
and T .
In the second half of the chapter we turn to the bosonic momentum structure of the theory which
is generated from the fermion fluctuations. The starting point is an analysis of the bosonic wave-
function renormalization in the µ-T -plane which indicates the instability of spatially homogeneous
condensation in some regions of the phase diagram. Because an analysis of the wave-function
renormalization is inconclusive, we turn to the full momentum structure of the bosonic two-point
function, to study the stability of the spatially homogeneous ground state. In particular, we
compare the predictions from this analysis with the true ground state of the N → ∞ bGN model,
which comprises spatially inhomogeneous condensation, and benchmark the predictive power of
the stability analysis.
All results of this section are also discussed w.r.t. their implications on calculations at finite N .

Disclosure Many the results in this chapter are well-known and can be found elsewhere. Explicit
references are provided in the text.
The new part of this work is mainly the second part, which comprises detailed tests of the well-
known concept of a stability analysis based on the bosonic two-point function. In particular, the
explicit results for the bosonic two-point function and wave-function renormalization were not
presented to this extent before.
Most of the explicit calculations, results, and plots in this chapter are based on our own publica-
tions [4, 5]. Ref. [5] in turn is based on preliminary results and notes by S. Rechenberger [566,
567].

11.1. Overview
In this chapter we turn to explicit solutions of the RG flow equations of the GNY model. Even
though we are in general interested in the phenomenology and thermodynamics of the GN model
at finite N we entirely focus on the N → ∞ approximation throughout this chapter. The reason
for this is manifold.
First, we show that we recover well-known results for the GN model in the infinite-N limit also from
the FRG formalism. We take this opportunity to visualize several (thermodynamic) quantities
which were in parts also calculated before, but – to the best of our knowledge – not presented
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together. Later on, some of these results also serve as limiting tests for our numerical setup,
which is used for calculations at finite N . In addition, we use the N → ∞ calculations to
construct the correct UV initial values for the four-fermion coupling and subsequently the UV
potential, see Eq. (10.2), which is required to achieve RG consistency and compare calculations at
infinite and finite N by starting with a unique UV theory. Despite better knowledge, we generally
assume spatially homogeneous condensation and use constant background field configurations for
calculations at any µ and T . The reason underlying this approximation is outlined in Section 10.2.3.
Notwithstanding this restriction, we can still get deeper insight into regions of the phase diagram,
where this assumption is known to be wrong. To this end, we use the second part of this chapter
to focus on the momentum structure of the theory.
Specifically, we first analyze the bosonic wave-function renormalization as an indicator for the
instability of spatially homogeneous ground states. With the help of this we scan the µ-T plane
and identify regions of negative wave-function renormalization.
We discuss why this analysis is inconclusive and turn to the full momentum structure of the bosonic
two-point function. Via a so-called stability analysis of the spatially homogeneous ground state we
show that we can recover the established second-order PT between a Z2-symmetric phase at high
temperature and a phase of spatially inhomogeneous condensation at small/moderate T and large
µ, which is the true ground state at N → ∞ there. This can be seen as a proof of concept study,
which validates the general applicability of this method for the detection of crystalline ground
states by simply investigating the stability of a symmetric phase. Furthermore, we compare the
details of the momentum structure of the two-point function to the dominating wave vector of the
respective true ground state in the inhomogeneous phase.
Thirdly, we draw direct conclusions from the momentum structure of the two-point function at
N → ∞ for the construction of decent truncations of FRG calculations at finite N . Later on
this helps in understanding the results of the subsequent chapter and points towards further
improvements of FRG truncations in upcoming works.

11.2. Spatially homogeneous condensation

We start by focusing on the solution of the flow equation for the effective bosonic potential at
N → ∞ and ignore the flow equation for the bosonic wave-function renormalization and the
momentum structure of the theory for the moment. After adjusting our notation for the sake
of readability, we integrate the ODE for the effective potential and present the renormalization
procedure. As a byproduct we obtain the UV-cutoff dependence of the UV potential, which we
later on need for the RG flows at finite N . After the derivation of a formula for the renormalized
IR potential at any µ and T , we extract all kind of information about the phase diagram and
thermodynamic observables from this result.

11.2.1. Conventions

For the sake of readability the conventions of this chapter are adjusted as follows:

1. We exclusively work with 1
N -rescaled quantities, see Eq. (10.7). Therefore, we can suppress

explicit indication of N and replace σ̌ → σ and Ǔ(t, σ̌) → U(t, σ).

2. The only energies which appear in this chapter are the fermionic energies (10.25). Hence,
we simply use Eψ 7→ E =

√
k2 + h2σ2.

3. Within this chapter we exclusively use the RG scale k instead of the RG time t as argument
of RG-time-/scale-dependent quantities. Both are related by Eq. (D.1).
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Using these conventions Eqs. (10.32) and (10.33) turn into

∂kU(k, σ) = − dγ
π
k2 1

β

∞∑
n=−∞

1
(νn + iµ)2 + E2 , (11.1)

∂kZφ(k) = dγ
2π h

2
[

1
β

∞∑
n=−∞

8h2σ2 k2

[(νn + iµ)2 + E2]4 − 1
β

∞∑
n=−∞

1
[(νn + iµ)2 + E2]2

]
. (11.2)

11.2.2. Integrating the flow equation of the effective potential
We start by analyzing the flow equation (11.1). Before we actually perform the k-integration, we
perform the Matsubara sum,

∂kU(k, σ) = − dγ
π
k2 1

β

∞∑
n=−∞

1
(νn + iµ)2 + E2

(B.15)= (11.3)

= − dγ
π
k2 1

2E
[
1 − nf

(
E+µ
T

)
− nf

(
E−µ
T

)]
.

The result in terms of Fermi-Dirac distributions (B.2) or tanh-functions is characteristic for the
FRG formalism using dimensionally reduced spatial Litim regulators. Similar results can be found
for example in Refs. [245, 66, 568, 569] (for higher dimensional systems).
Next, we perform the RG-scale integration by hand due to the separation and decoupling in field
space, which was discussed in Section 10.3.2. Integrating from some large UV (cutoff) scale k = Λ
to the IR, thus k = 0, we formally find

U(k = 0, σ) =U(Λ, σ) + dγ
π

∫ Λ

0
dk k2

2E
[
1 − nf

(
E+µ
T

)
− nf

(
E−µ
T

)]
, (11.4)

where U(k = 0, σ) is the physical IR potential and U(Λ, σ) is the UV potential, which is defined
according to Eq. (10.2),

U(Λ, σ) = 1
2g2 h

2σ2 . (11.5)

Note that this result looks slightly different than what is usually obtained in “standard” MF
calculations, e.g., by studying the N → ∞ limit in the path-integral formalism, see references in
Section 7.3. Both results are simply related by an integration by parts and a surface term,

U(k = 0, σ) =U(Λ, σ) +
[
dγ
2π k

[
E + T ln

(
1 + e−E+µ

T

)
+ T ln

(
1 + e−E−µ

T

)]]Λ

0
(11.6)

+ dγ
π

∫ Λ

0
dk
[
E + T ln

(
1 + e−E+µ

T

)
+ T ln

(
1 + e−E−µ

T

)]
.

The additional surface term is field-dependent and therefore enters the solution of the vacuum gap
equation (see below), which makes the FRG formalism different from conventional MF calcula-
tions, e.g., in sharp-cutoff regularization. The reason behind is that flat Litim-type regulators and
sharp-cutoff regulators result in slightly different RG flow equations [244, 352, 166]. In order to
recover the standard result for the gap equation with sharp-cutoff regularization, we would have
to use the FRG analogue of this regularization scheme.

However, in a renormalizable QFT the IR is unique after renormalization and independent of the
actual regularization procedure (as long as fundamental properties of the theory are not violated
by the regulator). Hence, our next question simply is how we have to choose 1

g2 as a function of
Λ such that U(k = 0, σ) is unique and does not depend on the actual choice of Λ – as long as Λ
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is significantly greater than all other dimensionful quantities like h, µ, and T . If Λ independence,
thus RG consistency, is achieved, we can simply send Λ → ∞ and remove the artificial cutoff from
the system – at least in the N → ∞ calculations, where “pen and paper integration” is possible.
Inspecting the first µ- and T -independent contribution to the integral, which is UV divergent, this
implies that 1

g2 has to diverge in exactly the same way.

11.2.3. The gap equation and renormalization of the effective potential
Before we start our discussion, let us introduce another change in conventions and replace

U(k = 0, σ) → U(σ, µ, T ) . (11.7)

In this chapter the IR is always exactly at k = 0 and we do not have to artificially stop a numerical
integration at some IR cutoff kIR. In consequence, it is not required to indicate k = 0 all the time.
However, it will simplify the discussion to explicitly indicate if we are working at vanishing or
arbitrary temperature and/or chemical potential.

Let us turn to the actual renormalization procedure. We choose to perform the renormalization
in vacuum at µ = T = 0, where Eq. (11.4) reduces to

U(σ, 0, 0) = 1
2g2 h

2σ2 + dγ
2π

∫ Λ

0
dk k2

√
k2 + h2σ2

= (11.8)

= 1
2g2 h

2σ2 + dγ
4π

[
Λ2
√

1 + h2σ2

Λ2 − h2σ2 artanh
([

1 + h2σ2

Λ2

]− 1
2
)]

.

The medium contributions (the Fermi-Dirac distributions) are UV-finite anyhow.
From our earlier discussion in Chapter 9 we expect that there is condensation, i.e., non-trivial
minima in the effective potential, at small µ and T and especially in vacuum. Fixing these minima
at the dimensionless values σ = ±σ0 and expressing all dimensionful quantities in units of the
UV Yukawa coupling h, we can construct the appropriate Λ dependence and therefore divergence
structure of 1

g2 .

The vacuum gap equation

Considering the extremum condition

0 = ∂σU(σ, 0, 0)
∣∣
σ=σ0

(11.8)= (11.9)

=h2σ0

(
1
g2 + dγ

2π

[(
1 + h2σ2

0
Λ2

)− 1
2 − artanh

([
1 + h2σ2

0
Λ2

]− 1
2
)])

under the assumption that there are two non-trivial minima ±σ0 ̸= 0, we can discard the σ0 = 0
solution as a maximum and find for Λ ≫ hσ0,

1
g2 = dγ

2π

[
−
(

1 + h2σ2
0

Λ2

)− 1
2 + artanh

([
1 + h2σ2

0
Λ2

]− 1
2
)]

= (11.10)

= dγ
2π

[
− 1 + 1

2 ln
(

4Λ2

h2σ2
0

)]
+ O

(
h2σ2

0
Λ2

)
. (11.11)

The explicit crosscheck that ±σ0 are indeed minima is presented below, when we plot the effective
potential and present the curvature mass (the second field-space derivative of the potential at the
minimum).
In any case, some comments are in order:
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1. The asymptotic behavior of Eq. (11.11) for large Λ exactly matches the logarithmic diver-
gence of the inverse four-fermion coupling in the purely fermionic framework, see Eq. (9.15).
However, here, hσ0 serves as the effective IR cutoff and reference scale, which was not avail-
able in the vacuum calculation without bosonic degrees of freedom and had to be mimicked
by an IR cutoff kIR in Section 9.3.4. The additional “−1” term in Eq. (11.11) stems from the
different regularization prescriptions. In any case, the result again indicates the asymptotic
freedom of the GN model in its bosonized version [158, 19, 422, 177],

lim
Λ
hσ0

→∞
g2 = 0 . (11.12)

2. Formally, we can solve Eq. (11.11) for the minima, i.e.,

σ0 = ± 2Λ
h e−

(
2π
dγg2 +1

)
. (11.13)

Thus, the formation of the two non-trivial minima and Z2-symmetry breaking is directly
linked to the asymptotically free behavior and can be seen as a realization of dimensional
transmutation [158, 466, 464, 463, 465], where a dimensionful IR theory emerges from a
scale-invariant UV theory.

3. Inserting the result (11.10) into Eq. (11.5) by eliminating the four-fermion coupling, we
obtain the explicit Λ dependence of the UV potential in units of the vacuum fermion mass
hσ0,

U(Λ, σ) = dγ
4π h

2σ2
[

−
(

1 + h2σ2
0

Λ2

)− 1
2 + artanh

([
1 + h2σ2

0
Λ2

]− 1
2
)]

. (11.14)

On the level of the bosonic effective potential asymptotic freedom is realized in terms of a
decoupling of bosonic modes from the system. For Λ

hσ0
→ ∞ the effective potential solely

comprises the bosonic mass term, which logarithmically diverges, such that the bosons get
ultra-massive and vanish as dynamical degrees of freedom. Hence, we are left with a theory
of (asymptotically) free fermions.
In the next chapter, we discuss that Eq. (11.14) can also be used as the UV initial condition
for FRG flows at finite N .

The renormalized effective potential and its derivatives

Now we are prepared for the renormalization procedure. Inserting the UV potential Eq. (11.14)
into the vacuum IR potential (11.8), one finds

U(σ, 0, 0) = dγ
4π

(
Λ2
√

1 + h2σ2

Λ2 + h2σ2
[

−
(

1 + h2σ2
0

Λ2

)− 1
2 + (11.15)

+ artanh
([

1 + h2σ2
0

Λ2

]− 1
2
)

− artanh
([

1 + h2σ2

Λ2

]− 1
2
)])

.

It is straightforward to crosscheck that 0 = ∂σU(σ, 0, 0)|σ=±σ0 . Furthermore, even for finite Λ we
find

∂2
σU(σ, 0, 0)

∣∣
σ=±σ0

= dγ
2π

Λ3

(Λ2 + h2σ2
0) 3

2
h2 . (11.16)

This confirms that the curvature mass is manifestly positive, such that ±σ0 are indeed minima.
Ultimately removing the UV cutoff from the theory by sending Λ

hσ0
→ ∞ results in the famous

renormalized vacuum IR potential [158, 466, 464, 463, 465]

U(σ, 0, 0) = dγ
8π h

2σ2
[

ln
(
h2σ2

h2σ2
0

)
− 1
]

− dγ
4π Λ2 + O

(
h2σ2

Λ2

)
, (11.17)
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with curvature mass

m2
σ = dγ

2π h
2 (11.18)

at its minima. The infinite constant ∝ Λ2 is unobservable and can be ignored in the following.
Similar to the calculation in vacuum, we can derive the renormalized potential for any µ and T ,

U(σ, µ, T ) = (11.19)

=U(σ, 0, 0) − dγ
π

∫ ∞

0
dk k2

2E
[
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)] (11.17)= (11.20)

= dγ
4π

(
1
2 h

2σ2
[

ln
(
h2σ2

h2σ2
0

)
− 1
]

−
∫ ∞

−∞
dk k2

E

[
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)])
.

Using integration by parts for the thermal contribution we recover the standard form of the
renormalized effective potential of the GN model in the N → ∞ limit [466, 465, 458, 457, 327,
460],

U(σ, µ, T ) = (11.21)

= dγ
4π

[
1
2 (hσ)2

[
ln
(

(hσ)2

(hσ0)2

)
− 1
]

−
∫ ∞

−∞
dp
[
T ln

(
1 + e−E+µ

T

)
+ T ln

(
1 + e−E−µ

T

)]]
.

For later use, we also present the first and the second field-space derivative of this results,

∂σU(σ, µ, T ) = (11.22)

= dγ
4π h

2σ

[
ln
(

(hσ)2

(hσ0)2

)
+
∫ ∞

−∞
dp 1

E

[
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)]] (B.2)=

= dγ
4π h

2σ

[
ln
(

(hσ)2

(hσ0)2

)
+
∫ ∞

−∞
dp 1

E

[
1 − 1

2 tanh
(
E+µ
2T
)

− 1
2 tanh

(
E−µ
2T
)]]

,

and

∂2
σU(σ, µ, T ) = (11.23)

= dγ
4π h

2
[

ln
(

(hσ)2

(hσ0)2

)
+ 2 +

∫ ∞

−∞
dp 1

E

[
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)]
−

− (hσ)2
∫ ∞

−∞
dp 1

E3

(
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)
−

− E
T

[
n2

f
(
E+µ
T

)
+ n2

f
(
E−µ
T

)
− nf

(
E+µ
T

)
− nf

(
E−µ
T

)])] (B.4),(B.2)=

= dγ
4π h

2
[

ln
(

(hσ)2

(hσ0)2

)
+ 2 +

∫ ∞

−∞
dp 1

E

[
1 − 1

2 tanh
(
E+µ
2T
)

− 1
2 tanh

(
E−µ
2T
)]

−

− (hσ)2
∫ ∞

−∞
dp 1

E3

(
1 − 1

2 tanh
(
E+µ
2T
)

− 1
2 tanh

(
E−µ
2T
)

+
E

2T
2 cosh2(E+µ

2T )
+

E
2T

2 cosh2(E−µ
2T )

)]
.
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Table 11.1: Equation numbers of the explicit expressions for the effective potential and its deriva-
tive in Appendices F.1.1 and F.1.2.

(a) For U(σ, µ, T ).

T µ σ Eq.

̸= 0
̸= 0 ̸= 0 (11.21)

= 0 (F.8)

= 0 ̸= 0 (F.9)
= 0 (F.10)

= 0
̸= 0 ̸= 0 (F.11)

= 0 (F.12)

= 0 ̸= 0 (F.13)
= 0 (F.14)

(b) For ∂σU(σ, µ, T ).

T µ σ Eq.

̸= 0
̸= 0 ̸= 0 (11.22)

= 0 (F.16)

= 0 ̸= 0 (F.17)
= 0 (F.18)

= 0
̸= 0 ̸= 0 (F.19)

= 0 (F.20)

= 0 ̸= 0 (F.21)
= 0 (F.22)

Of course, we could try to use these forumlae to directly study the minimum structure of Eq. (11.21)
depending on µ and T numerically. However, for some positions in field space, i.e., σ = 0, and/or
when µ and/or T vanish, the remaining momentum integral of the thermal contribution can either
be simplified drastically or additional IR divergences need to be handled carefully. Doing this by
hand in advance via a distinction of cases is advisable to avoid numerical instabilities or spurious
cancellations. To this end, we prepared Appendices F.1.1 and F.1.2, where we present explicit
calculations. The resulting formulae for Eqs. (11.21) and (11.22) for specific choices of µ, T , and
σ are referenced in Table 11.1. For the second field-space derivative we do not provide an extra
appendix, because explicit formulae for specific choices of µ, T , and σ can be extracted from the
zero-momentum limit of the bosonic two-point function, which is studied below in Section 11.3.2
with corresponding Appendix F.1.3. The corresponding formulae are referenced in the last column
of Table 11.3b.

11.2.4. The phase diagram
Next, we turn to the explicit calculation of the phase diagram and some thermodynamic quantities
– still under the assumption of homogeneous condensation by ignoring the momentum structure.

General phase structure

The first result which comprises the general phase structure as well as some additional important
points and curves is presented in Fig. 11.1, which is identical to Refs. [458, Fig. 4] and [461, Fig. 1],
but based on our own data. Within the next paragraphs, we briefly summarize on a technical level
how the information for the plot was generated from the previously derived formulae. For a more
qualitative discussion, we refer to Section 7.3 or the corresponding references in this section.

The condensate The general location of the first- and second-order PT line is calculated by
numerically searching for the global minima of Eq. (11.21) by numerically evaluating the formulae
listed in Table 11.1a.1 This can for example be done via a bisection in field space for each µ and T .
Non-trivial global minima at ±σmin(µ, T ) ̸= 0 correspond to the phase at small |µ| and T where
the Z2 symmetry is broken by the ground state, while a trivial global minimum σmin(µ, T ) = 0
belongs to the symmetric phase at large |µ| and T . The position of the global minimum of the
potential, which is identical to the vacuum expectation value – the condensate, is plotted as a
function of µ and T in terms of a heat map in Fig. 11.2a. The jump of the minimum at the
first-order PT and the steady melting at the second-order PT are clearly visible. For a similar

1The CP and the endpoint of the first-order PT can be calculated analytically. The latter can be determined
from the formulae referenced in Table 11.1 to be (µ = 1/

√
2, T = 0).
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Figure 11.1: The phase diagram of the GN model in the infinite-N limit. The red and blue lines
correspond to α2 = 0 and α4 = 0. The red and green dotted lines are the spinodal lines. The green
solid line is the first-order PT and goes over to the red dashed line, which marks the second-order
PT. The critical point (CP) is marked by the red star. From Ref. [4, Fig. 2].

plot see for example Ref. [526, Fig. 1.1]. The exact location of the PT lines was determined using
an AMR algorithm in the µ-T -plane, which is explained below in Section 11.4.
In addition, it is possible to determine the position of the second-order PT line in terms of a closed
expression, which is discussed in the subsequent paragraph.

Ginzburg-Landau analysis, spinodal lines, and the curvature mass Before we turn to the
other curves in Fig. 11.1, it is instructive to visualize the effective bosonic potential and its deriva-
tive explicitly for various positions in the µ-T -plane via the formulae from Table 11.1a. Therefore,
we prepared Fig. 11.3. (For similar plots, see Refs. [526, Fig. 1.1] and [457, Figs. 25 & 26].) In
Fig. 11.3a for T = 0 the non-analytic structure which is induced by the chemical potential is clearly
visible in the derivative of the potential, cf. our discussion in Section 10.3.1, especially Fig. 10.1.
On the other hand, in Fig. 11.3b one finds how increasing the temperature completely smears the
cusp that is introduced by the chemical potential. In any case, pumping too much energy into the
system by increasing µ or T restores the symmetry by moving the minimum to σmin(µ, T ) = 0.
Furthermore, we can directly deduce from the plots that there are regions in the µ-T plane where
U(σ, µ, T ) has exclusively two degenerate global minima, and regions where there exists exclu-
sively a single global trivial minimum. However, there are also values of µ and T around the
first-order PT where the potential has three local minima (two degenerate global and one local in
the Z2-symmetry-broken region; one global and two degenerate local minima in the Z2-symmetric
region). This region is bounded by the so-called spinodal lines (red and green dotted lines in
Fig. 11.1). The (green-dotted) spinodal line at larger |µ| which connects the CP and the point
(µ = 1.0, T = 0.0) can only be extracted numerically, except for its endpoints.2

Still, the (red-dotted) spinodal line, which turns into the (red-dashed) second-order PT line at the
CP (the (α2 = 0)-line), can be calculated in terms of a closed expression. The same applies to the
blue-dotted line (the (α4 = 0)-line), which intersect the (α2 = 0)-line exactly at the CP. Both can
be generated from a Ginzburg-Landau-type expansion of the effective potential Eq. (11.21) about
σ = 0,

U(σ, µ, T ) =
∞∑
n=0

α2n(µ, T ) (hσ)2n . (11.24)

2The endpoint (µ, T ) = (1, 0) can be read off from Eq. (F.19), see also Fig. 11.3a.
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Figure 11.2: The global minimum σmin(µ, T ) of the effective potential and the curvature mass
m2(µ, T ) at this minimum as a function of µ and T .

The coefficients of this expansion are well-known [467, 570, 446]. The zeroth-order coefficient is

α0(µ, T ) = −π
6 T

2 − 1
2πµ

2 . (11.25)

Below it is identified with the (negative) Stefan-Boltzmann pressure of a massless free gas of
fermions in two spacetime dimensions, cf. Ref. [377]. The second-order coefficient reads

α2(µ, T ) = dγ
4π



1
2 ln

(
4µ2

h2σ2
0

)
, for T = 0, µ > 0 ,

1
2 ln

(
π2T 2

h2σ2
0

)
− γ , for T > 0, µ = 0 ,

1
2 ln

(
4T 2

h2σ2
0

)
− γ − DLi0

(
µ
T

)
, for T > 0, µ > 0 ,

(11.26)

where we have used Defs. (A.81). The coefficient is (two times) the curvature mass at σ = 0,
or the bosonic two-point function at vanishing field and vanishing momentum, respectively, see
Eqs. (F.37), (F.41), and (F.57). Coefficients for n > 2 are given by

α2n(µ, T ) =



− 1
π

(2n−3)!!
2n+1n! (n−1)! µ

2−2n , for T = 0, µ > 0 ,

(−1)n
π2n−1

41−2n(4n−2)(2n−2)!
n! (n−1)! ζ(2n− 1)T 2−2n , for T > 0, µ = 0 ,

− 1
π

21−2n

n! (n−1)! DLi2−2n
(
µ
T

)
T 2−2n , for T > 0, µ > 0 .

(11.27)

where ζ is the Riemann zeta function (A.48).

Using this Ginzburg-Landau expansion, we can identify a second-order PT with those lines, where
α2 = 0, while α4 > 0. This criterion directly allows to extract the critical temperature Tc = eγ

π
at

µ = 0. Furthermore, as soon as α4 vanishes on the (α2 = 0)-line, we know that α2 = 0 no longer
marks the PT and turns into a spinodal line with α2 = 0 and α4 < 0. This point is identified as
the CP (µcp, Tcp) ≃ (0.608, 0.318).
As expected and by construction, a Ginzburg-Landau expansion is incapable of predicting the
first-order PT. Also recalling our earlier discussions from Section 3.3, it has to break down as soon
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Figure 11.3: The effective potential U(σ, µ, T ) and its field-space derivative ∂σU(σ, µ, T ) as func-
tions of σ at varying µ and T . Normalization: left panel: U(1.5, µ, 0.0) = 0; right panel:
U(0.0, 0.6, T ) = 0. (The curves for i = 3 of the left panel and the curves for i = 0 of the
right panel are identical.)

as the relevant information about the phase structure is located at field values σ in the effective
potential which are outside the radius of convergence of the expansion. This radius is clearly set
by the non-analyticity of the chemical potential.
Nevertheless, Ginzburg-Landau-type studies are a useful tool to approach the effective potential
and phase structure [571, 446, 572, 570, 313, 467]. Here, one is not necessarily restricted to
constant background-field configurations, but can also assume spatial oscillations of a condensate
[313, 573].
In any case, the tricky part is usually the handling of IR divergences. Normally, the IR divergences
from the vacuum contribution and the medium contributions cancel in an intriguing way, cf.
Appendix F. For the calculation of the coefficients Eq. (11.27) we simply used the results of
Refs. [574, 575, 523], which comprehensively present the evaluation of high-temperature/Ginzburg-
Landau expansions for generic thermodynamic potentials of mean-field models for relativistic Bose
and Fermi gases in some background fields and various spacetime dimensions. Before we close the
discussion and turn to the thermodynamic observables, some remarks are in order:

1. Interestingly, the (α2 = 0)-spinodal is identical to the line of diverging four-fermion coupling
g from the N → ∞ calculation in the purely fermionic framework of Section 9.4.1, see
Fig. 9.2. In retrospect, this is expected, because h2

g2 is associated to the bosonic mass term
(in the symmetric phase) via the Hubbard-Stratonovic transformation, cf. Section 8.2.1.
Also their RG flow has to be identical at vanishing external momenta and in the N → ∞
limit, where field space decouples.
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Table 11.2: Explicit expressions for some thermodynamic quantities.

(a) For p(σ, µ, T ).

T µ σ Eq.

̸= 0
̸= 0 ̸= 0 (11.32)

= 0 (F.75)

= 0 ̸= 0 (F.76)
= 0 (F.77)

= 0
̸= 0 ̸= 0 (F.78)

= 0 (F.79)

= 0 ̸= 0 (F.80)
= 0 (F.81)

(b) For n(σ, µ, T ).

T µ σ Eq.

̸= 0
̸= 0 ̸= 0 (11.35)

= 0 (F.83)

= 0 ̸= 0 (F.84)
= 0 (F.85)

= 0
̸= 0 ̸= 0 (F.86)

= 0 (F.87)

= 0 ̸= 0 (F.88)
= 0 (F.89)

(c) For E(σ, µ, T ).

T µ σ Eq.

̸= 0
̸= 0 ̸= 0 (11.40)

= 0 (F.91)

= 0 ̸= 0 (F.92)
= 0 (F.93)

= 0
̸= 0 ̸= 0 (F.94)

= 0 (F.95)

= 0 ̸= 0 (F.96)
= 0 (F.97)

However, extracting the curvature mass always at the global minimum via the second deriva-
tive of the effective potential, we obtain a non-vanishing curvature mass at the α2 = 0
spinodal line in the Z2 symmetry broken phase. A heat map of the curvature mass in the
µ-T -plane is presented in Fig. 11.2b.

2. Finally, we comment again on the shape of the IR potentials and their derivatives, cf.
Fig. 11.3. As remarked earlier in this work, IR potentials should be convex, see also
Refs. [576, 577, 13]. If they have non-trivial minima, then the inner region has to be flat,
ending in non-analytical minima. However, as we can see for example from Fig. 11.3, this
is not the case for our N → ∞ results. The reason behind is rather simple: The artificial
suppression of bosonic fluctuations manifests as a suppression of diffusion in field space in
the RG flow of the derivative of the effective potential. Therefore, we can again conclude
that the N → ∞ approximation violates fundamental properties of a theory and results
will drastically change if this restriction is lifted. However, this is the topic of the next
Chapter 12 and for the moment we simply ignore this problem.

Thermodynamics

Concerning the phase diagram of a model or theory, one is usually not primarily interested in the
location of spinodal lines or the values of certain expansion coefficients of an effective potential.
From an experimental and phenomenological standpoint the determination of thermodynamic
observables is normally the underlying reason which motivated the calculations in the first place.
Therefore, although it is not of utmost importance for the remainder of this work, we consider it
instructive to present and plot some standard thermodynamic observables for the GN model at
N → ∞. Plots are presented in Fig. 11.4. These are straightforwardly extracted from the effective
potential (11.21) as follows.

The grand canonical potential In thermal QFT the grand canonical potential is defined by
[142],

1
V Ω(µ, T, V ) ≡ 1

V

[
Γ[ψ̄, ψ, φ, µ, T ]

∣∣
minimum − Γ[ψ̄, ψ, φ, 0, 0]

∣∣
minimum

]
. (11.28)

Here, “minimum” implies that the IR effective actions have to be evaluated at their extremal field
configurations. These correspond to the classical solutions of the quantum equations of motion, see
Section 10.2.3.3 Within our truncation and under the assumption of constant field configurations
ψ̄ = ψ = 0 and φ = σ Eq. (11.28) simplifies to

1
V Ω(µ, T, V ) =U(σmin(µ, T ), µ, T ) − U(σ0, 0, 0) , (11.29)

which can be directly calculated from Eq. (11.21).
3Note that Eq. (11.28) is normalized to the vacuum.
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Figure 11.4: Thermodynamic observables as functions of µ and T for the infinite-N GN model.
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Pressure

The grand canonical potential is directly related to the pressure of the system, i.e.,

p(µ, T ) = − 1
V Ω(µ, T, V ) = −U(σmin(µ, T ), µ, T ) + U(σ0, 0, 0) , (11.30)

where the vacuum contribution is given by Eq. (F.13),

U(σ0, 0, 0) = − dγ
8π (hσ0)2 . (11.31)

For the sake of simplicity and explicit calculations of the pressure in the µ-T -plane, we use
Eq. (11.21) and define

p(σ, µ, T ) ≡ − U(σ, µ, T ) + U(σ0, 0, 0) = (11.32)

= dγ
4π

[
− 1

2 (hσ)2
[

ln
(

(hσ)2

(hσ0)2

)
− 1
]

− 1
2 (hσ0)2 +

+
∫ ∞

−∞
dp
[
T ln

(
1 + e−E+µ

T

)
+ T ln

(
1 + e−E−µ

T

)]]
,

for any field values σ. In Appendix F.2.1, this formula is further evaluated for different com-
binations of σ, µ, and T being zero or non-zero. The corresponding formulae are referenced in
Table 11.2a and have to be evaluated for the corresponding minimum σmin(µ, T ).
An explicit plot of p(µ, T ) is presented in Fig. 11.4a. At T = 0, we find p(µ, 0) = 0 in the
symmetry-broken phase. On the other hand, for large µ and T in the symmetric phase the
pressure approaches the Stefan-Boltzmann limit of an Fermi gas with multiplicity dγ [457, 377],
see Eq. (F.75).

Particle number density

Next, we turn to the particle number (density). The particle number is defined by

N(µ, T, V ) = − d
dµ Ω(µ, T, V ) . (11.33)

However, we are interested in the corresponding density, which is independent of the specific
spatial volume of the system,

n(µ, T ) = − 1
V

d
dµ Ω(µ, T, V ) (11.29)= (11.34)

= −
(
∂
∂µ σmin(µ, T )

)
((((((((
∂
∂σ U(σ, µ, T )

)∣∣
σ=σmin(µ,T ) − ∂

∂µ U(σ, µ, T )︸ ︷︷ ︸
≡n(σ,µ,T )

∣∣
σ=σmin(µ,T ) .

Here, we use that the derivative of the effective potential vanishes at its minimum. In addition,
we define

n(σ, µ, T ) ≡ − ∂
∂µ U(σ, µ, T ) = (11.35)

= − dγ
4π

∫ ∞

−∞
dp
[
nf
(
E+µ
T

)
− nf

(
E−µ
T

)]
=

= − dγ
4π

∫ ∞

−∞
dp
[

− 1
2 tanh

(
E+µ
2T
)

+ 1
2 tanh

(
E−µ
2T
)]
,
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which is further evaluated in Appendix F.2.2. Explicit formulae, which have to be evaluated at
σmin(µ, T ), are referenced in Table 11.2b. The same result was already presented in Ref. [457,
Eq. (264)]. In Fig. 11.4c, we show a plot of n(µ, T ). First, we find that the net particle number
is zero on average as long as µ = 0. For increasing µ, the system is more and more unbalanced
between matter and anti-matter. Secondly, we find that – as expected from Ehrenfest’s classifica-
tion of PTs [148, 11] – that n(µ, T ) jumps at the first-order PT, while it stays continuous at the
second-order PT.

Entropy density and internal energy

Taking a derivative of the grand canonical potential w.r.t. the temperature, we find the entropy
of the system,

S(µ, T, V ) = − ∂
∂T Ω(µ, T, V ) . (11.36)

Again, in an infinite spatial volume, it is advisable to study the entropy density,

s(µ, T ) = − 1
V

d
dT Ω(µ, T, V ) (11.29)= (11.37)

= −
(
∂
∂T σmin(µ, T )

)
((((((((
∂
∂σ U(σ, µ, T )

)∣∣
σ=σmin(µ,T ) − ∂

∂T U(σ, µ, T )︸ ︷︷ ︸
≡s(σ,µ,T )

∣∣
σ=σmin(µ,T ) .

Analogous to the preceding discussion, the first contribution drops out and we define

s(σ, µ, T ) ≡ − ∂
∂T U(σ, µ, T ) (11.21)= (11.38)

= dγ
4π

[ ∫ ∞

−∞
dp
[

ln
(

1 + e−E+µ
T

)
+ ln

(
1 + e−E−µ

T

)]
+

+ 1
T

∫ ∞

−∞
dpE

[
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)]
+ µ

T

∫ ∞

−∞
dp
[
nf
(
E+µ
T

)
− nf

(
E−µ
T

)]]
.

The same result can be found in Ref. [457, Eq. (265)]. Before we study the entropy density in
detail, we use Euler’s relation for the internal energy (density)4

E(σ, µ, T ) =T s(µ, T ) − p(σ, µ, T ) + µn(σ, µ, T ) . (11.39)

With Eqs. (11.35), (11.32), and (11.40) we identify

E(σ, µ, T ) = dγ
4π

[
1
2 (hσ)2

[
ln
(

(hσ)2

(hσ0)2

)
− 1
]

+ 1
2 (hσ0)2 + (11.40)

+
∫ ∞

−∞
dpE

[
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)]]
as the internal energy density, see also Ref. [457, Eq. (266)]. This formula can be further simplified
for certain situations, see Appendix F.2.3. The formulae are referenced in Table 11.2c.
We plot the internal energy in Fig. 11.4b, which of course rises drastically with T 2 and µ2 in the
symmetric gas-like phase.

With Eq. (11.39) we do not need to evaluate Eq. (11.38) explicitly and we can simply use our
earlier results for p(µ, T ), n(µ, T ), and E(µ, T ) to plot the entropy density. The plot is shown in
Fig. 11.4e. The small jump of the entropy density at the first-order PT is barely visible.

4Of course, this formula exclusively corresponds to the true internal energy if it is evaluated at the physical
minimum σmin(µ, T ).
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Baryon number susceptibility and heat capacity

In order to correctly identify a second-order PT and distinguish the PT from a crossover, one has
to study higher derivatives of the grand canonical potential. Here, these are the baryon-number
susceptibility,

χ(2)
µ (µ, T ) = − 1

V
d

dµ n(µ, T ) = − 1
V

d2

dµ2 Ω(µ, T, V ) = − d2

dµ2 U(σmin(µ, T ), µ, T ) , (11.41)

and the heat capacity (at constant volume),

cV = T d
dT s(µ, T ) = − 1

V T
d2

dT 2 Ω(µ, T, V ) = −T d2

dT 2 U(σmin(µ, T ), µ, T ) . (11.42)

Both quantities are evaluated by numerical differentiation of the data for n(µ, T ) and s(µ, T ).
Otherwise, one would have to study all contributions which emerge from the chain rules on the
r.h.s. of Eqs. (11.41) and (11.42).
Plots of these so-called response functions are presented in Figs. 11.4d and 11.4f, where the jumps
at the second-order PT are clearly visible. (The light gray line in Fig. 11.4d indicates the limit of
the scale of the heat map.)

In summary, we find that the results for the thermodynamic observables are reasonable and that
the system is stable from a thermodynamic perspective.

11.3. Stability of the homogeneous solution
Up to this point, we exclusively investigated the flow equation and the IR result for the effective
bosonic potential and derived quantities. In the course of this, we completely ignored the fact
that already in lowest non-trivial order of the derivative expansion in the FRG formalism there is
another flow equation, which survives the N → ∞ limit – the flow equation for the bosonic wave-
function renormalization (11.2). Thus, the first task of this section is to integrate this equation to
the IR to get a more comprehensive picture of the bGN model. Subsequently, we have to evaluate
the integral equation for the IR wave-function renormalization in the µ-T -plane.
As we shall see, there are some regions in the phase diagram where the wave-function renormal-
ization becomes negative. This, however, implies that the kinetic term for the bosons, which is
quadratic in the momenta, has a negative coefficient in the IR, see Eq. (10.1). Thus, without
the generation of higher-order derivative couplings with positive coefficients, the system becomes
unstable, although we do not expect an instability from the discussion of the thermodynamic
observables. The system could go over from a spatially homogeneous ground state to another
one with smaller action by generating gradients (oscillations) in the σ background field. Without
higher-order derivative couplings with positive coefficients that disfavor (too) large gradients, this
implies that the system generates arbitrarily many and arbitrarily large gradients in the ground-
state field configuration and simultaneously approaches states of smaller and smaller action, which
is unphysical.

Hence, the second half of this section is dedicated to the full momentum structure of the bosonic
two-point function. The bosonic two-point function effectively comprises interaction terms that
are of all orders in (spatial) derivatives and of second order in the bosonic fields.5 The initial
values of these terms are set to zero at the initial scale. They are generated in the RG flow, as we
shall demonstrate with the Wetterich equation in Appendix E.2. Because there is no backreaction
of these terms to the flow equation, due to the suppression of bosonic fluctuations at N → ∞,
we can simply integrate the RG flow for the bosonic two-point function separately from the flow
equation of the effective potential.

5Actually, one does not even need to think in terms of an expansion in derivatives/momenta. The two-point
function is simply a function of p, which does not even need to be expandable.
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As a result, if we think of the IR effective action in terms of a vertex expansion in perturbations
δσ(x) about a spatially constant background-field configuration σ, the bosonic two-point function
is simply the quadratic coefficient. From the perspective of a Taylor expansion in powers of per-
turbations δσ(x) a negative quadratic coefficient signals an instability of the expansion point (here
the spatially homogeneous ground state). Consequently, we can use the bosonic two-point function
and in particular its momentum structure to investigate the stability of a spatially homogeneous
ground state and predict the presence of spatially oscillating ground states.

One might object at this point that this study seems redundant, cumbersome, and ultimately
inaccurate, because the full phase structure of the GN model at N → ∞, including spatially
inhomogeneous ground states is well known for many years. Of course, this is absolutely correct
for the GN model and some related theories [473, 327, 578, 579, 461, 580, 564, 581, 582, 583, 584,
585, 586, 343, 587, 588, 446, 459, 460, 589, 590]. Still, for more complicated models and theories
in higher-dimensional spacetime there is little knowledge about the true ground state and its exact
prediction is usually extremely challenging. Oftentimes, one has to rely on a so-called stability
analysis if one is interested in possibly crystalline like ground states. In the past, several studies
were based on this or related approaches, cf. Refs. [327, 330, 328, 329, 570, 572, 331, 332, 333,
274, 591, 592, 573, 585, 593, 594, 595, 596, 597]. However, to the best of our knowledge a detailed
and pedagogical proof of concept study, which benchmarks this method against an exact solution,
was missing in literature. The only works which pursue similar goals are Refs. [476, 327, 570],
such that our work might be seen as a complement to these publications.
Therefore we considered a detailed analysis of the two-point function and a comparison with the
exact results for the GN model as a useful task and performed this analysis in Ref. [5] based on
notes and preliminary results by Refs. [566, 567]. Here, we present the main results of this joint
research.
In addition, we use the N → ∞ results of this section to draw direct conclusions for calculations
at finite N . This is also discussed throughout this section.

11.3.1. The bosonic wave-function renormalization

We begin with an analysis of the flow equation of the bosonic wave-function renormalization (11.2),
i.e.,

∂kZφ(k) = dγ
2π h

2 1
β

∞∑
n=−∞

[
8h2σ2 k2

[(νn + iµ)2 + k2 + h2σ2]4 − 1
[(νn + iµ)2 + k2 + h2σ2]2

]
. (11.43)

First, we note again that we have not settled the question of the correct evaluation point of the
r.h.s. in field space yet.
On the one hand, from the perspective of an expansion of the effective average action in powers
of derivatives and fields, the choice σ = 0 seems to be the correct evaluation point.
On the other hand, at N → ∞, we can easily promote the field-independent wave-function renor-
malization Zφ(k) to a field-dependent wave-function renormalization Zφ(k, φ) already on the level
of Eq. (10.1). Because all bosonic fluctuations are suppressed, there is no feedback of Zφ(k, φ) to
the flow equation of the effective potential and we do not have to bother about any complications
with the bosonic regulator insertion. We simply obtain the above flow equation. In the second
case, a field-dependent wave-function renormalization of course needs to be evaluated in the IR on
the field configuration which minimizes the action. Under our assumption of a spatially constant
configuration this is σmin(µ, T ), the minimum of the effective potential, see Section 10.2.3. For
N → ∞ we believe that the second option is therefore better suited, but also present results for
the first option.
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Table 11.3: References to the explicit expressions of the bosonic wave-function renormalization
and two-point function derived in Appendices F.1.4 and F.1.3.

(a) Equations for Z(σ, µ, T )

T µ σ Eq.

̸= 0
̸= 0 ̸= 0 (F.64)

= 0 (F.65)

= 0 ̸= 0 (F.66)
= 0 (F.67)

= 0
̸= 0 ̸= 0 (F.68)

= 0 (F.73)

= 0 ̸= 0 (F.74)
= 0 “+∞”

(b) Equations for Γ(2)(σ, µ, T, q)

T µ σ q ̸= 0 q = 0

̸= 0

̸= 0 ̸= 0 (F.32) (F.33)
= 0 (F.36) (F.37)

= 0 ̸= 0 (F.38) (F.39)
= 0 (F.40) (F.41)

= 0

̸= 0 ̸= 0 (F.49) (F.50)
= 0 (F.56) (F.57)

= 0 ̸= 0 (F.58) (F.59)
= 0 (F.60) “−∞”

Integrating the flow equation of the wave-function renormalization

In either case, we can simply integrate the flow equation from the UV to the IR. We use that
according to Eq. (10.4) the UV wave-function renormalization vanishes. Furthermore, we introduce
Zφ(σ, µ, T ) = Zφ(k = 0) as the new notation for its possibly field-dependent IR value. We obtain

Zφ(σ, µ, T ) = (11.44)

= dγ
2π h

2 1
β

∞∑
n=−∞

∫ ∞

0
dk
[

1
[(νn + iµ)2 + k2 + h2σ2]2 − 8h2 σ2 k2

[(νn + iµ)2 + k2 + h2σ2]4

]
=

= dγ
2π h

2 1
β

∞∑
n=−∞

∫ ∞

0
dk
[

1
[(νn + iµ)2 + k2 + h2σ2]2 −

4
3 h

2 σ2

[(νn + iµ)2 + k2 + h2σ2]3

]
, (11.45)

where we used integration by parts for the last term. The corresponding surface term vanishes.
In the following, we use the version (11.45), which is the standard result that is also obtained in
conventional mean-field calculations in sharp-cutoff regularization [4]. A corresponding derivation
from the infinite-N limit of the bosonic two-point function is presented in Eq. (F.61).6 Within
the next steps, we proceed as in the previous Section 11.2. We first evaluate the Matsubara sum
in Eq. (11.45). Then, using a distinction of cases for vanishing and non-vanishing σ, µ, and/or T
we evaluate the remaining momentum integral as far as possible and cure possible IR divergences.
Details can be found in Appendix F.1.4. Here, in the main text, we simply discuss the results,
which are based on the formulae listed in Table 11.3a.

The “Frankfurt” phase diagram7

By evaluating Zφ(σ, µ, T ) in the µ-T -plane for the respective minimum σmin(µ, T ) of the effective
potential via the formulae which are listed in Table 11.3a, we can plot Zφ(σmin(µ, T ), µ, T ) in
the phase diagram of the GN model. The corresponding heat map is presented in Fig. 11.5,
where we ignore the shaded region at low T and large |µ| for the moment. For the sake of better
visualization, we also present two plots with cuts through Fig. 11.5 along lines of constant µ
or constant T in Fig. 11.6. We observe the following: Overall, the values of the bosonic wave-
function renormalization range approximately between −0.15 and +0.15. In absolute values, the
wave-function renormalization is smallest in the symmetric phase in regions where µ and T are

6This demonstrates that the N → ∞ limit and the extraction of the wave-function renormalization from the
bosonic two-point function are interchangeable, since we extracted the wave-function renormalization from the
two-point function before taking the limit.

7If you are not Robert D. Pisarski, please, do not use this name for Fig. 11.5.
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Figure 11.5: The bosonic wave-function renormalization Zφ(σmin(µ, T ), µ, T ), the line of vanishing
bosonic wave-function renormalization (black dashed), and the line of vanishing bosonic two-
point function Γ(2)(σmin(µ, T ), µ, T,Q) = 0 (black solid). The black hatched region indicates
Γ(2)(σmin(µ, T ), µ, T,Q) < 0 with Q according to Eq. (11.52). From Ref. [5, Fig. 9].
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Figure 11.6: The bosonic wave-function renormalization Zφ(σmin(µ, T ), µ, T ) as a function of µ or
T . From Ref. [5, Figs. 12 & 13].

both large. This is expected, because there the formation of bosonic bound states is unlikely and
we are basically confronted with a relativistic fermion gas. In the phase of spatially homogeneous
symmetry breaking, especially at small |µ| and T , we find positive but relatively small values for
Zφ. There, condensation takes place and, if it was not suppressed by the N → ∞ limit, the bosons
would start fluctuating, because the coefficient of the kinetic term is no longer zero, as it was in
the UV.
However, if one considers small constant temperatures, below the temperature of the critical point,
and steadily increases |µ|, one first observes a rising bosonic wave-function renormalization until
one reaches the first-order PT. At the PT Zφ jumps to a negative value. In fact, there is a region
of infinite size at large |µ| at temperatures below the dotted diagonal line in Fig. 11.5, where Zφ
is found to be negative.8
First, the rising wave-function renormalization close to the first-order PT in the symmetry-broken
regime actually tells us that, away from the N → ∞ limit, the bosons would start to fluctuate
more than at smaller |µ|. This is not totally unexpected in the vicinity of a PT. Secondly, in
the Z2-symmetric phase close to the first-order PT we have relatively large negative values of Zφ,
which signals a possible instability of the spatially homogeneous ground state.
Of course, only inspecting the wave-function renormalization is inconclusive if one really wants

8In fact, it can be shown by comparing the explicit expressions from Table 11.3a with Eq. (11.27) that the black
dotted line, where Zφ = 0, exactly agrees with the (α4 = 0)-line in Fig. 11.1 from the Ginzburg-Landau analysis
Eq. (11.24).
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-0.2 -0.1 0 0.1 0.2

Figure 11.7: The bosonic wave-function renormalization Zφ(0, µ, T ) as a function of µ or T . (The
white regions at small |µ| and T simply indicate that the values for Zφ are too large/small to be in
the range of the color scale. Due to the divergence and pole of Zφ at µ = T = 0 choosing another
plot range would not help much.)

to judge whether spatially oscillating ground states are energetically favorable. These aspects are
discussed for example in Refs. [330, 561, 274, 573, 535, 598, 599, 600]. A rather simple argument
why negative Zφ alone is insufficient to predict an instability of a homogeneous ground state is as
follows: If we are studying points in the µ-T -plane at large µ and T which are located close but
below the dotted black line in Fig. 11.5, we always find negative Zφ. However, for large µ and T
the system simply goes over into a free fermion gas without condensation and there is no reason
to expect a non-trivial condensate with some spatial modulation. Here, higher-order derivative
terms certainly become important and prevent the instability.

Before we enter the discussion of these terms by analyzing the full momentum structure of the
two-point function, let us also present the bosonic wave-function renormalization (11.45) when it
is always evaluated at σ = 0. A plot is shown in Fig. 11.7. In the Z2-symmetric region, where
σmin(µ, T ) = 0, Figs. 11.5 and 11.7 are of course identical (despite slightly different color coding).
However, in the region of homogeneous Z2-symmetry breaking things are drastically different. We
find that the diagonal line, where Zφ(0, µ, T ) = 0, separates the phase diagram into two regions
of negative and positive Zφ(0, µ, T ). In addition, the absolute value of Zφ(0, µ, T ) rises drastically
in both regions close to µ = T = 0 and indeed results in a pole, see formulae from Table 11.3a.
Recalling that the exact result for the phase diagram of the GN model, see Fig. 7.1, still contains a
region of spatially homogeneous condensation at small |µ| and T , this clearly tells us that σ = 0 is
in fact the wrong evaluation point for the wave-function renormalization – at least in the infinite-N
calculations. Otherwise, one would expect crystalline-like ground states for all µ at low T .
However, for calculations at finite N things are more complicated and an evaluation at σ = 0
seems to be appropriate, as anticipated above and discussed below in detail. Here, the results
from Fig. 11.7 will be of great relevance.

11.3.2. The bosonic two-point function
Finally, we turn to the analysis of the full momentum structure of the bosonic two-point function.
We start with explicit expressions and a few remarks on the derivation from the FRG in comparison
to the conventional mean-field derivation. Afterwards, we discuss the explicit functional forms of
the two-point function at various µ and T and criteria for the (in)stability of spatially homogeneous
condensates. We use these results to present the parts of the phase diagram which can be obtained
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from this stability analysis alone and compare this against the exact result. As an amendment, we
additionally compare the dominant wave vector of the true ground state to the estimate that is
obtained by the minimum of the two-point function. Throughout this discussion we also comment
on limitations of the method and consequences for possible calculations at finite N .

The bosonic two-point function from “standard mean-field” and the FRG formalism

The explicit unrenormalized expression for the bosonic two-point function at N → ∞ is

Γ(2)(σ, µ, T, q) = (11.46)

=h2
[

1
g2 − dγ

∫ ∞

−∞

dp
(2π)

1
β

∞∑
n=−∞

[
1

(νn + iµ)2 + E2 + pq − 2 (hσ)2

(νn + iµ)2 + E2
q

1
(νn + iµ)2 + E2

]]
,

where Eq =
√

(p+ q)2 + h2σ2. Evaluated at σ = 0, it is the Fourier transform of the quadratic
coefficient of the expansion of the IR effective action in small perturbations about the symmetric
and spatially homogeneous ground state, i.e.,

Γ[δσ] =
∞∑
n=0

β

∫ ∞

−∞
dxΓ(2n)(0, µ, T, x) δσ2n(x) . (11.47)

Therefore, it can be used to study the stability of the (σ = 0)-ground state. An instability is
detected if Eq. (11.46) turns negative for some momentum.

In conventional mean-field/N → ∞ calculations Eq. (11.46) is derived by expanding the exponent
of the path integral

Z ∝
∫

[dϕ] e−N Seff [ϕ] , (11.48)

i.e.,

Seff [ϕ] =
∫ ∞

−∞
dx
∫ β

0
dτ h2

2g2 ϕ
2(τ, x) − ln Det

(
/∂ − µγ2 + hϕ(τ, x)

)
. (11.49)

This effective classical action is obtained by integrating out the fermions in Eqs. (8.97) and (8.98)
and by rescaling of the boson fields with 1

N . One uses Γ[φ] = Seff [φ], which holds for N → ∞
after renormalization. The explicit derivation of Eq. (11.46), setting ϕ(τ, x) = φ(τ, x) = σ+ δσ(x)
in Eq. (11.49) and expanding in perturbations δσ(x), is presented pedagogically in great detail in
Ref. [5], but can also be found elsewhere for similar models [330, 592, 573, 593].

In the FRG formalism, the calculation is slightly different. One has to derive and study the RG
flow equation for the bosonic two-point function from the Wetterich equation, see also Refs. [274,
324] (in the context of a stability analysis). Within our truncation (10.1) the general derivation
is presented in great detail in Appendix E.2.2 for arbitrary spacetime dimensions and including
the possibility for bosonic fluctuations. In terms of Feynman diagrams the corresponding general
flow equation is given by Eq. (E.53). For this section, where we are exclusively interested in the
N → ∞ version of this flow equation in d = 1, we can drastically simplify the resulting general
flow equation (E.73). The correct reduction of this equation to Eq. (11.46), which is unfortunately
a little cumbersome, can be found in Appendix E.2.3.
In any case, there are ofcourse various options to arrive at Eq. (11.46), which are studied in the
following.
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Renormalization and explicit formulae

First, we note that the expression (11.46) for the bosonic two-point function contains a UV di-
vergence in the first term under the integral. This divergence ofcourse cancels against the UV
divergence of the inverse four-fermion coupling, see also Ref. [5]. To see this, we can replace 1

g2

by its UV-cutoff dependence, hence Eq. (11.11). However, we have to exercise caution, because
of the surface term (the “−1” contribution in Eq. (11.11)). As it turns out and is discussed at
the end of Appendix E.2.3, we have to ignore this term when we replace 1

g2 , because via several
transformations during the derivation of Eq. (11.46) from the FRG, we got rid of the correspond-
ing contribution in Γ(2)(σ, µ, T, q), which has to be respected in the regularization of 1

g2 . In simple
terms, this is required since otherwise we would work with inconsistent regularization schemes.
In any case, we obtain

Γ(2)(σ, µ, T, q) = (11.50)

= dγ
2π h

2
[

1
2 ln

(
(2Λ)2

(hσ0)2

)
+ O

(
(hσ0)2

Λ2

)
−
∫ ∞

−∞
dp 1

2E
[
1 − nf

(
E+µ
T

)
− nf

(
E−µ
T

)]
−

−
∫ ∞

−∞
dp
[
p q − 2 (hσ)2]( 1

2Eq
1

E2−E2
q

[
1 − nf

(Eq+µ
T

)
− nf

(Eq−µ
T

)]
+

+ 1
2E

1
E2
q−E2

[
1 − nf

(
E+µ
T

)
− nf

(
E−µ
T

)])]
for q ̸= 0 and

Γ(2)(σ, µ, T, 0) = (11.51)

= dγ
2π h

2
[

1
2 ln

(
(2Λ)2

(hσ0)2

)
+ O

(
(hσ0)2

Λ2

)
−
∫ ∞

−∞
dp 1

2E
[
1 − nf

(
E+µ
T

)
− nf

(
E−µ
T

)]
+

+ 2 (hσ)2
∫ ∞

−∞
dp 1

4E3

(
1 − nf

(
E+µ
T

)
− nf

(
E−µ
T

)
+

+ E
T

[
n2

f
(
E+µ
T

)
+ n2

f
(
E−µ
T

)
− nf

(
E+µ
T

)
− nf

(
E−µ
T

)]))]
for q = 0 after evaluation of the Matsubara sum in Eq. (11.46). The reason why we distinguish
between zero and non-zero external momentum q is that taking the q → 0 limit after the evaluation
of the Matsubara sum is more challenging than simply setting q = 0 in Eq. (11.46) and using
Eqs. (B.15), (B.20), and (11.50) afterwards. Furthermore, Eqs. (11.50) and (11.51) can be further
evaluated and renormalized for different combinations of σ, µ, and T being zero or non-zero. For
some cases, also depending on (non-)zero external momentum q, one is confronted with additional
IR divergences, which have to be handled carefully. Since this is non-trivial but rather dull work,
we prepared an extensive Appendix F.1.3 with all necessary details of the calculations, such that
all results are understandable and reproducible without huge efforts. In order to have easy access
to the explicit equations, we provide Table 11.3b, which points to the respective equations.

Momentum structure of the bosonic two-point function

The basic idea behind the stability analysis is to search for regions in the phase diagram where Γ(2)

turns negative for some momentum. Therefore, the first step of our discussion is to present Γ(2)

at different positions (µ, T ) to get a clear picture of possible scenarios. To this end, Γ(2)(σ, µ, T, q)
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Figure 11.8: The bosonic two-point function Eq. (11.46) as a function of the external momentum
q using the renormalized expressions listed in Table 11.3b. From Ref. [5, Figs. 3, 4, 5, 6].

is evaluated on the homogeneous global minimum σmin(µ, T ) of the effective potential. The cor-
responding plots are depicted in Fig. 11.8.

Zero chemical potential and varying temperature We start our discussion at µ = 0 and
Fig. 11.8a. Overall we observe that

1. the bosonic two-point function is always positive for any q and T .

2. the bosonic two-point function is monotonically increasing with q for all T .

These results indicate that the spatially homogeneous minimum is stable against spatially oscillat-
ing perturbations. Here, we have to keep in mind that, according to Eq. (11.47), the stability anal-
ysis is formally only applicable in the Z2-symmetric phase for an expansion about σmin(µ, T ) = 0.
The only point where we observe a single root of the two-point function is for T = eγ

π
, where find

Γ(2) = 0 at q = 0. This, however, is absolutely expected, because for q = 0 there is no inho-
mogeneous perturbation and Γ(2) is identical to the curvature mass, which has to vanish at the
second-order PT, see Fig. 11.2b. In general, the results at µ = 0 clearly show that inhomogeneous
condensation and complicated dispersion relations are not expected at zero net baryon densities.

Before we continue, note that the momentum profiles of the two-point functions at µ = 0 can
all be approximated roughly by parabolas with different stretch factors.9 This implies that the
standard kinetic term, which is quadratic in the bosonic momentum, seems to be sufficient to get a
rather accurate description of the bosonic dispersion relation as long as the bosonic wave-function
renormalization is included and sets the stretch factor for different temperatures. Since bosonic

9This argument still holds true if the bosonic two-point functions are evaluated at σ = 0 at any temperature
and µ = 0.
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fluctuations are not expected to produce any types of non-trivial structures in the q-profiles of Γ(2),
we can already conclude for calculations at finite N that the lowest non-trivial order of a derivative
expansion of the effective action, thus truncation (10.1), should lead to an adequate description
of the system at zero µ. This result is for example consistent with the findings of Refs. [63, 70,
69, 72, 71] in similar model studies where higher-order derivative couplings are identified to be of
sub-leading importance.

Non-zero chemical potential and varying temperature Next, let us turn to non-zero
chemical potentials. For our discussion we simply choose µ = 0.75, where the homogeneous
condensate always vanishes, compare Fig. 11.1, such that we do not have to bother about the
correct expansion point, which is always σmin(µ, T ) = 0, where the stability analysis is in general
valid. A plot of the two-point function at fixed µ = 0.75 for various T is presented in Fig. 11.8c.
For rather high temperatures, e.g., T = 0.5, we still observe that Γ(2) monotonically grows with q
and that the temperature sets the dominating energy scale. However, by lowering T , e.g., T = 0.3,
we observe an influence of the chemical potential in the shape of the two-point function, which
manifests itself in terms of a non-trivial minimum. In general, we denote the minimum of Γ(2) for
non-trivial q with

Q ≡ argminq Γ(2)(σmin(µ, T ), µ, T, q) . (11.52)

Still, at T = 0.3 the two-point function is manifestly positive, such that there is no true instability
of the spatially homogeneous condensate. This scenario holds, when we are in the region of the
µ-T -plane where the bosonic wave-function renormalization turns negative, see Fig. 11.5, but
higher-order momentum contributions still ensure the stability of the homogeneous condensate.
In general, regions in phase diagrams with two-point functions and dispersion relations with such
a non-trivial momentum profile have recently been called “moat regimes” [599, 598, 600, 601,
565]. They are discussed as a possibly important general feature of theories at moderate and large
densities including QCD. In any case, moat regimes also comprise the situation where Γ(2) has a
root or even turns negative for some q. In Fig. 11.8c, we find that there is a single root for T ≈ 0.2,
while the two-point function has a manifestly negative region in q for lower temperatures. If there
is exactly a single root at q = Q, this in fact marks the PT where the Z2-symmetric phase is no
longer stable and an inhomogeneous perturbation associated with a finite wave vector Q lowers
the energy of the ground state. Hence, at the PT the root at q = Q does not only predict an
instability and an inhomogeneous ground state, but also the wave-length of its modulation. If
there is an entire region in q where Γ(2) is negative, it is not possible to exactly predict the shape
of an inhomogeneous condensate. However, as we discuss below, the minimum Q is still a rather
good estimate for the dominating wave vector of the true ground state.
Let us also comment on the situation at T = 0, where Γ(2) turns non-analytic and has a singularity
at q = 2µ. To this end, let us imagine how 1/Γ(2) – the propagator – looks like as a function of
the momentum q. Exactly at the position of the two roots of Γ(2) the propagator shows poles,
which signal a resonance, thus the formation of an anti-fermion-fermion bound state σ ∼ ⟨ψ̄ ψ⟩
with non-zero momentum. This is the inhomogeneous condensate, which is also found at small
temperatures. The preferred momenta of these states are from the momentum range where Γ(2)

is negative and the dominating wavelength is associated with the minimum Q. Having a direct
relation between Q ∼ 2µ at small and zero temperature is rather common for inhomogeneous
condensates, because fermions and anti-fermions pair at the Fermi surface. For details on these
mechanisms, we refer to Refs. [319, 320, 313].
Lastly, let us have a quick look on the relevance of the evaluation point of the two-point function
in field space. If we for example take µ = 0.6 instead of µ = 0.75 at T = 0, we are already safely in
the phase of spatially homogeneous symmetry breaking. Thus, the minimum and evaluation point
of the two-point function is σmin(µ, T ) = σ0. The corresponding two-point function is plotted in
Fig. 11.8b and indeed does not signal an instability. However, if we would switch the expansion
and evaluation point to σ = 0, which is actually required by the construction Eq. (11.47), we
recover the instability and singularity structure at q = 2µ. This again signals that we should take
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Eq. (11.47) seriously and exclusively use the stability analysis in the symmetric phase. We come
back to this issue below.

Constant non-zero temperature and varying chemical potential Let us also briefly dis-
cuss how the momentum profile of the bosonic two-point function can change with µ if we for
example fix T = 0.15. The corresponding plot of the Γ(2) profiles is Fig. 11.8d. First, at µ = 0 the
situation is unspectacular. The two-point function monotonically rises with q, is always positive,
and only shows a trivial minimum at q = 0. For µ = 0.6, where we are in the homogeneously
broken phase between the left spinodal and the first-order PT, things still seem fine. From the
stability analysis, we do not expect any instability, because we still find a manifestly positive
two-point function without a non-trivial minimum in q. Still, we should not necessarily trust the
stability analysis in the homogeneously broken phase.
Only for values of µ which belong already to the Z2-symmetric phase, e.g., µ = 0.8, we observe
a true trustworthy instability, which predicts the formation of an inhomogeneous condensate.
However, if we further increase µ, here µ = 1.0 and µ = 1.2, Γ(2) rises again and turns manifestly
positive, even though it still has a “moat”-type structure with Q ̸= 0. Hence, the inhomogeneous
regime seems to approach the µ-axis for large |µ|.

The phase diagram from the stability analysis

Now that we have presented possible scenarios and the ways to detect them, let us present the
phase diagram of the N → ∞ GN, which can be obtained exclusively from the stability analysis.
This is plotted in Fig. 11.5.
Taking the expansion about σ = 0 in Eq. (11.47) seriously, we solely work in the Z2-symmetric
phase. Starting at high T , we lower the temperature step by step until we detect a single root in
the momentum profile of Γ(2)(0, µ, T, q). If this root is at q = 0, we simply recover the standard
second-order PT between phases, where spatially homogeneous Z2 symmetry is broken or restored.
If the root is at q = Q ̸= 0, we detect a PT between the Z2-symmetric phase and a phase, where
Z2 symmetry and continuous translational invariance are broken. In total, the PT from the Z2-
symmetric phase to phases of condensation is the black solid line in Fig. 11.5, which exactly agrees
(up to the precision of our AMR method) with the exact results for the PT from Refs. [458, 327,
579, 446, 459, 460]. In conclusion, we can at least identify the entire black shaded region in
Fig. 11.5 with a phase of spatially inhomogeneous condensation and further try to estimate the
dominant frequency of the spatial modulation.
However, this analysis does not provide any reliable information about the stability of the phase of
spatially homogeneous symmetry breaking. Indeed, comparing Fig. 11.5 with the exact result in
Fig. 7.1, one identifies a region at small T between |µ| = 2

π
and |µ| = 1√

2 , which is located in the
former spinodal region with spatially homogeneous symmetry breaking, cf. Fig. 11.1. There, the
true ground state is indeed inhomogeneous and consists of rather pronounced kink-like oscillations.
Hence, in the vicinity of the former first-order PT an expansion in perturbations δσ(x) about σ = 0
is no longer justified.
Similar problems of detecting the true PT between the phases of spatially inhomogeneous and
homogeneous symmetry breaking were also presented in Ref. [476] or studies of related models
[311, 561, 318].

The dominant wave vector

Let us briefly return to the discussion of the wave vector(s) of the inhomogeneous condensate and
the position Q of the minimum of the two-point function. We already discussed that in the case
where Q is the single root of Γ(2)(0, µ, T, q), we are exactly on the PT line to the inhomogeneous
phase and Q defines the only wave vector of the inhomogeneous perturbation. Here, we would
like to further compare Q with the dominating wave vector qΣ of the correct inhomogeneous
condensate, which truly minimizes the effective action away from the phase boundary. In general,
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Figure 11.9: The spatial modulation of the exact solution for the inhomogeneous condensate, its
dominating wave vector, and an estimate for the latter. From Ref. [5, Figs. 2 & 10].

the dominating wave vector is defined by

qΣ ≡ argmaxq Σ̃(µ, T, q) , (11.53)

where Σ̃ is the Fourier transform of the inhomogeneous spatially oscillating condensate Σ(µ, T, x).
For example, at T = 0, where we are at maximal distance from the PT, the spatial modulation
of the true inhomogeneous ground state is plotted in Fig. 11.9a for several µ that are close to
µc = 2

π
of the PT between the phases of spatially homogeneous and inhomogeneous symmetry

breaking. Now, we can extract the dominant wave vector from a Fourier transformation of these
solutions (which can be expressed in terms of Jacobi elliptic functions, see Refs. [446, 459, 460,
473, 327, 579]) and apply Eq. (11.53). On the other hand, we can extract Q from the two-point
function. Both results can be compared to each other, e.g., in Fig. 11.9b. In this figure, we also
presented the same comparison at T = 0.15.10 For T = 0 one clearly finds from Fig. 11.9b that
a sensible comparison is only possible at |µ| ≥ 1√

2 , in the region where the stability analysis is
applicable. Close to the first-order PT of the homogeneous phase diagram, we observe significant
deviations between Q and qΣ. This is expected, because perturbations are no longer small and
their modulation has a spectrum of many wave vectors. However, for large µ one finds that Q
approaches qΣ, since the amplitude of the inhomogeneous phase decreases and the modulation
assumes the shape of a sine function with a single frequency.
For T = 0.15 we observe the same deviation of Q and qΣ close to the former first-order PT.
The difference between Q and qΣ, however, vanishes as soon as µ approaches the PT line to the
Z2-symmetric phase, cf. Fig. 7.1.

This comparison of Q and qΣ can of course be extended to the entire µ-T -plane, which is shown
in Fig. 11.10. In this figure, we plot Q and qΣ separately as functions of µ and T as well as
their difference. Black regions correspond to vanishing Q and qΣ, while colored regions indicate
non-zero Q and qΣ. Of course, we find a difference between Q and qΣ for large µ and T (dark blue
region in the middle panel), where inhomogeneous condensates do not exist, while the dispersion
relation/bosonic two-point function still shows a “moat”-like structure. On the other hand, there
is a significant difference at small T for |µ| < 1√

2 (red region in the middle panel), where the

10Similar plots of the wave vector of some inhomogeneous ground state as a function of baryon density (chemical
potential) are also presented for other models by Refs. [314, Fig. 2], [315, Fig. 2], and [317, Figs. 6 & 7].
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stability analysis fails and predicts no Q ̸= 0 at all. However, in the formerly Z2-symmetric phase
at µ which are away from the first-order PT, the difference between Q and qΣ is remarkably small.
This means that an approximation of the inhomogeneous condensate in terms of conventional sine
or cosine functions is feasible.

Consequences for finite-N FRG flows

Lastly, we comment on the consequences of our findings for calculations at finite N . Since the
fermionic fluctuations are expected to dominate the dynamics during the RG flow up to a possible
symmetry-breaking scale, see, e.g., Ref. [72], the shape of the bosonic two-point function at these
scales is not expected to be too different at finite N from what was discussed in this section.
However, this implies that at non-zero µ and especially at small T we are confronted with q-profiles
which cannot be approximated by simple parabolas. Hence, we cannot assume that the LPA′

truncation (10.1), which only contains a quadratic momentum term for the bosons, is sufficient to
capture the true dynamics of the system. Moreover, for a scale-dependent Zφ(t) we expect that it
even turns negative at finite N , like it does at infinite-N . However, without any other higher-order
momentum dependences, this renders the RG flow of a truncated system manifestly unstable.
On the other hand, if we just artificially fix Zφ(t) = const. > 0, there is no chance for the
coefficient to turn negative during the RG flow and we expect a stable flow towards the IR. Of
course, fixing Zφ(t) = const., e.g., in the LPA truncation, is a harsh restriction and can only be a
crude approximation of the dynamics at small µ. Still, it is expected to be a stable approximation
at large µ, while the improved LPA′ truncation will clearly show its limitations.
In conclusion, we believe that an adequate description of the GN model at finite N requires, besides
an excellent resolution in field space via an effective potential, an excellent resolution of the spatial
momentum structure of the bosonic two-point function which enters the propagators. Both is in
particular relevant for a precise description of the system at large µ and small T . Exactly the
same is expected for higher-dimensional systems, e.g., the QMM or the QMDM etc..
Nevertheless, we believe that we can answer the question of the presence/absence of condensation
at finite N already with our rather crude truncation schemes in LPA and LPA′. The reason is:
If spatially homogeneous condensation is not found at small T and small/vanishing µ, it is not
expected to be present at all, because of thermodynamic consistency. At small T and vanishing µ,
however, an approximation of the bosonic two-point function via a parabola seems to be justified,
cf. Fig. 11.8a.
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Figure 11.11: Visualization of the AMR algorithm for the N → ∞ calculations.

11.4. Comment on the computation
As a last point of this chapter, we comment on the generation of the plots for the phase diagrams
which are presented in this chapter. All the N → ∞ data of this chapter were obtained via a
simultaneous bisection in µ- and T -direction with multiple bisection criteria. In detail, we used a
rectangular AMR algorithm that works as follows: We choose a coarse rectangular initial mesh of
points in the µ-T -plane. This generates small rectangular plaquettes, here of initial size ∆µ = 0.1
and ∆T = 0.05, see Fig. 11.11. At each corner point, all quantities of interest, such as the
minimum σmin(µ, T ), the minimum of the two-point function Q(µ, T ), the pressure p(µ, T ) etc.,
are calculated and stored.
Next, we proceed with an AMR step. To this end, several quantities are compared with each other
at the four corners of each plaquette and it is decided whether the plaquette should be subdivided
into four plaquettes of equal size. Our parallel refinement criteria are as follows: A refinement for
a plaquette takes place, if one of the following conditions evaluates “true”.

1. The standard deviation of σmin(µ, T ) at the four corners is greater than 0.01.

2. The standard deviation of p(µ, T ) at the four corners is greater than 0.01.

3. The number of local minima of the potential at the four corners is unequal.

4. The sign of Zφ(σ = 0, µ, T ) at the four corners is not identical.

5. The sign of Zφ(σmin(µ, T ), µ, T ) at the four corners is not identical.

6. The sign of Γ(2)(σmin(µ, T ), µ, T,Q) at the four corners is not identical.

After deciding which plaquettes require refinement, the corresponding new points on the edges and
in the plaquette centers are generated and all necessary quantities are evaluated on these points.
Afterwards, the same procedure as before is performed on the refined mesh. This algorithm is
repeated until the desired precision in µ- and T -direction is obtained. In this chapter, we used
five refinement steps, which results in a resolution

∆µ = 0.1 · 2−5 = 0.003125 , ∆T = 0.05 · 2−5 = 0.0015625 . (11.54)
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However, calculations at higher precision are straightforward. The resulting final mesh of our work
is presented in Fig. 11.11.
The challenging aspect of this algorithm is the handling and storage of the generated data and
the correct linking of plaquettes, edges, and points such that no point in the µ-T -plane has to be
evaluated twice. I am grateful to M. J. Steil, who supported me in setting up a basic version of
his AMR algorithm in mathematica.



Chapter 12

The Gross-Neveu-Yukawa model
at finite N

Abstract We present results for FRG calculations in the Gross-Neveu-Yukawa (GNY) model at
finite N in different approximations. We start by discussing the correct initial condition for the
RG flows and check RG consistency, thus, UV-cutoff independence. In addition, we present some
tests for the numerical parameters. Our main discussion of the results starts with RG flows in the
LPA approximation. We discuss qualitative aspects of the RG flow, such as the mechanisms for
symmetry breaking and restoration. Here, we contrast the finite-N with infinite-N results. This
also comprises a discussion of RG flows at low temperature and the dynamics that is introduced by
the chemical potential. Afterwards, we turn to a more quantitative analysis and inspect the scaling
of the symmetry-restoration scale in the IR as a function of N or T . Ultimately, we present the
full phase diagram and the absence of symmetry breaking for all T > 0, but also briefly comment
on the T → 0 limit.
The second part focuses on RG flows at finite N in the LPA′ truncation without and with the
inclusion of a dynamical Yukawa coupling. The preliminary results for these calculations quali-
tatively confirm the LPA results – absence of symmetry breaking at T > 0 – and provide deeper
insight into the challenges which are introduced by the chemical potential into FRG calculations.

Disclosure All results of this chapter for calculations in the LPA are presented already in our
publication [4], which emerged from a joint work in approximately equal shares and are also part of
Refs. [7, 8, 6]. The preliminary results beyond the LPA truncation have been performed exclusively
by the author of this thesis and are not yet published.

12.1. Introduction
In the previous chapter, we demonstrated that even for N → ∞ the bGN model features a non-
zero and non-trivial momentum structure for the bosonic field. This indicates that, if they were
not artificially suppressed, the bosons (once they have formed) would start fluctuating during the
RG flow. Most probably they would even totally dominate the dynamics of the theory in the deep
IR. Furthermore, as outlined in detail in Chapter 7 and in particular Section 7.4, there are many
reasons to assume that Z2-symmetry breaking of any kind, which was observed for N → ∞, is
absent for finite N , because bosonic fluctuations tend to restore this symmetry completely in a
low number of spacetime dimensions.

In this last chapter of this thesis, we therefore turn to explicit FRG calculations for the GNY
model at finite N . Most of our results are already presented in great detail in our publication [4],
where we performed FRG calculations in the LPA in the novel fluid-dynamical framework. Thus,
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in the first Section 12.3 of this chapter we are summarizing these results. Overall, we find that
the LPA truncation of the GNY model strongly suggests a general absence of spatially homoge-
neous Z2-symmetry breaking in the IR. Without spatially homogeneous symmetry breaking at
very small |µ| and T , inhomogeneous condensation at larger |µ| is extremely unlikely. W therefore
believe that there is in fact no symmetry breaking at all in the IR. Still, we observe the general
phenomenon of precondensation [557, 558, 559, 560, 561, 278], where the attractive fermion inter-
actions manage to break the symmetry during the RG flow and form bosonic bound states, while
the symmetry is again restored in the IR by the bosonic fluctuations.

However, as anticipated already in Section 11.3, using the LPA is certainly a crude approximation,
because the bGN model does not comprise a kinetic term for the bosons in the UV, which means
that the wave-function renormalization should be initialized at zero. Yet, the LPA uses a constant
non-zero wave-function renormalization, which is fixed uniquely in the UV. Therefore, one might
argue that the bGN and GNY model are not the same in our FRG framework. Although we
believe, as argued below, that the dynamical generation of the wave-function renormalization by
the fermion fluctuations is a subleading effect w.r.t. the general question of breaking or restoration
of the Z2 symmetry, we also extended our study to a dynamical Zφ(t). This allows fix the correct
UV initial condition of the theory. Furthermore, we also present calculations with a dynamical
Yukawa coupling. These improvements of the LPA truncation are discussed in Section 12.4 of this
chapter.
However, we already know at this point that even these calculations are not fully comprehensive,
because a single dynamical wave-function renormalization cannot capture the non-trivial momen-
tum structure of the bosonic two-point function, which is generated by the fermion fluctuations
and the chemical potential, cf. Section 11.3. Still, we believe that for small/zero µ, the above
truncation is sufficient and we can argue again that an absence of symmetry breaking at small T
and small/vanishing µ makes Z2-symmetry breaking in the remainder of the phase diagram highly
unlikely.

12.2. “Massaging” the flow equations (again)
To be explicit, in this chaper we are studying Eqs. (10.16) to (10.18) in three different approxi-
mations. For convenience, we recapitulate the equations at this point,
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+ 1
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1
ω2
n + k2 + 1
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)
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We again did not indicate the 1
N -rescaling of the boson field and the potential from Eq. (10.7),

because we are working in rescaled quantities for the remainder of this chapter.
Of course, for their explicit implementation, we perform the Matsubara sums by hand and use
Eqs. (B.13) and (B.15) for the flow equation of the effective potential, Eqs. (B.24), (B.25),
and (B.20) for the wave-function renormalization, and Eqs. (B.32) and (B.34) for the Yukawa
coupling.
Furthermore, as discussed in detail in Section 10.3, we do not study the flow equation of the
effective potential U(t, σ) as it stands, but use the flow equation of its σ-derivative u(t, σ) =
∂σU(t, σ) in terms of a diffusion-source-sink PDE. Here, we shall not repeat the details.
Lastly, before we can enter the discussion, we have to choose again an evaluation point in field
space for the flow equations of Zφ(t) and h(t). We choose σ = 0 for the following reasons:

1. From the perspective of an expansion of the bosonic kinetic term in powers of momenta and
fields, the only reasonable expansion point of the truncation Eq. (10.1) is φ(τ, x) = 0. Hence,
it seems inconsistent to evaluate the expansion coefficient Zφ(t) at a different position in
field space, if this part of the effective average action is constructed from an expansion about
vanishing boson field. The same applies to the Yukawa coupling.

2. Another reason to evaluate the flow equations at σ = 0 is that σ = 0 represents the constant
IR field configuration with least action, because, as we shall see, the system always ends up in
the symmetric phase (for T > 0). From this perspective, using σ = 0 as the evaluation point
for the flow equations of the Yukawa coupling and wave-function renormalization seems to
be a self-consistent approach [71, 66].

3. Evaluating the flow equation for Zφ(t) at σ ̸= 0 seems to violate crucial steps in the derivation
of this flow equation, where it was explicitly assumed that it is field-independent. Including
a field-dependence of Zφ(t) after derivation of the flow equations was not a problem for
N → ∞, because it did not feed back into the other flow equations, due to the absence of
inner boson lines. Now, it would certainly lead to an inconsistency.

Of course, we are aware of the problems which go hand in hand with choosing σ = 0 as the
expansion and evaluation point, such as possibly negative Zφ(t). In addition, we are also aware of
possible alternative approaches, such as using a dynamical evaluation point during the RG flow,
i.e., the scale-dependent minimum σmin(t) of the effective potential, see, e.g., Refs. [79, 86, 179].
Testing these different approaches against each other is, however, not subject of this work and our
results beyond the LPA should be considered as preliminary.
In summary, setting σ = 0 in the flow equations of Zφ(t) and h(t), we obtain
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12.3. The GNY model in the LPA
In this section, we focus on the LPA for the GNY model. At the beginning, we explain how we
initialize the RG flow equation (12.4) of the derivative of the potential in the UV. We present
checks for RG consistency [244] (UV-cutoff independence of the IR) and a crosscheck of the fluid-
dynamical framework with the N → ∞ results. Furthermore, we discuss the independence of the
purely numerical parameters. Afterwards, we turn to the actual discussion of RG flows for (the
derivative of) the effective potential. We start with a qualitative discussion and a comparison with
RG flows at N → ∞, e.g., to understand the dynamics which is introduced in the effective poten-
tial. We continue by presenting quantitative results at different finite N , e.g., of the symmetry
restoration scale in the IR. We end the general-results part with a presentation of the RG-scale
dependence of the phase diagram. Lastly, before we switch to the LPA′ truncation in Section 12.4
we briefly comment on the situation at T = 0.

12.3.1. The UV initial condition
A non-trivial question during the development of the project was how one has to initialize the
RG flow of u(t, σ) in the UV in a meaningful way. The problem is as follows: At infinite N , the
phenomenology in the GN model is uniquely determined as soon as one fixes a single dimensionful
quantity to a physical value, see Chapter 11. For example, one could use the critical temperature
at µ = 0 to set the scale or fix hσ0 to some value. In particular, we set hσ0 = 1 and σ0 = 1, which
implies that all dimensionful quantities in the model are expressed in units of the (UV) Yukawa
coupling.1 This also results in a unique UV potential (in our regularization), i.e., Eq. (11.14),
where also the cutoff Λ and U(Λ, σ) itself can simply be measured in units of h,

U(Λ, σ) = dγ
4π h

2σ2
[

−
(

1 + h2σ2
0

Λ2

)− 1
2 + artanh

([
1 + h2σ2

0
Λ2

]− 1
2
)]

. (12.7)

However, if we turn to finite N , we are actually confronted with a different theory with possibly
different IR physics for each N . Therefore, it seems unconventional to use some unique IR quantity
for all N to fix the scale. (This would be similar to comparing calculations for QCD with two,
three, and infinite colors(!) by fixing the same proton mass.) Working at constant IR physics
simply does not make sense, if we want to compare different N (including infinite N).
However, in the UV, the GN model in its bosonized and 1

N -rescaled version should be unique for
any N . It is simply an (asymptotically) free relativistic gas of fermions, where bosons decouple
by becoming ultra-massive. In addition, due to the 1

N -rescaling, it should not play a role whether
we are working with N = 2 or N = ∞ fermion species in the UV. The formal initial condition
for U(t, σ) should be the same. Therefore, it absolutely makes sense to use the (N → ∞)-
renormalization procedure from Section 11.2.3 to generate the UV-cutoff dependence of the UV
potential, Eq. (12.7), to

1. recover the correct (N → ∞)-IR physics.

2. have a unique UV theory for all N .

Indeed, the explicit choice of N exclusively enters the PDE system Eqs. (12.4) to (12.6) in terms
of 1

N -factors in front of bosonic propagators, such that “theories” with different N only start to
1We keep h and σ0 explicit in all formulae, but set hσ0 = 1 and σ0 = 1 in all practical calculations and plots.
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differ once the bosonic fluctuations set in. This is in the IR, which implies that we can compare
IR physics for different N .

Absence of diffusion in the UV

Let us further refine this line of argumentation from the fluid-dynamical perspective on the flow
equation Eq. (12.4). In general and independent of the dependence of 1

g2 on Λ, the UV potential
is quadratic in the fields, see Eq. (10.2). This corresponds to a linear initial condition for u(t, σ)
at t = 0 (k = Λ). However, the bosonic contribution to the flow equation is of the diffusive
type, see Eqs. (10.20) and (10.23). Thus, as long as ∂2

σu(t, σ) ≃ 0 there is no diffusion, which is
certainly the case in the UV. Moreover, ∂σu(t, σ) enters the bosonic propagators and therefore
also the diffusion coefficient Eq. (10.23) in the denominator. In the UV, ∂σu(t = 0, σ) = h2

g2 , which
is supposed to be large (or even diverge for Λ → ∞), which additionally suppresses diffusion. In
consequence, already from the quadratic shape of the UV potential and the diffusive character
of the flow equation, we can conclude that bosonic fluctuations cannot enter the dynamics until
the fermions significantly reshape the potential. This happens approximately at the symmetry-
breaking scale. It directly follows that the RG flows at any N will be rather similar up to this scale
and closely follow the RG flow for N → ∞. This already confirms without explicit calculation that
switching from N → ∞ to finite N mainly affects the IR physics. Condensation is even expected
at intermediate RG scales in regions of the phase diagram where it is also found for N → ∞.

Fixing the Yukawa coupling and the wave-function renormalization in the LPA

Implicitly, we have already stated that we fix the non-dynamical Yukawa coupling for all RG times
at its UV initial value, which we also use to set the scales of the model. However, for computations
in LPA we have to additionally fix the value of Zφ(t) for all RG times. A reasonable approach
is certainly to use the infinite-N results from Fig. 11.7 at µ = 0 and small T as an orientation,
because this is the region of the phase diagram where we believe that a parabolic momentum
profile of Γ(2) is most reasonable. However, for T → 0, Zφ diverges, while it falls off rapidly for
growing temperatures. As a compromise, we simply fix Zφ = 1 by hand for all scales. In the UV,
this is certainly too large, but also in the IR it is only a rough approximation for most points in the
µ-T -plane. However, as just explained, an overestimation of the kinetic term for the bosons is of
subordinate importance, because the bosonic fluctuations are suppressed in any case by the shape
of the potential up to a possible symmetry-breaking scale. At this scale the bosonic wave-function
renormalization is generated for any N and almost takes its N → ∞ value due to the fermionic
fluctuations. In the IR we believe that an under-/overestimation of Zφ mainly shifts the dynamics
slightly to smaller/larger RG scales.

(Numerical) consistency check with the infinite-N solution

Although we have fixed the UV potential and initial condition for all N by Eq. (12.7) and continue
to measure all dimensionful quantities in units of the UV Yukawa coupling h, we still have to clarify
how large we have to choose Λ. In contrast to the N → ∞ calculations, it is not possible to send
Λ → ∞ in numerical calculations of RG flows. Instead, we have to initialize the RG flows at some
very large but finite Λ to ensure RG consistency and independence of the IR observables from Λ.
We do not repeat the underlying reasoning at this point, but refer to Section 6.5 and Ref. [244].

Fixing Λ via N → ∞ calculations A first, rather simple procedure for choosing Λ is to already
work in our fluid-dynamical setup for the numerics, but to suppress bosonic fluctuations again by
sending N → ∞. Hence, we initialize the RG flow repeatedly at different values for Λ, flow to
the deep IR (here kIR = 10−4 in units of h)2 by only including fermion fluctuations, and extract

2We discuss below that this value for the artificial IR cutoff is sufficiently low. Still, we could even integrate to
smaller kIR without observing a difference in our results.
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Figure 12.1: PT lines (equally colored dots) for different UV cutoff Λ at N → ∞. The curves are
obtained by integrating the N → ∞ limit of the RG flow equation (12.4). The exact PT line, cf.
Fig. 11.1, is plotted in yellow. From Ref. [4, Fig. 3].

the corresponding phase diagram. For large Λ, the phase diagram should go over to the well-
known N → ∞ phase diagram of the renormalized GN model, were the cutoff is entirely removed
from the IR potential, see Fig. 11.1. The simple question is how large Λ has to be chosen such
that differences between this finite Λ and Λ → ∞ are no longer visible. The corresponding test
is presented in Fig. 12.1, where we study the phase boundary for the (N → ∞)-phase diagram
for different UV cutoffs. It is clearly visible that surprisingly large Λ are required to ensure RG
consistency already without bosonic fluctuations. We consider Λ = 105 to be a reasonable choice.

UV-cutoff independence with bosonic fluctuations Still, only using the infinite-N calcu-
lations to ensure RG consistency seems insufficient and we should at least perform some explicit
checks for finite-N calculations. Such type of tests are presented in our own Ref. [4, Appendix F]
and we summarize the key idea of these tests in the following. (The concept closely follows the
tests from Section 6.5.)
As a non-trivial observable to test UV-cutoff independence, we choose the IR curvature mass.
According to Ref. [244], independence of the UV cutoff implies at any µ and T ,

Λ d
dΛ m

2
σ = 0 , (12.8)

where

m2
σ = ∂σu(t → ∞, σ)

∣∣
σ=σmin(µ,T ) . (12.9)

(Of course, numerically t → ∞ is replaced by the artificial cutoff kIR.) The question is how
Eq. (12.8) can be tested explicitly. To this end, we solve RG flows with initial condition (12.7)
repeatedly for different cutoffs Λ and extract Eq. (12.9). We expect that for sufficiently large Λ
the IR values for m2

σ do not change anymore. Hence, we plot m2
σ as a function of Λ in Fig. 12.2

(upper panels) for two different sample points in the µ-T -plane. Since it is hard to judge by visual
inspection only whether m2

σ is indeed no longer changing when Λ is further increased, we also plot

∆m2
σ

m2
σ

(Λi) ≡
∣∣∣∣m2

σ(Λi) −m2
σ(Λ = 106)

m2
σ(Λ = 106)

∣∣∣∣ , (12.10)

which is the relative deviation of the IR curvature mass for some Λi from the curvature mass at
the largest Λ. These are the lower panels of Fig. 12.2.
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Figure 12.2: IR curvature mass m2
σ (upper panels) and Eq. (12.10) (lower panels) as functions of

the UV cutoff Λ. From Ref. [4, Figs. 32 & 34].

In total, we observe that both, Eqs. (12.9) and (12.10), saturate on plateaus for large Λ. This
is basically a realization of Eq. (12.8) and confirms that Λ = 105 is a suitable choice for the UV
initial scale. Similar tests can be performed with other observables. The above tests were also
performed at other (µ, T ) points, see Ref. [4], and for different N .
Meaningful choices of the numerical parameters σmax and ncells that were used for the tests is
briefly discussed in the next paragraphs.

12.3.2. Numerical tests
As discussed in detail in Section 6.5, it is also required to control that the IR results of RG flows
are independent of the numerical parameters. Here, these are mainly two parameters, namely
σmax, the size of the computational domain, and ncells, the number of FV cells which are used for
spatial discretization, cf. Sections 5.2, 6.5, and 10.3.1. Of course, in contrast to Section 6.5, we
do not have any exact reference solutions to control the independence. In analogy to the previous
discussion and as suggested before, we therefore use the largest σmax and the finest grid spacing
with smallest ∆σ as corresponding references. Again, the curvature mass (12.9) serves as our
observable and we conclude independence of the numerical parameters if we observe plateau-like
behavior for σmax-tests and convergence for ∆σ-tests. To this end, we introduce the additional
observables

∆m2
σ

m2
σ

(σmax,i) ≡
∣∣∣∣m2

σ(σmax,i) −m2
σ(σmax = 12)

m2
σ(σmax = 12)

∣∣∣∣ (12.11)

and

∆m2
σ

m2
σ

(∆σi) ≡
∣∣∣∣m2

σ(∆σi) −m2
σ(∆σmin)

m2
σ(∆σmin)

∣∣∣∣ , (12.12)

where the best resolution of our tests is given by

∆σmin = σmax
nmax−1 = 6

3000−1 . (12.13)

The explicit tests are presented in Figs. 12.3 and 12.4 and we conclude that σmax = 6 and
∆σ = 0.006 are appropriate choices. Tests at two additional points in the µ-T -plane are explicitly
presented in Ref. [4] and further tests were performed by the authors of Ref. [4], also for different
N .
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Figure 12.3: IR curvature mass m2
σ (upper panels) and Eq. (12.12) (lower panels) as functions of

the size of the FV cells ∆σ. From Ref. [4, Figs. 28 & 30].
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Figure 12.4: IR curvature mass m2
σ (upper panels) and Eq. (12.11) (lower panels) as functions of

the size of the computational domain σmax. Ref. [4, Fig. 24 & 26].

12.3.3. Results
Having settled the questions of UV initial conditions, a decent choice for the UV cutoff scale, and
appropriate choices of the numerical parameters, we can start presenting the results which are
obtained within this setup. We begin with a more qualitative discussion of RG flows at selected
points in the µ-T -plane and afterwards turn to more quantitative predictions.

Symmetry breaking and restoration in RG flows

In order to understand the overall dynamics of RG flows at finite N and their difference to RG
flows at N → ∞, we simply pick w.l.o.g. the point µ = T = 0.1 and compare calculations at the
two extreme choices for N , namely N = 2 and N = ∞. The corresponding plots are presented in
Fig. 12.5.
We start the discussion with Fig. 12.5a, where the RG flow of the derivative of the effective potential
was calculated in the absence of bosonic fluctuations. The flow of the potential itself is obtained
by integration of u(t, σ) in field space. Of course, we could have simply used Eq. (11.21) to plot
the IR potential (red curve), which, however, is not the point of this discussion. By integrating
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Figure 12.5: RG flow of the effective potential U(t, σ), its σ derivative u(t, σ) = ∂σU(t, σ), the
global minimum σmin, the squared curvature mass m2

σ, and the relative change of the squared
curvature mass |∂tm2

σ| at µ = T = 0.1. (The white vertical bars in the horizontal scaling bar mark
the symmetry breaking/restoration RG times.) From Ref. [4, Figs. 4 & 5 & ancillary files on arXiv].
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out the fermions step by step one clearly observes how the parabolic UV potential changes its
shape as soon as the RG scale reaches model scales (which are set by h) and Z2 symmetry of the
vacuum gets dynamically broken because a non-trivial minimum forms. This is also observed from
Fig. 12.5b, where the corresponding RG flow of the minimum is plotted. Furthermore, we present
as an additional observables the curvature mass and its changing rate, which are important to
judge whether one has really reached the IR and can stop the RG flow at some finite artificial IR
cutoff kIR.
Now, let us compare the N → ∞ flow with the RG flow for the identical setup, but with N = 2.
Thus, bosonic fluctuations are no longer suppressed. Even more, N = 2 is the smallest possible N
and therefore is identified with a maximum of bosonic fluctuations. Interestingly, but as expected
from our earlier discussion, we find that the RG flows for N → ∞ and N = 2 lie almost perfectly
on top of each other in the UV and only start deviating from each other right after symmetry
breaking. (The corresponding plots for the RG flows of the effective potential and its derivative
are presented in Fig. 12.5c, while the flow of the minimum, the curvature mass, and its changing
rate are shown in Fig. 12.5d.) The agreement of the UV dynamics for all N also confirms our
assumption that the explicit choice of Zφ is of little relevance in the UV and bosonic fluctuations
are simply suppressed by the shape of the effective potential and the absence of diffusion in the
PDE of u(t, σ).
This brings us directly to the dynamics which is going on for N = 2 at scales below k ≈ h. Once a
non-trivial minimum has formed and the potential has developed a “Mexican hat”-like shape, we
find that bosonic fluctuations set in rapidly and start destabilizing the condensate. This is clearly
seen on the level of u(t, σ) in the lower panel of Fig. 12.5c by comparing it with the lower panel of
Fig. 12.5a. Strong diffusion in the small-|σ| region, where the slope of u(t, σ) is negative and the
diffusion coefficient largest, cf. Section 10.3, leads to an equilibration of the “fluid field” u(t, σ)
and a reduction of gradients at small |σ|. On the level of U(t, σ), this corresponds to a flattening
of the potential. The non-analytic kink-like structure close to the intermediate minimum (w.r.t.
t) is due to the highly non-linear character of the diffusion, which is realized by a highly non-linear
diffusion coefficient. Ultimately, the potential U(t, σ) itself turns convex, as it should, and the Z2
symmetry of the vacuum is restored. This is better seen in the upper panel of Fig. 12.5d and is a
realization of precondensation, because µ = T = 0.1 is clearly located in the region of the phase
diagram where the bosonic fluctuations and not the thermal fluctuations of the fermions destroy
the condensate in the IR.
Overall, the observed dynamics also vividly demonstrates the shortcomings of the N → ∞ ap-
proximation. As soon as we turn to finite N the convexity of the IR potential is recovered, which
was artificially violated by the N → ∞ limit.
Let us finally turn to the changing rates of the curvature masses in the lower panels of Figs. 12.5b
and 12.5d. These can be used as a powerful indicator for the freezing of the dynamics in the IR.
As soon as this quantity completely falls off to zero, we can reasonably assume that we reached
the IR and that we can stop the numerical integration at some small artificial kIR. As is clearly
seen from the same plots (upper and middle panel) the minimum and the curvature mass itself
are no good observables for reaching the IR.

RG flows at low temperature and the role of the chemical potential

Next, we address the role of the chemical potential during the RG flow by inspecting explicit
results and therefore continue the discussion of Section 10.3.1. In this discussion, we identified the
dynamics which is introduced by µ into the fluid-dynamical PDE for u(t, σ), as a sudden “external
shock”. It enters field space at σ = 0 when k ≈ |µ| and moves out to larger |σ| for smaller k, see
also Fig. 10.1.
In order to visualize this effect, we again choose small and vanishing T , i.e., T = 0 and T = 0.00625
and fix µ = 0.6. Again, we start by inspecting the step-wise integration of the fermion loop at
N → ∞. The corresponding RG flows of the (derivative) of the effective potential for T = 0 and
T = 0.00625 are plotted in Figs. 12.6a and 12.6b. In Fig. 12.6a for T = 0 we clearly observe
what was discussed earlier in Section 10.3.1: The chemical potential introduces a discontinuity
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into u(t, σ), which moves to larger |σ| and ultimately freezes for k = 0 at |σ| = |µ|. On the level
of U(t, σ), this corresponds to a moving (barely visible) kink. (Note that the IR potential and
its derivative agree with Figs. 11.3a and 11.3b.) However, as soon as the temperature is non-
vanishing, the Fermi-Dirac distributions lead to a smearing of the discontinuity and the kink, see
Fig. 12.6b. Still, remnants of the structures which stem from the chemical potential are clearly
visible.
In Section 10.3.1, we discussed that at finite N this sudden externally induced discontinuity may
lead to an overshooting of the poles of the Euclidean bosonic propagators for T = 0 and therefore
presents a severe formal and numerical problem. This behavior was indeed observed as soon as
bosonic fluctuations at finite N were included in the RG flows and the numerical integration simply
broke. Hence, we are conceptually not able to present RG flows at T = 0 for non-vanishing µ.
In consequence, in order to study the interplay between the diffusion from the bosonic σ-mode
and the non-analyticity, we work at very small non-vanishing temperature, where integration is
possible. In Figs. 12.6c and 12.6d, we present explicit RG flows of (the derivative of) the effective
potential with N = 2 and N = 16 at µ = 0.6 and T = 0.00625. Again, it is interesting to observe
the identical dynamics for all finite and infinite N up to the symmetry-breaking scale and the
huge deviations of the finite-N dynamics from the purely fermionic flow in the IR. In any case,
we observe how the diffusive σ-mode restores the Z2 symmetry in the deep IR and drives the
potential convex, which is both violated for the N → ∞ calculation. However, we can still observe
clear imprints of the chemical potential in the shape of u(t, σ) in Figs. 12.6c and 12.6d despite
the (non-linear) diffusion. An expansion of such a potential or its derivatives in polynomials is
certainly not recommendable at RG scales below the symmetry-breaking scale. The same applies
when trying to solve the corresponding PDE with discretization schemes which cannot cope with
non-analyticities. We therefore believe that insufficient numerical schemes are one of the reasons
why there was little success in integrating to the small IR scales with high resolution in field space
in a stable and controlled way in various models.
Let us also briefly comment on the differences between the N = 2 and N = 16 RG flows in
Figs. 12.6c and 12.6d. It is clearly visible that for a larger number of fermion species the diffusion
sets in at later RG times and symmetry restoration takes place at much smaller RG scales. This is
expected, because N exclusively enters the PDE in terms of a 1

N -prefactor in front of the bosonic
contribution, thus as a 1

N factor in the diffusion coefficient, see Eq. (12.4). This simply makes the
fluid more viscous such that equilibration takes longer.
Lastly, we note again that the LPA is of course a bad quantitative description of the true dynamics
at large µ and small T , because the imprints of the chemical potential in the momentum structure
of the bosonic two-point function, which were discussed in Section 11.3, are ignored, see Fig. 11.8.
Still, the flows in LPA are stable, even in regions where we expect Zφ to turn negative, because we
simply do not allow for this to influence the dynamics of the potential. This means that, funnily,
improving the truncation does not lead to more stability of the RG flows.

Varying N

So far we mainly considered N = 2 when we discussed RG flows at finite N or tested the numerical
setup. However, the question is whether we are observing the same dynamics, namely symmetry
restoration by the bosons for any N or is there maybe a critical N where the Z2 symmetry is
still broken for some points in the phase diagram in the IR. To answer this question, we first
focus again on a single point in the µ-T -plane, namely µ = T = 0.1 and studying the RG flow
of the condensate for various N to get an impression of the general behavior. This is plotted in
Fig. 12.7a. It is clearly visible that there is condensation for all N . For sufficiently large N we
find that σmin(t) even approaches the N → ∞ vacuum IR values σmin(µ = 0.1, T = 0.1) ≃ σ0 = 1
for RG scales, which are close to the model scales or slightly below. Nevertheless, for any of
the randomly chosen N we observe symmetry restoration at some scale kres, which we call the
(Z2-symmetry) restoration scale. As expected, there is also a clear hierarchy and kres is decreasing
with increasing N . Interestingly, kres is at least one order of magnitude below typical model scales.
For larger N , it appears reasonable that it is necessary to integrate several orders of magnitude
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Figure 12.6: RG flows of the effective potential U(t, σ) and its σ derivative u(t, σ) at
small/vanishing temperature and µ = 0.6. (The white vertical bars in the horizontal bar scale
mark the symmetry breaking/restoration RG times.) From Ref. [1, Figs. 6, 7, 8, 9].
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Figure 12.7: Dependence of the Z2-symmetry restoration scale kres on N . From Ref. [4,
Figs. 10 & 11].

below model scales. This promotes the solution of the GNY to a true multi-scale problem (from
Λ = 105 to kIR ≈ 10−4). Recalling that there were multiple approaches to the GN model via
lattice Monte-Carlo studies, see references in Section 7.4.5, it seems at least questionable whether
these works were able to resolve this range of energies, which seems to be required to capture the
entire dynamics.
Anyhow, let us study the dependence of kres onN more systematically for varying µ and T based on
Fig. 12.7b. From the plot, we can deduce that kres(N) ∝ 1

N for small and moderate temperatures,
independent of the choice of µ. Naturally, we exclusively considered values of µ where we expect
at least condensation within a finite range of RG scales. As an orientation, we used the infinite-N
phase diagram in Fig. 11.1, where the chemical potential alone already restores the symmetry for
|µ| > 1√

2 . We also find deviations from kres(N) ∝ 1
N for small |µ| and temperatures close to the

second-order PT line from Fig. 11.1. This is also expected, because in this region already thermal
fluctuations of the fermions start to melt the condensate.
Overall, we conclude from this discussion that we do not observe qualitative differences between
calculations at different finite N . The only difference is that kres is pushed towards the IR for
increasing N . Still, our observed relation kres(N) ∝ 1

N predicts the possibility for symmetry
breaking in the IR for N → ∞ and is therefore again consistent with MF calculations.

Varying T

Next, let us more systematically analyze the situation at different temperatures – especially at
small temperatures. W.l.o.g. we again fix N = 2. We pick different values for µ ∈ [0.0, 0.75] and
study kres as a function of the temperature. The results are shown in Fig. 12.8. Of course, for
µ ≥ 1√

2 , kres at small T becomes independent of T , because the symmetry is already restored by
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the density fluctuations of fermions (the particle-anti-particle asymmetry) without the help of the
bosons. However, for small µ and small T we clearly observe that kres(T ) ∝ T . This indicates that
Z2 symmetry is always restored at some IR scale as long as T > 0. For T = 0, symmetry breaking
is in general possible. Both findings are in general agreement with the discussion in Section 7.4.

Precondensation

We have mentioned the phenomenon of precondensation already several times. In simple terms it
states, see Refs. [557, 558, 559, 560, 561, 278], that there might be the formation of a condensate
at intermediate RG times, because of the attractive fermion interactions, which is nevertheless
vaporized by thermal or quantum fluctuations of any kind at deeper IR scales.
As can already be anticipated from the above discussion, we observe this phenomenon in a large
region of the phase diagram, which almost matches the region of homogeneous symmetry breaking
for N → ∞. Here, we simply quantify at µ = 0 the actual extent of this region as a function of
N . We define the precondensation temperature Tpc as the maximal temperature where at least
some condensation was observed at any time during the RG flow. For N → ∞ the temperature
Tpc should approach Tc = eγ

π
. Exactly this is seen in Fig. 12.9. It is also worth mentioning that
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there is always a Tpc ̸= 0 for any N and that Tpc is always rather close to Tc even for small N .
(Note the axis scaling.)

The phase diagram and absence of symmetry breaking in the IR

Having discussed various details of our findings separately, it is now time to have a look at the
bigger picture. We therefore present the entire phase diagram (the PT line between phases where
Z2 symmetry is spatially homogeneously broken/restored) as a function of the RG scale. For the
sake of simplicity, we choose N = 2. Results for larger N are qualitatively similar. The output
of this calculation is plotted in Fig. 12.10 at a discrete grid of points (µ, T ) with T > 0. One
observes that, as soon as the RG scale is approximately at model scales k ≈ h, there is a region of
non-vanishing condensate. For N = 2 this region is not identical to the N → ∞ phase of broken
Z2 symmetry, but approaches its shape. Especially for small temperature the difference of the PT
for N = 2 at k = 0.4 and the infinite-N first-order PT is small. However, as soon as one integrates
to smaller RG scales and includes more and more bosonic fluctuations the phase of broken Z2
symmetry shrinks and ultimately vanishes for k ≲ 0.003.
Especially from the absence of symmetry breaking at small/vanishing µ and non-zero but small
T we conclude that condensation is in general not possible in d = 1 at T > 0.

Towards the vacuum and zero temperature

For T = 0 and arbitrary µ the situation is of course not settled and it is unclear whether we can
reliably conclude from Fig. 12.8 that there is still condensation.
If we, however, ignore the chemical potential for the moment and turn to the thermodynamic
vacuum at µ = T = 0, we can again use our flow equations in LPA and perform stable calculations.
Hence, working with the well-defined T → 0 and µ → 0 limit of Eq. (12.4) using Eqs. (B.14)
and (B.16), i.e.,

∂tu(t, σ) = d
dσ

[
− 1
N

1
2π

k3√
k2 + ∂σu(t, σ)

+ dγ
1

2π
k3√

k2 + h2(t)σ2

]
, (12.14)
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we calculate the RG flows which are plotted in Fig. 12.11a. We observe condensation at any IR
scales, which indicates that there is symmetry breaking at T = 0 in d = 1. The same is found for
larger N . Arguing with the Silver-Blaze property, cf. Section 8.1.3, the same should hold true at
least for small µ ̸= 0 (as long as µ is smaller than the pole mass of the fermion).
Nonetheless, we should be careful. As discussed earlier in this work, see Section 9.2.2, taking
the T → 0 and µ → 0 limit of Eq. (12.4) does not lead to the true Euclidean vacuum LPA
flow equations, which respect Euclidean Poincaré invariance, because we are still working with
one-dimensional Litim regulators.
Therefore, it is instructive to also study the RG flow from the vacuum flow equation with a
covariant two-dimensional Litim regulator with identical UV initial condition (to work on lines of
constant UV physics). This PDE reads

∂tu(t, σ) = d
dσ

[
− 1
N

1
8π

k4

k2 + ∂σu(t, σ) + dγ
1

8π
k4

k2 + h2(t)σ2

]
(12.15)

and is solved with the same numerical techniques as before. The result is plotted in Fig. 12.11b
and yields qualitatively similar results. There is symmetry breaking in the IR at zero temperature
and, due to the Silver-Blaze property, we also expect symmetry breaking for small non-zero µ.

12.4. First steps towards the GN(Y) model beyond the LPA
approximation

In this section we turn to calculations beyond LPA. However, we have to note that the analysis
in this section is not as systematic as the previous one in LPA and all results are preliminary.
Furthermore, the results are not cross-checked by my collaborators yet and they are also not pub-
lished. The material is completely new. However, we have already made non-trivial checks: Firstly,
the flow equations are cross-checked with existing literature (with flow equations of Yukawa-type
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models in d-dimensional systems, see Appendix E.2). Secondly, the results are in general agree-
ment with the expectations that were gained from our previous calculations and discussions.

The starting point of this section is again a brief comment on the UV initial conditions for the RG
flow equations in LPA′, Eqs. (12.4) and (12.5), without and with the flow equation of a running
Yukawa coupling, Eq. (12.6). (In the following we use the notation “LPA′+h” for the truncation
which incorporates the flow of the Yukawa coupling.) Furthermore, we have to explicitly state our
choice of numerical parameters, which is done directly afterwards.
Then, we turn to the explicit results. To get a first impression of the outcome of the RG flows in
the “improved” truncations, we compare RG flows at infinite N with N = 2 RG flows in the LPA,
the LPA′, and the LPA′+h at small temperature and zero chemical potential.
Afterwards, we focus on the LPA′ and the LPA′+h truncation. As examples we present results
for N = 2 and N = 16. We show that it is not possible to flow to the deep IR for every point
in the µ-T -plane and that the breakdown of the RG flow is closely linked to the dynamics of
the bosonic wave-function renormalization, which in turn strongly depends on N , µ, and the
truncation. Therefore, we present plots of the bosonic wave-function renormalization and the
Yukawa coupling and discuss insufficiencies of the truncations. Finally, we come to one of the
main questions of Part II of this thesis: Do we find symmetry breaking at finite N in the IR?
Despite the collapse of the RG flows in certain setups and the problems of the truncations, we
think that our results still answer this question with “no”. This is elaborated in detail.

12.4.1. UV initial condition and numerical setup
Let us first briefly explain the formal setup.

UV initial condition

Concerning the UV initial condition for the RG flows, we use the following parameters:

The Yukawa coupling We still initialize the Yukawa coupling with h(t = 0) = 1, which means
that all quantities are still measured in appropriate units of the UV Yukawa coupling. As we
shall see from our calculations, it seems appropriate to consider a UV-cutoff independence of the
Yukawa coupling in the UV and to initialize h(t = 0) = 1, independently from the explicit choice
of Λ (as long as Λ is huge compared to h(t = 0)). The reason is that the Yukawa coupling does
not evolve at very large RG scales and settles on a plateau. There, its value should be the same
in all truncations and for finite and infinite N .

The UV cutoff This directly brings us to the UV cutoff Λ. Again, we use Λ = 105. There is
no reason to assume that the inclusion of a dynamical bosonic wave-function renormalization or
the Yukawa coupling requires a larger UV cutoff than for the LPA calculations in Section 12.3. Of
course, explicit checks would be appropriate and are planned for the future. However, inspecting
the explicit RG flows of this section, one finds not only a constant Yukawa coupling, but also
vanishing bosonic anomalous dimension in the UV for several orders of magnitude in k, which
supports the assumption that Λ = 105 is sufficiently large.

The UV potential For the UV potential at Λ = 105 we use Eq. (12.7) as for the RG flows in
the LPA. The reasoning behind is the same as before and we refer to Section 12.3.1 for details.

The wave-function renormalization Moreover, the bosonic wave-function renormalization
should, according to Eq. (10.4), be zero in the UV for Λ → ∞. This is numerically not possible,
which is directly seen from Eqs. (12.4) to (12.6), because of the 1/Zφ(t) factors. Still, we are
not starting our RG flow at Λ → ∞, but with a finite Λ = 105 such that it is appropriate to
assume a small non-vanishing Zφ(t = 0) ̸= 0. Indeed, it is actually possible to estimate this
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value. Inspecting the flow equation for the wave-function renormalization (12.5), we find that
the bosonic contribution is proportional to [∂2

σu(t, 0)]2. However, this vanishes exactly in the UV
above the cutoff Λ, because the initial condition for the effective potential, Eq. (12.7), is quadratic
in σ. Therefore, we can simply use the purely fermionic contribution in Eq. (12.5) to analytically
integrate from Λ = ∞, where the wave-function renormalization has to vanish, to Λ = 105, where
it takes a very small value. (We assume that the Yukawa coupling is constant for these RG scales.)
This is of course done in vacuum and the corresponding integrated flow equation reads

Zφ
(
k = 105)−������

Zφ(k = ∞) = dγ
2π h

2
∫ ∞

105
dk 1

4k3 ≈ 10−12 . (12.16)

Unfortunately, this value is so small that we experienced that ηφ = ∂t ln(Zφ) is numerically not
vanishing at very large Λ, which we trace back to spurious cancellations in the floating-point
arithmetic.
We therefore decided to choose a larger (but still very small) value, namely Zφ

(
Λ = 105) = 10−5, as

initial value for the bosonic wave-function renormalization, where we do not see these numerical
artifacts. Of course, the question is whether we are now trading a numerical problem for a
systematic error. To ensure that this choice does not completely spoil the results, we simply used
Zφ
(
Λ = 105) = 10−5 and returned to the N → ∞ flow equation. We integrated from k = Λ = 105

to k = 0 and compared the numerical result with this slightly wrong UV starting point against the
exact results from Table 11.3a of Section 11.3. The differences are indeed marginal. We therefore
consider Zφ

(
Λ = 105) = 10−5 to be a reliable UV initial condition. Of course, this issue should

be studied more systematically in future works.

Numerical setup

Next, we comment on the numerical setup.

Numerical parameters for the FV-KT scheme Of course, one option would be to com-
pletely repeat the tests for an appropriate choice of ∆σ and σmax, which are the parameters
needed for the FV discretization of Eq. (12.4). However, we think that this is not necessary for
the following reason: The inclusion of the bosonic wave-function renormalization and of a dy-
namical Yukawa coupling does not enlarge the dynamical region in field space, which is given by
the bare σ field. Hence, we simply use the values which we already considered trustworthy for
calculations in the LPA. In particular, we use σmax = 5 and ncells = 1001 and thereby fix

∆σ = σmax
ncells−1 = 0.005 . (12.17)

As a quick check, we randomly altered these values by hand, e.g., by enlarging σmax or ncells,
but we could not identify a notable change of the IR results. Only for too small choices of σmax
and ncells, which also produced significant deviations in the tests in Section 12.3.2, we observed
discrepancies in the respective IR observables.
In addition, we still use the same artificial IR cutoff kIR = 10−4 as for the RG flows in LPA.
Especially by inspecting the RG-time evolution of the bosonic anomalous dimension ηφ(t) =
∂t ln(Zφ(t)), which is very sensitive to small changes of Zφ(t), as well as the Yukawa coupling
h(t), we are confident that this IR cutoff is sufficiently small to ensure that all observables are
already “frozen” and all fluctuations are included in their values, cf. Figs. 12.12c and 12.12d.

Parameters for plots in the µ-T -plane As becomes clear within the next paragraphs, we
have to mention somewhere how we obtained Figs. 12.13 to 12.15 and 12.17. This is here: The
underlying data were generated by RG flows on a grid of points in the µ-T -plane with µ = 0.025 · i,
i ∈ {0, 1, . . . , 48} and T = 0.05 · j, j ∈ {1, . . . , 14}. To obtain a better resolution at small T , we
added points at the same values of µ with T = 0.025 + 0.5 · k, k ∈ {1, . . . , 6} as well as T = 0.01
and T = 0.02. This underlying grid and the different resolution at different T is visible in the
figures.
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Figure 12.12: RG flows of several quantities in different truncations for N = 2.

12.4.2. Results
Having briefly discussed the formal setup, we proceed with the presentation of the results of our
calculations.

A comparison of different truncations at zero chemical potential

In order to gain a first insight into RG flows beyond the LPA, we fix µ = 0 and T = 0.075
and compare RG flows in different truncations at constant N = 2. We first choose µ = 0 to
avoid complications due to the chemical potential and consider a small temperature, T = 0.075,
to incorporate possible effects of condensation. The plots of the corresponding RG flows are
presented in Fig. 12.12.
Here, the black curves correspond to the MF (N → ∞) results from Chapter 11, while the red
curves are the LPA results from Section 12.3. Of course, there is condensation with σmin(kIR) ≃ 1
at N → ∞ and also a non-trivial evolution of Zφ(t) towards the IR value, which is perfectly
expected from Fig. 11.7 and agrees in the IR with the value from Eq. (F.67).
For the LPA, we find the formation of a condensate at almost identical RG time t ≈ 11. Still,
the condensate evaporates again in the IR at t ≈ 15.5. The wave-function renormalization and
Yukawa coupling do not evolve by definition.
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As soon as we turn to the LPA′ truncation (blue curves), where we still fix h(t) = 1, we find from
Figs. 12.12b and 12.12d that the wave-function renormalization almost perfectly evolves along the
N → ∞ RG trajectory. There is only a small influence of the bosonic contribution to the RG flow
of Zφ(t) at t ≈ 12, shortly after the time of symmetry breaking, which is again at t ≈ 11. This is
best seen in Fig. 12.12d. Again, we find symmetry restoration in the IR.
Interestingly, if we further improve the truncation by including a running Yukawa coupling (yellow
curves), we do no longer find precondensation, thus, the intermediate breaking of the Z2 symmetry
by a non-trivial minimum of the potential, see Fig. 12.12a. The system stays in its symmetric state.
(Below, we discuss that this is not always the case in LPA′+h, but depends on N .) The drastic
impact of a dynamical Yukawa coupling, which drops from h(t = 0) = 1 to h(t → ∞) ≈ 0.6, is
also seen in the flow of the wave-function renormalization, Fig. 12.12b, which strongly differs from
the LPA′ result.

In any case, we note that we do not find symmetry breaking in the IR for finite N = 2 at
small T and zero µ, which makes condensation at non-zero µ and larger T highly unlikely from a
thermodynamic perspective. How this changes for larger finite values of N is discussed below.
Before we expand the discussion to the entire µ-T -plane, let us also mention that Figs. 12.12c
and 12.12d clearly demonstrate that our choices for Λ and kIR seem to be appropriate. We
observe plateaus in the UV and in the IR, which imply that

1. there is no non-trivial scaling of the Yukawa coupling in the UV.

2. Zφ(t = 0) = 10−5 is sufficiently small and does not change until ηφ(t) rises at t ≈ 5.

3. we have integrated sufficiently deep into the IR by choosing kIR = 10−4, which is clearly
seen from the “freezing” of the Yukawa coupling in LPA′+h and ηφ(t → ∞) ≃ 0.

Remark on the bosonic wave-function renormalization

One might have noticed already from the discussion of the UV initial condition as well as Figs. 12.12b
and 12.12d that there is something intriguing about the bosonic loop contribution to the flow equa-
tion of Zφ(t), thus, Eq. (12.5). We already stated that the bosonic loop does not contribute to
the RG flow in the UV, because the prefactor [∂2

σu(t, 0)]2 vanishes for the quadratic initial condi-
tion. Either way, the vanishing of this coefficient does not seem to be restricted to the UV. Being
the third σ-derivative of a function which is even in σ, namely U(t, σ), it has to be odd about
σ = 0 and should therefore be zero at σ = 0. Effectively, there is an exception: If ∂3

σU(t, σ) is
discontinuous/non-analytic at σ = 0, e.g., if it has a discontinuity, it may take non-zero values
in terms of left and right limits, σ → 0±, similar to Fig. 5.1. Because it enters the flow equation
quadratically anyhow, it is only the absolute value that matters.3
This certainly explains why the RG flow of the bosonic wave-function renormalization is basically
independent of the bosonic loop contribution for almost all RG times and solely influenced by the
flow of the Yukawa coupling. If also the Yukawa coupling is fixed to a constant, like in LPA′, the
flow of Zφ(t) therefore has to follow its N → ∞ path, if the potential is smooth.
Returning to Figs. 12.12b and 12.12d, we find that the bosonic loop only sets in for some RG-time
steps shortly after the formation of a non-trivial minimum in the RG flow in LPA′. We conclude
that for these RG times the potential is no longer smooth – at least at σ = 0, while this gets
smeared again by the diffusion for later RG times. In total, for this µ-T -point, the difference to
MF is still small.
However, there may be more drastic consequences of this term and the dynamics of Zφ(t) in
general, which can have significant impact on the RG flows. The reader should keep the following
in mind while studying our results:

3Numerically, we simply use a forward FD stencil as a first approximation, which could be refined in future
works.
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1. If [∂2
σu(t, 0)]2 gets huge or even diverges, which can easily be the case if ∂3

σU(t, σ) has a
pole at σ = 0, cf. Eq. (11.23) and Section 6.2.4, there is even the possibility that the flow of
Zφ(t) diverges and the numerical time-stepper breaks down, because it detects a stiff system.
Here, only the extension of the truncation may help.

2. In Section 11.3, we learned that the wave-function renormalization takes negative values for
huge domains of the µ-T -plane at N → ∞, if it is evaluated at σ = 0, see Fig. 11.7. At least
for LPA′, where the Yukawa coupling cannot compensate any of this dynamics and the flow
of Zφ(t) mostly follows the MF flow, it may therefore easily happen that we observe negative
values of Zφ(t) during finite-N RG flows. It is highly unlikely that this is prevented by the
bosonic loop contribution due to non-zero [∂2

σu(t, 0)]2 for arbitrary µ and T . Especially large
temperatures smoothen the potential drastically. Hence, non-analytic behavior at σ = 0 is
not expected and the bosonic loop stays inactive.
From this we even expect the formation of negative Zφ(t) for huge regions of the phase
diagram, especially for large |µ| and T > 0. Since there are no higher-order momentum-
dependent terms which render the bosonic two-point function bounded from below, this
leads to a breakdown of the RG flow. It is best seen within our truncation from the bosonic
propagators in Eqs. (12.4) to (12.6), where a sign flip in Zφ(t) leads to an overshooting of
the pole of the propagator. In the fluid-dynamical version of the RG flow equation for u(t, σ)
this corresponds to the generation of a negative diffusion coefficient. Anyway, within this
work, we will simply observe a collapse of the RG flow for these points and the truncation
effectively predicts its own insufficiency below a certain k-scale.

Lastly, we have to note that this behavior would change as soon as the flow equation for Zφ(t) was
evaluated at non-zero σ or we considered a field-dependent bosonic wave-function renormalization.
Both options cause other problems and we are not returning to this discussion here.

Breakdown of RG flows

Keeping this information in mind, we can turn to RG flows at other points in the µ-T -plane for
finite N in LPA′ without or with running Yukawa coupling. For the following discussion we use
N = 2 and N = 16, but we also tested other values of N , which did not lead to qualitatively
different results. Of course, more systematic tests are planned.

We start by presenting Fig. 12.13, where we introduce and plot the RG scale klast. It is defined
as the scale k, before the RG flow breaks down in our approximation, because either the wave-
function renormalization turns negative or the time stepper cannot proceed integrating, because
of a singularity in the flow equations. The latter is caused, as explained before, by a positive
diverging Zφ(t) due to the bosonic loop contribution to its flow. What all four panels of Fig. 12.13
have in common is that integration up to the model scales, which are set by h(t = 0), µ, and T
is always possible. Furthermore, in all panels we observe that for small |µ| and sufficiently large
T one can integrate arbitrarily far to the IR, here klast ≃ 10−4 (yellow). This region is separated
from all points where the RG flow collapsed at larger k (green and blue) by the solid black line.
For large |µ| and T the black solid line follows approximately the diagonal line from Fig. 11.7,
which separates regions of negative and positive Zφ at infinite N . This approximate separation
along this line is expected from our previous discussions.
In addition, all panels have a region at large |µ| and very small T (blue) where the integration
breaks down when k ≈ |µ|, while for increasing T integration to (slightly) smaller k is possible.
This is in general agreement with the fact that the chemical potential causes an external shock
in the system at k ≈ µ, which can only be handled by better truncations that can resolve the
momentum structure of the bosons.
The main difference in the results from the four setups is seen at small |µ| and T . Here, it seems
that the inclusion of a dynamical Yukawa coupling stabilizes the RG flow in the IR and prevents
the bosonic wave-function renormalization from diverging. Furthermore, we find by comparing
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Figure 12.13: Last valid RG time step klast as a function of µ and T .

the LPA′+h results for N = 2 and N = 16 that a larger finite number of fermions also seems to
stabilize the flow and the integration to the IR is even possible at very small T and |µ| ≠ 0, where
the wave-function renormalization would turn negative for N → ∞.
It is therefore instructive to look at the explicit values of the wave-function renormalization and
Yukawa coupling at the last valid RG step klast, where the flow breaks down or reaches the IR
cutoff kIR, hence Zφ(klast) and h(klast). These are shown in Figs. 12.14 and 12.15 for the same
truncations and values of N as in Fig. 12.13. Obviously, Fig. 12.14 does not contain plots for the
LPA′, where h(t) = 1 for all RG scales.
From Figs. 12.15a and 12.15b one can deduce that the number of fermion species seems to have
little influence on the wave-function renormalization in the region where one can integrate to the
IR. The explicit values for Zφ(klast = kIR) are almost identical there. There are deviations only
for small T and small |µ|. Here, loosely speaking, it seems as if more diffusion in field space, hence
smaller N , helps to prevent the formation of non-analytic behavior in the potential at σ = 0.
Meanwhile, if we make the Yukawa coupling RG scale-dependent, things change significantly.
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Figure 12.14: Yukawa coupling in the LPA′+h in the µ-T -plane for the last valid RG time step
klast.

From Figs. 12.15c and 12.15d we find that Zφ(klast = kIR) strongly differs for N = 2 and N = 16
above the diagonal line. This has to be caused by the Yukawa coupling and indeed, we also observe
significant differences for the values h(klast = kIR) itself, see Fig. 12.14. For N = 16 the Yukawa
coupling falls off to much smaller values already at larger temperatures and is almost zero for a
rather large region around µ = T = 0. At this point, we do not have a conclusive explanation for
this phenomenon, which is caused by the highly non-linear dynamics of the PDE-ODE system.
In any case, we observe that already the variation of the 1

N -factors in the flow equations (12.4)
to (12.6) can have strong impact on the dynamics.

Before we turn to the main question of symmetry breaking and restoration for these four setups,
let us again analyze the RG flow for a single point in the µ-T -plane: In Section 12.3.3 and Ref. [4]
we spent quite some time to discuss the dynamics which is caused by the chemical potential at
very small temperatures in the RG flows. In Fig. 12.6, we observe remnants of the external shock
that stems from µ even in RG flows of u(t, σ) at finite N . Therefore, it is interesting to study
whether these remnants are still visible in LPA′+h. In Fig. 12.16 we plot the full RG flow of ηφ(t),
Zφ(t), h(t), and σmin(t) at µ = 0.4 and T = 0.01 as well as the RG flow of u(t, σ). For illustrative
reasons, we restricted the plot of u(t, σ) to selected values of k in the interesting region about
k ≈ 1.
First, we observe in both panels that there are some intermediate RG times where the Z2 symmetry
is dynamically broken before the system ultimately turns into its symmetric phase. However, in
comparison with the LPA flow at small T from Fig. 12.6c, we find that the absolute value of
the condensate is much smaller in LPA′+h. Furthermore, the remnants of the chemical potential
are no longer visible. It seems as if the running Yukawa coupling enables stronger diffusion,
which effectively smears the non-analytic structures that are caused by µ. An argument which
supports that this is not due to the running wave-function renormalization is found by returning
to Fig. 12.15b. There, the point µ = 0.4 and T = 0.01 corresponds to the regime of collapsing RG
flows. Moreover, if we analyze Fig. 12.16a, we find from the dynamics of ηφ(t) that Zφ(t) changes
drastically when the Z2 symmetry gets restored and σmin(t) vanishes at t ≈ 12.5. Zφ(t) almost
drops to zero and the system barely prevents Zφ(t) from turning negative. Already at µ ≈ 0.6 the
drastic decrease and a sign flip of Zφ(t) can no longer be prevented and RG flows are no longer
stable, see Fig. 12.15d.
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Figure 12.15: Bosonic wave-function renormalization in the LPA′(+h) in the µ-T -plane for the
last valid RG time step klast.

Symmetry restoration

This brings us back to our central question of Part II of this thesis: “To break or not to break Z2
symmetry at finite N?”
Similar to Fig. 12.10 from our calculations in LPA, we therefore consider figures which show the
region of condensation in the µ-T -plane as a function of the RG scale k. In particular, we plot the
PT line between regions where σmin(k) is either zero or non-zero at a given k. Of course, these
lines can only be shown for values of k where a condensate has formed already and where k is not
below klast from Fig. 12.13.
Therefore, as a very first result, there is no such figure for the N = 2 calculation in LPA′+h,
because we never observe a non-trivial minimum at any non-zero T and any µ, and we refrain
from plotting an empty phase diagram.
However, for the other three cases of the above discussion, we find Z2-symmetry breaking at
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Figure 12.16: RG flow in LPA′+h at µ = 0.4 and T = 0.01 for N = 16.

some intermediate k-scales. The corresponding plots are shown in Fig. 12.17. As is visible from
Figs. 12.17a and 12.17b, which are both in the LPA′ truncation, the maximal region of condensa-
tion is larger for larger values of N , which was already seen in LPA, cf. Fig. 12.9. For all three
scenarios, we clearly observe that the region of condensation drastically shrinks with decreasing k.
From Fig. 12.17c, we can even clearly deduce that ultimately there is never condensation in the IR,
because the condensate vanishes at each µ-T -point before klast or kIR is reached. Also Figs. 12.17a
and 12.17b indicate that we should not expect condensation in the IR. Nevertheless, for small |µ|
and small T the flow breaks down at some klast, before the symmetry is restored. Hence, the LPA′

is inconclusive, while the advanced LPA′+h clearly shows an absence of Z2-symmetry breaking for
all T > 0 at finite N . We finally add that a systematic scaling analysis with N like in Fig. 12.7b
is still missing, but planned for the future.

12.5. Conclusion and outlook
Here, we shall summarize the findings of this chapter and Part II of this thesis. Furthermore, we
draw conclusions for promising follow-up projects and similar calculations in higher-dimensional
models.

12.5.1. Summary and conclusion
Let us begin with a brief summary of the results in Part II of this thesis.

Summary

We started in Chapter 7 a more general discussion of the search for spatially inhomogeneous chiral
condensation in the phase diagram of QCD at non-zero temperature and non-zero baryon chemical
potential. It was explained that there are indications from various model studies, especially in MF,
that spatially oscillating condensates are expected to form under certain thermodynamic conditions
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at non-zero densities. However, a detailed investigation of the stability of these condensates under
the influence of bosonic fluctuations was missing (even in effective models for QCD) and planned
as the original topic of my PhD.
Anyhow, we explained in Chapter 7 why we had to strongly reshape the project for several reasons
and finally decided to first turn to the (numerical) method development of Part I of this thesis and
afterwards to study some aspects of (inhomogeneous) condensation as well as symmetry restoration
with a much simpler model – the GN model. Furthermore, in Section 7.1.3, we presented an
updated list of research questions, which we planned to answer with our reshaped project, before
the return to the problem of inhomogeneous condensation in 3 + 1 dimensions under the influence
of bosonic fluctuations seems feasible.
We proceeded in Chapter 7 with an extensive overview of the GN model and contextualized the
model with other QFTs from high-energy particle physics and low-dimensional condensed-matter
physics. The presently known phenomenology of the GN model, especially for N → ∞, was dis-
cussed and possible scenarios and preliminary results for the phenomenology at finite N including
bosonic fluctuations were outlined.

In Chapter 8, the GN model as well as its bosonized versions were formally introduced as QFTs
in Minkowski and Euclidean spacetime. Discrete and continuous symmetries of the model were
discussed. Furthermore, the formal description of the model at non-zero temperature and chemical
potential was outlined and the consequences for the symmetries of the model were analyzed.

In Chapter 9 we started the actual investigations. We studied the GN model in its purely fermionic
formulation and tried to analyze its phase structure. As a framework for our calculations we used
the FRG formalism. Based on the possible divergence of the four-fermion coupling, we worked
out regions in the µ-T -plane where Z2-symmetry breaking is at least expected at some RG scales
at finite and/or infinite N . Nevertheless, it was found that a purely fermionic study is inconclu-
sive without better momentum resolution or the inclusion of the possible formation of bosonic
condensates, which motivated us to turn to the partially bosonized versions of the GN model in
the subsequent chapter. However, already the four-fermion coupling analysis showed significant
differences between the regions of diverging four-fermion coupling at finite and infinite N . Fur-
thermore, the calculations at finite N revealed possible solution strategies for the long-standing
problem of the correct evaluation of external fermion legs of Feynman diagrams at non-zero µ and
non-zero T , which usually produce complex contributions to the β-functions.

Chapter 10 served as an introduction to our FRG setup to study the partially bosonized version
of the GN model – the bGN and GNY model. The truncation, the UV initial condition, and
the flow equations for the corresponding RG flows were discussed. Furthermore, we commented
on symmetry breaking and restoration during RG flows and the indirect detection of spatially
inhomogeneous condensation. In the second half of this chapter, we discussed the FRG flow equa-
tions in their fluid-dynamical reformulation and recapitulated the appropriate numerical solution
strategy for the PDE-ODE system. A special focus was put on the flow equation for the effective
local bosonic potential, its bosonic-diffusive and fermionic-source-sink contributions as well as the
role of the chemical potential as an external shock in the system. We ended the chapter by taking
the N → ∞ limit of the RG flows equations, which marked the starting point for Chapter 11.

In Chapter 11, well-known results for the phase structure of the GN model at N → ∞ were
(re)derived from the RG flow equations. First, ignoring the bosonic momentum structure, we
focused on the RG flow equation for the effective potential. The renormalization prescription
from the FRG formalism (using a dimensionally reduced Litim regulator) was compared against
standard MF sharp-cutoff regularization. During the renormalization process we constructed the
UV-cutoff dependence of the UV potential, which belongs to our FRG flow equation and which
was later on also taken as the initial condition for finite-N calculations. After renormalization, the
IR potential at N → ∞ was used to reproduce the well-known result for the GN phase diagram
under the assumption of spatially homogeneous condensation. In addition, we presented various
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thermodynamic observables as functions of µ and T and cross-checked our setup with the existing
literature.
In the second half of this chapter, we turned to the bosonic momentum structure and analyzed the
bosonic two-point function and the bosonic wave-function renormalization in the µ-T -plane. This
was part of tests of the so-called stability analysis of the spatially homogeneous ground state, which
can be used to detect regions in the phase diagram where spatially inhomogeneous condensation
is favored over the homogeneous condensation. As a proof of concept study, we benchmarked this
stability analysis with analytically known solutions for crystalline-like ground states and could
perfectly recover the correct second-order PT. Furthermore, by examining the infinite-N results
for the bosonic momentum structure, we anticipated challenges of certain truncations in finite-N
FRG calculations in the GNY model and already speculated about possible solution strategies.

The present chapter, Chapter 12, was dedicated to the actual central research question of pres-
ence/absence of condensation phenomena in the GN model at finite N and the decent description
of condensation/vaporization in QFTs at non-zero µ and non-zero T . The chapter was split into
two main parts.
The first part dealt with results from the LPA for the GNY model. The UV initial condition
and an appropriate UV cutoff were chosen to ensure RG consistency. Subsequently, numerical
tests for the parameters of the FV discretization of the flow equation of the effective potential
were performed. In the section with the actual results, we started with qualitative discussions of
explicit RG flows and analyzed symmetry breaking and restoration during the flows. Especially
for small T and non-zero µ, we compared RG flows at infinite N with RG flows at finite N and
elaborated on the role of the chemical potential. Here, we also commented on consequences for
higher-dimensional model calculations in the LPA. Finally, we quantified in detail that the Z2-
symmetry is always restored at non-zero T due to bosonic quantum fluctuations in the deep IR,
while there is still condensation for some intermediate RG scales in some regions of the phase
diagram – so-called precondensation.
Mainly because of the inconsistent choice of the wave-function renormalization in the UV in the
LPA, which was initialized at a too large non-zero value and kept constant during the RG flow,
we turned to improved truncations in the second half of the chapter. Explicitly, we included a
field-independent but dynamical wave-function renormalization. On top of that, also calculations
that comprise a dynamical and field-independent Yukawa coupling were performed. Here, the UV
initial condition matches exactly the GN model. Again, we started our discussion of the respective
results with a qualitative analysis of explicit RG flows in these truncations and afterwards turned
to the entire phase structure. The overall result is qualitative identical to the findings in the LPA:
Z2 symmetry breaking is only found for some N at intermediate RG scales, while at physical IR
scales the GN model is in a gas-like state for all T > 0.
As anticipated from our discussion of the bosonic momentum structure at N → ∞, however, we
experienced large stability problems of the RG flows beyond the LPA in the deep IR for some
regions of the phase diagram. In particular, at small T and moderate and large |µ| the bosonic
wave-function renormalization either diverged or turned negative, which both lead to a collapse of
the RG flows. Both effects could be identified as insufficiencies of the truncation scheme and most
likely a bad approximation of the two-point function in momentum space. Despite these issues,
we consider our finite-N calculations as trustworthy for all µ-T -points where the RG flow did not
collapse.

Answers to the research questions raised in Section 7.1.3

Concerning our main research questions of Section 7.1.3 we draw the following conclusions for the
respective questions.

Answers to the phenomenological questions

1. Of course, we cannot draw a general conclusion for all systems in a single spatial dimension
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from our calculations. Nevertheless, we believe that the calculations for the GN model
demonstrated that it is highly unlikely that realistic systems beyond crude approximations
exhibit solid, crystalline, or more generally phases with long-range order at non-zero T . As
soon as attractive fermion interactions start to form bosonic bound states, their fluctuations
seem to ultimately vaporize any type of condensate.

2. A possible explanation why remnants or signals of condensation are still detected in some
calculations at finite N and non-zero T , e.g., in lattice Monte Carlo (MC) simulations, might
be traced back to an intriguing issue: From the FRG calculations for the GN problem (in
all truncations), it seems as if the integration of the GN model is a challenging multi-scale
problem. It required to calculate RG flows over more than six orders of magnitude from the
UV to the IR to ensure RG consistency as well as the “freezing” of observables in the IR
and the detection of symmetry restoration in the IR. It might simply be the case that it is
impossible to resolve this range of energy scales in a lattice MC simulation on a finite grid,
such that central aspects of the system are destroyed by the lattice regularization.

3. We found that there is always a strong quantitative dependence of the IR results on the
truncation scheme. Ignoring the bosonic fluctuations completely by exclusively working in
the purely fermionic framework or by suppressing fluctuations with the N → ∞ limit leads
to inconclusive or even wrong qualitative results with different phenomenology. However,
as soon as bosonic fluctuations are included, we find that at least the qualitative absence of
symmetry breaking in the IR is very robust against the improvement of the truncation.

4. For non-zero T the GN model at finite N is always in a gas-like state without long-range
order. At vanishing temperature there is still the option for condensation and Z2-symmetry
breaking as well as a quantum phase transition at some critical µ, see also Ref. [382].

5. We found that the UV Yukawa coupling can be used to set the scale of the model. The
accessible values of T and |µ| are basically smaller than one in units of this reference scale.
As long as the RG scale is above the reference scale set by the Yukawa coupling, the RG
flow is completely dominated by attractive interactions from the fermion fluctuations in all
truncations. Only after symmetry breaking at these model scales, the bosonic fluctuations
become relevant and start dominating the RG flow of the effective potential. Still, it is
required to integrate several orders of magnitude below the reference scale to include all
bosonic fluctuations and restore the symmetry. An exception is the bosonic wave-function
renormalization, which is mainly driven by the fermion fluctuations even at small k as long
as the effective potential is smooth.

6. The qualitative difference between the GNY and GN or bGN model is small w.r.t. the
question of symmetry breaking and restoration. However, the quantitative difference is
significant. The improvement of the truncation drastically changes the shape of the IR
potential and IR physics differs quantitatively.

Answers to the technical questions

1. Using the bosonic two-point function for a stability analysis of the spatially homogeneous
ground state is a perfect tool to detect a second-order PT between a symmetric phase
and a crystalline-like phase. However, starting from a phase with spatially homogeneous
condensation completely spoils the method. For details, we refer to Ref. [5].

2. In the fluid-dynamical description of the RG flow equation of the effective potential, we have
to work on the level of its field-space derivative. Hence, symmetry breaking is realized in
terms of a non-trivial zero crossing. This is caused by a source-sink-like term in the PDE,
which stems from the fermion loop. However, in contrast to calculations at N → ∞, where
non-trivial global/local minima violate the convexity of the effective potential, the bosonic
fluctuations ensure convexity in the IR by highly non-linear diffusion in the PDE, which leads
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to a flat region in the potential. In the case of symmetry restoration the convex potential
simply turns strictly convex. For the truncations which are considered in the work, the
chemical potential always enters the PDE in terms of an external shock at late times.

3. The formal necessities for a trustworthy numerical description in field space were discussed
in Part I.

4. Especially from the analysis of the bosonic two-point function at N → ∞ for non-zero µ
as well as the calculations in LPA′ and LPA′+h, we draw th conclusion that calculations
at large chemical potentials and low temperatures do not only call for stable discretization
schemes in field space, but also for a good resolution in momentum space. Here, the inclusion
of the standard kinetic term for the bosons with scale-dependent wave-function renormal-
ization turned out as insufficient. We believe that already the inclusion of a quartic term
in the bosonic two-point function could stabilize the flows significantly and yields a decent
approximation.

Answers to the General questions

1. The technical description of low-dimensional strongly interacting systems and their higher-
dimensional counterparts is very similar for most functional methods. Hence, if we for
example observe conceptual problems in flow equations in the LPA with dimensionally re-
duced Litim regulators at zero temperature and high chemical potentials in 1+1 dimensions,
we should not expect that these issues miraculously disappear by simply increasing the di-
mensions. The same is the case for the stability analysis. Nevertheless, explicit and detailed
benchmark tests for a simple low-dimensional model were not done so far. In general, we
think that it is oftentimes advisable to use low-dimensional systems to test and benchmark
novel techniques, but also to get a first impression of the possible dynamics and challenges
that may occur. We therefore consider our (1+1)-dimensional calculations as a great benefit
for future calculations in higher-dimensional QFTs.

2. From the projects which are summarized in this thesis, we conclude that the first requirement
for studying the influence of bosonic fluctuations on spatially inhomogeneous condensation
is an absolutely reliable and stable approach to spatially homogeneous condensation. Within
FRG model studies this certainly requires a robust discretization of field space. However,
especially at large |µ| also a profound resolution of momentum space seems to be important.
As soon as a reliable and stable flow towards the deep IR is guaranteed for all regions
of interest in the µ-T -plane, a stability analysis via the bosonic two-point function can
be performed on top of the spatially homogeneous solution – exclusively in the formerly
symmetric phase.

3. As we have seen in Chapter 9 from the one-loop β-function, already a rather simple approx-
imation can lead to good estimates of the dynamics and the regions of interest in a phase
diagram. The same was the case for the N → ∞ results for the bosonic two-point function
and wave-function renormalization from Section 11.3, which helped in understanding the
upcoming challenges of truncations beyond the LPA at finite N . Also the rather simple LPA
truncation sufficed to qualitatively capture the dynamics of symmetry restoration. We con-
clude that the successive improvement of approximations as well as the repeated reinsurance
of the consistency of these approximations in certain limits is essential for understanding the
relevant requirements of an adequate mathematical description of a system.

4. The appearance of imaginary contributions in β-functions (RG flow equations) of fermionic
vertex functions at non-zero µ and non-zero T seems to be a robust feature in relativistic
QFTs. Also in this work, we were not able to develop a conclusive solution for this issue. In
particular, for the RG flow equation of the Yukawa coupling, we simply followed other works
[548, 66, 549, 275] and ignored the imaginary contribution with reference to the symmetry of
the theory under the exchange µ ↔ −µ. However, in the much simpler flow equation of the
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four-fermion coupling in Chapter 9, we found that, even though the imaginary contribution
is in general non-zero, it vanishes in the IR after integration over all RG scales. This may
also happen for systems of more than one coupling: During the RG flow the couplings could
possibly gain nonphysical complex contributions and interference effects might show up,
while in the IR only the real parts of the couplings survive.

12.5.2. Generalizations and applications
We end this thesis with brief comments on possible generalizations and applications of the work
that was presented in Part II. Here, we just focus on a small selection of direct generalizations
and possible follow-up projects.

Enlarging the basis of four-fermion couplings A straightforward and highly interesting
generalization of Chapter 9 would be the extension of the basis of four-Fermion couplings. Working
along the lines of Refs. [348, 350, 351], one could set up a Fierz-complete basis of four-Fermion
couplings, but still initialize the RG flow exclusively with a non-vanishing scalar channel on the GN
trajectory. Couplings of other channels would start at zero, but could be dynamically generated.
In this way one could identify the important and unimportant channels in all regions of the
phase diagram. In contrast to the studies in 3 + 1 dimensions, there is a valid UV limit on the
purely fermionic level and the system of couplings is renormalizable. Furthermore, the complete
basis of couplings is much smaller in 1 + 1 dimensions. This might help in better understanding
mechanisms like fermion-fermion pairing at high densities. In addition, this setup could be used
to systematically return to the question of suitable regulators, which was already addressed by
Refs. [348, 350, 351]. An interesting problem which could also be addressed in such a framework
is the search for the correct evaluation of external fermion lines and the handling of complex
contributions in the RG flows.

Improving truncations in the FRG approach to the GNY model In the spirit of this
chapter, one could also continue to improve the truncation for the GNY model in the partially
bosonized framework. A first option could be to study the field dependence of the Yukawa coupling
in the GNY model in the fluid-dynamical framework similarly to Ref. [101]. This could help to
better understand the necessities for the general handling of field-dependent couplings in the FRG.
Another option is to improve the resolution in momentum space by the inclusion of higher-order
derivative terms, like in Refs. [65, 271, 272, 63, 69, 70, 71], or by even feeding back the full
momentum structure of the two-point function. It would be interesting to see whether this fixes the
problem of collapsing RG flows due to negative wave-function renormalizations at large chemical
potentials. A solution of this problem is also of utmost importance for FRG calculations in higher-
dimensional systems of dense matter.
Of course, there are also completely different ways of further improving the truncation, e.g., by
combining the four-fermion approach with the partial bosonization.

Regulator dependence As mentioned several times in this thesis, results from truncated FRG
calculations are in general regulator-dependent [165, 602, 533, 167]. Naturally, one tries to min-
imize this dependence, but it is oftentimes extremely hard to quantify this effect. In addition,
exchanging the regulator is not necessarily a simple task. Usually, as it is also the case for this
work, the choice of the regulator is therefore based on an educated guess. However, because of its
simplicity the GNY model at finite and infinite N could be the perfect playground to test different
regulators and their impact on the IR physics. Because the GN model shares a lot of features with
higher-dimensional models, results from these regulator tests could most certainly be transferred
to these systems, which is especially important for calculations at non-zero µ.

GN model in a finite box and/or a spatial lattice In the introduction we discussed that
there are several lattice-MC studies for the bGN action. In fact, there is an option to directly
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compare these lattice-MC simulations with truncated FRG calculations. In order to reduce the
differences between both approaches, a simple option is to study the GN model with the FRG in
a finite (periodic) spatial (one-dimensional) box. This spatial domain could be further discretized
with a finite number of lattice sites. Thus, without taking the infinite-volume or the continuum
limit the lattice MC and the FRG should produce identical results up to the FRG truncation error.
Calculations of this type could also be used to search for the reasons why some of the lattice-MC
studies identified clear signals of (inhomogeneous) condensation at finite N . Work in this direction
is already in progress [603].

Application of the stability analysis to other models The stability analysis of the spatially
homogeneous ground state in the infinite-N GN model was initially presented as a pure benchmark
test in Ref. [5]. We have stated several times that it was already applied to higher-dimensional
models, which are not integrable and lack analytical solutions. Now, after discussing its strengths
and weaknesses we clearly advertise and promote its use in arbitrary models with arbitrary methods
and arbitrary truncations. We strongly believe that it is an extremely robust tool, as long as the
expansion point is in the symmetric phase. Hence, a profound knowledge about regions without
any type of condensation is absolutely vital.

Higher-dimensional applications It is obvious that we are also at a point where we can
safely use all the insights from the studies of this thesis to return to FRG computations in higher-
dimensional QFTs – especially low-energy effective models for QCD at small and moderate |µ|
and T . A particular project could be to start answering the initial research question of this PhD
thesis.
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Appendix A

Formulary

Abstract We present definitions, formulae, mathematical identities etc., which are used through-
out this thesis. This comprises some general definitions, some quantities which are directly linked
to two-dimensional spacetime, some relations for Fourier transformations, and a formulary for
some transcendental functions.

Disclosure This appendix only presents supplemental material, which is supposed to simplify
working with the main text and the other appendices, and there is no original content. It is
simply supposed to make the permanent lookup of formulae etc. in integral tables like Ref. [242]
redundant. In any case, we cite the corresponding reference works.
Only the compilation of the material is original to the author.

A.1. Some definitions

In the following, we present some general and rather unrelated definitions.

A.1.1. Pauli matrices

The Pauli matrices are

σ0 ≡
(

1 0
0 1

)
, σ1 ≡

(
0 1
1 0

)
, σ2 ≡

(
0 −i
i 0

)
, σ3 ≡

(
1 0
0 −1

)
. (A.1)

A.1.2. Dirac delta distribution

A representation of the Dirac delta distribution, which is used in this work, is

lim
a→∞

a
2 cosh2(ax) = δ(x) ,

∫ ∞

−∞
dx a

2 cosh2(ax) = 1 . (A.2)

We also need the following identity for the Dirac delta distribution,

δ(f(x)) =
∑
i

1
|f ′(xi)| δ(x− xi) , (A.3)

where xi are the roots of f(x).
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Table A.1: Volumes of (d− 1)-dimensional spheres and FRG loop prefactors.

d Sd−1 Ωd Ad
1 S0 2 1

π

2 S1 2π 1
4π

3 S2 4π 1
6π2

4 S3 2π2 1
32π2

A.1.3. Kronecker delta
The Kronecker delta symbol is defined by

δab ≡ δab ≡ δba ≡


1 , if a = b ,

0 , if a ̸= b .
(A.4)

where a, b ∈ I and I is a set of indices which are usually chosen as a subset of the natural numbers
(including zero), I ⊆ N0.

A.1.4. Volume integrals
For various calculations in this work, it is required to evaluate d-dimensional volume integrals. If
there is spherical symmetry of the integrand, we usually use∫ ∞

−∞

ddp
(2π)d f(|p⃗ |) = Ωd

(2π)d

∫ ∞

0
dp pd−1 f(p) = Ad d

∫ ∞

0
dp pd−1 f(p) , (A.5)

where we define the volume of the (d− 1)-dimensional sphere Sd−1 by

Ωd ≡ 2π
d
2

Γ( d2 ) . (A.6)

For convenience, we also define

Ad ≡ Ωd
d(2π)d (A.7)

for FRG calculations. Explicit values for Eqs. (A.6) and (A.7) for some d are listed in Table A.1.

A.2. Two-dimensional spacetime
Here, we present quantities which are required to describe QFTs in two-dimensional spacetime.

A.2.1. Minkowski metric, Cartesian coordinates, and the Levi-Civita
pseudo-tensor

The two-dimensional Minkowski spacetime is defined by the line element and metric,

ds2 ≡ ηµνdxµdxν ≡ −d(x1)2 + d(x2)2 ≡ −dx2 + dt2 , (ηµν) = (ηµν) =
(

−1 0
0 1

)
, (A.8)

where we use xd = x1 = x ∈ (−∞,∞) for the spatial coordinate and xd+1 = x2 = t ∈ (−∞,∞)
for the temporal coordinate.
The two-dimensional Levi-Civita pseudo-tensor is

εµν ≡


+1 , for µ = 1, ν = 2 ,
−1 , for µ = 2, ν = 1 ,
0 , otherwise .

(A.9)
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A.2.2. Clifford algebra and gamma matrices in Weyl basis
The two dimensional Clifford algebra is{

γµ, γν
}

+ = 2ηµν 1 , µ, ν ∈ {1, 2} , (A.10)

where ηµν are the components of the metric (A.8). We choose a Weyl basis for the two gamma
matrices, thus,

γd = γ1 = iσ2 =
(

0 1
−1 0

)
, γd+1 = γ2 = σ1 =

(
0 1
1 0

)
. (A.11)

This basis has the advantage that the temporal gamma matrix fulfills

(γd+1)† = (γd+1)∗ = (γd+1)T = γd+1 . (A.12)

The chiral gamma matrix, which is the two-dimensional equivalent of γ5 from four-dimensional
spacetime, is

γch = 1
2 εµν γ

µγν = −γ1γd+1 = −γ1γ2 = −σ3 =
(

−1 0
0 1

)
. (A.13)

It fulfills the anti-commutation relation{
γµ, γch}

+ = 0 . (A.14)

The matrices 1, γ1, γ2, and γch form a complete basis of the two-dimensional Dirac space and can
be used for the construction of bilinear covariants [19, 24].
The chiral gamma matrix is used to define left- and right-handed chiral projectors,

γL = 1
2 (1− γch) =

(
1 0
0 0

)
, γR = 1

2 (1+ γch) =
(

0 0
0 1

)
. (A.15)

As projectors, they have the following properties,

γLγR = γRγL = 0 , (orthogonality) , (A.16)

γL + γR = 1 , (completeness) , (A.17)

γLγL = γL , γRγR = γR , (idempotency) . (A.18)

Furthermore, there is the useful relation

γLγ
µ = γµγR . (A.19)

Lastly, we present the explicit expressions for the charge-conjugation (C) and time-reversal (T )
operators in our basis,

CγµC−1 = −(γµ)T , C = γ1 = iσ2 , C = C∗ = −C−1 = −C† = −CT , (A.20)

TγµT−1 = (γµ)T , T = γ2 = σ1 , T = T ∗ = T−1 = T † = TT . (A.21)

A.2.3. Euclidean gamma matrices in Weyl basis
According to Eq. (8.7), the corresponding gamma matrices in two-dimensional Euclidean spacetime
in the Weyl basis are

γ1 = −σ2 =
(

0 i
−i 0

)
, γ2 = σ1 =

(
0 1
1 0

)
, γch = iγ1γ2 = −σ3 =

(
−1 0
0 1

)
. (A.22)
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A.3. Fourier transformation
In this thesis we use the following conventions for Fourier transformations in (d+ 1)-dimensional
Euclidean spacetime with a single compactified dimension, hence, cylindrical geometry.
For all bosonic fields this reads

φ(τ, x⃗ ) =T

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d φ̃(ωn, p⃗ ) e+i(ωnτ+p⃗·x⃗ ) , (A.23)

φ̃(ωn, p⃗ ) =
∫ 1

T

0
dτ
∫ ∞

−∞
ddxφ(τ, x⃗ ) e−i(ωnτ+p⃗·x⃗ ) , (A.24)

where we define the bosonic Matsubara frequencies,

ωb
n ≡ ωn = 2πT n , n ∈ Z , (A.25)

to ensure periodic boundary conditions in the compact τ -direction. The Fourier transformations
for fermionic fields are

ψ(τ, x⃗ ) =T

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d ψ̃(νn, p⃗ ) e+i(νnτ+p⃗·x⃗ ) , (A.26)

ψ̃(νn, p⃗ ) =
∫ 1

T

0
dτ
∫ ∞

−∞
ddxψ(τ, x⃗ ) e−i(νnτ+p⃗·x⃗ ) , (A.27)

ψ̄(τ, x⃗ ) =T

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d

˜̄ψ(νn, p⃗ ) e−i(νnτ+p⃗·x⃗ ) , (A.28)

˜̄ψ(νn, p⃗ ) =
∫ 1

T

0
dτ
∫ ∞

−∞
ddx ψ̄(τ, x⃗ ) e+i(νnτ+p⃗·x⃗ ) , (A.29)

where

ωf
n ≡ νn = 2πT

(
n+ 1

2
)
, n ∈ Z , (A.30)

are the fermionic Matsubara frequencies, which ensure anti-symmetric boundary conditions in the
temporal direction. In addition to the above definitions, there are two identities which are of
relevance for our work,

β δn1,n2 (2π)d δ(d)(p⃗1 − p⃗2) =
∫ β

0
dτ
∫ ∞

−∞
ddx e±i[(ωn1 −ωn2 ) τ+(p⃗1−p⃗2)·x⃗] , (A.31)

δ(τ1 − τ2) δ(d)(x⃗1 − x⃗2) = 1
β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d e±i[ωn(τ1−τ2)+p⃗·(x⃗1−x⃗2)] . (A.32)

The same holds true when both bosonic Matsubara frequencies are replaced by fermionic frequen-
cies, ωn → νn, because the additional πT terms cancel.

A.4. Transcendental functions
Here, we list some transcendental functions as well as corresponding formulae, special values,
limiting cases etc..

A.4.1. Logarithm
The series representation of the logarithm is

ln(1 + x) =
∞∑
n=1

(−1)n+1 1
n x

n . (A.33)
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A.4.2. Exponential integral
The exponential integral function is defined as follows [242, Eq. 5.1.1],

E1(x) =
∫ ∞

x

dt t−1 e−t , | arg(x)| < π . (A.34)

Its series expansion reads [242, Eq. 5.1.11],

E1(x) = −γ − ln(x) −
∞∑
n=1

1
n(n!) (−x)n . | arg(x)| < π , (A.35)

where γ is the Euler-Mascheroni constant.

A.4.3. Gamma functions

(Incomplete) gamma function

The integral representation of the (lower incomplete) gamma function is [242, Eq. 6.1.1 & 6.5.3],

Γ(s, x) =
∫ ∞

x

dt ts−1 e−t , Re(s) > 0 , (A.36)

Γ(s) = Γ(s, 0) =
∫ ∞

0
dt ts−1 e−t , Re(s) > 0 . (A.37)

The gamma function fulfills the recurrence relation [242, Eq. 6.1.15]

Γ(s+ 1) = sΓ(s) . (A.38)

From Eqs. (A.34) to (A.36) follows that

Γ(0, x) = E1(x) = −γ − ln(x) −
∞∑
n=1

1
n(n!) (−x)n , | arg(x)| < π . (A.39)

For positive integers n [604, Eq. 8.4.15], [242, Eq. 6.5.19],

Γ(−n, x) = 1
n! (−1)n

[
Γ(0, x) − e−x

n−1∑
k=0

1
xk+1 (−1)k k!

]
, n ∈ N . (A.40)

An asymptotic expansion of Eq. (A.36) reads [242, Eq. 6.5.32]

lim
x→∞

Γ(s, x) = e−x xs−1[1 + s−1
x + (s−1)(s−2)

x2 + . . .
]
, | arg(x)| < 3

2 π , (A.41)

while the asymptotic expansion for Eq. (A.37) is [242, Eq. 6.1.37]

lim
x→∞

Γ(x) = e−x xx
√

2π
x

(
1 + 1

12x + 1
288x2 + . . .

)
, | arg(x)| < π . (A.42)

For positive integers n [242, Eq. 6.1.12],

Γ
(
n+ 1

2
)

=
√
π

(2n)!
4nn! , n ∈ N . (A.43)
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Polygamma functions

The digamma function is defined as the first derivative of the logarithm of the gamma function
Eq. (A.37) [242, Eq. 6.3.1],

ψ(s) = d
ds ln Γ(s) = Γ′(s)

Γ(s) . (A.44)

For positive integers one finds [242, Eq. 6.3.2],

ψ(n) = −γ +
n−1∑
k=1

1
k , n ∈ N , (A.45)

where γ is again the Euler-Mascheroni constant. The polygamma functions are defined as higher
derivatives of the gamma function (A.37) or digamma function (A.44) respectively [242, Eq. 6.4.1],

ψ(n)(s) = dn
dsnψ(s) = dn+1

dsn+1 ln Γ(s) = n ∈ N, Re(s) > 0 , (A.46)

= (−1)n+1
∫ ∞

0
dt t

n e−st

1 − e−t , (A.47)

where Γ(s) is again given by Eq. (A.37).

A.4.4. Zeta and eta functions

Riemann zeta function

The integral and series representation of the Riemann zeta function is [242, Eqs. 23.2.1 & 23.2.7],

ζ(s) = 1
Γ(s)

∫ ∞

0
dt t

s−1

et −1 =
∞∑
n=1

1
ns , Re(s) > 1 , (A.48)

where Γ(s) is the gamma function (A.36).
Some special values of the Riemann zeta function and its derivative are,

ζ(0) = − 1
2 , [242, Eq. 23.2.11] (A.49)

ζ ′(0) = − 1
2 ln(2π) , [242, Eq. 23.2.13] (A.50)

ζ(−2n) = 0 , n ∈ N , [242, Eq. 23.2.14] (A.51)

ζ ′(−2n) = (−1)n (2n)!
2(2π)2n ζ(2n+ 1) , n ∈ N , (A.52)

ζ ′(−2) = − 1
4π2 ζ(3) . (A.53)

the last expression for ζ(3) is listed as OEIS: A240966.

https://oeis.org/A240966
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Hurwitz zeta function

The integral and series representations of the Hurwitz zeta function are [604, Eq. 25.11.1 &
25.11.25],

ζ(s, z) = 1
Γ(s)

∫ ∞

0
dt t

s−1 e−zt

1 − e−t = Re(s) > 0, Re(z) > 0 , (A.54)

=
∞∑
n=0

1
(n+ z)s , Re(s) > 1, z ̸= −m, m ∈ N0 , (A.55)

where Γ(s) is given by Eq. (A.37). The relation to the Riemann zeta function (A.48) is [604,
Eq. 25.11.2],

ζ(s, 1) = ζ(s) , s ̸= 1 . (A.56)

For positive integer n, we can use the integral representation of the polygamma functions (A.47)
to obtain,

ψ(n)(s) = (−1)n+1 n! ζ(1 + n, s) , n ∈ N . (A.57)

Dirichlet eta function

The integral and series representations of the Dirichlet eta function are defined by [242, Eq. 23.2.19]

η(s) = 1
Γ(s)

∫ ∞

0
dt t

s−1

et +1 =
∞∑
n=1

1
ns (−1)n−1 = Re(s) > 0 (A.58)

= (1 − 21−s) ζ(s) , (A.59)

where Γ(s) is the gamma function (A.36) and ζ(s) is the Riemann zeta function (A.48).
From the series representation of the Dirichlet eta function (A.58) it directly follows that

∞∑
n=1

ln(n) 1
ns (−1)n = η′(s) = 21−s ln(2) ζ(s) + (1 − 21−s) ζ ′(s) . (A.60)

while the second equality follows directly from Eq. (A.59).

A.4.5. Polylogarithms, Fermi-Dirac and Bose-Einstein integrals
(Incomplete) polylogarithm

The integral and series representations of the (incomplete) polylogarithm are [604, Eq. 25.12.10
& 25.12.11]

Lis(x, z) = 1
Γ(s)

∫ ∞

x

dt ts−1

et /z − 1 = 1
Γ(s)

∞∑
k=1

zk

ks Γ(s, kx) , (A.61)

Lis(z) = Lis(0, z) = 1
Γ(s)

∫ ∞

0
dt ts−1

et /z − 1 =
∞∑
k=1

zk

ks , (A.62)

where Γ(s) is the gamma function (A.37) and Γ(s, x) is the lower incomplete gamma function
(A.36).
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From the series representation (A.62), one finds

z ∂
∂z Lis(z) = Lis−1(z) , z ∂

∂z Lis(−z) = Lis−1(−z) . (A.63)

Substituting z = e±x,

± ∂
∂x Lis(e±x) = Lis−1(e±x) , ± ∂

∂x Lis(− e±x) = Lis−1(− e±x) . (A.64)

Inverting the differentiation formula (A.63), one obtains

Lis+1(z) =
∫ z

0
dt t−1 Lis(t) . (A.65)

For z = 1 the polylogarithm (A.62) reduces to the Riemann zeta function (A.48),

ζ(s) = Lis(1) . (A.66)

For integers s < 2, one can use the integral representation (A.62) to derive

Li1(z) =
∫ ∞

0
dt 1

et /z − 1 =
∫ ∞

0
dt z e−t

1 − z e−t = ln(1 − z e−t)
∣∣∞
0 = − ln(1 − z) . (A.67)

From the definition (A.62) and the repeated application of Eq. (A.63) we find

Li0(z) =
∞∑
k=0

zk = z
1−z , (A.68)

Li−1(z) =
∞∑
k=0

k zk = z
(1−z)2 , (A.69)

Li−2(z) =
∞∑
k=0

k2 zk = z (1+z)
(1−z)3 , (A.70)

... (A.71)

Some special relations that directly follow from Eqs. (A.68) to (A.70) are,

Li0(z) + Li0
( 1
z

)
= z

1−z +
1
z

1− 1
z

= −1 , (A.72)

Li−1(z) + Li−1
( 1
z

)
= z

(1−z)2 +
1
z

(1− 1
z )2 = 2 z

(1−z)2 = 2 Li−1(z) = 2 Li−1
( 1
z

)
, (A.73)

Li−2(z) + Li−2
( 1
z

)
= z (1+z)

(1−z)3 +
1
z (1+ 1

z )
(1− 1

z )3 = 0 . (A.74)

For integers s ≥ 2 repeated application of Eq. (A.65) defines the polylogarithms. This is also the
origin of its naming, because it is a repeated integration of the natural logarithm (A.67). A special
case is the dilogarithm for s = 2,

Li2(z) =
∫ z

0
dt t−1 Li1(t) = −

∫ z

0
dt t−1 ln(1 − t) =

∞∑
k=1

zk

k2 , (A.75)

which is also called Spence’s function.

Special identities which are used in Eqs. (F.6) and (F.10) for the dilogarithm are [605],

Li2(z) + Li2( 1
z ) = − π2

6 − 1
2 ln2(−z) , (A.76)

Li2(−1) = − π2

12 . (A.77)
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The next formula is valid for all s ̸∈ N0 [606]

Lis(z) = Γ(1 − s)
(2πi)1−s

[
(−1)1−s ζ

(
1 − s, 1

2 + ln(−z)
2πi

)
+ ζ
(

1 − s, 1
2 − ln(−z)

2πi

)]
. (A.78)

The derivative of the polylogarithm w.r.t. its index is calculated from its series representation
(A.62),

∂
∂s Lis(z) = −

∞∑
k=1

ln(k) z
k

ks . (A.79)

Evaluating Eq. (A.62) for z = −1 one finds with Eq. (A.58),

Lis(−1) = −η(s) . (A.80)

We define

DLin(y) ≡
[
∂
∂s Lis(− ey) + ∂

∂s Lis(− e−y)
]
s=n . (A.81)

Equation (A.80) can be used to evaluate Eq. (A.81) at y = 0,

DLin(0) ≡ 2
[
∂
∂s Lis(−1)

]
s=n = (A.82)

= − 2 η′(s)
∣∣
s=n = (A.60)

= − 2
[
21−s ln(2) ζ(s) + (1 − 21−s) ζ ′(s)

]
s=n .

Two special cases are

DLi0(0) = − ln
(
π
2
)
, (A.49) and (A.50) , (A.83)

DLi−2(0) = − 7
2π2 ζ(3) , (A.51) and (A.53) . (A.84)

Fermi-Dirac and Bose-Einstein integrals

The (incomplete) Fermi-Dirac integral is defined as follows [604, Eqs. 25.12.14 & 25.12.16],

Fs(a, x) = − Lis+1(a,− ex) = 1
Γ(s+ 1)

∫ ∞

a

dt ts

et−x +1 = (A.85)

= 1
Γ(s+ 1)

∫ ∞

a

dt ts nf(t− x) ,

Fs(x) = − Lis+1(− ex) = 1
Γ(s+ 1)

∫ ∞

0
dt ts

et−x +1 = (A.86)

= 1
Γ(s+ 1)

∫ ∞

0
dt ts nf(t− x) ,

where nf(x) is the Fermi-Dirac distribution function.
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The Bose-Einstein integral is defined as follows [604, Eqs. 25.12.15 & 25.12.16]

Gs(a, x) = Lis+1(a, ex) = 1
Γ(s+ 1)

∫ ∞

a

dt ts

et−x −1 = (A.87)

= 1
Γ(s+ 1)

∫ ∞

a

dt ts nb(t− x) ,

Gs(x) = Lis+1(ex) = 1
Γ(s+ 1)

∫ ∞

0
dt ts

et−x −1 = (A.88)

= 1
Γ(s+ 1)

∫ ∞

0
dt ts nb(t− x) ,

where nb(x) is the Bose-Einstein distribution function.
Using Eq. (A.64) for Eqs. (A.86) and (A.88) one derives,

∂xFs(x) = − ∂x Lis+1(− ex) = − Lis(− ex) = Fs−1(x) , (A.89)

∂xGs(x) = ∂x Lis+1(ex) = Lis(ex) = Gs−1(x) . (A.90)

The closed form for the zeroth order Fermi-Dirac integral (A.86) can be calculated using Eq. (A.67),

F0(x) = − Li1(− ex) = ln(1 + ex) . (A.91)

The combination of the two first-order Fermi-Dirac integrals (A.86) can be evaluated using Eq. (A.76),

F1(x) + F1(−x) = −
[

Li2
(

− ex
)

+ Li2
(

− e−x )] = π2

6 + 1
2 x

2 , F1(0) = π2

12 . (A.92)

A.4.6. IR divergences and the incomplete polylogarithms
We evaluate

lim
ε→0

lim
s→0

Γ(s) Lis(ε,−z) = (A.93)

= lim
ε→0

lim
s→0

∞∑
k=1

1
ks (−z)k Γ(s, kε) =

= lim
ε→0

lim
s→0

∞∑
k=1

1
ks (−z)k

[
− γ − ln(kε) −

∞∑
n=1

1
n(n!) (−kε)n

]
=

= lim
ε→0

lim
s→0

[
∂
∂s Lis(−z) + [−γ − ln(ε)] Lis(−z) −

∞∑
k=1

1
ks (−z)k

∞∑
n=1

1
n(n!) (−kε)n

]
=

= ∂
∂s Lis(−z)

∣∣∣
s=0

−
[
γ + lim

ε→0
ln(ε)

]
Li0(−z) .

In the first step, the incomplete polylogarithm is written in terms of its series representation (A.61).
Next, one uses the asymptotic expansion (A.39) for the incomplete gamma function (A.36), which
is valid in the limit s → 0. By separating the terms of the sum one identifies the derivative of the
polylogarithm w.r.t. its index (A.79), as well as the polylogarithm itself in its series representation
(A.62). In the last step, we dropped the nested sums, because each term in the sum vanishes
separately for ε → 0. The remnant of the IR divergence, limε→0 ln(ε), cancels the IR divergence
of the vacuum contribution.



A.4. Transcendental functions 273

Using the identity (A.72) for the zeroth-order polylogarithm as well as definition (A.81), we derive
from Eq. (A.93),

lim
ε→0

lim
s→0

Γ(s)
[

Lis(ε,−z) + Lis
(
ε,− 1

z

)]
= DLi0(ln(z)) + γ + lim

ε→0
ln(ε) . (A.94)

Similarly to the previous result(s), we derive an expression for limε→0 lims→−2 Γ(s) Lis(ε,−z).
During the calculation, we need the identity (A.40) for n = 2 and x = kε,

Γ(−2, kε) = 1
2

[
Γ(0, kε) − e−kε

1∑
m=0

1
(kε)m+1 (−1)mm!

]
= (A.95)

= 1
2 Γ(0, kε) − 1

2 e−kε [ 1
kε − 1

(kε)2

]
=

= 1
2 Γ(0, kε) + 1

2
1

(kε)2 − 1
kε + 3

4 + O(ε) ,

as well as the polylogarithms (A.68) to (A.70). Additionally, one again needs the asymptotic
expansion of the incomplete gamma function (A.39) and the definition of the polylogarithm (A.62)
and its derivative (A.79). It follows that

lim
ε→0

lim
s→−2

Γ(s) Lis(ε,−z) = (A.96)

= lim
ε→0

lim
s→−2

∞∑
k=1

1
ks (−z)k Γ(s, kε) =

= lim
ε→0

lim
s→0

∞∑
k=1

1
ks−2 (−z)k

[ 1
2 Γ(s, kε) + 1

2
1

(kε)2 − 1
kε + 3

4 + O(ε)
]

=

= lim
ε→0

[
lim
s→0

1
2

∞∑
k=1

1
ks−2 (−z)k Γ(s, kε) + 1

2ε2 Li0(−z) − 1
ε Li−1(−z) + 3

4 Li−2(−z)
]

=

= lim
ε→0

[
lim
s→0

1
2

∞∑
k=1

1
ks−2 (−z)k

(
− γ − ln(kε) −

∞∑
n=1

1
n(n!) (−kε)n

)
+

+ 1
2ε2 Li0(−z) − 1

ε Li−1(−z) + 3
4 Li−2(−z)

]
=

= 1
2
∂
∂s Lis(−z)

∣∣∣
s=−2

− 1
2

[
γ − 3

2 + lim
ε→0

ln(ε)
]

Li−2(−z) + lim
ε→0

1
2ε2 Li0(−z) − lim

ε→0
1
ε Li−1(−z) .

Again, we were able to split the IR divergences into terms ∼ ln(ε), ∼ 1
ε , and ∼ 1

ε2 . Analogously
to Eq. (A.94) one obtains

lim
ε→0

lim
s→−2

Γ(s)
[

Lis(ε,−z) + Lis
(
ε,− 1

z

)]
= (A.97)

= 1
2 DLi−2(ln(z)) − 1

2 lim
ε→0

1
ε2 + 2 z

(1+z)2 lim
ε→0

1
ε ,

where we used Eqs. (A.72) to (A.74) and definition (A.81).
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Appendix B

Matsubara sums and related
formula

Abstract As a huge share of this thesis deals with QFT at non-zero temperature, it is repeatedly
required to evaluate so-called Matsubara sums, which are named after T. Matsubara, due to his
original work on new techniques in “quantum statistical mechanics” [607].1 Usually these sums
appear at non-zero temperature instead of the integration over the zeroth component of the loop
four-momentum during the evaluation of quantum corrections to the UV action. However, since
they are a direct consequence of the compactification of the temporal direction, which leads to a
discrete (energy) spectrum, similar sums also pop up instead of spatial-momentum integrations if
one studies QFTs in a finite spatial volume, see e.g., Refs. [177, 250, 611, 612, 613, 614]. After
evaluation the corresponding results of the frequency summations are normally expressed in terms
of bosonic and fermionic distribution/occupation functions and their derivatives, respectively the
corresponding hyperbolic functions.
In this appendix we provide closed expressions for all Matsubara sums that occur throughout this
thesis. We start by introducing our notation for the thermal distribution functions and provide
some simple but useful identities for reasons of comprehensibility. Afterwards the results for the
Matsubara sums as well as zero-temperature limits of some of the sums are presented.

Disclosure The evaluation of Matsubara sums is a standard problem in statistical mechanics
(thermodynamics) and especially thermal QFT. The required mathematical techniques of contour
integration in the complex plane are part of the curriculum of any advanced lectures on these
subjects and are not recapitulated here. Instead we refer to the following lecture notes and
textbooks for details, i.e., Refs. [615, 177, 22, 504, 505, 142] as well as references therein.
All but one result of this appendix are (re)derived by hand by the author, but can in parts also
be found elsewhere, because the structure of most of the sums is not exceptional to this work. All
results are crosschecked using mathematica. For these reasons, we only cite selected references
where similar results are derived or used.
Still, I would like to mention that some notes by S. Rechenberger [566] were rather useful at the
beginning of my doctoral studies to cross-check some of the explicit calculations.

1Actually similar sums were already derived, evaluated, and studied for example in earlier works on super-
conductivity by J. Bardeen [608], H. Fröhlich [609], and C. G. Kuper [610], as T. Matsubara states in his own
work.
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B.1. Thermal distribution functions and useful identities
The Bose-Einstein distribution function [616], nb, and the Fermi-Dirac distribution function [617,
618], nf , are defined as follows

nb(x) ≡ 1
ex −1 = 1

2
[

− 1 + coth
(
x
2
)]
, (B.1)

nf(x) ≡ 1
ex +1 = 1

2
[
1 − tanh

(
x
2
)]
. (B.2)

The derivatives of these distribution functions w.r.t. their argument are

∂
∂x nb(x) = − n2

b(x) − nb(x) = − 1
4 sinh2( x2 ) , (B.3)

∂
∂x nf(x) = + n2

f (x) − nf(x) = − 1
4 cosh2( x2 ) . (B.4)

Furthermore, we find

∂2

∂x2 nb(x) = 2n3
b(x) + 3n2

b(x) + nb(x) = cosh( x2 )
4 sinh3( x2 ) , (B.5)

∂2

∂x2 nf(x) = 2n3
f (x) − 3n2

f (x) + nf(x) = sinh( x2 )
4 cosh3( x2 ) , (B.6)

for the second derivatives and
∂3

∂x3 nb(x) = − 6n4
b(x) − 12n3

b(x) − 7n2
b(x) − n1

b(x) = − 1+2 cosh2( x2 )
8 sinh4( x2 ) , (B.7)

∂3

∂x3 nf(x) = + 6n4
f (x) − 12n3

f (x) + 7n2
f (x) − n1

f (x) = 1−2 sinh2( x2 )
8 cosh4( x2 ) , (B.8)

for the third derivatives of the distribution functions.

In the limit of vanishing temperature, T = 1
β → 0, the Bose-Einstein distribution (B.1) simply

vanishes
lim

βE→∞
nb
(
E
T

)
= 0 , (B.9)

while for the Fermi-Dirac distribution (B.2) the zero-temperature limit depends on the difference
of the energy E and the Fermi level – the chemical potential µ,

lim
β|µ|,βE→∞

[
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)]
= Θ

(
|µ|
E − 1

)
, (B.10)

lim
β|µ|,βE→∞

[
nf
(
E+µ
T

)
− nf

(
E−µ
T

)]
= − sgn(µ) Θ

(
|µ|
E − 1

)
. (B.11)

According to the previous formulae, this implies that also all derivatives of the Bose-Einstein
distribution vanish for vanishing temperature, which is not the case for the Fermi-Dirac distribu-
tion. Here, the first derivative spikes and becomes singular for T → 0. Hence, for Eq. (B.4) the
zero-temperature limit is given by

lim
β|µ|,βE→∞

E
T

[
n2

f
(
E±µ
T

)
− nf

(
E±µ
T

)] (B.4)= lim
β|µ|→∞

− E
|µ|

|µ|
2T

2 cosh2
(

|µ|
2T

(
E

|µ| ±sgn(µ)
)) (A.2)= (B.12)

= − E
|µ| δ

(
E
|µ| ± sgn(µ)

)
.

Although even higher-order derivatives of the Fermi-Dirac distribution appear in the calculations
of this thesis, we will not consider their zero-temperature limit, which is explained in the main
text.
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B.2. Matsubara sums

B.2.1. Purely bosonic/fermionic Matsubara summation
First, we consider Matsubara sums over powers or products of propagators that exclusively contain
bosonic Matsubara frequencies (A.25) or purely fermionic Matsubara frequencies (A.30).

Sums containing a single energy

The most prominent Matsubara sum, which is found in almost any calculation involving bosons
at non-zero temperature, is the sum over a single bosonic propagator,

1
β

+∞∑
n=−∞

1
ω2
n + E2 = 1

2E
[
1 + 2nb

(
E
T

)] (B.1)= 1
2E coth

(
E
2T
)
. (B.13)

Its zero-temperature limit reads

lim
βE→∞

(B.13) = 1
2E . (B.14)

The corresponding fermionic counterpart is

1
β

+∞∑
n=−∞

1
(νn + iµ)2 + E2 = 1

2E
[
1 − nf

(
E+µ
T

)
− nf

(
E−µ
T

)] (B.2)= (B.15)

= 1
2E
[ 1

2 tanh
(
E+µ
2T
)

+ 1
2 tanh

(
E−µ
2T
)]
.

At vanishing temperature it reduces to

lim
β|µ|,βE→∞

(B.15) = 1
2E Θ

(
E
|µ| − 1

)
. (B.16)

Both results can be derived by contour integration and are standard textbook results as explained
in the disclosure.

In order to arrive at explicit expressions for the Matsubara sums over higher powers of the prop-
agators, we take the derivative of Eqs. (B.13) and (B.15) w.r.t. the energy E. More explicitly, we
apply

− 1
2E

∂
∂E (B.17)

to both sides of the equations. The same result is obtained via contour integration. For the purely
bosonic sum, we find

1
β

+∞∑
n=−∞

1
[ω2
n + E2]2 = 1

4E3

[
1 + 2nb

(
E
T

)
+ 2 E

T

[
n2

b
(
E
T

)
+ nb

(
E
T

)]]
= (B.18)

= 1
4E3

[
coth

(
E
2T
)

+ E
T

1
2 sinh2( E

2T )

]
.

The zero-temperature limit is

lim
βE→∞

(B.18) = 1
4E3 . (B.19)
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Similarly one finds the fermionic Matsubara sum over two fermionic propagators,

1
β

+∞∑
n=−∞

1
[(νn + iµ)2 + E2]2 = (B.20)

= 1
4E3

[
1 − nf

(
E+µ
T

)
− nf

(
E−µ
T

)
+ E

T

[
n2

f
(
E+µ
T

)
+ n2

f
(
E−µ
T

)
− nf

(
E+µ
T

)
− nf

(
E−µ
T

)]]
=

= 1
4E3

(
1
2 tanh

(
E+µ
2T
)

+ 1
2 tanh

(
E−µ
2T
)

− E
T

[
1

4 cosh2(E+µ
2T ) + 1

4 cosh2(E−µ
2T )

])
.

Using Eqs. (B.10) and (B.12) the zero-temperature limit is easily derived,

lim
β|µ|,βE→∞

(B.20) = 1
4E3

[
Θ
(
E
|µ| − 1

)
− E

|µ|

[
δ
(
E
|µ| + 1

)
+ δ
(
E
|µ| − 1

)]]
. (B.21)

Analogously, by acting with − 1
4E

∂
∂E on the previous results, we derive

1
β

+∞∑
n=−∞

1
[ω2
n + E2]3 = (B.22)

= 3
16E5

[
1 + 2nb

(
E
T

)
+ 2 E

T

[
n2

b
(
E
T

)
+ nb

(
E
T

)]
+ 2

(
E
T

)2[ 2
3 n

3
b
(
E
T

)
+ n2

b
(
E
T

)
+ 1

3 nb
(
E
T

)]]
=

= 3
16E5

[
coth

(
E
2T
)

+ E
T

1
2 sinh2( E

2T ) +
(
E
T

)2 cosh( E2T )
6 sinh3( E2T )

]
for the bosonic sum and

1
β

+∞∑
n=−∞

1
[(νn + iµ)2 + E2]3 = (B.23)

= 3
16E5

[
1 − nf

(
E+µ
T

)
− nf

(
E−µ
T

)
+ E

T

[
n2

f
(
E+µ
T

)
+ n2

f
(
E−µ
T

)
− nf

(
E+µ
T

)
− nf

(
E−µ
T

)]
−

−
(
E
T

)2[ 2
3 n

3
f
(
E+
T

)
+ 2

3 n
3
f
(
E−µ
T

)
− n2

f
(
E+µ
T

)
− n2

f
(
E−µ
T

)
+ 1

3 nf
(
E+µ
T

)
+ 1

3 nf
(
E−µ
T

)]]
=

= 3
16E5

[
1
2 tanh

(
E+µ
2T
)

+ 1
2 tanh

(
E−µ
2T
)

− E
T

[
1

4 cosh2(E+µ
2T ) + 1

4 cosh2(E−µ
2T )

]
−

−
(
E
T

)2
[

sinh(E+µ
2T )

12 cosh3(E+µ
2T )

+ sinh(E−µ
2T )

12 cosh3(E−µ
2T )

]]
for the fermionic sum of third powers of the propagators.
For sums over the fourth power of propagators, we apply − 1

6E
∂
∂E to the previous equations and

find

1
β

+∞∑
n=−∞

1
[ω2
n + E2]4 = (B.24)

= 5
32E7

[
1 + 2nb

(
E
T

)
+ 2 E

T

[
n2

b
(
E
T

)
+ nb

(
E
T

)]
+ 2

(
E
T

)2[ 4
5 n

3
f
(
E
T

)
+ 6

5 n
2
f
(
E
T

)
+ 2

5 nb
(
E
T

)]
+

+ 2
(
E
T

)3[ 2
5 n

4
f
(
E
T

)
+ 4

5 n
3
f
(
E
T

)
+ 7

15 n
2
f
(
E
T

)
+ 1

15 nb
(
E
T

)]]
=
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= 5
32E7

[
coth

(
E
2T
)

+ E
T

1
2 sinh2( E

2T ) +
(
E
T

)2 cosh( E2T )
5 sinh3( E2T ) +

(
E
T

)3 1+2 cosh2( E
2T )

60 sinh4( E
2T )

]
,

and

1
β

+∞∑
n=−∞

1
[(νn + iµ)2 + E2]4 = (B.25)

= 5
32E7

[
1 − nf

(
E+µ
T

)
− nf

(
E−µ
T

)
+ E

T

[
n2

f
(
E+µ
T

)
+ n2

f
(
E−µ
T

)
− nf

(
E+µ
T

)
− nf

(
E−µ
T

)]
−

−
(
E
T

)2( 4
5
[
n3

f
(
E+µ
T

)
+ n3

f
(
E−µ
T

)]
− 6

5
[
n2

f
(
E+µ
T

)
+ n2

f
(
E−µ
T

)]
+

+ 2
5
[
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)])
+

+
(
E
T

)3( 2
5
[
n4

f
(
E+µ
T

)
+ n4

f
(
E−µ
T

)]
− 4

5
[
n3

f
(
E+µ
T

)
+ n3

f
(
E−µ
T

)]
+

+ 7
15
[
n2

f
(
E+µ
T

)
+ n2

f
(
E−µ
T

)]
− 1

15
[
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)])]
=

= 5
32E7

[
1
2 tanh

(
E+µ
2T
)

+ 1
2 tanh

(
E−µ
2T
)

− E
T

[
1

4 cosh2(E+µ
2T ) + 1

4 cosh2(E−µ
2T )

]
−

−
(
E
T

)2
[

sinh(E+µ
2T )

10 cosh3(E+µ
2T )

+ sinh(E−µ
2T )

10 cosh3(E−µ
2T )

]
+
(
E
T

)3
[

1−2 sinh2(E+µ
2T )

120 cosh4(E+µ
2T )

+ 1−2 sinh2(E−µ
2T )

120 cosh4(E−µ
2T )

]]
.

On the other hand, for example, for the calculation of mean-field effective potentials, the Matsub-
ara sum of the logarithm of the denominator of the propagators is required. One finds,

1
β

+∞∑
n=−∞

ln
(
β2(ω2

n + E2)
)

= (B.26)

=E + 2
β ln

(
1 − e−βE )+ const. ,

1
β

+∞∑
n=−∞

ln
(
β2[(νn + iµ)2 + E2]

)
= (B.27)

=E + 1
β ln

(
1 + e−β(E+µ) )+ 1

β ln
(
1 + e−β(E−µ) )+ const. .

Both formula can be verified by taking derivatives w.r.t. E of these expressions, which turns them
into Eqs. (B.13) and (B.15), cf. Ref. [462].

The reason why we provide these sums in terms of distribution functions and hyperbolic functions is
that each representation has advantages when it comes to certain applications, e.g., the calculation
of limits, the extraction of symmetries, or their numerical evaluation.
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Sums containing two energies

For the analysis of the fermionic quantum corrections to the bosonic two-point function, see
Section 11.3.2, we need the following Matsubara sum,

1
β

+∞∑
n=−∞

1
(νn + iµ)2 + E2

1

1
(νn + iµ)2 + E2

2
= (B.28)

= 1
2E1

1
E2

2 −E2
1

[
1 − nf

(
E1+µ
T

)
− nf

(
E1−µ
T

)]
+ 1

2E2
1

E2
1 −E2

2

[
1 − nf

(
E2+µ
T

)
− nf

(
E2−µ
T

)]
=

= 1
2E1

1
E2

2 −E2
1

[ 1
2 tanh

(
E1+µ

2T
)

+ 1
2 tanh

(
E1−µ

2T
)]

+

+ 1
2E2

1
E2

1 −E2
2

[ 1
2 tanh

(
E2+µ

2T
)

+ 1
2 tanh

(
E2−µ

2T
)]
,

which depends on two different energies E1 and E2, because one of these energies usually contains
the external momentum that enters the respective loop diagram.
The zero-temperature limit of this sum is given by

lim
β|µ|,βE→∞

(B.28) = 1
2E1

1
E2

2 −E2
1

Θ
(
E1
|µ| − 1

)
+ 1

2E2
1

E2
1 −E2

2
Θ
(
E2
|µ| − 1

)
. (B.29)

If the two energies become degenerate, the sum reduces to Eqs. (B.20) and (B.21).

B.2.2. Mixed bosonic-fermionic Matsubara sums
As soon as one is confronted with the computation of loop diagrams that involve internal bosonic
and fermionic propagators, see Eq. (E.89), one has to calculate Matsubara sums over bosonic and
fermionic Matsubara frequencies. This is not exclusive to FRG calculations, but rather generic in
thermal QFT, e.g., Refs. [531, 22]. The most basic sum of this type is

1
β

∞∑
n=−∞

1
(νn + iµ)2 + E2

f

1
ω2
n + E2

b
= (B.30)

=
(

1
E2

f −(Eb+µ−iπT )2 + 1
E2

f −(Eb−µ+iπT )2

)
1

2Eb

[ 1
2 + nb

(
Eb
T

)]
+

+ 1
E2

b−(Ef+µ−iπT )2
1

2Ef

[ 1
2 − nf

(
Ef+µ
T

)]
+ 1

E2
b−(Ef−µ+iπT )2

1
2Ef

[ 1
2 − nf

(
Ef−µ
T

)]
=

=
[(

E2
f −(Eb+µ)2+(πT )2

E4
f −2E2

f [(Eb+µ)2−(πT )2]+[(Eb+µ)2+(πT )2]2 + E2
f −(Eb−µ)2+(πT )2

E4
f −2E2

f [(Eb−µ)2−(πT )2]+[(Eb−µ)2+(πT )2]2

)
×

× 1
2Eb

[ 1
2 + nb

(
Eb
T

)]
+

+ E2
b−(Ef+µ)2+(πT )2

E4
b−2E2

b[(Ef+µ)2−(πT )2]+[(Ef+µ)2+(πT )2]2
1

2Ef

[ 1
2 − nf

(
Ef+µ
T

)]
+

+ E2
b−(Ef−µ)2+(πT )2

E4
b−2E2

b[(Ef−µ)2−(πT )2]+[(Ef−µ)2+(πT )2]2
1

2Ef

[ 1
2 − nf

(
Ef−µ
T

)]]
+

+ i
[(

−2πT (Eb+µ)
E4

f −2E2
f [(Eb+µ)2−(πT )2]+[(Eb+µ)2+(πT )2]2 + 2πT (Eb−µ)

E4
f −2E2

f [(Eb−µ)2−(πT )2]+[(Eb−µ)2+(πT )2]2

)
×
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× 1
2Eb

[ 1
2 + nb

(
Eb
T

)]
+ −2πT (Ef+µ)

E4
b−2E2

b[(Ef+µ)2−(πT )2]+[(Ef+µ)2+(πT )2]2
1

2Ef

[ 1
2 − nf

(
Ef+µ
T

)]
+

+ 2πT (Ef−µ)
E4

b−2E2
b[(Ef−µ)2−(πT )2]+[(Ef−µ)2+(πT )2]2

1
2Ef

[ 1
2 − nf

(
Ef−µ
T

)]]
.

Here, Eb is the energy of the boson and Ef the fermionic energy. The result in the second and
third line is identical to what was derived by Ref. [66, Eq. (B.3)] and Ref. [101, Eq. (H.5)] for their
FRG calculations.2
In the second step, the result is split into its real and imaginary part. One can read off that
the real part is symmetric in µ, while the imaginary part is anti-symmetric in µ and therefore
presumably nonphysical, see Eq. (10.12) and the corresponding discussion.
In the limit of vanishing temperature, we find

lim
β|µ|,βE→∞

(B.30) = (B.31)

=
[

1
E2

f −(Eb+µ)2 + 1
E2

f −(Eb−µ)2

]
1

4Eb
+

+ 1
E2

b−(Ef+µ)2
1

2Ef

[ 1
2 − Θ

(
− µ

Ef
− 1
)]

+ 1
E2

b−(Ef−µ)2
1

2Ef

[ 1
2 − Θ

(
µ
Ef

− 1
)]
,

which is always real.
Due to the regulator insertion, FRG diagrams always exhibit one additional propagator com-
pared to their perturbative counterparts, see for example Eq. (E.89). Hence, for so-called fermion
self-energy-like diagrams, we need to apply − 1

2Eb
∂
∂Eb

and − 1
2Ef

∂
∂Ef

to Eq. (B.30) to find the
corresponding sums. The first one reads

1
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−∞

1
(νn + iµ)2 + E2

f

1
[ω2
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=
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1
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)
1

4E3
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(
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1
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+ 1
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1
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(
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T

)]
.

Its physical and real part is symmetric under the exchange of µ ↔ −µ and reads,

Re 1
β

∞∑
−∞

1
(νn + iµ)2 + E2

f

1
[ω2
n + E2

b]2 = (B.33)

= E2
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+
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(

1
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f −2E2
f [(Eb+µ)2−(πT )2]+[(Eb+µ)2+(πT )2]2 +

2However, there seem to be some typos in the corresponding formulae in Ref. [101], because some brackets are
missing.
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+ 2(−E2
f +[(Eb+µ)2+(πT )2]) [E2

f −(Eb+µ)2+(πT )2]
(E4

f −2E2
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Similarly,
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which has the following real part,
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B.2.3. Matsubara sum of the four-fermion interaction channel with two-
fermion exchange

When calculating the β-function of the four-fermion coupling in the Gross-Neveu model at non-
zero T and non-zero µ in Appendix E.1.2, one of the three types of diagrams that contributes
is a fermion loop, which can be interpreted as the exchange of two virtual quarks or two virtual
anti-quarks instead of a quark-anti-quark pair, see Eqs. (E.19) and (E.25). The corresponding
Matsubara sum therefore differs from the other two contributions and evaluates to

1
β

∞∑
n=−∞
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.

For the sake of convenience the result is split into real and imaginary parts and expressed in terms
of a derivative w.r.t. the fermion energy Ef .
We find that at µ = 0 the imaginary part vanishes,

lim
βµ, µEf

→0
(B.36) = 1

4Ef
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[E2
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,

which is discussed in the main text.
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Appendix C

RG flow equations in field-space
(DeWitt) notation

Abstract The actual and ultimate goal of this appendix is to answer a simple fun question:
What is the common feature of FRG and horse-race betting?

Therefore, we introduce the so-called field-space notation and derive the ERG equation for generic
systems from statistical physics and QFT with arbitrary field content. The field-space notation
and formalism is wildly applied in the derivation of FRG flow equations and DSE to formalize
the calculations and keep all steps manageable and trackable. Originally, it was introduced by
B. S. DeWitt [145, 619] for all kinds of calculations in QFTs. It can be used in pen and paper
calculations, but is also implemented in the DoFun software package for Mathematica [147] for
the algorithmic derivation of functional flow equations [620, 621, 622], see, e.g., Refs. [553, 353,
623, 624, 625, 626, 71, 627, 354, 628, 629, 630, 631] for recent applications or Ref. [632] for a
novel implementation of the formalism in terms of another Mathematica [147] package named
QMeS-Derivation for functional flow equations.

We start our presentation by setting up general definitions of objects in the abstract field space and
discuss some of their properties as well as calculation rules, e.g., commutation of field components,
raising/lowering of field-space indices, or taking functional derivatives. Afterwards, we use the
formalism for an elegant derivation of the ERG equation. Furthermore, we discuss projection
prescriptions to derive RG flow equations from the ERG equation in field-space notation.

Disclosure This appendix partially follows Ref. [172, Sec. 3.2 and App. A], Ref. [54, especially
the Apps.] as well as private notes of M. J. Steil [633]. I am also grateful to F. Divotgey, J. Eser,
J. Stoll, and N. Zorbach for discussions on this topic and for sharing some of their material.
However, my biggest thanks go to M. J. Steil for sharing his notes and debating the formalism.

C.1. Field-space and DeWitt notation
Here, we introduce the basic notions of the field-space formalism, respectively DeWitt notation.
The starting point are some basic definitions. Afterwards we proceed with a bunch of simple
calculation rules.

C.1.1. Definitions and general considerations
We start by defining the field-space vector in terms of its contravariant components,

(Φa) ≡ (φ, ψ̄, −ψ) . (C.1)
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Hereby, φ is a multi-component bosonic field and ψ̄ and ψ are multi-component fermionic fields
over some spacetime manifold M. Thus, each a stands for a = a1 a2 · · · an, n ∈ N, whereas the ai
are by themselves multi-indices of fields in Lorentz, Dirac, color, flavor etc. spaces, but also rep-
resent continuous arguments of the fields, like momentum dependences or spacetime coordinates,
e.g.,

φa1 = φb1b2···bi(x) , (C.2)

where x denotes the coordinates of the spacetime manifold in some basis and the bi, i ∈ N, denote
the components of the fields in some basis of the corresponding spaces (Lorentz, Dirac, etc.). The
abstract fields φ, ψ, and ψ̄ can even involve fields that are composite objects.
To construct scalar objects in field- and all other spaces, we define a field-space scalar product by
introducing the field-space metric

g(Φ,Φ) ≡ Φa Φb gab
!= φ2 − 2 ψ̄ ψ = φ2 − ψ̄ ψ +ψ ψ̄ . (C.3)

In the last step, one uses that the fermionic fields ψ and ψ̄ are Grassmann numbers and anti-
commute (componentwise). Here, we introduce the DeWitt notation [145, 619] for the remaining
contractions over generalized indices,

ψ̄ ψ ≡ ψ̄a1 ψ
a1 =

∫
M

dDx
√

det(g) ψ̄b1b2···(x)ψb1b2···(x) , (C.4)

where M is the D-dimensional spacetime manifold with metric g. (The definition for the bosonic
fields φ or a momentum-space representation are analogous.)
For the components of the field-space vectors Φ and Φ′ this implies

Φ′a Φb = (−1)ab Φb Φ′a , (C.5)

where we introduced

(−1)ab ≡

{
−1 , if a and b are indices of fermionic fields,
+1 , otherwise.

(C.6)

Hence, from Eqs. (C.3) and (C.5) it follows (using simple relabeling) that

Φa Φb gab = (−1)ab Φb Φa gab
!= Φb Φa gba , ⇒ gab = (−1)ab gba . (C.7)

Consequently, the field-space metric needs to be anti-symmetric in its fermionic components. The
anti-symmetry of the metric tensor is a crucial difference to ordinary (pseudo-)Riemannian metric
tensors, which are symmetric bilinear forms.
A possible choice for the field-space metric that is consistent with Eq. (C.3) is1

(gab) ≡

1 0 0
0 0 1
0 −1 0

 . (C.8)

For raising and lowering the field space indices, we use the Northwest–Southeast (NW –SE) con-
vention [54]. For example, for the components of the field-space vectors, this reads

Φa = gab Φb = Φb gab , Φa = Φb gba = gba Φb . (C.9)

Here, North (South) refers to the contravariant (covariant) position of the field-space indices of
the field-space metric. On the other hand, East (West) refers to the right (left) position of the
open field-space index of the field-space metric, which is not contracted in Eq. (C.9).

1Here, it should be noted that Ref. [54] uses a different sign convention.
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From definition (C.1) and definition (C.9) we find

(Φa) ≡ (Φb gba) = (φ,ψ, ψ̄) . (C.10)

Consequently, the inverse metric tensor needs to be

(gab) =

1 0 0
0 0 1
0 −1 0

 . (C.11)

Otherwise, we could not recover Eq. (C.1) via Φa = gab Φb from Eq. (C.10).
Also the inverse field-space metric tensor is anti-symmetric in its fermionic indices and we sum-
marize,

gab = (−1)ab gba , gab = (−1)ab gba . (C.12)

Lowering the second index of the components of the inverse metric tensor (C.11) (respectively
raising the first index of the components of the metric tensor (C.8)), we obtain,

ga
b = gac gcb = (−1)ab δa

b = gbc gca . (C.13)

The last two equal signs can be directly read off from Eqs. (C.8) and (C.11). Here, δa
b is the

generalization of the Kronecker delta symbol (A.4).
On the other hand, by lowering the first index of the components of the inverse metric tensor, we
find

g b
a = gcb gca = δb

a = gac gbc . (C.14)

Again, the last two equal signs can be directly derived from Eqs. (C.8) and (C.11).
For the contraction of two arbitrary field space vectors Φ and Φ′ one derives

Φa Φ′
a = Φa Φ′b gba

(C.12)= Φa Φ′b (−1)ab gab
(C.5)= Φ′b Φa gab = Φ′a Φa , (C.15)

which can also be checked explicitly with Eqs. (C.1) and (C.10).

C.1.2. Functional derivatives in field space
Having introduced some basic notation, we turn to the generalization of the “ordinary” func-
tional derivative to the functional derivative in field space to handle fields that carry bosonic and
fermionic components, at once. As usual the field-space derivative works componentwise, i.e.,

δΦa

δΦb
≡ δb

a . (C.16)

It has to be linear and additive (sum rule) and needs to obey some Leibniz/product rule – as all
meaningful derivatives do. Therefore, consider two functionals F [Φ] and G[Φ].
In order to simplify the notation, we introduce the field-space derivative as a left-derivative and
use the following short-hand notation,

Fanan−1···a2a1 [Φ] ≡ δ

δΦan
Fan−1···a2a1 [Φ] ≡ δ

δΦan

δ

δΦan−1

· · · δ

δΦa2

δ

δΦa1

F [Φ] . (C.17)

Interchanging the order of any two derivatives results in an additional minus sign for fermionic
components,

Fan···ajai···a1 [Φ] = (−1)aiaj Fan···aiaj ···a1 [Φ] , (C.18)
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which generalizes Eq. (C.5) to derivatives and correctly describes the derivative w.r.t. Grassmann
numbers, cf. Refs. [19, 24].
The generalization of the ordinary sum rule is trivial,

δ

δΦan

(
f Fan−1···a1 [Φ] + g Gan−1···a1 [Φ]

)
≡ f Fan···a1 [Φ] + g Gan···a1 [Φ] , (C.19)

where f and g are some arbitrary functions that do not depend on Φ.
The generalization of the Leibniz product rule is slightly more involved, because care needs to be
taken concerning the fermionic components. One defines

δ

δΦa

(
Fbn···b1 [Φ] Gcm···c1 [Φ]

)
≡ (C.20)

≡ Fabn···b1 [Φ] Gcm···c1 [Φ] + (−1)abn · · · (−1)ab1 Fbn···b1 [Φ] Gacm···c1 [Φ] .

Finally, we introduce the chain rule,

δ

δΦa
F [G[Φ]] = Gabm···b1 [Φ] δF [G[Φ]]

δGbm···b1 [Φ] . (C.21)

C.2. The FRG in field-space notation
Next, we turn to the derivation of the ERG equation in field-space notation. Starting from the
partition function for arbitrary field theories or statistical models, we work our way to the evolution
equation for the corresponding (scale-dependent) effective (average) action – the Wetterich or ERG
equation. The discussion is completed by providing formulae for the RG evolution of some n-point
vertex functions, which are derived from the ERG equation.
This section is not meant to be a self-consistent discussion or review of the FRG method and
includes little motivation of the single steps. For these purposes we refer in parts to Part I of this
thesis or Refs. [53, 550, 54, 55, 56, 100, 57, 35, 58]. However, this section can be seen as a quick
guide that shall enable the reader to reproduce all results of Parts I and II of this work without
extensive literature search and without omitting details of the formalism.

C.2.1. Scale-dependent generating functionals of correlation and vertex
functions

The generating functional of n-point correlation functions

The generating functional for arbitrary n-point functions (expectation values) in the field-space
formalism is defined as follows

Z[J] ≡ N
∫

[dΦ̃] exp
(

− S[Φ̃] + Ja Φ̃a
)
. (C.22)

Here, the “tilde” indicates that Φ̃ is the full fluctuating quantum field and the integration variable.
The integral ranges over all (gauge-)inequivalent field configurations. J is introduced as a source
of these fields. The abstract source-field vector is assembled from bosonic and fermionic source
fields,

(Ja) = (J, η̄,−η) , (C.23)

where J is the source of φ, η̄ is the source of ψ, and η is the source of ψ̄. The factor N is an
unobservable normalization, which drops out of any expectation value.
The partition function is simply defined as the generating functional in the absence of sources,
thus Z[J = 0].
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RG-scale dependence and the regulator

In analogy to what is presented for the zero-dimensional toy model in Section 4.1.1, we introduce
an additional artificial mass-like term2

∆Sk[Φ] = 1
2 R

ab
k Φb Φa , (C.24)

to the generating functional (C.22),

Zk[J] = N
∫

[dΦ̃] exp
(

− S[Φ̃] − ∆Sk[Φ̃] + Ja Φ̃a
)
, (C.25)

which is now promoted to the scale-dependent generating functional. Equation (C.24) is called the
regulator insertion and depends on the RG scale k, while Rab

k itself is denoted as the regulator.
By construction the regulator can only be anti-symmetric in its fermionic indices

Rab
k = (−1)ab Rba

k (C.26)

and oftentimes we simply have

Rab
k ∝ gab . (C.27)

Usually the regulator depends on the momenta of the fields, while the momentum integration is
absorbed in the summation over field-space indices in Eq. (C.24), cf. Eq. (C.4). The RG scale k
is of dimension energy and the regulator takes the appropriate mass dimension of the fields.

This approach of modifying the path integral by varying a dimensionful scale k is indeed the basis
of the formalization of K. G. Wilson’s idea of gradually integrating out momentum shells [174, 175,
19]: Here, the regulator ensures that fluctuations of modes with (Euclidean) momenta p2 ≲ k2 are
artificially suppressed, while modes of higher momenta p2 ≫ k2 are by construction not affected
at all. For k → 0 the regulator and the regulator insertion (C.24) are supposed to vanish. Thus,
the generating functional (C.25) effectively contains all information about the physics above the
scale k.
In order to implement K. G. Wilson’s idea without completely spoiling the original theory, the
regulator therefore needs to fulfill the following requirements.

1. For p2

k2 → 0 at non-zero k2 it needs to stay finite to play the role of an effective particle mass
and IR regularization.

2. For k → 0 it needs to vanish to recover the original QFT.

3. For k → ∞ it has to diverge suitably such that the effective average action approaches the
classical UV action (as will become clear below).

4. The regulator must not break any symmetries of the functional integral.

5. The regulator has to act locally in momentum space for all RG scales k.

Of course there is room for further refinement, amendments, and discussion of these criteria, see
also Section 9.2.2. Nonetheless, the peculiarities of different regulators are not the main topic of
this work and the interested reader is referred for example to Refs. [162, 54, 634, 165, 166, 602,
533, 167] and especially the excellent Ref. [348, App. B] for further information.
We already remark at this point that it is hardly possible to fulfill all requirements completely. Of
course, this statement is to some extent trivial, since the regulator is introduced as a modification
of the original theory in the first place to handle divergences and therefore has to alter the theory
in one or the other way. Going from large to vanishing k we nevertheless expect at first sight
that different regulators, after following different paths through theory space (modifying the path

2Note that the order of indices is different from Ref. [54].
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integral in different ways at the same k), all end up at the same point – namely the original theory.

Hence, so far, for J = 0 the scale-dependent generating functional (C.25) effectively interpolates
between Gaussian-like partition functions at huge k, where the mass-like term completely domi-
nates, and the partition function of the actual system under consideration at k → 0.
We also find that the expectation value of some operator O in the presence of source terms is
generalized to

⟨Obn···b1 [Φ̃]⟩k,J = 1
Zk[J] N

∫
[dΦ̃] Obn···b1 [Φ̃] exp

(
− S[Φ̃] − ∆Sk[Φ̃t] + Ja Φ̃a

)
(C.28)

and also becomes scale-dependent. For k → 0 also these expectation values approach their correct
physical values.

Before we continue and actually turn to the formal implementation of K. G. Wilson’s RG, let us
provide the field-space derivative of the regulator insertion already at this point of our calculations
for later use,

∆Sba
k [Φ]

(C.17)
≡ δ

δΦb

δ

δΦa
∆Sk[Φ] = δ

δΦb

δ

δΦa

( 1
2 R

cd
k Φd Φc

) (C.20)= (C.29)

= δ

δΦb

1
2
[
Rca
k Φc + (−1)ad Rad

k Φd
] (C.26)=

= δ

δΦb

(
Rca
k Φc

)
=

=Rba
k .

Secondly, we switch from the RG scale k to the RG time t as an evolution parameter. The relation
between both is discussed in the first paragraphs of Appendix D.1 and shall not be repeated here.

Scale-dependent Schwinger functional and scale-dependent effective action

Next, as discussed for the zero-dimensional toy model in Section 4.1, it is convenient to switch
from the generating functional for n-point correlation functions to the generating functional of
their connected counterparts, which is oftentimes denoted as the (scale-dependent) Schwinger
functional. Also its scale-dependent version is defined in terms of the logarithm of Eq. (C.25),

Wt[J] ≡ ln Zt[J] . (C.30)

Again, for later use, we explicitly provide two special expectation values via derivatives w.r.t. the
source field. These are the one-point function,

Wt,a1 [J] (C.17)= δWt[J]
δJa1

= 1
Zt[J]

δZt[J]
δJa1

= Zt,a1 [J]
Zt[J] ≡ ⟨Φ̃t,a1⟩J , (C.31)

and the connected two-point function,

Wt,a2a1 [J] = δ2Wt[J]
δJa2 δJa1

= 1
Zt[J]

δ2Zt[J]
δJa2 δJa1

− 1
(Zt[J])2

δZt[J]
δJa2

δZt[J]
δJa1

= (C.32)

= Zt,a2a1 [J]
Zt[J] − Zt,a2 [J]

Zt[J]
Zt,a1 [J]
Zt[J] ≡

≡ ⟨Φ̃t,a2 Φ̃t,a1⟩J − ⟨Φ̃t,a2⟩J ⟨Φ̃t,a1⟩J ≡ ⟨Φ̃t,a2 Φ̃t,a1⟩c
J ,
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both in the presence of the source field J.
However, ultimately we work with the so-called effective action of one-PI vertex functions, respec-
tively its scale-dependent counterpart. It is defined in terms of the Legendre transform of the
Schwinger functional,

Γt[Φ] = sup
Jt

{
Ja Φa − Wt[J]

}
= Ĵa

t [Φ] Φa − Wt[Ĵt[Φ]] . (C.33)

Here, Φ is called the effective field or mean field and the “hat” symbol indicates an evaluation on
the supremum. The name “mean-field” derives from the following equation

⟨Φ̃t,a⟩Ĵt = Wt,a[Ĵt[Φ]] = δWt[J]
δJa

∣∣∣∣
J=Ĵt[Φ]

≡ Φa , (C.34)

which relates Φ to the expectation values of the fluctuating field Φ̃. On the other hand, we can
relate the one-point vertex to the source fields of the composite operators via,

Γa
t [Φ] (C.17)= δΓt[Φ]

δΦa

(C.20)= δĴb
t [Φ]
δΦa

Φb + (−1)ab Ĵb
t [Φ] δΦb

δΦa
− δĴb

t [Φ]
δΦa

δWt[J]
δJb

∣∣∣∣
J=Ĵt[Φ]

(C.34)=

= (−1)ab δa
b Ĵb

t [Φ] (C.13)= (C.35)

= ga
b Ĵb

t [Φ] .

Now, we have all ingredients at hand for the derivation of the ERG equation.

C.2.2. RG flow equations for generating functionals
So far we solely defined generating functionals for our theory which are effectively truncated at
some sliding IR scale k. In order to describe an evolution from the UV, where k = Λ, to the IR,
thus k → 0, respectively from t = 0 to t → ∞, we need an evolution equation.3

The flow equation for the generating functional of connected n-point correlation func-
tions Such flow equations for Zt[J] and Wt[J] are straightforwardly derived by taking a derivative
w.r.t. the RG time t,

d
dt Wt[J] (C.30)= d

dt ln Zt[J] = 1
Zt[J]

d
dt Zt[J] (C.25)= (C.36)

= 1
Zt[J] N

∫
[dΦ̃] d

dt exp
(

− S[Φ̃] − 1
2 R

ab
t Φ̃b Φ̃a + Ja Φ̃a

) (C.28),(C.29)=

= −
( 1

2 ∂tR
ab
t

)
⟨Φ̃t,b Φ̃t,a⟩J

(C.32)=

= −
( 1

2 ∂tR
ab
t

)
Wt,ba[J] −

( 1
2 ∂tR

ab
t

)
⟨Φ̃t,b⟩J ⟨Φ̃t,a⟩J

(C.31)=

= −
( 1

2 ∂tR
ab
t

) (
Wt,ba[J] + Wt,b[J] Wt,a[J]

)
,

where we used the relations referenced on top of the equal signs.

3Depending on the model at hand, it is possible to send the UV-cutoff Λ to infinity and remove it from the
system.
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The scale-dependent effective average action Instead of deriving a similar flow equation
for the scale-dependent effective action (C.33) itself, we introduce the scale-dependent effective
average action,

Γ̄t[Φ] ≡ Γt[Φ] − ∆St[Φ] . (C.37)

In the IR for k → 0 (t → ∞) the regulator insertion vanishes and both coincide. In any case, we
see below that it is the effective average action that approaches the classical UV action for k → Λ,
and not Γt[Φ] itself.

For the derivation of the flow equation of Eq. (C.37), we need some additional relations. The first
one is a relation for the one-point vertex function,

Γ̄a
t [Φ] + ∆Sa

t [Φ] ≡
(
Γ̄t[Φ] + ∆St[Φ]

)a = Γa
t [Φ] (C.35)= ga

b Ĵb
t [Φ] . (C.38)

Furthermore, using Eq. (C.32) we find

δΦa

δĴb
t [Φ]

= δ2Wt[J]
δJbδJa

∣∣∣∣
J=Ĵt[Φ]

= Wt,ba[Ĵt[Φ]] . (C.39)

From these two results, we can derive a general identity between the connected two-point corre-
lation function in the presence of source fields and the field-dependent two-point vertex function
expressed in terms of the scale-dependent effective average action,

ga
b = δ

δĴb
t [Φ]

(
Γ̄t[Φ] + ∆St[Φ]

)a = (C.40)

= δΦc

δĴb
t [Φ]

δ

δΦc

(
Γ̄t[Φ] + ∆St[Φ]

)a (C.39)=

= Wt,bc[Ĵt[Φ]]
(
Γ̄t[Φ] + ∆St[Φ]

)ca
.

It follows that these two objects are inverse to each other. Thus,

δa
b

!=
(
Γ̄t[Φ] + ∆St[Φ]

)ac (Γ̄t[Φ] + ∆St[Φ]
)−1

cb (C.41)

defines the full propagator in terms of the inverse two-point vertex function, respectively the
connected two-point correlation function,

Gt,ab[Φ] ≡ gc
a
(
Γ̄t[Φ] + ∆St[Φ]

)−1
cb = Wt,ab[Ĵt[Φ]] . (C.42)

The ERG equation – a flow equation for the scale-dependent effective average action
Now, we have all ingredients at hand to derive a flow equation for the scale-dependent effective
average action Eq. (C.37) by taking a derivative w.r.t. RG time t. We further use Eqs. (C.33)
and (C.36) and find,

d
dt Γ̄t[Φ] (C.33)= (C.43)

=
(
∂tĴa

t [Φ]
)

Φa −
(
∂tĴa

t [Φ]
)

Wt,a[Ĵt[Φ]] − ∂tWt[Ĵt[Φ]] −
( 1

2 ∂tR
ab
t

)
Φb Φa =

= − ∂tWt[Ĵt[Φ]] −
( 1

2 ∂tR
ab
t

)
Φb Φa

(C.36)=

=
( 1

2 ∂tR
ab
t

) (
Wt,ba[Ĵt[Φ]] + Wt,b[Ĵt[Φ]] Wt,a[Ĵt[Φ]]

)
−
( 1

2 ∂tR
ab
t

)
Φb Φa

(C.34)=
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=
( 1

2 ∂tR
ab
t

)
Wt,ba[Ĵt[Φ]] (C.42)=

=
( 1

2 ∂tR
ab
t

)
gc

b
(
Γ̄(2)
t [Φ] +Rt

)−1
ca

(C.42)=

=
( 1

2 ∂tR
ab
t

)
Gt,ba[Φ] =

= Tr
[( 1

2 ∂tRt
)
Gt[Φ]

]
,

where we again referenced the relations used for each single step at the end of the equation.
Hence, in full generality the ERG equation reads

d
dt Γ̄t[Φ] = Tr

[( 1
2 ∂tRt

)
Gt[Φ]

]
. (C.44)

C.2.3. UV initial condition for the ERG equation
Next, we have to turn to the initial condition of the functional partial-integro differential Eq. (C.44).
For this purpose, we return to Defs. (C.25), (C.30), and (C.37) and combine them to study the
UV limit, hence k → Λ → ∞.
The starting point is the relation,

e−Γ̄k[Φ] = N
∫

[dΦ̃] exp
(

− S[Φ̃] − ∆Sk[Φ̃] + Ĵa
t [Φ] Φ̃a + ∆Sk[Φ] − Ĵa

t [Φ] Φa
)
. (C.45)

Shifting the integration variable, the fluctuating quantum field Φ̃, about the mean-field Φ, similar
to the background-field formalism [145, 173], we find

e−Γ̄k[Φ] = (C.46)

= N
∫

[dΦ̃] exp
(

− S[Φ + Φ̃] − ∆Sk[Φ + Φ̃] + Ĵa
k[Φ] Φ̃a + ∆Sk[Φ]

) (C.24)=

= N
∫

[dΦ̃] exp
(

− S[Φ + Φ̃] − ∆Sk[Φ̃] + Ĵa
k[Φ] Φ̃a −Rab

k Φb Φ̃a
) (C.35)=

= N
∫

[dΦ̃] exp
(

− S[Φ + Φ̃] − ∆Sk[Φ̃] + Γa
k[Φ] Φ̃a − ∆Sa

t [Φ] Φ̃a
) (C.38)=

= N
∫

[dΦ̃] exp
(

− S[Φ + Φ̃] − ∆Sk[Φ̃] + Γ̄a
k[Φ] Φ̃a

)
.

Next, we use that the regulator has to diverge for k → Λ → ∞, such that we can approximate

lim
k→Λ→∞

e−∆Sk[Φ̃] ∼ δ[Φ̃] . (C.47)

This functional δ-distribution leads to a collapse of the integral in the previous expression. We find,
as desired, that the scale-dependent effective average action approaches the classical microscopic
action for k → ∞.

Γ̄k→∞[Φ] = S[Φ] + const. . (C.48)

The “constant” term is field-independent, but may diverge for k → ∞. However, a constant
(divergent) shift can be ignored, as discussed in Section 4.2.2 and Ref. [1].
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C.2.4. Projections and RG flow equations for vertices
There is only a limited number of QFTs or approximations where the ERG equation (C.44) can
be solved (numerically) in full generality. Usually for all kinds of practical applications one uses
approximations of this equation. To this end, one formulates an ansatz function for the scale-
dependent effective average action that is compatible with the UV initial condition (C.48), but
also allows for the evolution of additional/all other couplings etc.. In a lot of cases it is therefore
required to project Eq. (C.44) onto differential equations for these single couplings/vertices. This
is done by taking functional derivatives of Eq. (C.44) w.r.t. the fields Φ and one ends up with
an infinite tower of coupled functional differential equations for the field- and scale-dependent
one-PI n-point vertex functions. To render this system manageable, one chooses some arbitrary
background-field configuration to get rid of the functional structure of the coupled differential
equations and one artificially truncates the system. The specifications of an appropriate truncation
is up to the user and there is a lot of ongoing debate on sensible truncations. At this point, we
do not go into detail, but refer for example to the discussions in Refs. [635, 53, 35]. Here, we
exclusively show, how to formalize the derivation of these RG flow equations from the ERG and
thus keeping track of all signs for arbitrary QFTs.

Derivatives of the propagator Because it is required to compute field-space derivatives of
Eq. (C.44), it is wise to first consider the derivative of the full propagator. We use

0 = δ

δΦc
ga

b = (C.49)

= δ

δΦc

[
Gt,ba1 [Φ]

(
Γ̄t[Φ] + ∆St[Φ]

)a1a
] (C.20)=

=
(

δ

δΦc
Gt,ba1 [Φ]

)(
Γ̄t[Φ] + ∆St[Φ]

)a1a + (−1)cb (−1)ca1 Gt,ba1 [Φ] Γ̄ca1a
t ,

and obtain,

δ

δΦc
Gt,ba[Φ] = − (−1)cb (−1)ca1 Gt,ba1 [Φ] Γ̄ca1a2

t ga3
a2
Gt,a3a[Φ] = (C.50)

= − (−1)cb Gt,ba1 [Φ] Γ̄a1ca2
t ga3

a2
Gt,a3a[Φ] .

RG flow equations for scale-dependent one-PI n-point vertex functions The starting
point for the derivation of flow equations for the scale-dependent one-PI n-point vertex functions
is the ERG equation,

∂tΓ̄t[Φ] =
( 1

2 ∂tR
a1a2
t

)
Gt,a2a1 [Φ] = (C.51)

= Tr
[( 1

2 ∂tRt
)
Gt[Φ]

]
=

= .

Here, we also introduced the common diagrammatic notation in terms of “FRG-customized” Feyn-
man rules: The derivative of the regulator (including the factor 1

2 ) is pictured as a crossed circle.
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The full propagator is represented by a black solid line and vertices are depicted as small cir-
cles with gray filling and the so-called “amputated” short external legs (see below). The trace is
illustrated by the ordered concatenation of the single objects to a closed loop.
Now, let us apply a derivative w.r.t. Φ to the previous equation. Using Eq. (C.50) we find the
evolution equation for the one-point vertex function

∂tΓ̄(1) a
t [Φ] = − (−1)aa2

( 1
2 ∂tR

a1a2
t

)
Gt,a2a3 [Φ] Γ̄(3) a3aa4

t [Φ] ga5
a4
Gt,a5a1 [Φ] = (C.52)

= − STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(3) a

t Gt[Φ]
]

=

= − ,

which in turn depends on the three-point vertex function. On a diagrammatic level taking the
derivative of Eq. (C.51) w.r.t. Φ simply corresponds to attaching a vertex to the loop.
Taking another derivative w.r.t. Φ, we obtain

∂tΓ̄(2) ba
t [Φ] = (C.53)

= (−1)ba2 (−1)aa2
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] Γ̄(3) a3ba4

t [Φ] ga5
a4
Gt,a5a6 [Φ] Γ̄(3) a6aa7

t [Φ] ga8
a7

×

×Gt,a8a1 [Φ] −

− (−1)ba2 (−1)aa2
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] Γ̄(4) a3baa4

t [Φ] ga5
a4
Gt,a5a1 [Φ] +

+ (−1)ba5 (−1)ba4 (−1)ba (−1)ba2 (−1)aa2
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] Γ̄(3) a3aa4

t [Φ] ga5
a4

×

×Gt,a5a6 [Φ] Γ̄(3) a6ba7
t [Φ] ga8

a7
Gt,a8a1 [Φ] =

= STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(3) b

t Gt[Φ] Γ̄(3) a
t Gt[Φ]

]
−

− STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(4) ba

t Gt[Φ]
]

+

+ STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(3) a

t Gt[Φ] Γ̄(3) b
t Gt[Φ]

]
=

=

 + 1 permutation

− . (C.54)

In the second line we used that Γ̄ba3aa4
t = (−1)ba3 Γ̄a3baa4

t such that a factor (−1)ba3 , which
stems from the Leibniz rule, cancels. The diagrammatic result is rather intuitive: Either we
attach another vertex at the left or right of the first vertex to the loop (first two diagrams) or we
increase the order of the existing vertex (third diagram).
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Now, we can go on and find,

∂tΓ̄(3) cba
t [Φ] = (C.55)

= − (−1)ca2 (−1)ba2 (−1)aa2
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] Γ̄(3) a3ca4

t [Φ] ga5
a4
Gt,a5a6 [Φ] ×

× Γ̄(3) a6ba7
t [Φ] ga8

a7
Gt,a8a9 [Φ] Γ̄(3) a9aa10

t [Φ] ga11
a10

Gt,a11a1 [Φ] +

+ (−1)ca2 (−1)ba2 (−1)aa2
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] Γ̄(4) a3cba4

t [Φ] ga5
a4

×

×Gt,a5a6 [Φ] Γ̄(3) a6aa7
t [Φ] ga8

a7
Gt,a8a1 [Φ] −

− (−1)ca5 (−1)ca4 (−1)cb (−1)ca2 (−1)ba2 (−1)aa2
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] ×

× Γ̄(3) a3ba4
t [Φ] ga5

a4
Gt,a5a6 [Φ] Γ̄(3) a6ca7

t [Φ] ga8
a7
Gt,a8a9 [Φ] ×

× Γ̄(3) a9aa10
t [Φ] ga11

a10
Gt,a11a1 [Φ] +

+ (−1)ca5 (−1)ca4 (−1)cb (−1)ca2 (−1)ba2 (−1)aa2
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] ×

× Γ̄(3) a3ba4
t [Φ] ga5

a4
Gt,a5a6 [Φ] Γ̄(4) a6caa7

t [Φ] ga8
a7
Gt,a8a1 [Φ] −

− (−1)ca8 (−1)ca7 (−1)ca (−1)ca5 (−1)ca4 (−1)cb (−1)ca2 (−1)ba2 (−1)aa2
( 1

2 ∂tR
a1a2
t

)
×

×Gt,a2a3 [Φ] Γ̄(3) a3ba4
t [Φ] ga5

a4
Gt,a5a6 [Φ] Γ̄(3) a6aa7

t [Φ] ga8
a7
Gt,a8a9 [Φ] ×

× Γ̄(3) a9ca10
t [Φ] ga11

a10
Gt,a11a1 [Φ] +

+ (−1)ca2 (−1)ba2 (−1)aa2
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] Γ̄(3) a3ca4

t [Φ] ga5
a4

×

×Gt,a5a6 [Φ] Γ̄(4) a6baa7
t [Φ] ga8

a7
Gt,a8a1 [Φ] −

− (−1)ca2 (−1)ba2 (−1)aa2
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] Γ̄(5) a3cbaa4

t [Φ] ga5
a4
Gt,a5a1 [Φ] +

+ (−1)ca5 (−1)ca4 (−1)ca (−1)cb (−1)ca2 (−1)ba2 (−1)aa2
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] ×

× Γ̄(4) a3baa4
t [Φ] ga5

a4
Gt,a5a6 [Φ] Γ̄(3) a6ca7

t [Φ] ga8
a7
Gt,a8a1 [Φ] −

− (−1)ca2 (−1)ba5 (−1)ba4 (−1)ba (−1)ba2 (−1)aa2
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] ×

× Γ̄(3) a3ca4
t [Φ] ga5

a4
Gt,a5a6 [Φ] Γ̄(3) a6aa7

t [Φ] ga8
a7
Gt,a8a9 [Φ] ×

× Γ̄(3) a9ba10
t [Φ] ga11

a10
Gt,a11a1 [Φ] +

+ (−1)ca2 (−1)ba5 (−1)ba4 (−1)ba (−1)ba2 (−1)aa2
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] ×
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× Γ̄(4) a3caa4
t [Φ] ga5

a4
Gt,a5a6 [Φ] Γ̄(3) a6ba7

t [Φ] ga8
a7
Gt,a8a1 [Φ] −

− (−1)ca5 (−1)ca4 (−1)ca (−1)ca2 (−1)ba5 (−1)ba4 (−1)ba (−1)ba2 (−1)aa2
( 1

2 ∂tR
a1a2
t

)
×

×Gt,a2a3 [Φ] Γ̄(3) a3aa4
t [Φ] ga5

a4
Gt,a5a6 [Φ] Γ̄(3) a6ca7

t [Φ] ga8
a7
Gt,a8a9 [Φ] ×

× Γ̄(3) a9ba10
t [Φ] ga11

a10
Gt,a11a1 [Φ] +

+ (−1)ca5 (−1)ca4 (−1)ca (−1)ca2 (−1)ba5 (−1)ba4 (−1)ba (−1)ba2 (−1)aa2 ×

×
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] Γ̄(3) a3aa4

t [Φ] ga5
a4
Gt,a5a6 [Φ] Γ̄(4) a6cba7

t [Φ] ga8
a7
Gt,a8a1 [Φ] −

− (−1)ca8 (−1)ca7 (−1)cb (−1)ca5 (−1)ca4 (−1)ca (−1)ca2 (−1)ba5 (−1)ba4 (−1)ba ×

× (−1)ba2 (−1)aa2
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] Γ̄(3) a3aa4

t [Φ] ga5
a4

×

×Gt,a5a6 [Φ] Γ̄(3) a6ba7
t [Φ] ga8

a7
Gt,a8a9 [Φ] Γ̄(3) a9ca10

t [Φ] ga11
a10

Gt,a11a1 [Φ] =

= − STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(3) c

t Gt[Φ] Γ̄(3) b
t Gt[Φ] Γ̄(3) a

t Gt[Φ]
]

+

+ STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(4) cb

t Gt[Φ] Γ̄(3) a
t Gt[Φ]

]
−

− STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(3) b

t Gt[Φ] Γ̄(3) c
t Gt[Φ] Γ̄(3) a

t Gt[Φ]
]

+

+ STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(3) b

t Gt[Φ] Γ̄(3) ca
t Gt[Φ]

]
−

− STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(3) b

t Gt[Φ] Γ̄(3) a
t Gt[Φ] Γ̄(3) c

t Gt[Φ]
]

+

+ STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(3) c

t Gt[Φ] Γ̄(3) ba
t Gt[Φ]

]
−

− STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(5) cba

t Gt[Φ]
]

+

+ STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(4) ba

t Gt[Φ] Γ̄(3) c
t Gt[Φ]

]
−

− STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(3) c

t Gt[Φ] Γ̄(3) a
t Gt[Φ] Γ̄(3) b

t Gt[Φ]
]

+

+ STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(4) ca

t Gt[Φ] Γ̄(3) b
t Gt[Φ]

]
−

− STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(3) a

t Gt[Φ] Γ̄(3) c
t Gt[Φ] Γ̄(3) b

t Gt[Φ]
]

+

+ STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(3) a

t Gt[Φ] Γ̄(4) cb
t Gt[Φ]

]
−

− STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(3) a

t Gt[Φ] Γ̄(3) b
t Gt[Φ] Γ̄(3) c

t Gt[Φ]
]

=
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= −

 + 5 permutations

+

 + 5 permutations

−

− ,

for the generic flow equation of the three-point vertex, and

∂tΓ̄(4) dcba
t [Φ] = (C.56)

= . . .+

+ (−1)da5 (−1)da4 (−1)db (−1)dc (−1)da2 (−1)ca2 (−1)ba2 (−1)aa2 ×

×
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] Γ̄(4) a3cba4

t [Φ] ga5
a4
Gt,a5a6 [Φ] Γ̄(4) a6daa7

t [Φ] ga8
a7
Gt,a8a1 [Φ] +

+ (−1)da2 (−1)ca5 (−1)ca4 (−1)cb (−1)ca2 (−1)ba2 (−1)aa2 ×

×
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] Γ̄(4) a3dba4

t [Φ] ga5
a4
Gt,a5a6 [Φ] Γ̄(4) a6caa7

t [Φ] ga8
a7
Gt,a8a1 [Φ] +

+ (−1)da2 (−1)ca2 (−1)ba2 (−1)aa2 ×

×
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] Γ̄(4) a3dca4

t [Φ] ga5
a4
Gt,a5a6 [Φ] Γ̄(4) a6baa7

t [Φ] ga8
a7
Gt,a8a1 [Φ] +

+ (−1)da5 (−1)da4 (−1)da (−1)db (−1)da2 (−1)ca5 (−1)ca4 (−1)ca (−1)cb (−1)ca2 ×

× (−1)ba2 (−1)aa2 ×

×
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] Γ̄(4) a3baa4

t [Φ] ga5
a4
Gt,a5a6 [Φ] Γ̄(4) a6dca7

t [Φ] ga8
a7
Gt,a8a1 [Φ] +

+ (−1)da5 (−1)da4 (−1)da (−1)dc (−1)da (−1)ca2 (−1)ba5 (−1)ba4 (−1)ba (−1)ba2 ×

× (−1)aa2 ×

×
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] Γ̄(4) a3caa4

t [Φ] ga5
a4
Gt,a5a6 [Φ] Γ̄(4) a6dba7

t [Φ] ga8
a7
Gt,a8a1 [Φ] +

+ (−1)da2 (−1)ca5 (−1)ca4 (−1)ca (−1)ca2 (−1)ba5 (−1)ba4 (−1)ba (−1)ba2 (−1)aa2 ×

×
( 1

2 ∂tR
a1a2
t

)
Gt,a2a3 [Φ] Γ̄(4) a3daa4

t [Φ] ga5
a4
Gt,a5a6 [Φ] Γ̄(4) a6cba7

t [Φ] ga8
a7
Gt,a8a1 [Φ] +

+ . . . =
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= . . .+

+ STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(4) cb

t Gt[Φ] Γ̄(4) da
t Gt[Φ]

]
+

+ STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(4) db

t Gt[Φ] Γ̄(4) ca
t Gt[Φ]

]
+

+ STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(4) dc

t Gt[Φ] Γ̄(4) ba
t Gt[Φ]

]
+

+ STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(4) ba

t Gt[Φ] Γ̄(4) dc
t Gt[Φ]

]
+

+ STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(4) ca

t Gt[Φ] Γ̄(4) db
t Gt[Φ]

]
+

+ STr
[( 1

2 ∂tRt
)
Gt[Φ] Γ̄(4) da

t Gt[Φ] Γ̄(4) cb
t Gt[Φ]

]
+

+ . . . =

=

 + 23 permutations

−

 + 35 permutations

+

+

 + 7 permutations

+

 + 5 permutations

−

−

for the flow equation of the four-point vertex.
In general we could proceed with this process and derive flow equations for vertices of arbitrary
order. However, for generic QFTs the system never terminates, because each n-point vertex
depends on the (n+ 2)-point vertex.
Already at the fourth order, Eq. (C.56), we are confronted with 75 possible terms and diagrams
for arbitrary field theories on the r.h.s. of the equation. Of course, in practical applications the
actual number is lower due to symmetries of the system and the resulting specific structure of the
existing interaction terms. For example, for the QFTs and the corresponding truncations that are
studied in this work, we solely need the six contributions that are explicitly provided in terms of
formulae in Eq. (C.56).

Nevertheless, the interested reader might ask what happened, if we started to improve of our
truncation step by step. How does the number of diagrams and therefore coupled differential
equations grow, if one includes higher and higher n-point vertex functions?



300 C. RG flow equations in field-space (DeWitt) notation

FRG and horse-race betting To answer this question, let us return to the initial conundrum
that was raised in the abstract of this appendix:
What is the common feature of FRG and horse-race betting?
Looking at the “diagrammatics” of the above equation, the commonality is as follows: The com-
binatorics, which is needed to obtain all possible diagrams that appear on the r.h.s. of the flow
equation of the nth vertex for a generic QFT is identical to the combinatorics of the different
possible outcomes of a horse race with n participants. Here, the path along the loop of a diagram
(from regulator to regulator) stands for the time when the horses pass the finish line and each
horse can be associated with a three-point vertex. If there are ties and m horses finish at exactly
the same time, they are depicted as (m+ 2)-point vertices instead of single three-point vertices.
Actually, this is a rather old combinational problem. Its solution is given by the so-called Bell
numbers, which are also denoted as Fubini numbers. The corresponding sequence is given [636]
and grows faster than the factorials. Its first terms are

1, 1, 3, 13, 75, 541, 4683, 47293, 545835, . . . . (C.57)

Already this questions the practical possibility of successively increasing the truncation order in
any kind of vertex expansion of the ERG equation above fourth- or fifth-order vertices for “real-
world” problems, e.g., QCD.

C.2.5. Scale-dependent fields
We close this chapter by showing the modifications that appear in the flow equations, if the ERG
equation is evaluated for scale-dependent fields,

Φ 7→ Φt = Φt[Φ] . (C.58)

Hence, from Eq. (C.44) follows that

d
dt Γ̄t[Φt[Φ]] = ∂tΓ̄t[Φt] + (∂tΦt,a) δΓ̄t[Φ]

δΦa

∣∣∣∣
Φ=Φt

= STr
[( 1

2 ∂tRt
)
Gt[Φt[Φ]]

]
. (C.59)

This modification of the flow equation can be used to formulate the flow equations in terms
of renormalized fields instead of bare fields [54]. Introducing a field-independent wave-function
renormalization via

Φt[Φ] = Z
1
2
t Φ , (C.60)

the above equation reduces to

∂tΓ̄t[Φt] = − 1
2 ηt Φt,a

δΓ̄t[Φ]
δΦa

∣∣∣∣
Φ=Φt

+ STr
[( 1

2 ∂tRt
)
Gt[Φt]

]
, (C.61)

where we defined the anomalous dimension as follows,

ηt ≡ ∂t ln(Zt) . (C.62)



Appendix D

RG and loop-integration variables,
regulators, and threshold
functions

Abstract This appendix provides some definitions and useful identities which repeatedly occur
during the derivation of the FRG flow equations in Appendix E and their discussion in Part II.
This comprises relations between the RG time and the RG scale and variable transformations of
the loop momentum integration. Additionally, we present explicit formulae and identities for the
regulators that are used in this thesis. We also introduce shorthand notations for the propagators
and their derivatives. Additionally, we discuss recurring integral identities.

Disclosure None of the material that is presented in this appendix is new on a conceptual
level and similar formulae and formularies are part of a lot of FRG publications. Certainly, the
compilation and presentation of the material of this appendix is original to the author.

D.1. Relations between the RG time, the RG scale, and the
loop momentum

In Part II of this thesis, where we work with QFTs in non-zero dimensions, the sliding RG scale
k is of dimension energy. It is related to the RG time t, which serves as a dimensionless evolution
parameter in our fluid-dynamical formulation of the RG flow equations, by

k(t) = Λ e−t , t = − ln
(
k
Λ
)
, t ∈ [0,∞) , (D.1)

where Λ is the UV cutoff. The RG time is chosen manifestly positive throughout this work in
contrast to most of the modern FRG literature that is based on the ERG equation (C.51). However,
for a straightforward interpretation of the RG flow equations in terms of a fluid-dynamical problem,
a positive RG time t seems to be more convenient [77, 4, 1, 2, 3]. Interestingly, this was already
observed and used in the “pre-Wetterich era” of evolution equations, cf. Refs. [94, 96, 97, 193, 98,
99].
A change in RG time and RG scale are related by the chain rule for the derivatives,

∂t = ∂k
∂t

∂
∂k = −k ∂k . (D.2)

During the evaluation of loop integrals in FRG calculations, it is common to introduce another
dimensionless variable, see, e.g., Refs. [162, 163, 165],

y = p2

k2 . (D.3)
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This quantity encodes the ratio of the momentary RG scale k to the absolute value of the loop
momentum p = |p⃗ | during the integration from the UV to the IR. Derivatives w.r.t. the RG scale
can be transformed into derivatives w.r.t. the ratio y as follows,

k ∂k = k ∂y
∂k

∂
∂y = −2y ∂y . (D.4)

From Eq. (D.2) we additionally find

2y ∂y = ∂t . (D.5)

In Appendix E, where we derive the RG flow equations of the GN and GNY model, we have to
execute the (spatial) loop-momentum integrals many times for various diagrams. To this end it
is useful to switch the integration variable from p to y. The integration measure transforms as
follows

dy = 2dp p
k2 , (D.6)

and we find that∫ ∞

0
dp pd+1 f(p) = kd+2 1

2

∫ ∞

0
dy y d2 f(y) (D.7)

holds for all integrands, which are functions of the absolute of the momentum p⃗ only.

D.2. The flat regulator (Litim regulator)
For all FRG calculations in non-zero dimensions of this work, we enploy so-called (spatial) flat
regulators [634, 165]. Recognizing his seminal paper [163], this type of regulator is also named
after D. Litim – the Litim regulator – and we adopt this denotation. It was developed in Ref. [163]
to optimize RG flows and is therefore oftentimes also denoted as the (LPA) optimized regulator.
Broadly speaking, optimization here refers to the minimization of the artificial errors which are
introduced into the IR results of the RG by the regulator in any truncated version of the ERG
equation. For details we refer to Refs. [162, 65, 637].
The Litim regulator is in general defined via the corresponding regulator shape functions, which
are functions of the ratio (D.3). In this work, we use different versions of the Litim regulator(shape
function) for bosons and fermions.

D.2.1. The bosonic Litim-regulator shape function
The bosonic version of the Litim-regulator shape function is defined in Ref. [163, Eq. (2.19)]. The
regulator shape function and its derivatives w.r.t. the argument y explicitly read,

rb(y) ≡
( 1
y − 1

)
Θ(1 − y) , (D.8)

ṙb(y) = − 1
y2 Θ(1 − y) −

( 1
y − 1

)
δ(1 − y) , (D.9)

r̈b(y) = 2
y3 Θ(1 − y) + 2

y2 δ(1 − y) −
( 1
y − 1

)
∂yδ(1 − y) . (D.10)

Two useful identities which are exploited several times during our calculations in Appendix E.2
are,

1 + rb(y) + y ṙb(y) = 1 − Θ(1 − y) − (1 − y) δ(1 − y) , (D.11)

2 ṙb(y) + y r̈b(y) = 2 δ(1 − y) − (1 − y) ∂yδ(1 − y) = δ(1 − y) . (D.12)
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These combinations automatically appear in the derivatives (D.27) and (D.28) of the bosonic
propagator (D.26), see below.
Note that both identities as well as the derivatives of the regulator shape function (D.8) are only
valid if they are part of integrands of integrals like Eq. (D.7), because they are distributions. To
show the validity of the second equality, we use integration by parts∫ ∞

0
dy f(y) (1 − y) ∂yδ(1 − y) = (D.13)

=
[
f(y) (1 − y) δ(1 − y)

]∞
0 −

∫ ∞

0
dy δ(1 − y) ∂y[f(y) (1 − y)] =

=
∫ ∞

0
dy f(y) δ(1 − y) ,

where f(y) is some arbitrary test function.

In addition and in combination with the above identities, we are confronted over and over again
with integrals of the type [163, Eq. (5.8)],

d
2

∫ ∞

0
dy y d2

[
y ṙb(y) + 1

2 ηφ(t) rb(y)
]
f(y) = (D.14)

= d
2

∫ ∞

0
dy y d2

[
− 1

y Θ(1 − y) − (1 − y) δ(1 − y) + 1
2 ηφ(t)

( 1
y − 1

)
Θ(1 − y)

]
f(y) =

= d
2

∫ 1

0
dy
[

− y
d
2 −1 + 1

2 ηφ(t)
(
y
d
2 −1 − y

d
2
)]
f(y) .

Here, we inserted the explicit expressions (D.8) and (D.9) .
For the special case where f(y) does not depend on y for y ∈ [0, 1], the integral universally
evaluates to

= −
[
1 − ηφ(t)

d+2

]
f . (D.15)

D.2.2. The fermionic Litim-regulator shape function
Analogously to Eq. (D.8) one defines a fermionic Litim-regulator shape function [163, Eq. (2.21)].
It is reasonable, see, e.g., the discussions in Ref. [163] and Ref. [273, App. D], to choose the
prefactor of the Heaviside step function slightly differently from the prefactor in the bosonic
regulator function (D.8) in order to obtain a regulator function which is linear in the fermion
momentum, see also Eq. (E.5). A rather natural and common choice for the fermionic regulator
shape function in terms of the bosonic regulator shape function, which ensures this linearity, is,
cf. Refs. [60, 63, 638, 61, 62, 72].

1 + rf(y) ≡
√

1 + rb(y) , ⇒ 2 [2y ∂yrf(y)][1 + rf(y)] = 2y ∂yrb(y) . (D.16)

The relation has the additional feature for generic regulator shape functions that the IR regu-
larization of fermions and bosons takes place at approximately similar scales k in systems where
anti-fermion-fermion pairs can form bosonic particles via Yukawa interactions and vice versa.
This can be seen from the relation for the derivatives of the regulators in Eq. (D.16), which re-
lates loop integrals with fermionic regulator insertions, which are of type (D.24), to loop integrals
with bosonic regulator insertions, which are of type (D.14) – at least for vanishing anomalous
dimensions ηt.
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Equations (D.8) and (D.16) imply,

rf(y) ≡
(
y− 1

2 − 1
)

Θ(1 − y) , (D.17)

ṙf(y) = − 1
2 y

− 3
2 Θ(1 − y) −

(
y− 1

2 − 1
)
δ(1 − y) , (D.18)

r̈f(y) = 3
4 y

− 5
2 Θ(1 − y) + y− 3

2 δ(1 − y) −
(
y− 1

2 − 1
)
∂yδ(1 − y) . (D.19)

There are also some useful identities for the fermionic regulator shape function,

1 + rf(y) + 2y ṙf(y) = 1 − Θ(1 − y) − 2
(
y

1
2 − y

)
δ(1 − y) , (D.20)

3 ṙf(y) + 2y r̈f(y) =
(

− y− 1
2 + 3

)
δ(1 − y) − 2

(
y

1
2 − y

)
∂yδ(1 − y) = δ(1 − y) (D.21)

ṙf(y) + y r̈f(y) = 1
4 y

− 3
2 Θ(1 − y) + δ(1 − y) −

(
y

1
2 − y

)
∂yδ(1 − y) = (D.22)

= 1
4 y

− 3
2 Θ(1 − y) + 1

2 y
− 1

2 δ(1 − y) ,

where the last two formulae are again derived using integration by parts and some test function
f(y), ∫ ∞

0
dy f(y)

(
y

1
2 − y

)
∂yδ(1 − y) = (D.23)

=
[
f(y)

(
y

1
2 − y

)
δ(1 − y)

]∞
0 −

∫ ∞

0
dy δ(1 − y) ∂y

[
f(y)

(
y

1
2 − y

)]
=

= −
∫ ∞

0
dy f(y)

( 1
2 y

− 1
2 − 1

)
δ(1 − y) .

These identities arise within the expressions for the derivatives (D.33) and (D.34) of the denomi-
nator of the fermionic propagator (D.32), see below.

Furthermore, we are confronted with integrals of the type [163, Eq. (5.10)],

d

∫ ∞

0
dy y d2

[
y ṙf(y) + 1

2 ηψ(t) rf(y)
]
[1 + rf(y)] f(y) = (D.24)

= d

∫ ∞

0
dy y d2

[
− 1

2 y
− 1

2 Θ(1 − y) −
(
y− 1

2 − 1
)
δ(1 − y) + 1

2 ηψ(t)
(
y− 1

2 − 1
)

Θ(1 − y)
]

×

×
[
1 +

(
y− 1

2 − 1
)

Θ(1 − y)
]
f(y) =

= d

∫ 1

0
dy
[

− 1
2 y

d
2 −1 + 1

2 ηψ(t)
(
y
d
2 −1 − y

d−1
2
)]
f(y) .

The simplifications are done using Eqs. (D.17) and (D.18). Again, if f(y) does not depend on y
for y ∈ [0, 1], the above integral further simplifies to

= −
[
1 − ηψ(t)

d+1

]
f . (D.25)
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D.3. Propagators and threshold functions
Already in the first publications which applied the FRG method to QFTs, so-called threshold
functions were introduced in order to compactify and systematize the notation of flow equations. In
this work, we do not follow this strategy, because most of the threshold functions and notation was
established for calculations in vacuum and/or spacetime dimensions greater than two, while our
work focuses on in-medium calculations in 1+1 dimensions. Hence, although most of the commonly
used threshold functions are provided at first glance for any desired spacetime dimension, some
threshold functions are actually not valid for small number of dimensions, due to prefactors like

1
d−2 , cf. Refs. [373, 374]. This distinction of cases for different dimensions is discussed in the
context of the flow equation for the Yukawa coupling in Appendix E.2.4, but is oftentimes ignored
in the literature.
In consequence, we decided to introduce merely two “threshold functions” – namely shorthand
notations for the denominators of the bosonic and fermionic propagators. For the sake of sim-
plicity, we also refer to these quantities as propagators throughout this work, even though the
true full propagators have additional tensor structures in their numerators, see Eqs. (E.9), (E.43),
and (E.44).
In the following paragraphs, we introduce our notation and present some integral identities for the
propagators, if one explicitly uses Litim regulators.

D.3.1. Propagators

Bosonic propagator

The (denominator of the) bosonic propagator and its first two derivatives are,

Bn(y) ≡ 1
1
k2 ω2

n + y [1 + rb(y)] + 1
k2 ∂2

σr
U(t, σr)

, (D.26)

Ḃn(y) = − [1 + rb(y) + y ṙb(y)]B2
n(y) , (D.27)

B̈n(y) = 2 [1 + rb(y) + y ṙb(y)]2 B3
n(y) − [2 ṙb(y) + y r̈b(y)]B2

n(y) . (D.28)

Here, y is again the ratio (D.3) of p2 and k2. Note that these formulae are valid for any purely
spatial regulator.
However, if one specifically chooses the Litim-regulator shape function (D.8) and studies these
expressions as being part of integrands of some y-integrals, which are restricted to y ∈ [0, 1] by the
Heaviside step function from the regulator insertion, like Eqs. (D.14) and (D.24), one can prove
the following useful formulae. Explicitly inserting Eqs. (D.8), (D.11), and (D.12) into Eqs. (D.26)
to (D.28) one finds,∫ ∞

0
dyΘ(1 − y) f(y)Bn(y) =

∫ 1

0
dy f(y)Bn(1) , (D.29)

∫ ∞

0
dyΘ(1 − y) f(y) Ḃn(y) = 0 , (D.30)

∫ ∞

0
dyΘ(1 − y) f(y) B̈n(y) = − 1

2 f(1)B2
n(1) . (D.31)

The factor 1
2 in the last equation stems from the Dirac δ-distribution, being evaluated at the

integral boundary.
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Fermionic propagators

The (denominator of the) fermionic propagator and its first two derivatives are,

Fn(y) ≡ 1
1
k2 (νn + iµ)2 + y [1 + rf(y)]2 + 1

k2 m2
r (t, σr)

, (D.32)

Ḟn(y) = − [1 + rf(y)][1 + rf(y) + 2y ṙf(y)]F2
n(y) , (D.33)

F̈n(y) = 2 [1 + rf(y)]2 [1 + rf(y) + 2y ṙf(y)]2 F3
n(y) − (D.34)

−
(
ṙf(y) [1 + rf(y) + 2y ṙf(y)] + [1 + rf(y)][3 ṙf(y) + 2y r̈f(y)]

)
F2
n(y) ,

where we are still using definition Eq. (D.3) for y. Again, these formulae are valid for any kind of
purely spatial regulator.

For the special case where m2
r (t, σr) = 0, which is always the case for the purely fermionic GN

model in Appendix E.1 and which is also the case for field-independent flow equations in the GNY
model in Appendix E.2, where the flow equations are evaluated at the trivial point σr = 0 in field
space, we define,

fn(y) ≡ Fn(y)
∣∣
m2

r (t,σr)=0 . (D.35)

All formulae of this appendix which hold for Fn(y) do also apply to fn(y).

Choosing the fermionic Litim-regulator shape function (D.17), we can prove certain integral iden-
tities. Inserting Eqs. (D.17), (D.20), and (D.21) in Eqs. (D.32) to (D.34) one finds,∫ ∞

0
dyΘ(1 − y) f(y)Fn(y) =

∫ 1

0
dy f(y)Fn(1) , (D.36)

∫ ∞

0
dyΘ(1 − y) f(y) Ḟn(y) = 0 , (D.37)

∫ ∞

0
dyΘ(1 − y) f(y) F̈n(y) = − 1

2 f(1)F2
n(1) . (D.38)

The factor 1
2 in the last line stems from the delta distribution being evaluated at the integral

boundary. These types of integrals occur if the fermionic propagator and/or its derivatives are
part of the integrand of integrals like Eqs. (D.14) and (D.24).



Appendix E

FRG flow equations of the
Gross-Neveu and
Gross-Neveu-Yukawa model

Abstract This appendix is dedicated to the explicit derivation of the FRG flow equations which
are studied and solved in Part II of this thesis. The appendix is split into two parts. The first part
exclusively deals with the purely fermionic GN model at non-zero µ and non-zero T . It comprises
the calculation of the flow equations of the four-fermion coupling and the trivial flow equation
of the fermionic wave-function renormalization in our choice of the truncation. The second part
covers the in-medium flow equations of the partially bosonized GN model, the GNY model, in a
truncation which involves a scale-dependent local potential, field-independent but scale-dependent
wave-function renormalizations for the boson and the fermions, and a field- and scale-dependent
Yukawa coupling. Furthermore, we provide an expression for the scale-dependent bosonic two-
point function. All derivations are for d spatial dimensions using a purely spatial Litim regulator.

Both parts are presented as detailed and self-consistent step-by-step manuals.

Disclosure On a conceptual level, none of the derivations within this appendix are new. FRG
flow equations for similar but also much more complicated four-fermion theories or Yukawa-type
theories were studied before in numerous contexts, see, e.g., Refs. [527, 346, 528, 347, 348, 350,
351] and Refs. [372, 373, 639, 556, 374, 346, 66, 101], such that the generic form of the flow
equations is in principle known in an arbitrary number of spacetime dimensions (in vacuum and
in medium) and their shape and derivation is at least in parts discussed elsewhere. Hence, this
appendix documents primarily the reproducibility of some of these results and hopefully makes
this thesis as self-consistent and pedagogical as possible, because the details of the respective
derivations are sometimes very hard to find.

However, to the best of our knowledge the flow equation of the purely fermionic GN model in
medium (the β-function of the four-fermion coupling), was never analyzed and evaluated like it is
presented in this appendix. Here we refer to a careful analysis and tracing of the external fermionic
Matsubara frequencies that have to enter the corresponding diagrams at non-zero temperature in
the presence of a chemical potential. Furthermore, although flow equations for the GNY model
were already presented for an arbitrary number of dimensions, we are confident, that a careful
step-by-step discussion and evaluation of these equations, using a spatial Litim regulator in a small
number of dimensions and in medium, is missing in the literature.
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E.1. FRG flow equations of the Gross-Neveu model
In this appendix the explicit derivation of the RG flow equation(s) for the GN model in its original
and purely fermionic formulation is presented. The starting point of the derivation is the ansatz
(9.1) for the effective average action.
For the sake of clarity we write out all dependences of the fermionic fields on the compactified
Euclidean spacetime as well as all their color and spinor indices.

Γ̄t[ψ̄, ψ] = (E.1)

=
∫ ∞

−∞
ddx

∫ β

0
dτ
[
ψ̄a1c1(τ, x⃗ )Zψ(t) (1)c1

c2
(/∂ − µγd+1)a1

a2
ψa2c2(τ, x⃗ ) −

− 1
2N g2(t)

[
ψ̄a1c1(τ, x⃗ ) (1)c1

c2
(1)a1

a2
ψa2c2(τ, x⃗ )

]2]
.

In the first step, the effective average action is transferred to momentum space by inserting the
Fourier transformations of the fields, Eqs. (A.26) and (A.28), and applying the identity (A.31),

Γ̄t[ ˜̄ψ, ψ̃] = (E.2)

= 1
β2

∞∑
n1,n2=−∞

∫ ∞

−∞

ddp1

(2π)d
ddp2

(2π)d
˜̄ψa1c1(νn1 , p⃗1)β δn1,n2 (2π)d δ(d)(p⃗1 − p⃗2) ×

× Zψ(t) (1)c1
c2

[
i(νn2 + iµ) γd+1 + ip⃗2 · γ⃗

]
a1
a2
ψ̃a2c2(νn2 , p⃗2) −

− 1
β4

∞∑
n1,...,n4=−∞

∫ ∞

−∞

ddp1

(2π)d · · · ddp4

(2π)d β δn1+n3,n2+n4 (2π)d δ(d)(p⃗1 − p⃗2 + p⃗3 − p⃗4) ×

× 1
2N g2(t) (1)a1

a2
(1)a3

a4
(1)c1

c2
(1)c3

c4
×

× ˜̄ψa1c1(νn1 , p⃗1) ψ̃a2c2(νn2 , p⃗2) ˜̄ψa3c3(νn3 , p⃗3) ψ̃a4c4(νn4 , p⃗4) .

Within our our truncation we need explicit expressions for the two- and four-point function for
the computation of the RG flow equations. Higher-order n-point functions are omitted from the
ansatz (E.1). The odd n-point functions, i.e., the one- and three-point function, vanish if they are
evaluated on a constant zero background-field configuration for the fermion fields. Therefore, it
remains to derive the two- and four-point function by successively taking derivatives of Eq. (E.2)
w.r.t. the Fourier-transformed fermion fields ψ̃ and ˜̄ψ. Here, caution is advised, because the
anticommutativity of the fermion fields has to be respected. After taking the required number of
derivatives, the result is customarily evaluated ψ̄ = ψ = 0.
For the (field-independent) two-point function, one finds

Γ̄ψ̄2ψ1
t (νn2 , p⃗2; νn1 , p⃗1)a2 c2

a1 c1
≡ (E.3)

≡ β2 (2π)2d δ2Γ̄t[ ˜̄ψ, ψ̃]
δ ˜̄ψa2c2(νn2 , p⃗2) δψ̃a1c1(νn1 , p⃗1)

∣∣∣∣∣
ψ̄=ψ=0

=

= − β δn2,n1 (2π)d δ(d)(p⃗2 − p⃗1)Zψ(t) (1)c2
c1

[
i(νn2 + iµ) γd+1 + ip⃗2 · γ⃗

]
a2
a1

=
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= ψ̄2 ψ1
,

where we adapted the field-space notation of Appendix C.1.2 by strictly indicating all momentum
and frequency dependences as well as all open color and spinor indices. In the last line we intro-
duced the graphical representation of the two-point function/vertex for its later use in Feynman
diagrams.
Analogously, the four-point function reads as follows,

Γ̄ψ̄4ψ3ψ̄2ψ1
t (νn4 , p⃗4; νn3 , p⃗3; νn2 , p⃗2; νn1 , p⃗1)a4 a2 c4 c2

a3 a1 c3 c1
≡ (E.4)

≡ β4 (2π)4d δ4Γ̄t[ ˜̄ψ, ψ̃]
δ ˜̄ψa4c4(νn4 , p⃗4) δψ̃a3c3(νn3 , p⃗3) δ ˜̄ψa2c2(νn2 , p⃗2) δψ̃a1c1(νn1 , p⃗1)

∣∣∣∣∣
ψ̄=ψ=0

=

= − 2β δn2+n4,n1+n3 (2π)d δ(d)(p⃗2 − p⃗1 + p⃗4 − p⃗3) 1
2N g2(t) ×

×
[
(1)a2

a1
(1)a4

a3
(1)c2

c1
(1)c4

c3
− (1)a4

a1
(1)a2

a3
(1)c4

c1
(1)c2

c3

]
=

=

ψ̄4 ψ3

ψ1 ψ̄2

.

It is worth mentioning that the tensor structure in the second to last line encodes the two possible
“routes” of color-charge flow through the local four-point interaction. Either the color charge that
enters at the fermion leg 1 leaves the process at leg 2 or at leg 4, while the color charge that enters
the interaction via leg 3 always takes the opposite route to the one from leg 1. This is graphically
illustrated by the arrows of the corresponding Feynman graph in the last line, which indicate the
direction of color-charge flow.

As discussed in Section 9.2.2 and Appendix C.2.1, the application of the ERG equation (C.51)
further requires to specify a regulator function. A construction of fermionic regulator functions
is described in Ref. [273, App. D] (in vacuum). Generally, the regulator should be in accordance
with all symmetries of the model and additionally fulfill the regulator properties. Within this
work, we choose a purely spatial regulator that is diagonal in momentum, frequency, and color
space, but mimics the structure of the fermionic spatial kinetic term in Dirac space,

Rψ̄2ψ1
t (νn2 , p⃗2; νn1 , p⃗1)a2 c2

a1 c1
= (E.5)

= − β δn2,n1 (2π)d δ(d)(p⃗2 − p⃗1) (1)c2
c1

ip⃗1 · (γ⃗ )a2
a1
Zψ(t) rf(t, |p⃗2|) .

The corresponding regulator term in the path integral, see Eq. (C.24), is

∆S[ ˜̄ψ, ψ̃] = (E.6)

= 1
β2

∞∑
n1,n2=−∞

∫ ∞

−∞

ddp1

(2π)d
ddp2

(2π)d
˜̄ψa1c1(νn1 , p⃗1)Rψ̄2ψ1

t (νn2 , p⃗2; νn1 , p⃗1)a2 c2
a1 c1

ψ̃a2c2(νn2 , p⃗2) .
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Despite not being proportional to an actual fermion mass term, the regulator still acts as mass-
like damping of spatial IR modes, as can be seen in the fermion propagator below, Eq. (E.9).
Furthermore, it satisfies the Silver-Blaze-Property [166] and respects the discrete chiral symmetry
– although it breaks (Euclidean) Poincaré invariance. For drawbacks of regulator shape functions
that break (Euclidean) spacetime symmetries, we refer to our main discussion in Section 9.2.2 and
references therein.
However, for the moment we just focus on the formal derivation of the RG flow equation.
Our Feynman graph representation of the regulator insertion in the FRG formalism reads

1
2 ∂tR

ψ̄2ψ1
t (νn2 , p⃗2; νn1 , p⃗1)a2 c2

a1 c1
= ψ̄2 ψ1

. (E.7)

By combining the two-point function (E.4) and the regulator function (E.5) the full two-point
function (for vanishing fermion background fields) looks as follows,

(
Γ̄ψ̄2ψ1
t +Rψ̄2ψ1

t

)
(νn2 , p⃗2; νn1 , p⃗1)c2 a2

c1 a1
≡ (E.8)

≡ − β δn2,n1 (2π)d δ(d)(p⃗2 − p⃗1)Zψ(t) (1)c2
c1

[
i(νn2 + iµ) γd+1 + ip⃗2 · γ⃗ [1 + rf(t, |p⃗2|)]

]
a2
a1
.

The corresponding full propagator (at vanishing fermion background fields) reads

(
Γ̄ψ̄2ψ1
t +Rψ̄2ψ1

t

)−1(νn2 , p⃗2; νn1 , p⃗1)c2 a2
c1 a1

≡ (E.9)

≡β δn2,n1 (2π)d δ(d)(p⃗2 − p⃗1)
[
i(νn2 + iµ) γd+1 + ip⃗2 · γ⃗ [1 + rf(t, |p⃗2|)]

]
a2
a1

(1)c2
c1

Zψ(t) [(νn2 + iµ)2 + p⃗ 2
2 [1 + rf(t, |p⃗2|)]2] =

= ψ̄2 ψ1
.

In the last line, we introduced our Feynman-graph representation of the propagator.
Remember that during the derivation of the ERG equation (C.51) the generic full two-point func-
tion is inverted before the ERG equation is evaluated on a specific field configuration. Hence,
it incorporates an arbitrary field dependence. Otherwise, it would not be possible to take addi-
tional field-space derivatives in order to derive flow equations of higher-order n-point functions,
as presented in Appendix C.2.4. However, to obtain the components of the propagators that en-
ter the flow equations, after the entire flow equation is evaluated on a specific background field
configuration, one may simply invert the full two-point function (evaluated on a background field
configuration), which simplifies the inversion drastically.

Now that all ingredients are at hand, we can start the actual calculation of the flow equations for the
single couplings, i.e., the four-fermion coupling g(t) and the wave-function renormalization Zψ(t),
respectively the corresponding fermion anomalous dimension ηψ(t). In addition, we demonstrate
that within the purely fermionic GN model (with vanishing UV fermion masses) a fermionic mass-
like term is never generated during the RG flow, which implies that discrete chiral Z2 symmetry
is never broken, cf., Refs. [158, after Eq. (2.2.)],[464, after Eq. (1)].
We begin the derivation of the flow equations by extracting the famous latter result and the
(vanishing) flow equation for the fermionic wave-function renormalization Zψ(t) from the generic
flow equation of the fermionic two-point vertex. Afterwards we turn to the flow equation of the
four-fermion coupling.
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E.1.1. Fermion two-point vertex – fermion mass & anomalous dimen-
sion

Our starting point for the analysis of the (vanishing) RG flow of the fermionic wave-function renor-
malization Zψ(t) and the non-production of fermion mass-like terms is the generic flow equation
of the fermionic two-point function.

The two-point vertex

This flow equation is derived by taking a derivative of the ERG equation (C.51) w.r.t. the Fourier-
transformed fermion field ψ̃ and another derivative w.r.t. ˜̄ψ. At this point afresh computation is
not required and we can simply make use of the general result of Appendix C.2.4 in field-space
notation, specifically Eq. (C.53). Evaluating this equation for our specific theory and truncation,
the GN model with the previously derived n-point function(s) and propagator, the universal
Eq. (C.53) becomes,

∂tΓ̄(2) ψ̄IIψI
t = (E.10)

= − STr
[( 1

2 ∂tRt
)
Gt Γ̄(4) ψ̄IIψI

t Gt
]

=

= − (−1)ψ̄IIψ2 (−1)ψIψ2
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

Γ̄(4) ψ̄3ψ̄IIψIψ4
t gψ5

ψ̄4
Gt,ψ̄5ψ1

−

− (−1)ψ̄IIψ2 (−1)ψIψ2
( 1

2 ∂tR
ψ1ψ̄2
t

)
Gt,ψ2ψ̄3

Γ̄(4)ψ3ψ̄IIψIψ̄4
t gψ̄5

ψ4
Gt,ψ5ψ̄1

=

= − 2
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

Γ̄(4) ψ̄3ψ̄IIψIψ4
t gψ5

ψ̄4
Gt,ψ̄5ψ1

=

= − 2
( 1

2 ∂tR
ψ̄1ψ2
t

) (
Γ̄(2)
t +Rt

)−1
ψ̄2ψ3

Γ̄(4) ψ̄3ψIψ̄IIψ4
t

(
Γ̄(2)
t +Rt

)−1
ψ̄4ψ1

.

Here, a final evaluation on vanishing fermionic background fields is already implied, such that
contributions that involve three-point functions in Eq. (C.53) vanish. In addition, we combined
the remaining two contributions by employing that the trace of a transposed operator/matrix
is the same as the trace of the object itself. This results in the multiplicity factor “2” of the
corresponding diagram. In addition, the (−1)ab factors, which ensure the correct fermion statistics,
are evaluated according to definition (C.6). The same applies to the field-space metric ga

b, where
we use Eq. (C.13), and the propagators Gt,ab, where Eq. (C.42) is applied to simplify the equation.
Graphically, in terms of Feynman diagrams, the equation looks like

∂t

(
ψ̄II ψI

)
= − 2

ψ ψ

ψIψ̄II
. (E.11)

In the Feynman-graph representation it becomes clear that the multiplicity factor stands for one
diagram with an anticlockwise and one diagram with a clockwise propagation of color charge in
the loop, which are physically indistinguishable and result in identical contributions to the RG
flow.
In order to further evaluate and fill the abstract field-space equations (E.10) and (E.11) with life,
one needs to insert the previously derived expressions for the regulator (E.5), the propagator (E.9),



312 E. FRG flow equations of the Gross-Neveu and Gross-Neveu-Yukawa model

and the four-point function (E.4),

∂tΓ̄ψ̄IIψI
t (νnII , p⃗II; νnI , p⃗I)aII cII

aI cI
= (E.12)

= − 2 1
β4

∞∑
n1,...,n4=−∞

∫ ∞

−∞

ddp1

(2π)d · · · ddp4

(2π)d ×

× (−1)β δn1,n2 (2π)d δ(d)(p⃗1 − p⃗2) (1)c1
c2

ip⃗1 · (γ⃗ )a1
a2
∂t
[
Zψ(t) 1

2 rf(t, |p⃗1|)
]

×

× β δn2,n3 (2π)d δ(d)(p⃗2 − p⃗3)
[
i(νn2 + iµ) γd+1 + ip⃗2 · γ⃗ [1 + rf(t, |p⃗2|)]

]
a2
a3

(1)c2
c3

Zψ(t) [(νn2 + iµ)2 + p⃗ 2
2 [1 + rf(t, |p⃗2|)]2] ×

× (−1) 2β δnII+n3,n4+nI (2π)d δ(d)(p⃗II − p⃗4 + p⃗3 − p⃗I) 1
2N g2(t) ×

×
[
(1)aII

a4
(1)a3

aI
(1)cII

c4
(1)c3

cI
− (1)a3

a4
(1)aII

aI
(1)c3

c4
(1)cII

cI

]
×

× β δn4,n1 (2π)d δ(d)(p⃗4 − p⃗1)
[
i(νn4 + iµ) γd+1 + ip⃗4 · γ⃗ [1 + rf(t, |p⃗4|)]

]
a4
a1

(1)c4
c1

Zψ(t) [(νn4 + iµ)2 + p⃗ 2
4 [1 + rf(t, |p⃗4|)]2] .

However, to finally obtain an explicit flow equation for Zψ(t) or rather ηψ(t) one has to project
this flow equation for the two-point function onto a flow equation for Zψ(t). The same applies to
the flow of the fermion mass.

Projections

Fermionic wave-function renormalization and anomalous dimension From Eqs. (E.2)
and (E.3) and the Def. (C.62) of the anomalous dimension it is straightforward to derive (within
our truncation),

β δnII,nI (2π)d δ(d)(p⃗II − p⃗I) p⃗ 2
II ηψ(t) = (E.13)

= 1
N (1)cI

cII
1
dγ

(ip⃗II · γ⃗)aI
aII
Z−1
ψ (t) β2 (2π)2d δ2(∂tΓ̄t[ψ̄, ψ, φ])

δ ˜̄ψaIIcII(νnII , p⃗II) δψ̃aIcI(νnI , p⃗I)

∣∣∣∣∣
ψ̄=ψ=0

.

However, had we included RG scale dependent couplings via terms that are of higher order in
momenta in our initial truncation in Eq. (E.1), such as ψ̄□ /∂ ψ etc., these would show up on the
l.h.s. of Eq. (E.13). Hence, in order to avoid admixtures to ηψ(t) which actually belong to those
terms, we solely consider the coefficient on the r.h.s. of Eq. (E.13) that is proportional the square
of the external spatial momentum, p⃗ 2

II. In practice, this is realized (especially within automatized
derivations of flow equations via computer algebra programs [620, 621, 640, 622, 632]) by

1. Inserting Eq. (E.12) into the r.h.s. of Eq. (E.13).

2. Evaluating all possible traces in internal spaces (here contractions of the Dirac and the
color indices) as well as all possible traces in momentum/frequency space (evaluating the
Matsubara sums and the momentum integrals).

3. Dropping β δnII,nI (2π)d δ(d)(p⃗II − p⃗I) on both sides of Eq. (E.13).

4. Taking two derivatives w.r.t. the external momentum p⃗II and evaluating the result at van-
ishing external momentum p⃗II = 0. This corresponds to a Taylor expansion and comparison
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of coefficients on both sides of Eq. (E.13).1

Fermion mass In order to project the two-point function onto the fermion mass, which might
perhaps be generated during the RG flow, we need to extract all terms from the two-point function
that are diagonal in color and Dirac space at vanishing external momenta. A suitable projection
reads

β δnII,nI (2π)d δ(d)(0)Z−1
ψ (t) ∂tm(t) = (E.14)

=β δnII,nI (2π)d δ(d)(0)
[
∂tmr(t) + ηψ(t)mr(t, σr)

]
=

= − 1
N (1)cI

cII
1
dγ

(1)aI
aII
Z−1
ψ (t) β2 (2π)2d δ2(∂tΓ̄t[ψ̄, ψ, φ])

δ ˜̄ψaIIcII(νnII , p⃗II) δψ̃aIcI(νnI , p⃗I)

∣∣∣∣∣
ψ̄=ψ=0,p⃗II=p⃗I=0

.

Again, after inserting Eq. (E.12) into the r.h.s. of Eq. (E.14) and the evaluation of all kind of
traces, one may drop the factors β δnII,nI (2π)d δ(d)(0), which occur on both sides of the equation.
Since we are evaluating for vanishing fermion background fields and vanishing external momenta
p⃗II = 0 there are no admixtures.
Another possibly generated color-space-diagonal mass-like term for the fermions that breaks (dis-
crete) chiral symmetry, Eqs. (8.19) and (8.20), is proportional to γch instead of 1 in Dirac space.
In order to investigate whether this term is generated if the initial UV action is chirally symmetric
(has vanishing bare fermion mass), we can simply replace 1 by γch in the projection prescription
in Eq. (E.14).

Fermion mass

Let us first turn to the question whether there is a generation of fermion mass-like terms in RG
flows of the purely fermionic GN model. Evaluating Eq. (E.14) with Eq. (E.12) one finds already
by examining the traces in Dirac space,

− 1
N (1)cI

cII
1
dγ

(1)aI
aII
Z−1
ψ (t) (E.12)

∣∣
p⃗II=p⃗I=0 = 0 , (E.15)

and

1
N (1)cI

cII
1
dγ

(iγch)aI
aII
Z−1
ψ (t) (E.12)

∣∣
p⃗II=p⃗I=0 = 0 . (E.16)

Hence, within the purely fermionic formulation of the GN model we will never observe (discrete)
chiral symmetry breaking if the UV action is perfectly symmetric under discrete chiral transfor-
mations (8.19) and (8.20) and lacks any kind of mass-like term. The situation might differ as soon
as discrete chiral symmetry is already explicitly broken by an initial mass term in the UV action,
which might then grow and set the physical scale of the system.

1Note that this Taylor expansion might not always be justified, e.g., the two-point function could be non-analytic
at p⃗II = 0.
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Anomalous dimension

Next, we consider the r.h.s. of the projection Eq. (E.13) for the t-evolution of the fermionic
anomalous dimension. We find

1
N (1)cI

cII
1
dγ

(ip⃗II · γ⃗)aI
aII
Z−1
ψ (t) (E.12)

∣∣
ψ̄=ψ=0

(D.35)= (E.17)

=β δnII,nI (2π)d δ(d)(p⃗II − p⃗I) 1
N g2

r (t) k−2 ×

× 1
β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d 2 p⃗ 2[ 1

2 ∂trf(t, |p⃗ |) + 1
2 ηψ(t) rf(t, |p⃗ |)

]
×

×
(
f−1
n

(
p⃗ 2

k2

)
− 2 p⃗ 2

k2 [1 + rf(t, |p⃗ |)]2
)
f2n

(
p⃗ 2

k2

) (A.5)=

=β δnII,nI (2π)d δ(d)(p⃗II − p⃗I) 1
N g2

r (t) k−2 ×

× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dp pd+1 2

[ 1
2 ∂trf(t, p) + 1

2 ηψ(t) rf(t, p)
]

×

×
(
f−1
n

(
p2

k2

)
− 2 p2

k2 [1 + rf(t, p)]2
)
f2n

(
p2

k2

) (D.7)=

=β δnII,nI (2π)d δ(d)(p⃗II − p⃗I) 1
N g2

r (t) kd ×

× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dy y d2

[
y ṙf(y) + 1

2 ηψ(t) rf(y)
](

f−1
n (y) − 2 y [1 + rf(y)]2

)
f2n(y) (D.24)=

=β δnII,nI (2π)d δ(d)(p⃗II − p⃗I) 1
N g2

r (t) kd ×

× 1
β

∞∑
n=−∞

Ad d

∫ 1

0
dy
[

− 1
2 y

d−1
2 + 1

2 ηψ(t)
(
y
d−1

2 − y
d
2
)] [

f−1
n (1) − 2

]
f2n(1) =

= − β δnII,nI (2π)d δ(d)(p⃗II − p⃗I)Ad d
d+1

[
1 − ηψ(t)

d+2

]
1
N g2

r (t) kd 1
β

∞∑
n=−∞

[
f1n(1) − 2 f2n(1)

]
During the evaluation we made use of various short-hand notations, variable transformations, and
identities, which recurrently appear during the evaluation of the traces in RG flow equations. The
respective formulae are referenced at the equal signs.
Inspecting our final result, we actually observe that the r.h.s. of Eq. (E.13) is (apart from the
delta-distribution) independent of p⃗II, such that ηψ(t) = 0 and Zψ(t) stays constant and keeps its
initial UV value.
This result is rather generic for certain types of models and truncations and is easily understood by
studying the Feynman graph in Eq. (E.11). The Feynman diagram is actually of “tadpole”-type,
which means that the external momentum p⃗II does not enter the loop, but exits the self-interaction
process directly via the other open leg of the four-fermion vertex. In consequence, the loop mo-
mentum integration is not affected by the external momentum and the entire fermion-self-energy
correction to the two-point function is momentum-independent. Therefore it does not alter the
kinetic part of the two-point function and the corresponding coefficient, the wave-function renor-
malization Zψ(t), is untouched. Nevertheless, one has to keep in mind that this result does not
necessarily survive, if advanced truncations are considered. However, within truncations of purely
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fermionic models that solely involve the “standard” kinetic term and some local four-fermion inter-
actions, it generalizes to any dimension and model [348, 350, 351]. Furthermore, it is noteworthy
that the same result (vanishing quantum corrections) is obtained for an advanced truncation,
where the wave-function renormalization is split into two wave-function renormalizations, orthog-
onal and perpendicular to the heat bath (the temporal direction). We refer to Refs. [348, 350,
351] for further details.

E.1.2. Fermion four-point vertex – four-fermion coupling
Next, we turn to the RG flow equation of the generic four-fermion vertex and extract the flow
equation of the four-fermion coupling in the scalar channel.

The four-point vertex

Also for the derivation of the RG flow equation of the four-point vertex the starting point is
the ERG equation (C.51), where one takes two derivatives w.r.t. the Fourier-transformed fermion
field ψ̃ and another two times w.r.t. ˜̄ψ. We do not perform these derivatives again, but utilize
the universal field-space result of Appendix C.2.4, namely Eq. (C.56). If this generic equation
is evaluated for the GN model in our truncation (9.1), we can again ignore contributions on the
r.h.s. with n-point functions of odd order, as well as higher-order n-point functions, which are not
included in our truncation. The only contributions that are a priori non-vanishing and that are
compatible with the four-point vertex (E.4), the regulator (E.5), and the full propagator (E.9)
read,

∂tΓ̄(4) ψ̄IVψIIIψ̄IIψI
t = (E.18)

= + STr
[( 1

2 ∂tRt
)
Gt Γ̄(4)ψIIIψ̄II

t Gt Γ̄(4) ψ̄IVψI
t Gt

]
+

+ STr
[( 1

2 ∂tRt
)
Gt Γ̄(4) ψ̄IVψ̄II

t Gt Γ̄(4)ψIIIψI
t Gt

]
+

+ STr
[( 1

2 ∂tRt
)
Gt Γ̄(4) ψ̄IVψIII

t Gt Γ̄(4) ψ̄IIψI
t Gt

]
+

+ STr
[( 1

2 ∂tRt
)
Gt Γ̄(4) ψ̄IIψI

t Gt Γ̄(4) ψ̄IVψIII
t Gt

]
+

+ STr
[( 1

2 ∂tRt
)
Gt Γ̄(4)ψIIIψI

t Gt Γ̄(4) ψ̄IVψ̄II
t Gt

]
+

+ STr
[( 1

2 ∂tRt
)
Gt Γ̄(4) ψ̄IVψI

t Gt Γ̄(4)ψIIIψ̄II
t Gt

]
=

= + (−1)ψ̄IVψ5 (−1)ψ̄IVψ4 (−1)ψ̄IVψ̄II (−1)ψ̄IVψIII (−1)ψ̄IVψ2 (−1)ψIIIψ2 (−1)ψ̄IIψ2 (−1)ψIψ2 ×

×
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

Γ̄(4) ψ̄3ψIIIψ̄IIψ4
t gψ5

ψ̄4
Gt,ψ̄5ψ6

Γ̄(4) ψ̄6ψ̄IVψIψ7
t gψ8

ψ̄7
Gt,ψ̄8ψ1

+

+ (−1)ψ̄IVψ5 (−1)ψ̄IVψ4 (−1)ψ̄IVψ̄II (−1)ψ̄IVψIII (−1)ψ̄IVψ2 (−1)ψIIIψ2 (−1)ψ̄IIψ2 (−1)ψIψ2 ×

×
( 1

2 ∂tR
ψ1ψ̄2
t

)
Gt,ψ2ψ̄3

Γ̄(4)ψ3ψIIIψ̄IIψ̄4
t gψ̄5

ψ4
Gt,ψ5ψ̄6

Γ̄(4)ψ6ψ̄IVψIψ̄7
t gψ̄8

ψ7
Gt,ψ8ψ̄1

+

+ (−1)ψ̄IVψ2 (−1)ψIIIψ5 (−1)ψIIIψ4 (−1)ψIIIψ̄II (−1)ψIIIψ2 (−1)ψ̄IIψ2 (−1)ψIψ2 ×

×
( 1

2 ∂tR
ψ1ψ̄2
t

)
Gt,ψ2ψ̄3

Γ̄(4)ψ3ψ̄IVψ̄IIψ4
t gψ5

ψ̄4
Gt,ψ̄5ψ6

Γ̄(4) ψ̄6ψIIIψIψ̄7
t gψ̄8

ψ7
Gt,ψ8ψ̄1

+
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+ (−1)ψ̄IVψ2 (−1)ψIIIψ2 (−1)ψ̄IIψ2 (−1)ψIψ2 ×

×
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

Γ̄(4) ψ̄3ψ̄IVψIIIψ4
t gψ5

ψ̄4
Gt,ψ̄5ψ6

Γ̄(4) ψ̄6ψ̄IIψIψ7
t gψ8

ψ̄7
Gt,ψ̄8ψ1

+

+ (−1)ψ̄IVψ2 (−1)ψIIIψ2 (−1)ψ̄IIψ2 (−1)ψIψ2 ×

×
( 1

2 ∂tR
ψ1ψ̄2
t

)
Gt,ψ2ψ̄3

Γ̄(4)ψ3ψ̄IVψIIIψ̄4
t gψ̄5

ψ4
Gt,ψ5ψ̄6

Γ̄(4)ψ6ψ̄IIψIψ̄7
t gψ̄8

ψ7
Gt,ψ8ψ̄1

+

+ (−1)ψ̄IVψ5 (−1)ψ̄IVψ4 (−1)ψ̄IVψI (−1)ψ̄IVψ̄II (−1)ψ̄IVψ2 (−1)ψIIIψ5 (−1)ψIIIψ4 (−1)ψIIIψI ×

× (−1)ψIIIψ̄II (−1)ψIIIψ2 (−1)ψ̄IIψ2 (−1)ψIψ2 ×

×
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

Γ̄(4) ψ̄3ψ̄IIψIψ4
t gψ5

ψ̄4
Gt,ψ̄5ψ6

Γ̄(4) ψ̄6ψ̄IVψIIIψ7
t gψ8

ψ̄7
Gt,ψ̄8ψ1

+

+ (−1)ψ̄IVψ5 (−1)ψ̄IVψ4 (−1)ψ̄IVψI (−1)ψ̄IVψ̄II (−1)ψ̄IVψ2 (−1)ψIIIψ5 (−1)ψIIIψ4 (−1)ψIIIψI ×

× (−1)ψIIIψ̄II (−1)ψIIIψ2 (−1)ψ̄IIψ2 (−1)ψIψ2 ×

×
( 1

2 ∂tR
ψ1ψ̄2
t

)
Gt,ψ2ψ̄3

Γ̄(4)ψ3ψ̄IIψIψ̄4
t gψ̄5

ψ4
Gt,ψ5ψ̄6

Γ̄(4)ψ6ψ̄IVψIIIψ̄7
t gψ̄8

ψ7
Gt,ψ8ψ̄1

+

+ (−1)ψ̄IVψ5 (−1)ψ̄IVψ4 (−1)ψ̄IVψI (−1)ψ̄IVψIII (−1)ψ̄IVψI (−1)ψIIIψ2 (−1)ψ̄IIψ5 (−1)ψ̄IIψ4 ×

× (−1)ψ̄IIψI (−1)ψ̄IIψ2 (−1)ψIψ2 ×

×
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

Γ̄(4) ψ̄3ψIIIψIψ̄4
t gψ̄5

ψ4
Gt,ψ5ψ̄6

Γ̄(4)ψ6ψ̄IVψ̄IIψ7
t gψ8

ψ̄7
Gt,ψ̄8ψ1

+

+ (−1)ψ̄IVψ2 (−1)ψIIIψ5 (−1)ψIIIψ4 (−1)ψIIIψI (−1)ψIIIψ2 (−1)ψ̄IIψ5 (−1)ψ̄IIψ4 (−1)ψ̄IIψI ×

× (−1)ψ̄IIψ2 (−1)ψIψ2 ×

×
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

Γ̄(4) ψ̄3ψ̄IVψIψ4
t gψ5

ψ̄4
Gt,ψ̄5ψ6

Γ̄(4) ψ̄6ψIIIψ̄IIψ7
t gψ8

ψ̄7
Gt,ψ̄8ψ1

+

+ (−1)ψ̄IVψ2 (−1)ψIIIψ5 (−1)ψIIIψ4 (−1)ψIIIψI (−1)ψIIIψ2 (−1)ψ̄IIψ5 (−1)ψ̄IIψ4 (−1)ψ̄IIψI ×

× (−1)ψ̄IIψ2 (−1)ψIψ2 ×

×
( 1

2 ∂tR
ψ1ψ̄2
t

)
Gt,ψ2ψ̄3

Γ̄(4)ψ3ψ̄IVψIψ̄4
t gψ̄5

ψ4
Gt,ψ5ψ̄6

Γ̄(4)ψ6ψIIIψ̄IIψ̄7
t gψ̄8

ψ7
Gt,ψ8ψ̄1

=

= − 2
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

Γ̄(4) ψ̄3ψIIIψ̄IIψ4
t gψ5

ψ̄4
Gt,ψ̄5ψ6

Γ̄(4) ψ̄6ψIψ̄IVψ7
t gψ8

ψ̄7
Gt,ψ̄8ψ1

+

+ 2
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

Γ̄(4) ψ̄3ψIIIψ̄IVψ4
t gψ5

ψ̄4
Gt,ψ̄5ψ6

Γ̄(4) ψ̄6ψIψ̄IIψ7
t gψ8

ψ̄7
Gt,ψ̄8ψ1

+

+ 2
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

Γ̄(4) ψ̄3ψIψ̄IIψ4
t gψ5

ψ̄4
Gt,ψ̄5ψ6

Γ̄(4) ψ̄6ψIIIψ̄IVψ7
t gψ8

ψ̄7
Gt,ψ̄8ψ1

−

− 2
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

Γ̄(4) ψ̄3ψIIIψ̄4ψI
t gψ̄5

ψ4
Gt,ψ5ψ̄6

Γ̄(4) ψ̄IVψ6ψ̄IIψ7
t gψ8

ψ̄7
Gt,ψ̄8ψ1

−
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− 2
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

Γ̄(4) ψ̄3ψIψ̄IVψ4
t gψ5

ψ̄4
Gt,ψ̄5ψ6

Γ̄(4) ψ̄6ψIIIψ̄IIψ7
t gψ8

ψ̄7
Gt,ψ̄8ψ1

=

= + 2
( 1

2 ∂tR
ψ̄1ψ2
t

) (
Γ̄(2)
t +Rt

)−1
ψ̄2ψ3

Γ̄(4) ψ̄3ψIIIψ̄IIψ4
t

(
Γ̄(2)
t +Rt

)−1
ψ̄4ψ5

× (Atr1)

× Γ̄(4) ψ̄5ψIψ̄IVψ6
t

(
Γ̄(2)
t +Rt

)−1
ψ̄6ψ1

−

− 2
( 1

2 ∂tR
ψ̄1ψ2
t

) (
Γ̄(2)
t +Rt

)−1
ψ̄2ψ3

Γ̄(4) ψ̄3ψIIIψ̄IVψ4
t

(
Γ̄(2)
t +Rt

)−1
ψ̄4ψ5

× (Atr2)

× Γ̄(4) ψ̄5ψIψ̄IIψ6
t

(
Γ̄(2)
t +Rt

)−1
ψ̄6ψ1

−

− 2
( 1

2 ∂tR
ψ̄1ψ2
t

) (
Γ̄(2)
t +Rt

)−1
ψ̄2ψ3

Γ̄(4) ψ̄3ψIψ̄IIψ4
t

(
Γ̄(2)
t +Rt

)−1
ψ̄4ψ5

× (Atr3)

× Γ̄(4) ψ̄5ψIIIψ̄IVψ6
t

(
Γ̄(2)
t +Rt

)−1
ψ̄6ψ1

+

+ 2
( 1

2 ∂tR
ψ̄1ψ2
t

) (
Γ̄(2)
t +Rt

)−1
ψ̄2ψ3

Γ̄(4) ψ̄3ψIIIψ̄4ψI
t

(
Γ̄(2)
t +Rt

)−1
ψ4ψ̄5

× (Atr4)

× Γ̄(4) ψ̄IVψ5ψ̄IIψ6
t

(
Γ̄(2)
t +Rt

)−1
ψ̄6ψ1

+

+ 2
( 1

2 ∂tR
ψ̄1ψ2
t

) (
Γ̄(2)
t +Rt

)−1
ψ̄2ψ3

Γ̄(4) ψ̄3ψIψ̄IVψ4
t

(
Γ̄(2)
t +Rt

)−1
ψ̄4ψ5

× (Atr5)

× Γ̄(4) ψ̄5ψIIIψ̄IIψ6
t

(
Γ̄(2)
t +Rt

)−1
ψ̄6ψ1

The entire equation was evaluated on a constant background-field configuration with vanishing
fermion fields. Additionally, some of the contributions are combined by employing that the trace
of an object and its transpose are the same. The (−1)ab factors are evaluated via Eq. (C.6). In
addition Eq. (C.13) and Eq. (C.42) are used for further simplifications.
It is more instructive to depict this equation in terms of its graphic Feynman-diagram represen-
tation, which is given by

∂t

( ψ̄IV ψIII

ψI ψ̄II

)
= (E.19)

= + 2

ψψ

ψ

ψ̄IV ψIII

ψI ψ̄II

− 2
ψ

ψ

ψ

ψ̄IV ψIII

ψI ψ̄II

− 2
ψ

ψ

ψ

ψ̄IV ψIII

ψI ψ̄II

+

+ 2

ψψ

ψ

ψ̄IV ψIII

ψI ψ̄II

+ 2

ψψ

ψ
ψ̄IV ψIII

ψI ψ̄II

.
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Here the diagrams on the r.h.s. are listed according to the order of the corresponding formulae
(Atr1) to (Atr5).

Projection

The RG flow equation for the four-fermion vertex (E.18) and (E.19) is still rather generic and we
would obtain the same diagrams for theories with additional local four-fermion interactions, e.g.,
the χGN model or NJL type models, cf. Refs. [527, 347, 346, 348, 350, 351]. In addition, the
diagrams in Eq. (E.19) correspond to different physical processes, depending on the contraction
of the external fermion lines. Therefore it is not surprising that the various local four-fermion
couplings in advanced models mix and their corresponding RG flow equations form a set of coupled
ODEs.
Hence, we would find contributions of the scalar four-fermion coupling g(t) to basically any other
relevant four-fermion interaction channel. This implies that in general also other four-fermion
couplings, e.g., pseudo-scalar interactions, are generated during the RG flow (at least at finite N),
even though they are initially zero. The same holds true the other way round. For details, we
refer to Refs. [346, 348, 350, 351]
Within this work, we ignore this effect and restrict our analysis to the scalar interaction channel
at finite and infinite N , which is of course a crude approximation.
There are two possible equivalent projections on the scalar four-fermion interaction channel. Either
one contracts external fermion lines I+II and III+IV with identity matrices in color and Dirac space
or one chooses the combination I+IV and III+II. In any case, the idea behind is that the contracted
external fermion legs have the same quantum numbers as a scalar bosonic particle and the initial
interaction currents in the four-fermion interaction of our effective average action Eq. (E.1). The
entire flow equation is evaluated at zero spatial momentum exchange p⃗I = p⃗II = p⃗III = p⃗IV =
0. Evaluating at another momentum configurations would actually spoil our truncation, which
corresponds to the lowest order in a derivative expansion about the Fermi surface. Our truncation
simply ignores a possible spatial momentum structure of the four-fermion interaction.
However, for the external Matsubara frequencies the situation is slightly different. Fermions do
not have a zero mode and the smallest fermion energy is given by the smallest discrete Matsubara
frequency (A.30), namely ν0 = πT . Therefore, we cannot simply evaluate our equations at
ν0 = 0. Hence, for the time being, we do not further specify the frequency configuration and keep
the “indices” of the Matsubara frequencies nI, . . . , nIV unspecified.
The actual projection prescription is therefore given by

β δnII+nIV,nI+nIII (2π)d δ(d)(0)Z−2
ψ (t) ∂tg2(t) = (E.20)

=β δnII+nIV,nI+nIII (2π)d δ(d)(0)
[
∂tg

2
r (t) + 2 ηψ(t) g2

r (t)
]

=

= − 1
dγ

1
dγN−1 Z

−2
ψ (t)

[
(1)aI

aII
(1)aIII

aIV
(1)cI

cII
(1)cIII

cIV

]
×

× β4 (2π)4d δ4(∂tΓ̄t[ψ̄, ψ, φ])
δ ˜̄ψaIVcIV(νnIV , p⃗IV) δψ̃aIIIcIII(νnIII , p⃗III) δ ˜̄ψaIIcII(νnII , p⃗II) δψ̃aIcI(νnI , p⃗I)

∣∣∣∣∣
ψ̄=ψ=0,p⃗IV=...=p⃗I=0

,

where we introduced the renormalized four-fermion coupling gr(t), which is rescaled by appropriate
powers of Zψ(t).
Next, we successively discuss the traces (Atr1) to (Atr5) and explicitly insert our formulae for
the regulator (E.5), the four-fermion vertex (E.4), and the full propagator (E.9). Afterwards,
these expressions are inserted into the r.h.s. of Eq. (E.20) and evaluated for each type of diagram
separately. For the evaluation of the traces over spinor indices we used the FormTracer software
[640].
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Traces (Atr1) and (Atr5)

Before we apply our specific projection and evaluate traces, we insert Eqs. (E.5), (E.4), and (E.9)
into Eq. (Atr1),

(Atr1) = 2

ψψ

ψ

ψ̄IV ψIII

ψI ψ̄II

= (E.21)

= + 2 1
β6

∞∑
n1,...,n6=−∞

∫ ∞

−∞

ddp1

(2π)d · · · ddp6

(2π)d ×

× (−1)β δn1,n2 (2π)d δ(d)(p⃗1 − p⃗2) (1)c1
c2

ip⃗1 · (γ⃗ )a1
a2
∂t
[
Zψ(t) 1

2 rf(t, |p⃗1|)
]

×

× β δn2,n3 (2π)d δ(d)(p⃗2 − p⃗3)
[
i(νn2 + iµ) γd+1 + ip⃗2 · γ⃗ [1 + rf(t, |p⃗2|)]

]
a2
a3

(1)c2
c3

Zψ(t) [(νn2 + iµ)2 + p⃗ 2
2 [1 + rf(t, |p⃗2|)]2] ×

× (−1) 2β δnII+n3,n4+nIII (2π)d δ(d)(p⃗II − p⃗4 + p⃗3 − p⃗III) 1
2N g2(t) ×

×
[
(1)aII

a4
(1)a3

aIII
(1)cII

c4
(1)c3

cIII
− (1)a3

a4
(1)aII

aIII
(1)c3

c4
(1)cII

cIII

]
×

× β δn4,n5 (2π)d δ(d)(p⃗4 − p⃗5)
[
i(νn4 + iµ) γd+1 + ip⃗4 · γ⃗ [1 + rf(t, |p⃗4|)]

]
a4
a5

(1)c4
c5

Zψ(t) [(νn4 + iµ)2 + p⃗ 2
4 [1 + rf(t, |p⃗4|)]2] ×

× (−1) 2β δnIV+n5,n6+nI (2π)d δ(d)(p⃗IV − p⃗6 + p⃗5 − p⃗I) 1
2N g2(t) ×

×
[
(1)aIV

a6
(1)a5

aI
(1)cIV

c6
(1)c5

cI
− (1)a5

a6
(1)aIV

aI
(1)c5

c6
(1)cIV

cI

]
×

× β δn6,n1 (2π)d δ(d)(p⃗6 − p⃗1)
[
i(νn6 + iµ) γd+1 + ip⃗6 · γ⃗ [1 + rf(t, |p⃗6|)]

]
a6
a1

(1)c6
c1

Zψ(t) [(νn6 + iµ)2 + p⃗ 2
6 [1 + rf(t, |p⃗6|)]2] .

Applying our projection (E.20) to this diagram, we obtain

− 1
dγ

1
dγN−1 Z

−2
ψ (t)

[
(1)aI

aII
(1)aIII

aIV
(1)cI

cII
(1)cIII

cIV

]
(Atr1)

∣∣
p⃗IV=...=p⃗I=0

(D.35)= (E.22)

= + β δnII+nIV,nI+nIII (2π)d δ(d)(0) 1
N

dγN−2
dγN−1 g

4
r (t) k−4 ×

× 1
β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d 2 p⃗ 2[ 1

2 ∂trf(t, |p⃗ |) + 1
2 ηψ(t) rf(t, |p⃗ |)

]
[1 + rf(t, |p⃗ |)] ×

× (νn + iµ)[2(νn+nII−nIII + iµ) − (νn + iµ)] + p⃗ 2 [1 + rf(t, |p⃗ |)]
(νn+nII−nIII + iµ)2 + p⃗ 2 [1 + rf(t, |p⃗ |)]2 f2n

(
p⃗ 2

k2

) (A.5)=

= + β δnII+nIV,nI+nIII (2π)d δ(d)(0) 1
N

dγN−2
dγN−1 g

4
r (t) k−4 ×
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× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dp pd+1 2

[ 1
2 ∂trf(t, p) + 1

2 ηψ(t) rf(t, p)
]
[1 + rf(t, p)] ×

× (νn + iµ)[2(νn+nII−nIII + iµ) − (νn + iµ)] + p2 [1 + rf(t, p)]
(νn+nII−nIII + iµ)2 + p2 [1 + rf(t, p)]2

f2n

(
p2

k2

) (D.7)=

= + β δnII+nIV,nI+nIII (2π)d δ(d)(0) 1
N

dγN−2
dγN−1 g

4
r (t) kd−2 ×

× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dy y d2

[
y ṙf(y) + 1

2 ηψ(t) rf(y)
]
[1 + rf(y)] ×

×
1
k2 (νn + iµ)(νn+2(nII−nIII) + iµ) + y2 [1 + rf(y)]

1
k2 (νn+nII−nIII + iµ)2 + y2 [1 + rf(y)]2

f2n(y) (D.25)=

= − β δnII+nIV,nI+nIII (2π)d δ(d)(0)Ad
[
1 − ηψ(t)

d+1

]
1
N

dγN−2
dγN−1 g

4
r (t) kd−2 ×

× 1
β

∞∑
n=−∞

1
k2 (νn + iµ)[2(νn+nII−nIII + iµ) − (νn + iµ)] + 1

1
k2 (νn+nII−nIII + iµ)2 + 1

f2n(1) ,

During the evaluation the formulae which are referenced at the equal signs are used.
Inspecting the final result and the projection, one observes that trace (Atr5) leads to an identical
contribution to the RG flow equation, because traces (Atr1) and (Atr5) are related by a simulta-
neous exchange of nII ↔ nIV and nI ↔ nIII, which can be directly seen in Eq. (E.19). As we are
projecting onto the scalar channel by a contraction of the legs I+II and III+IV, the simultaneous
exchange of the external legs has no effect and we obtain the same result.

Traces (Atr2) and (Atr3)

Next, we turn to trace (Atr2) and again insert Eqs. (E.5), (E.4), and (E.9),

(Atr2) = −2
ψ

ψ
ψ

ψ̄IV ψIII

ψI ψ̄II

= (E.23)

= − 2 1
β6

∞∑
n1,...,n6=−∞

∫ ∞

−∞

ddp1

(2π)d · · · ddp6

(2π)d ×

× (−1)β δn1,n2 (2π)d δ(d)(p⃗1 − p⃗2) (1)c1
c2

ip⃗1 · (γ⃗ )a1
a2
∂t
[
Zψ(t) 1

2 rf(t, |p⃗1|)
]

×

× β δn2,n3 (2π)d δ(d)(p⃗2 − p⃗3)
[
i(νn2 + iµ) γd+1 + ip⃗2 · γ⃗ [1 + rf(t, |p⃗2|)]

]
a2
a3

(1)c2
c3

Zψ(t) [(νn2 + iµ)2 + p⃗ 2
2 [1 + rf(t, |p⃗2|)]2] ×

× (−1) 2β δnIV+n3,n4+nIII (2π)d δ(d)(p⃗IV − p⃗4 + p⃗3 − p⃗III) 1
2N g2(t) ×

×
[
(1)aIV

a4
(1)a3

aIII
(1)cIV

c4
(1)c3

cIII
− (1)a3

a4
(1)aIV

aIII
(1)c3

c4
(1)cIV

cIII

]
×

× β δn4,n5 (2π)d δ(d)(p⃗4 − p⃗5)
[
i(νn4 + iµ) γd+1 + ip⃗4 · γ⃗ [1 + rf(t, |p⃗4|)]

]
a4
a5

(1)c4
c5

Zψ(t) [(νn4 + iµ)2 + p⃗ 2
4 [1 + rf(t, |p⃗4|)]2] ×
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× (−1) 2β δnII+n5,n6+nI (2π)d δ(d)(p⃗II − p⃗6 + p⃗5 − p⃗I) 1
2N g2(t) ×

×
[
(1)aII

a6
(1)a5

aI
(1)cII

c6
(1)c5

cI
− (1)a5

a6
(1)aII

aI
(1)c5

c6
(1)cII

cI

]
×

× β δn6,n1 (2π)d δ(d)(p⃗6 − p⃗1)
[
i(νn6 + iµ) γd+1 + ip⃗6 · γ⃗ [1 + rf(t, |p⃗6|)]

]
a6
a1

(1)c6
c1

Zψ(t) [(νn6 + iµ)2 + p⃗ 2
6 [1 + rf(t, |p⃗6|)]2] .

Using projection Eq. (E.20), the contribution of trace (Atr2) to the RG flow evaluates to,

− 1
dγ

1
dγN−1 Z

−2
ψ (t)

[
(1)aI

aII
(1)aIII

aIV
(1)cI

cII
(1)cIII

cIV

]
(Atr2)

∣∣
p⃗IV=...=p⃗I=0

(D.35)= (E.24)

= − β δnII+nIV,nI+nIII (2π)d δ(d)(0) 1
N (dγN − 1) g4

r (t) k−4 ×

× 1
β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d 2 p⃗ 2[ 1

2 ∂trf(t, |p⃗ |) + 1
2 ηψ(t) rf(t, |p⃗ |)

]
[1 + rf(t, |p⃗ |)] ×

× (νn + iµ)[2(νn+nIV−nIII + iµ) − (νn + iµ)] + p⃗ 2 [1 + rf(t, |p⃗ |)]
(νn+nIV−nIII + iµ)2 + p⃗ 2 [1 + rf(t, |p⃗ |)]2 f2n

(
p⃗ 2

k2

) (A.5)=

= − β δnII+nIV,nI+nIII (2π)d δ(d)(0) 1
N (dγN − 1) g4

r (t) k−4 ×

× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dp pd+1 2

[ 1
2 ∂trf(t, p) + 1

2 ηψ(t) rf(t, p)
]
[1 + rf(t, p)] ×

× (νn + iµ)[2(νn+nIV−nIII + iµ) − (νn + iµ)] + p2 [1 + rf(t, p)]
(νn+nIV−nIII + iµ)2 + p2 [1 + rf(t, p)]2

f2n

(
p2

k2

) (D.7)=

= − β δnII+nIV,nI+nIII (2π)d δ(d)(0) 1
N (dγN − 1) g4

r (t) kd−2 ×

× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dy y d2

[
y ṙf(y) + 1

2 ηψ(t) rf(y)
]
[1 + rf(y)] ×

×
1
k2 (νn + iµ)(νn+2(nIV−nIII) + iµ) + y2 [1 + rf(y)]

1
k2 (νn+nIV−nIII + iµ)2 + y2 [1 + rf(y)]2

f2n(y) (D.25)=

= + β δnII+nIV,nI+nIII (2π)d δ(d)(0)Ad
[
1 − ηψ(t)

d+1

]
1
N (dγN − 1) g4

r (t) kd−2 ×

× 1
β

∞∑
n=−∞

1
k2 (νn + iµ)[2(νn+nIV−nIII + iµ) − (νn + iµ)] + 1

1
k2 (νn+nIV−nIII + iµ)2 + 1

f2n(1) .

Similarly to the traces (Atr1) and (Atr5), one finds that the trace (Atr2) and (Atr3) equally
contribute to the RG flow.

Trace (Atr4)

It remains to evaluate trace (Atr4). We proceed analogously to the previous traces. However, note
that the internal fermion lines in the loop of trace (Atr4) point into the same direction, which
leads to a different ordering of the indices than before and an additional minus sign in front of
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one of the propagators in the following expression.

(Atr4) = +2

ψψ

ψ

ψ̄IV ψIII

ψI ψ̄II

= (E.25)

= + 2 1
β6

∞∑
n1,...,n6=−∞

∫ ∞

−∞

ddp1

(2π)d · · · ddp6

(2π)d ×

× (−1)β δn1,n2 (2π)d δ(d)(p⃗1 − p⃗2) (1)c1
c2

ip⃗1 · (γ⃗ )a1
a2
∂t
[
Zψ(t) 1

2 rf(t, |p⃗1|)
]

×

× β δn2,n3 (2π)d δ(d)(p⃗2 − p⃗3)
[
i(νn2 + iµ) γd+1 + ip⃗2 · γ⃗ [1 + rf(t, |p⃗2|)]

]
a2
a3

(1)c2
c3

Zψ(t) [(νn2 + iµ)2 + p⃗ 2
2 [1 + rf(t, |p⃗2|)]2] ×

× (−1) 2β δn4+n3,nI+nIII (2π)d δ(d)(p⃗4 − p⃗I + p⃗3 − p⃗III) 1
2N g2(t) ×

×
[
(1)a4

aI
(1)a3

aIII
(1)c4

cI
(1)c3

cIII
− (1)a3

aI
(1)a4

aIII
(1)c3

cI
(1)c4

cIII

]
×

× (−1)β δn5,n4 (2π)d δ(d)(p⃗5 − p⃗4)
[
i(νn5 + iµ) γd+1 + ip⃗5 · γ⃗ [1 + rf(t, |p⃗5|)]

]
a5
a4

(1)c5
c4

Zψ(t) [(νn5 + iµ)2 + p⃗ 2
5 [1 + rf(t, |p⃗5|)]2] ×

× (−1) 2β δnII+nIV,n6+n5 (2π)d δ(d)(p⃗II − p⃗6 + p⃗IV − p⃗5) 1
2N g2(t) ×

×
[
(1)aII

a6
(1)aIV

a5
(1)cII

c6
(1)cIV

c5
− (1)aIV

a6
(1)aII

a5
(1)cIV

c6
(1)cII

c5

]
×

× β δn6,n1 (2π)d δ(d)(p⃗6 − p⃗1)
[
i(νn6 + iµ) γd+1 + ip⃗6 · γ⃗ [1 + rf(t, |p⃗6|)]

]
a6
a1

(1)c6
c1

Zψ(t) [(νn6 + iµ)2 + p⃗ 2
6 [1 + rf(t, |p⃗6|)]2] .

Applying the projection Eq. (E.20) to this diagram one finds

− 1
dγ

1
dγN−1 Z

−2
ψ (t)

[
(1)aI

aII
(1)aIII

aIV
(1)cI

cII
(1)cIII

cIV

]
(Atr4)

∣∣
p⃗IV=...=p⃗I=0

(D.35)=

= + β δnII+nIV,nI+nIII (2π)d δ(d)(0) 2
N

1
dγN−1 g

4
r (t) k−4 ×

× 1
β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d 2 p⃗ 2[ 1

2 ∂trf(t, |p⃗ |) + 1
2 ηψ(t) rf(t, |p⃗ |)

]
[1 + rf(t, |p⃗ |)] ×

× −(νn + iµ)[2(ν−n+nI+nIII + iµ) + (νn + iµ)] + p⃗ 2 [1 + rf(t, |p⃗ |)]
(ν−n+nI+nIII + iµ)2 + p⃗ 2 [1 + rf(t, |p⃗ |)]2 f2n

(
p⃗ 2

k2

) (A.5)=

= + β δnII+nIV,nI+nIII (2π)d δ(d)(0) 2
N

1
dγN−1 g

4
r (t) k−4 ×

× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dp pd+1 2

[ 1
2 ∂trf(t, p) + 1

2 ηψ(t) rf(t, p)
]
[1 + rf(t, p)] ×
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× −(νn + iµ)[2(ν−n+nI+nIII + iµ) + (νn + iµ)] + p2 [1 + rf(t, p)]
(ν−n+nI+nIII + iµ)2 + p2 [1 + rf(t, p)]2

f2n

(
p2

k2

) (D.7)=

= + β δnII+nIV,nI+nIII (2π)d δ(d)(0) 2
N

1
dγN−1 g

4
r (t) kd−2 ×

× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dy y d2

[
y ṙf(y) + 1

2 ηψ(t) rf(y)
]
[1 + rf(y)] ×

×
− 1
k2 (νn + iµ)[2(ν−n+nI+nIII + iµ) + (νn + iµ)] + y2 [1 + rf(y)]

1
k2 (ν−n+nI+nIII + iµ)2 + y2 [1 + rf(y)]2

f2n(y) (D.25)=

= − β δnII+nIV,nI+nIII (2π)d δ(d)(0)Ad
[
1 − ηψ(t)

d+1

]
2
N

1
(dγN−1) g

4
r (t) kd−2 ×

× 1
β

∞∑
n=−∞

− 1
k2 (νn + iµ)[2(ν−n+nI+nIII + iµ) + (νn + iµ)] + 1

1
k2 (ν−n+nI+nIII + iµ)2 + 1

f2n(1) .

Flow equation four-fermion coupling

Combining the three different contributions, we obtain the RG flow equation for the (renormalized)
four-fermion coupling,

δnII+nIV,nI+nIII

[
∂tg

2
r (t) + 2 ηψ(t) g2

r (t)
]

= (E.26)

= − δnII+nIV,nI+nIII Ad

[
1 − ηψ(t)

d+1

]
1
N

dγN−2
dγN−1 g

4
r (t) kd+2 ×

× 1
β

∞∑
n=−∞

1
k2 (νn + iµ)[2(νn+nII−nIII + iµ) − (νn + iµ)] + 1

1
k2 (νn+nII−nIII + iµ)2 + 1

1
[(νn + iµ)2 + k2]2 +

+ δnII+nIV,nI+nIII Ad

[
1 − ηψ(t)

d+1

]
1
N (dγN − 1) g4

r (t) kd+2 ×

× 1
β

∞∑
n=−∞

1
k2 (νn + iµ)[2(νn+nIV−nIII + iµ) − (νn + iµ)] + 1

1
k2 (νn+nIV−nIII + iµ)2 + 1

1
[(νn + iµ)2 + k2]2 −

− δnII+nIV,nI+nIII Ad

[
1 − ηψ(t)

d+1

]
2
N

1
(dγN−1) g

4
r (t) kd+2 ×

× 1
β

∞∑
n=−∞

− 1
k2 (νn + iµ)[2(ν−n+nI+nIII + iµ) + (νn + iµ)] + 1

1
k2 (ν−n+nI+nIII + iµ)2 + 1

1
[(νn + iµ)2 + k2]2 .

E.2. FRG flow equations of the Gross-Neveu-Yukawa model
This appendix is dedicated to the detailed derivation of the RG flow equations of the GNY model.
The starting point is the ansatz for the effective average action from Eq. (10.1). Writing out all
spacetime dependences and spinor and color indices explicitly, this ansatz reads,

Γ̄t[ψ̄, ψ, φ] =
∫ ∞

−∞
ddx

∫ β

0
dτ
[
ψ̄a1c1(τ, x⃗ ) (1)c1

c2

[
Zψ(t) (/∂ − µγd+1) + (E.27)

+ 1√
N
h(t, φ(τ, x⃗ ))φ(τ, x⃗ )1

]
a1
a2
ψa2c2(τ, x⃗ ) −
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− Zφ(t) 1
2 φ(τ, x⃗ ) [□φ(τ, x⃗ )] + U(t, φ(τ, x⃗ ))

]
.

In addition to this ansatz, we also recapitulate the relations between renormalized fields and
couplings and their bare counterparts from Section 10.2.1. These are

φr = Z
1
2
φ φ , ψr = Z

1
2
ψ ψ , ψ̄r = Z

1
2
ψ ψ̄ , hr = Z−1

ψ Z
− 1

2
φ h , (E.28)

where the various arguments and indices of the fields and couplings are not written out for sake of
readability. In addition, we also repeat the formal definition of the (renormalized) fermion mass

m = 1√
N
h φ , mr = Z−1

ψ m = 1√
N
Z−1
ψ Z

− 1
2

φ h Z
1
2
φ φ = 1√

N
hr φr . (E.29)

Similar to the derivation of the flow equation of the original GN model in Appendix E.1, it is
advantageous to work in momentum space. However, a complete Fourier transformation of the
effective average action is not useful, due to the field dependence of the Yukawa interaction and
the effective potential. This becomes apparent within the next steps. Hence, we solely perform
a partial Fourier transformation of the kinetic terms in Eq. (E.27) using the definitions (A.23),
(A.26), (A.28), and (A.31).

Γ̄t[ ˜̄ψ, ψ̃, φ̃] = (E.30)

= 1
β2

∞∑
n1,n2=−∞

∫ ∞

−∞

ddp1

(2π)d
ddp2

(2π)d
˜̄ψa1c1(νn1 , p⃗1)β δn1,n2 (2π)d δ(d)(p⃗1 − p⃗2) ×

× Zψ(t) (1)c1
c2

[
i(νn2 + iµ) γd+1 + ip⃗2 · γ⃗

]
a1
a2
ψ̃a2c2(νn2 , p⃗2) −

− 1
β2

∞∑
n1,n2=−∞

∫ ∞

−∞

ddp1

(2π)d
ddp2

(2π)d φ̃(ωn1 , p⃗1)β δn1,n2 (2π)d δ(d)(p⃗1 + p⃗2) ×

× Zφ(t) 1
2 [ω2

n2
+ p⃗ 2

2 ] φ̃(ωn2 , p⃗2) +

+
∫ ∞

−∞
ddx

∫ β

0
dτ ψ̄a1c1(τ, x⃗ ) 1√

N
(1)c1

c2
(1)a1

a2
h(t, φ(τ, x⃗ ))φ(τ, x⃗ )ψa2c2(τ, x⃗ ) +

+
∫ ∞

−∞
ddx

∫ β

0
dτ U(t, φ(τ, x⃗ )) .

Within this approximation we need to derive expressions for the bosonic and fermionic two-point
vertex, the purely bosonic three- and four-point vertex, as well as three- and four-point ver-
tices that involve fermion-boson interactions. This is done by successively taking derivatives of
Eq. (E.30) w.r.t. the Fourier-transformed fields φ̃, ˜̄ψ, and ψ̃ and evaluating the result on a (con-
stant) background-field configuration. Within this work we choose ψ̄(τ, x⃗ ) = 0, ψ(τ, x⃗ ) = 0, and
φ(τ, x⃗ ) = σ = const. as the background-field configuration.
Before we present the results for these n-point functions, we demonstrate what happens, when
the derivatives w.r.t. the Fourier-transformed fields hit one of the terms in the last two-lines of
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Eq. (E.30), e.g., consider,

β2(π)2d δ2

δφ̃(ωn2 , p⃗2) δφ̃(ωn1 , p⃗1)

∫ ∞

−∞
ddx

∫ β

0
dτ U(t, φ(τ, x⃗ ))

∣∣∣∣∣
ψ̄=ψ=0,φ=σ

= (E.31)

= β(π)d δ
δφ̃(ωn2 , p⃗2)

∫ ∞

−∞
ddx

∫ β

0
dτ β(π)d δφ(τ, x⃗)

δφ̃(ωn1 , p⃗1) [∂φU(t, φ(τ, x⃗ ))]

∣∣∣∣∣
ψ̄=ψ=0,φ=σ

(A.23)=

= β(π)d δ
δφ̃(ωn2 , p⃗2)

∫ ∞

−∞
ddx

∫ β

0
dτ e+i(ωn1τ+p⃗1·x⃗ ) [∂φU(t, φ(τ, x⃗ ))]

∣∣∣∣∣
ψ̄=ψ=0,φ=σ

=

=
∫ ∞

−∞
ddx

∫ β

0
dτ e+i[(ωn1 +ωn2 ) τ+(p⃗1+p⃗2)·x⃗ )] [∂2

φU(t, φ(τ, x⃗ ))]

∣∣∣∣∣
ψ̄=ψ=0,φ=σ

(A.31)=

=β δ−n2,n1 (2π)d δ(d)(p⃗1 + p⃗2) [∂2
σU(t, σ)] .

Here, it is essential that the derivatives are taken before one evaluates the expression on the con-
stant field configuration.2 Of course, Eq. (E.31) generalizes to (lower- and) higher-order derivatives
as well as to the field-dependent Yukawa-interaction term in the second to last line of Eq. (E.30).
Taking into account Eq. (E.31), one finds for the bosonic two-point function,

Γ̄φ2φ1
t [σr](ωn2 , p⃗2;ωn1 , p⃗1) ≡ (E.32)

≡ β2(2π)2d δ2Γ̄t[ ˜̄ψ, ψ̃, φ̃]
δφ̃(ωn2 , p⃗2) δφ̃(ωn1 , p⃗1)

∣∣∣∣∣
ψ̄=ψ=0,φ=σ

=

=β δ−n2,n1 (2π)d δ(d)(p⃗2 + p⃗1)Zφ(t)
[
ω2
n2

+ p⃗ 2
2 + 1

Zφ(t) ∂
2
σU(t, σ)

]
=

=β δ−n2,n1 (2π)d δ(d)(p⃗2 + p⃗1)Zφ(t)
[
ω2
n2

+ p⃗ 2
2 + ∂2

σr
U(t, σr)

]
=

=
ϕ2 ϕ1

.

Note that the bosonic two-point function (as well as the other n-point functions, see below) still
depend on the (renormalized) bosonic background field σr, which is clearly emphasized by the
additional functional argument. Again and analogously to Appendix E.1, the field-space notation
of Appendix C.1.2 is adapted to indicate the momentum dependences and the diagrammatic
representation is introduced in the last line, which is also the case for the following n-point vertices.
The fermionic two-point vertex is given by

Γ̄ψ̄2ψ1
t [σr](νn2 , p⃗2; νn1 , p⃗1)c2 a2

c1 a1
≡ (E.33)

≡ β2 (2π)2d δ2Γ̄t[ ˜̄ψ, ψ̃]
δ ˜̄ψa2c2(νn2 , p⃗2) δψ̃a1c1(νn1 , p⃗1)

∣∣∣∣∣
ψ̄=ψ=0,φ=σ

=

2It is also obvious from the above equation, why it becomes extremely challenging – if not even impossible –
to choose more elaborated background-field configurations, that involve some τ - and x⃗-dependence within FRG
calculations. During the last step of Eq. (E.31) the integral(s) will not collapse, which prevents a straightforward
inversion of the two-point function for the derivation of the propagator. For details, we refer to Ref. [6].
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= − β δn2,n1 (2π)d δ(d)(p⃗2 − p⃗1)Zψ(t) (1)c2
c1

×

×
[
i(νn2 + iµ) γd+1 + ip⃗2 · γ⃗ + 1√

N
1

Z
ψ

(t) h(t, σ)σ 1
]
a2
a1

=

= − β δn2,n1 (2π)d δ(d)(p⃗2 − p⃗1)Zψ(t) (1)c2
c1

[
i(νn2 + iµ) γd+1 + ip⃗2 · γ⃗ +mr(t, σr)1

]
a2
a1

= ψ̄2 ψ1
.

Here, we used the identical Feynman-graph representation as in Eq. (E.3). However, there is a
crucial difference, because in the GNY model the fermions are coupled to the scalar field via the
Yukawa interaction hr(t, σr), which enters the two-point function/vertex in terms of a scale- and
background-field-dependent mass mr(t, σr) for the fermions, while the two-point vertex in the GN
model lacks a mass term.
Next, we turn to all those higher n-point correlation functions that are relevant within our trunca-
tion and which are generically non-vanishing, if they are evaluated on our specific background-field
configuration.
Firstly, these are the three- and four-point vertices with mixed external boson and fermion legs.
Both emerge from the Yukawa interaction and have to conserve color-charge and momentum in-
and outflow. The three-point vertex reads

Γ̄φ3ψ̄2ψ1
t [σr](ωn3 , p⃗3; νn2 , p⃗2; νn1 , p⃗1)c2 a2

c1 a1
≡ . . . = (E.34)

= − β δn2,n3+n1 (2π)d δ(d)(p⃗3 − p⃗2 + p⃗1)Zψ(t)Z
1
2
φ (t)

[
∂σrmr(t, σr)

]
(1)c2

c1
(1)a2

a1
=

=

ϕ3

ψ1 ψ̄2

.

The corresponding four-point vertex is given by

Γ̄φ4φ3ψ̄2ψ1
t [σr](ωn4 , p⃗4;ωn3 , p⃗3; νn2 , p⃗2; νn1 , p⃗1)c2 a2

c1 a1
≡ . . . = (E.35)

= − β δn2,n4+n3+n1 (2π)d δ(d)(p⃗4 + p⃗3 − p⃗2 + p⃗1)Zψ(t)Zφ(t)
[
∂2
σr
mr(t, σr)

]
(1)c2

c1
(1)a2

a1
=

=

ϕ4 ϕ3

ψ1 ψ̄2

and only arises, if the Yukawa coupling is assumed to be field-dependent, which is generally the
case during the RG flow, cf. Refs. [66, 276, 101].
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Secondly, there is the purely bosonic three-point vertex

Γ̄φ3φ2φ1
t [σr](ωn3 , p⃗3;ωn2 , p⃗2;ωn1 , p⃗1) ≡ . . . = (E.36)

=β δ0,n3+n2+n1 (2π)d δ(d)(p⃗3 + p⃗2 + p⃗1)Z
3
2
φ (t) ∂3

σr
U(t, σr) =

=

ϕ3

ϕ1 ϕ2

,

and the purely bosonic four-point vertex

Γ̄φ4φ3φ2φ1
t [σr](ωn4 , p⃗4;ωn3 , p⃗3;ωn2 , p⃗2;ωn1 , p⃗1) ≡ . . . = (E.37)

=β δ0,n4+n3+n2+n1 (2π)d δ(d)(p⃗4 + p⃗3 + p⃗2 + p⃗1)Z2
φ(t) ∂4

σr
U(t, σr) =

=

ϕ4 ϕ3

ϕ1 ϕ2

.

In the case of the GNY model, one needs to specify two regulator functions; a regulator for the
fermions and a regulator for the bosonic fields. For the fermions we reuse the regulator (E.5).
For the bosonic fields the regulator is given by a scale- and momentum-dependent mass term and
reads

Rφ2φ1
t (ωn2 , p⃗2;ωn1 , p⃗1) ≡β δ−n2,n1 (2π)d δ(d)(p⃗2 + p⃗1) p⃗ 2

2 Zφ(t) rb(t, |p⃗2|) . (E.38)

Also for the bosons only spatial momenta are regulated, while Matsubara frequencies of all orders
are taken into account at any RG scale k. For details we refer to Refs. [532] and the discussion in
Section 9.2.2. In the scale-dependent partition function and the definition of the effective average
action, compare with Eqs. (C.24) and (C.37), the full bosonic regulator term is given by,

∆S[φ̃] = (E.39)

= 1
β2

∞∑
n1,n2=−∞

∫ ∞

−∞

ddp1

(2π)d
ddp2

(2π)d φ̃(ωn1 , p⃗1) 1
2 R

φ2φ1
t (ωn2 , p⃗2;ωn1 , p⃗1) φ̃(ωn2 , p⃗2) .

On the level of Feynman diagrams for the FRG formalism, the regulator also appears in terms of
the regulator insertion, which is graphically represented by a blue-crossed circle,

1
2 ∂tR

φ2φ1
t (ωn2 , p⃗2;ωn1 , p⃗1) =

ϕ2 ϕ1
. (E.40)

Finally, one needs to calculate the full fermionic and bosonic propagators. In order to find these
quantities, one has to combine the two-point vertices Eqs. (E.32) and (E.33) with the corresponding
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regulators (E.38) and (E.5) in advance. This results in the full two-point functions (evaluated on
the background-field configurations) for the bosonic fields(

Γ̄φ2φ1
t [σr] +Rφ2φ1

t

)
(ωn2 , p⃗2;ωn1 , p⃗1) = (E.41)

=β δ−n2,n1 (2π)d δ(d)(p⃗2 + p⃗1)Zφ(t)
[
ω2
n2

+ p⃗ 2
2 [1 + rb(t, |p⃗2|)] + ∂2

σr
U(t, σr)

]
,

and the fermionic fields,(
Γ̄ψ̄2ψ1
t [σr] +Rψ̄2ψ1

t

)
(νn2 , p⃗2; νn1 , p⃗1)c2 a2

c1 a1
= (E.42)

= − β δn2,n1 (2π)d δ(d)(p⃗2 − p⃗1)Zψ(t) (1)c2
c1

×

×
[
i(νn2 + iµ) γd+1 + ip⃗2 · γ⃗ [1 + rf(t, |p⃗2|)] +mr(t, σr)1

]
a2
a1
.

By inversion of these two quantities, one arrives at the final expressions for the bosonic propagator(
Γ̄φ2φ1
t [σr] +Rφ2φ1

t

)−1(ωn2 , p⃗2;ωn1 , p⃗1) ≡ (E.43)

≡β δ−n2,n1 (2π)d δ(d)(p⃗2 + p⃗1) 1
Zφ(t)

[
ω2
n2

+ p⃗ 2
2 [1 + rb(t, |p⃗2|)] + ∂2

σr
U(t, σr)

] =

=
ϕ2 ϕ1

,

and the fermionic propagator(
Γ̄ψ̄2ψ1
t [σr] +Rψ̄2ψ1

t

)−1(νn2 , p⃗2; νn1 , p⃗1)c2 a2
c1 a1

≡ (E.44)

≡β δn2,n1 (2π)d δ(d)(p⃗2 − p⃗1)
[
i(νn2 + iµ) γd+1 + ip⃗2 · γ⃗ [1 + rf(t, |p⃗2|)] −mr(t, σr)

]
a2
a1

(1)c2
c1

Zψ(t) [(νn2 + iµ)2 + p⃗ 2
2 [1 + rf(t, |p⃗2|)]2 +m2

r (t, σr)]

= ψ̄2 ψ1
.

These are all ingredients that are required for the detailed derivation of the flow equations within
our truncation.
We proceed as follows: First, in Appendix E.2.1, the RG flow equation for the effective potential
is derived. Afterwards, in Appendix E.2.2, we turn to the flow equation of the bosonic two-point
function and extract the RG flow equation of the field-dependent bosonic mass term/the second
field derivative of the effective potential (as a consistency check) as well as the scale-dependence of
the bosonic anomalous dimension. Lastly, we calculate the RG flow equation of the fermionic two-
point function in Appendix E.2.4 and extract the RG flow of the Yukawa coupling and fermionic
anomalous dimension.

E.2.1. Effective potential
A peculiar feature of a lot of models in the FRG framework is that it is straightforward to derive
a flow equation for the entire scale-dependent effective local potential U(t, φ), which incorporates
all possible local bosonic self-interactions that are in accordance with the symmetry of the system.
Here, we shall present this derivation.
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Projection onto the effective potential

The flow equation for the scale-dependent effective potential is derived by solely evaluating the
ERG equation on the background-field configuration ψ̄(τ, x⃗ ) = ψ(τ, x⃗ ) = 0, φ(τ, x⃗ ) = σ = const..
This projection eliminates all kinetic (momentum-dependent) terms from the ansatz (E.30), as
well as all terms that depend on the fermionic fields. The only contribution that is left is the
bosonic effective potential evaluated for φ = σ,

β (2π)d δ(d)(0)
[
∂tU(t, σr) + 1

2 ηφ(t)σr ∂σrU(t, σr)
]

= (E.45)

=β (2π)d δ(d)(0) ∂tU(t, σ) =

= ∂tΓ̄t[ψ̄, ψ, φ]
∣∣
ψ̄=ψ=0,φ=σ .

Hence, Eq. (C.51) has the following form for the GNY model,

∂tΓ̄t[σr] = (E.46)

= Tr
[( 1

2 ∂tRt
)
Gt[σr]

]
=

=
( 1

2 ∂tR
φ1φ2
t

)
Gt,φ2φ1 [σr] +

( 1
2 ∂tR

ψ̄1ψ2
t

)
Gt,ψ̄2ψ1

[σr] +
( 1

2 ∂tR
ψ1ψ̄2
t

)
Gt,ψ2ψ̄1

[σr] =

=
( 1

2 ∂tR
φ1φ2
t

)
Gt,φ2φ1 [σr] + 2

( 1
2 ∂tR

ψ̄1ψ2
t

)
Gt,ψ̄2ψ1

[σr]

= +
( 1

2 ∂tR
φ1φ2
t

) (
Γ̄(2)
t [σr] +Rt

)−1
φ2φ1

− (Btr1)

− 2
( 1

2 ∂tR
ψ̄1ψ2
t

) (
Γ̄(2)
t [σr] +Rt

)−1
ψ̄2ψ1

, (Btr2)

where we used that the trace of an operator/matrix and its transposed are identical to combine
the two fermionic contributions. The minus sign in front of the fermionic contributions stems
from the field-space metric that is contained in the full propagators Gt,ab, compare Eqs. (C.13)
and (C.42).
On a diagrammatic level, the previous equation reads,

∂t

( )
=

ϕ

− 2

ψ

. (E.47)

The two traces/diagrams are evaluated as follows.

Trace (Btr1) – boson loop

In order to evaluate the bosonic loop contribution to the effective potential, Eq. (Btr1), we in-
sert the bosonic regulator (E.38) and (E.40) and the bosonic propagator (E.43) into the trace
(Btr1). During the calculation various identities, variable transformations etc. are used, which are
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indicated at the equal signs at the end of the lines.

(Btr1) =

ϕ

= (E.48)

= + 1
β2

∞∑
n1,n2=−∞

∫ ∞

−∞

ddp1

(2π)d
ddp2

(2π)d ×

× β δ−n1,n2 (2π)d δ(d)(p⃗1 + p⃗2) p⃗ 2
1 ∂t

[
Zφ(t) 1

2 rb(t, |p⃗1|)
]

×

× β δ−n2,n1 (2π)d δ(d)(p⃗2 + p⃗1) 1
Zφ(t)

[
ω2
n2

+ p⃗ 2
2 [1 + rb(t, |p⃗2|)] + ∂2

σr
U(t, σr)

] (D.26)=

=β (2π)d δ(d)(0) k−2 1
β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d p⃗

2[ 1
2 ∂trb(t, |p⃗ |) + 1

2 ηφ(t) rb(t, |p⃗ |)
]
Bn

(
p⃗ 2

k2

) (A.5)=

=β (2π)d δ(d)(0) k−2 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dp pd+1[ 1

2 ∂trb(t, p) + 1
2 ηφ(t) rb(t, p)

]
Bn

(
p2

k2

) (D.7)=

=β (2π)d δ(d)(0) kd 1
β

∞∑
n=−∞

Ad
d
2

∫ ∞

0
dy y d2

[
y ṙb(y) + 1

2 ηφ(t) rb(y)
]
Bn(y) (D.15)=

= − β (2π)d δ(d)(0)Ad
[
1 − ηφ(t)

d+2

]
kd+2 1

β

∞∑
n=−∞

1
ω2
n + k2 + ∂2

σr
U(t, σr)

.

Trace (Btr2) – fermion loop

In complete analogy to the boson loop, the fermion-loop contribution, trace (Btr2), is evaluated
using the fermionic regulator (E.5) and (E.7) and the fermionic propagator (E.44).

(Btr2) = −2

ψ

= (E.49)

= − 2 1
β2

∞∑
n1,n2=−∞

∫ ∞

−∞

ddp1

(2π)d
ddp2

(2π)d ×

× (−1)β δn1,n2 (2π)d δ(d)(p⃗1 − p⃗2) (1)c1
c2

ip⃗1 · (γ⃗ )a1
a2
∂t
[
Zψ(t) 1

2 rf(t, |p⃗1|)
]

×

× β δn2,n1 (2π)d δ(d)(p⃗2 − p⃗1) ×

×
[
i(νn2 + iµ) γd+1 + ip⃗2 · γ⃗ [1 + rf(t, |p⃗2|)] −mr(t, σr)

]
a2
a1

(1)c2
c1

Zψ(t) [(νn2 + iµ)2 + p⃗ 2
2 [1 + rf(t, |p⃗2|)]2 +m2

r (t, σr)]
(D.32)=

= − β (2π)d δ(d)(0) dγ N k−2 ×

× 1
β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d 2 p⃗ 2[ 1

2 ∂trf(t, |p⃗ |) + 1
2 ηψ(t) rf(t, |p⃗ |)

]
[1 + rf(t, |p⃗ |)]Fn

(
p⃗ 2

k2

) (A.5)=
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= − β (2π)d δ(d)(0) dγ N k−2 ×

× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dp pd+1 2

[ 1
2 ∂trf(t, p) + 1

2 ηψ(t) rf(t, p)
]
[1 + rf(t, p)]Fn

(
p2

k2

) (D.7)=

= − β (2π)d δ(d)(0) dγ N kd ×

× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dy y d2

[
y ṙf(y) + 1

2 ηψ(t) rf(y)
]
[1 + rf(y)]Fn(y) (D.25)=

=β (2π)d δ(d)(0)Ad
[
1 − ηψ(t)

d+1

]
dγ N kd+2 1

β

∞∑
n=−∞

1
(νn + iµ)2 + k2 +m2

r (t, σr)
.

Flow equation of the effective potential

Inserting the results for the traces (E.48) and (E.49) and the projection (E.45) into Eq. (E.46)
and dropping the infinite-volume factors β (2π)d δ(d)(0) on both sides of the resulting equation,
one obtains the famous RG flow equation for the effective potential,

∂tU(t, σr) + 1
2 ηφ(t)σr ∂σrU(t, σr) = (E.50)

= −Ad

[
1 − ηφ(t)

d+2

]
kd+2 1

β

∞∑
n=−∞

1
ω2
n + k2 + ∂2

σr
U(t, σr)

+

+Ad

[
1 − ηψ(t)

d+1

]
dγ N kd+2 1

β

∞∑
n=−∞

1
(νn + iµ)2 + k2 +m2

r (t, σr)
.

Our result is identical to [373, Eq. (9)], but is basically found in all kinds of FRG publications on
models with Yukawa interactions in one or the other variant.

Flow equation effective potential – 1
N -rescaled

Rescaling the effective potential and the bosonic fields in Eq. (E.50) with appropriate powers of
N , as defined in Eq. (10.7), one obtains the 1

N -rescaled RG flow equation,

∂tǓ(t, σ̌r) + 1
2 ηφ(t) σ̌r ∂σ̌rǓ(t, σ̌r) = (E.51)

= −Ad

[
1 − ηφ(t)

d+2

]
1
N kd+2 1

β

∞∑
n=−∞

1
ω2
n + k2 + ∂2

σ̌r
Ǔ(t, σ̌r)

+

+Ad

[
1 − ηψ(t)

d+1

]
dγ k

d+2 1
β

∞∑
n=−∞

1
(νn + iµ)2 + k2 +m2

r (t, σ̌r)
.

For example, this PDE is identical to Ref. [374, Eq. (39)] (after another rescaling of all dimensionful
quantities with appropriate powers of the RG scale k), but is also found elsewhere.

E.2.2. Bosonic two-point function – boson mass & anomalous dimension
Next, we turn to the RG flow equation of the bosonic two-point function. After providing the
generic form of this flow equation for our model, we extract the RG flow equation of the field-
dependent bosonic mass term and the anomalous dimension.
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The bosonic two-point vertex

The starting point for the derivation of the RG flow equation of the bosonic two-point function is
the ERG Eq. (C.51), when one takes two derivatives w.r.t. the Fourier-transformed bosonic fields
φ̃. Again, we make use of the universal field-space result for RG flow equations of arbitrary two-
point functions, i.e., Eq. (C.53), and simply evaluate this expression for the GNY model within
our truncation (E.27) and our background-field configuration,

∂tΓ̄(2)φIIφI
t [σr] = (E.52)

= STr
[( 1

2 ∂tRt
)
Gt[σr] Γ̄(3)φII

t Gt[σr] Γ̄(3)φI
t Gt[σr]

]
−

− STr
[( 1

2 ∂tRt
)
Gt[σr] Γ̄(4)φIIφI

t Gt[σr]
]

+

+ STr
[( 1

2 ∂tRt
)
Gt[σr] Γ̄(3)φI

t Gt[σr] Γ̄(3)φII
t Gt[σr]

]
=

= + (−1)φIIφ2 (−1)φIφ2
( 1

2 ∂tR
φ1φ2
t

)
Gt,φ2φ3 [σr] Γ̄(3)φ3φIIφ4

t [σr] gφ5
φ4
Gt,φ5φ6 [σr] ×

× Γ̄(3)φ6φIφ7
t [σr] gφ8

φ7
Gt,φ8φ1 [σr] +

+ (−1)φIIψ2 (−1)φIψ2
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

[σr] Γ̄(3) ψ̄3φIIψ4
t [σr] gψ5

ψ̄4
Gt,ψ̄5ψ6

[σr] ×

× Γ̄(3) ψ̄6φIψ7
t [σr] gψ8

ψ̄7
Gt,ψ̄8ψ1

[σr] +

+ (−1)φIIψ2 (−1)φIψ2
( 1

2 ∂tR
ψ1ψ̄2
t

)
Gt,ψ2ψ̄3

[σr] Γ̄(3)ψ3φIIψ̄4
t [σr] gψ̄5

ψ4
Gt,ψ5ψ̄6

[σr] ×

× Γ̄(3)ψ6φIψ̄7
t [σr] gψ̄8

ψ7
Gt,ψ8ψ̄1

[σr] −

− (−1)φIIφ2 (−1)φIφ2
( 1

2 ∂tR
φ1φ2
t

)
Gt,φ2φ3 [σr] Γ̄(4)φ3φIIφIφ4

t [σr] gφ5
φ4
Gt,φ5φ1 [σr] −

− (−1)φIIψ2 (−1)φIψ2
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

[σr] Γ̄(4) ψ̄3φIIφIψ4
t [σr] gψ5

ψ̄4
Gt,ψ̄5ψ1

[σr] +

− (−1)φIIψ2 (−1)φIψ2
( 1

2 ∂tR
ψ1ψ̄2
t

)
Gt,ψ2ψ̄3

[σr] Γ̄(4)ψ3φIIφIψ̄4
t [σr] gψ̄5

ψ4
Gt,ψ5ψ̄1

[σr] +

+ (−1)φIIφ5 (−1)φIIφ4 (−1)φIIφI (−1)φIIφ2 (−1)φIφ2
( 1

2 ∂tR
φ1φ2
t

)
Gt,φ2φ3 [σr] ×

× Γ̄(3)φ3φIφ4
t [σr] gφ5

φ4
Gt,φ5φ6 [σr] Γ̄(3)φ6φIIφ7

t [σr] gφ8
φ7
Gt,φ8φ1 [σr] +

+ (−1)φIIψ5 (−1)φIIψ4 (−1)φIIφI (−1)φIIψ2 (−1)φIψ2
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

[σr] ×

× Γ̄(3) ψ̄3φIψ4
t [σr] gψ5

ψ̄4
Gt,ψ̄5ψ6

[σr] Γ̄(3) ψ̄6φIIψ7
t [σr] gψ8

ψ̄7
Gt,ψ̄8ψ1

[σr] +

+ (−1)φIIψ5 (−1)φIIψ4 (−1)φIIφI (−1)φIIψ2 (−1)φIψ2
( 1

2 ∂tR
ψ1ψ̄2
t

)
Gt,ψ2ψ̄3

[σr] ×

× Γ̄(3)ψ3φIψ̄4
t [σr] gψ̄5

ψ4
Gt,ψ5ψ̄6

[σr] Γ̄(3)ψ6φIIψ̄7
t [σr] gψ̄8

ψ7
Gt,ψ8ψ̄1

[σr] =

= + 2
( 1

2 ∂tR
φ1φ2
t

)
Gt,φ2φ3 [σr] Γ̄(3)φ3φIIφ4

t [σr] gφ5
φ4
Gt,φ5φ6 [σr] ×
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× Γ̄(3)φ6φIφ7
t [σr] gφ8

φ7
Gt,φ8φ1 [σr] +

+ 2
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

[σr] Γ̄(3) ψ̄3φIIψ4
t [σr] gψ5

ψ̄4
Gt,ψ̄5ψ6

[σr] ×

× Γ̄(3) ψ̄6φIψ7
t [σr] gψ8

ψ̄7
Gt,ψ̄8ψ1

[σr] +

−
( 1

2 ∂tR
φ1φ2
t

)
Gt,φ2φ3 [σr] Γ̄(4)φ3φIIφIφ4

t [σr] gφ5
φ4
Gt,φ5φ1 [σr] −

− 2
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

[σr] Γ̄(4) ψ̄3φIIφIψ4
t [σr] gψ5

ψ̄4
Gt,ψ̄5ψ1

[σr] +

+ 2
( 1

2 ∂tR
ψ̄1ψ2
t

)
Gt,ψ̄2ψ3

[σr] Γ̄(3) ψ̄3φIψ4
t [σr] gψ5

ψ̄4
Gt,ψ̄5ψ6

[σr] ×

× Γ̄(3) ψ̄6φIIψ7
t [σr] gψ8

ψ̄7
Gt,ψ̄8ψ1

[σr] =

= + 2
( 1

2 ∂tR
φ1φ2
t

) (
Γ̄(2)
t [σr] +Rt

)−1
φ2φ3

Γ̄(3)φ3φIIφ4
t [σr]

(
Γ̄(2)
t [σr] +Rt

)−1
φ4φ5

× (Ctr1)

× Γ̄(3)φ5φIφ6
t [σr]

(
Γ̄(2)
t [σr] +Rt

)−1
φ6φ1

+

− 2
( 1

2 ∂tR
ψ̄1ψ2
t

) (
Γ̄(2)
t [σr] +Rt

)−1
ψ̄2ψ3

Γ̄(3) ψ̄3φIIψ4
t [σr]

(
Γ̄(2)
t [σr] +Rt

)−1
ψ̄4ψ5

× (Ctr2)

× Γ̄(3) ψ̄5φIψ6
t [σr]

(
Γ̄(2)
t [σr] +Rt

)−1
ψ̄6ψ1

+

−
( 1

2 ∂tR
φ1φ2
t

) (
Γ̄(2)
t [σr] +Rt

)−1
φ2φ3

Γ̄(4)φ3φIIφIφ4
t [σr]

(
Γ̄(2)
t [σr] +Rt

)−1
φ4φ1

− (Ctr3)

+ 2
( 1

2 ∂tR
ψ̄1ψ2
t

) (
Γ̄(2)
t [σr] +Rt

)−1
ψ̄2ψ3

Γ̄(4) ψ̄3φIIφIψ4
t [σr]

(
Γ̄(2)
t [σr] +Rt

)−1
ψ̄4ψ1

+ (Ctr4)

− 2
( 1

2 ∂tR
ψ̄1ψ2
t

) (
Γ̄(2)
t [σr] +Rt

)−1
ψ̄2ψ3

Γ̄(3) ψ̄3φIψ4
t [σr]

(
Γ̄(2)
t [σr] +Rt

)−1
ψ̄4ψ5

× (Ctr5)

× Γ̄(3) ψ̄5φIIψ6
t [σr]

(
Γ̄(2)
t [σr] +Rt

)−1
ψ̄6ψ1

.

For the above simplifications, we used Eqs. (C.12) and (C.42) and combined certain contributions
by transposing the expressions inside the traces.
In terms of Feynman diagrams Eq. (E.52) can be written as follows,

∂t

(
ϕII ϕI

)
= (E.53)

= + 2

ϕ ϕ

ϕ

ϕIϕII
− 2

ψ ψ

ψ

ϕIϕII
−

ϕ ϕ

ϕIϕII
+

+ 2

ψ ψ

ϕIϕII
− 2

ψ ψ

ψ

ϕIIϕI
,



334 E. FRG flow equations of the Gross-Neveu and Gross-Neveu-Yukawa model

where the diagrams on the r.h.s. are ordered according to their appearance in Eqs. (Ctr1) to (Ctr5).

Projections

By inspecting the ansatz for the effective average action (E.30) and the two-point vertex (E.32),
one finds that within our truncation

β (2π)d δ(d)(p⃗II + p⃗I)
(
ηφ(t)

(
ω2
nII

+ p⃗ 2
II
)

+ Z−1
φ (t) ∂2

σ

[
∂tU(t, σ)

])
= (E.54)

=β (2π)d δ(d)(p⃗II + p⃗I)
[
ηφ(t)

(
ω2
nII

+ p⃗ 2
II
)

+

+ ∂t[∂2
σr
U(t, σr)] + ηφ(t) ∂2

σr
U(t, σr) + 1

2 ηφ(t)σr ∂
3
σr
U(t, σr)

]
=

=Z−1
φ (t) β

2 (2π)2d δ2(∂tΓ̄t[ψ̄, ψ, φ])
δφ̃(ωnII , p⃗II) δφ̃(ωnI , p⃗I)

∣∣∣∣∣
φ=σ,ψ̄=ψ=0,nII=nI

.

As already discussed in the context of the fermionic two-point function (E.13) in the GN model,
we note that we further need to evaluate this equation at vanishing external momenta p⃗I =
p⃗II = 0 to obtain the RG flow equation for the field-dependent bosonic mass (the second field-
derivative of the effective potential). In order to obtain exclusively the scale evolution of the
bosonic anomalous dimension ηφ(t) and avoid admixtures from higher-order momentum dependent
terms of the effective action, which are neglected in our truncation, one needs to extract the
coefficient of p⃗ 2

II on the r.h.s. of Eq. (E.54). This is routinely done by

1. ignoring the factor β (2π)d δ(d)(p⃗II − p⃗I), which appears on both sides of the equation,

2. expanding the r.h.s. in a Taylor series of the external momentum p⃗II about p⃗II = 0,

3. dropping all terms except for the quadratic order.

Within the next steps, all diagrams of Eq. (E.53) are evaluated separately one after the other.
To this end we first insert the regulators, propagators, and vertices into the generic traces (Ctr1)
to (Ctr5) and afterwards apply Eq. (E.54). Finally, the zeroth- and second-order coefficients of
an expansion in the external momentum p⃗II are extracted and associated to the flow equations of
the field-dependent mass and the anomalous dimension.

Trace (Ctr1) – boson loop

We start our explicit calculations with the analysis of the boson-loop contribution to the RG flow,
which is also called the boson self-interaction correction to the two-point function. We insert the
explicit expressions (E.38), (E.40), (E.43), and (E.36), into trace (Ctr1) and find,

(Ctr1) = +2

ϕ ϕ

ϕ

ϕIϕII
= (E.55)

= + 2 1
β6

∞∑
n1,...,n6=−∞

∫ ∞

−∞

ddp1

(2π)d · · · ddp6

(2π)d ×

× β δ−n1,n2 (2π)d δ(d)(p⃗1 + p⃗2) p⃗ 2
1 ∂t

[
Zφ(t) 1

2 rb(t, |p⃗1|)
]

×
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× β δ−n2,n3 (2π)d δ(d)(p⃗2 + p⃗3) 1
Zφ(t)

[
ω2
n2

+ p⃗ 2
2 [1 + rb(t, |p⃗2|)] + ∂2

σr
U(t, σr)

] ×

× β δ0,n3+nII+n4 (2π)d δ(d)(p⃗3 + p⃗II + p⃗4)Z
3
2
φ (t) ∂3

σr
U(t, σr) ×

× β δ−n4,n5 (2π)d δ(d)(p⃗4 + p⃗5) 1
Zφ(t)

[
ω2
n4

+ p⃗ 2
4 [1 + rb(t, |p⃗4|)] + ∂2

σr
U(t, σr)

] ×

× β δ0,n5+nI+n6 (2π)d δ(d)(p⃗5 + p⃗I + p⃗6)Z
3
2
φ (t) ∂3

σr
U(t, σr) ×

× β δ−n6,n1 (2π)d δ(d)(p⃗6 + p⃗1) 1
Zφ(t)

[
ω2
n6

+ p⃗ 2
6 [1 + rb(t, |p⃗6|)] + ∂2

σr
U(t, σr)

] .
Inserting this into the r.h.s. of the projection (E.54) one only needs to evaluate traces in momentum
space (the integrals and Matsubara sums) as far as possible,

Z−1
φ (t) (Ctr1)

∣∣
nII=nI=0

(D.26)= (E.56)

=β (2π)d δ(d)(p⃗II + p⃗I) 2
[
∂3
σr
U(t, σr)

]2
k−6 ×

× 1
β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d p⃗

2[ 1
2 ∂trb(t, |p⃗ |) + 1

2 ηφ(t) rb(t, |p⃗ |)
]
B2
n

(
p⃗ 2

k2

)
Bn

(
(p⃗+p⃗II)2

k2

)
.

Field-dependent bosonic mass Taking only into account the zeroth order of an expansion
of Eq. (E.56) in p⃗II, which is identical to setting p⃗II = 0 and dropping the infinite-volume factor
β (2π)d δ(d)(0), one obtains,

2
[
∂3
σr
U(t, σr)

]2
k−6 × (E.57)

× 1
β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d p⃗

2[ 1
2 ∂trb(t, |p⃗ |) + 1

2 ηφ(t) rb(t, |p⃗ |)
]
B3
n

(
p⃗ 2

k2

) (A.5)=

= 2
[
∂3
σr
U(t, σr)

]2
k−6 ×

× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dp pd+1[ 1

2 ∂trb(t, p) + 1
2 ηφ(t) rb(t, p)

]
B3
n

(
p2

k2

) (D.7)=

= 2
[
∂3
σr
U(t, σr)

]2
kd−4 1

β

∞∑
n=−∞

Ad
d
2

∫ ∞

0
dy y d2

[
y ṙb(y) + 1

2 ηφ(t) rb(y)
]
B3
n(y) (D.15)=

= − 2Ad
[
1 − ηφ(t)

d+2

][
∂3
σr
U(t, σr)

]2
kd−4 1

β

∞∑
n=−∞

B3
n(1) .

Identities, variable substitutions etc. are referenced at the end of the lines.

Bosonic anomalous dimension In order to extract the coefficient proportional to p⃗ 2
II in

Eq. (E.56), we simplify the notation by setting q⃗ ≡ p⃗II and only expand the q⃗-dependent con-
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tribution about q⃗ = 0,

Bn

(
(p⃗+q⃗ )2

k2

)
= (E.58)

=Bn

(
p⃗ 2

k2

)
+ 2 q⃗·p⃗

k2 Ḃn

(
p⃗ 2

k2

)
+ q⃗ 2

k2 Ḃn

(
p⃗ 2

k2

)
+ 2 (q⃗·p⃗ )2

k4 B̈n

(
p⃗ 2

k2

)
+ O

(
|q⃗ |3

k3

)
.

Inserting this expansion into Eq. (E.56), we can immediately ignore the first two terms, which do
not contribute to the q⃗ 2 coefficient. Additionally, since we are working with Litim-type regulators,
we can ignore the Ḃn(y) term, with y = q⃗ 2

k2 , due to the identity (D.30). Finally, under the integral,
we replace (q⃗ · p⃗ )2 7→ 1

d q⃗
2 p⃗ 2, because for terms proportional to qi qj with i ̸= j the integration is

odd and vanishes. Hence, the only contribution at order q⃗ 2 reads,

2
[
∂3
σr
U(t, σr)

]2
k−6 1

β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d p⃗

2[ 1
2 ∂trb(t, |p⃗ |) + 1

2 ηφ(t) rb(t, |p⃗ |)
]

× (E.59)

× B2
n

(
p⃗ 2

k2

) [
2 (q⃗·p⃗ )2

k4 B̈n

(
p⃗ 2

k2

) ] (A.5)=

= q⃗ 2 2
[
∂3
σr
U(t, σr)

]2
k−8 1

β

∞∑
n=−∞

Ad d

∫ ∞

0
dp pd+1[ 1

2 ∂trb(t, p) + 1
2 ηφ(t) rb(t, p)

]
×

× B2
n

(
p2

k2

) [
2
d
p2

k2 B̈n

(
p2

k2

) ] (D.7)=

= q⃗ 2 2
[
∂3
σr
U(t, σr)

]2
kd−6 1

β

∞∑
n=−∞

Ad
d
2

∫ ∞

0
dy y d2

[
y ṙb(y) + 1

2 ηφ(t) rb(y)
]

×

× B2
n(y)

[
2
d y B̈n(y)

] (D.31)=

= q⃗ 2 Ad
[
∂3
σr
U(t, σr)

]2
kd−6 1

β

∞∑
n=−∞

B4
n(1) .

Traces (Ctr2) and (Ctr5) – fermion loop

Next, we study the fermion-loop contribution(s) to the bosonic two-point function, i.e., traces
(Ctr2) and (Ctr5).
Inserting the explicit expressions for the fermionic regulator Eqs. (E.5) and (E.7), propagator
(E.44), and fermion-boson three-point vertex (E.34) into trace (Ctr2), the intermediate result is
given by

(Ctr2) = −2

ψ ψ

ψ

ϕIϕII
= (E.60)

= − 2 1
β6

∞∑
n1,...,n6=−∞

∫ ∞

−∞

ddp1

(2π)d · · · ddp6

(2π)d ×

× (−1)β δn1,n2 (2π)d δ(d)(p⃗1 − p⃗2) (1)c1
c2

ip⃗1 · (γ⃗ )a1
a2
∂t
[
Zψ(t) 1

2 rf(t, |p⃗1|)
]

×

× β δn2,n3 (2π)d δ(d)(p⃗2 − p⃗3) ×
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×
[
i(νn2 + iµ) γd+1 + ip⃗2 · γ⃗ [1 + rf(t, |p⃗2|)] −mr(t, σr)

]
a2
a3

(1)c2
c3

Zψ(t) [(νn2 + iµ)2 + p⃗ 2
2 [1 + rf(t, |p⃗2|)]2 +m2

r (t, σr)]
×

× (−1)β δn3,nII+n4 (2π)d δ(d)(p⃗II − p⃗3 + p⃗4)Zψ(t)Z
1
2
φ (t)

[
∂σrmr(t, σr)

]
(1)c3

c4
(1)a3

a4
×

× β δn4,n5 (2π)d δ(d)(p⃗4 − p⃗5) ×

×
[
i(νn4 + iµ) γd+1 + ip⃗4 · γ⃗ [1 + rf(t, |p⃗4|)] −mr(t, σr)

]
a4
a5

(1)c4
c5

Zψ(t) [(νn4 + iµ)2 + p⃗ 2
4 [1 + rf(t, |p⃗4|)]2 +m2

r (t, σr)]
×

× (−1)β δn5,nI+n6 (2π)d δ(d)(p⃗I − p⃗5 + p⃗6)Zψ(t)Z
1
2
φ (t)

[
∂σrmr(t, σr)

]
(1)c5

c6
(1)a5

a6
×

× β δn6,n1 (2π)d δ(d)(p⃗6 − p⃗1) ×

×
[
i(νn6 + iµ) γd+1 + ip⃗6 · γ⃗ [1 + rf(t, |p⃗6|)] −mr(t, σr)

]
a6
a1

(1)c6
c1

Zψ(t) [(νn6 + iµ)2 + p⃗ 2
6 [1 + rf(t, |p⃗6|)]2 +m2

r (t, σr)]
.

For the trace (Ctr5) one merely has to exchange I ↔ II. Consequently, due to momentum con-
servation, which is encoded in an overall prefactor β δ−nII,nI (2π)d δ(d)(p⃗II + p⃗I), both diagrams
contribute equally to the RG flow equations of the field-dependent bosonic mass and the anoma-
lous dimension.
Anyhow, applying the projection (E.54) to the latter equation, we find

Z−1
φ (t) (Ctr2)

∣∣
nII=nI=0

(D.32)= (E.61)

= + β (2π)d δ(d)(p⃗II + p⃗I) 2 dγ N
[
∂σrmr(t, σr)

]2
k−6 ×

× 1
β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d

[ 1
2 ∂trf(t, |p⃗ |) + 1

2 ηψ(t) rf(t, |p⃗ |)
]
F2
n

(
p⃗ 2

k2

)
Fn

(
(p⃗−p⃗II)2

k2

)
×

×
(

2 p⃗ 2[1 + rf(t, |p⃗ |)]
[
k2 F−1

n

(
p⃗ 2

k2

)
− 2m2

r (t, σr) − p⃗ 2[1 + rf(t, |p⃗ |)]2
]

+ (FL1)

+
(
p⃗II · p⃗− p⃗ 2) [1 + rf(t, |p⃗− p⃗II|)]

[
k2 F−1

n

(
p⃗ 2

k2

)
− 2 p⃗ 2[1 + rf(t, |p⃗ |)]2

])
. (FL2)

Here, the traces over fermionic indices were cross-checked with FormTracer [640].

Field-dependent bosonic mass The contribution to the flow equation of the second field-
derivative of the effective potential is attained by setting p⃗II = 0, which drastically simplifies
Eq. (E.61),

2 dγ N
[
∂σrmr(t, σr)

]2
k−6 × (E.62)

× 1
β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d 2 p⃗ 2[ 1

2 ∂trf(t, |p⃗ |) + 1
2 ηψ(t) rf(t, |p⃗ |)

]
[1 + rf(t, |p⃗ |)] ×

×
[

1
2 k

2 F2
n

(
p⃗ 2

k2

)
− 2m2

r (t, σr)F3
n

(
p⃗ 2

k2

) ] (A.5)=
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= 2 dγ N
[
∂σrmr(t, σr)

]2
k−6 ×

× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dp pd+1 2

[ 1
2 ∂trf(t, p) + 1

2 ηψ(t) rf(t, p)
]
[1 + rf(t, p)] ×

×
[

1
2 k

2 F2
n

(
p2

k2

)
− 2m2

r (t, σr)F3
n

(
p2

k2

) ] (D.7)=

= 2 dγ N
[
∂σrmr(t, σr)

]2
kd−4 1

β

∞∑
n=−∞

Ad d

∫ ∞

0
dy y d2

[
y ṙf(y) + 1

2 ηψ(t) rf(y)
]
[1 + rf(y)] ×

×
[

1
2 k

2 F2
n(y) − 2m2

r (t, σr)F3
n(y)

] (D.25)=

= − 2Ad
[
1 − ηψ(t)

d+1

]
dγ N

[
∂σrmr(t, σr)

]2
kd−4 1

β

∞∑
n=−∞

[
1
2 k

2 F2
n(y) − 2m2

r (t, σr)F3
n(y)

]
.

Bosonic anomalous dimension The calculation of the coefficient of the p⃗ 2
II-term is more te-

dious, but in principle straightforward. Again, we define q⃗ ≡ p⃗II to simplify the notation.
To structure our work, we first consider solely the term in line (FL1) of Eq. (E.61). This term in
the round bracket is independent of the external momentum q⃗, such that it suffices to expand the
factor

Fn

(
(p⃗−q⃗ )2

k2

)
= Fn

(
p⃗ 2

k2

)
− 2 q⃗·p⃗

k2 Ḟn

(
p⃗ 2

k2

)
+ q⃗ 2

k2 Ḟn

(
p⃗ 2

k2

)
+ 2 (q⃗·p⃗ )2

k4 F̈n

(
p⃗ 2

k2

)
+ O

(
|q⃗ |3

k3

)
. (E.63)

The situation is now analogous to Eq. (E.59), where only the F̈n(y)-term contributes to the integral
at order q⃗ 2, because the other terms are not proportional to q⃗ 2 or the identity (D.37) eliminates
the Ḟn(y) contribution for the Litim regulator. Hence, we find

(FL1) = (Ctr2a)

= 2 dγ N
[
∂σrmr(t, σr)

]2
k−6 ×

× 1
β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d

[ 1
2 ∂trf(t, |p⃗ |) + 1

2 ηψ(t) rf(t, |p⃗ |)
]
F2
n

(
p⃗ 2

k2

) [
2 (q⃗·p⃗ )2

k4 F̈n

(
p⃗ 2

k2

) ]
×

×
(

2 p⃗ 2[1 + rf(t, |p⃗ |)]
[
k2 F−1

n

(
p⃗ 2

k2

)
− 2m2

r (t, σr) − p⃗ 2[1 + rf(t, |p⃗ |)]2
]) (A.5)=

= q⃗ 2 2 dγ N
[
∂σrmr(t, σr)

]2
k−6 ×

× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dp pd+1 2

[ 1
2 ∂trf(t, p) + 1

2 ηψ(t) rf(t, p)
]
[1 + rf(t, p)] ×

× F2
n

(
p2

k2

) [
2
d
p2

k2 F̈n

(
p2

k2

) ][
F−1
n

(
p2

k2

)
− 2 1

k2 m
2
r (t, σr) − p2

k2 [1 + rf(t, p)]2
] (D.7)=

= q⃗ 2 2 dγ N
[
∂σrmr(t, σr)

]2
kd−4 ×

× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dy y d2

[
y ṙf(y) + 1

2 ηψ(t) rf(y)
]
[1 + rf(y)] ×
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× F2
n(y)

[
2
d y F̈n(y)

][
F−1
n (y) − 2 1

k2 m
2
r (t, σr) − y [1 + rf(y)]2

]
=

= q⃗ 2 2Ad dγ N
[
∂σrmr(t, σr)

]2
kd−4 1

β

∞∑
n=−∞

[(
− 1

2 − 1
k2 m

2
r (t, σr)

)
F4
n(1) + 1

2 F3
n(1)

]
.

The second term belonging to line (FL2) of Eq. (E.61) is more involved. Again, one has to use
the expansion (E.63). This time, however, there are also q⃗-dependent terms in line (FL2), which
also need to be expanded in q⃗. Combining both expansions,

Fn

(
(p⃗−q⃗ )2

k2

) (
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(
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)]
= (E.64)

=
[
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,

one has to extract all terms proportional to q⃗ 2. These are[
− 2 (q⃗·p⃗ )2

k2 ṙf

(
p⃗ 2

k2

)
− q⃗ 2p⃗ 2
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− 2 (q⃗·p⃗ )2p⃗ 2

k4

[
1 + rf

(
p⃗ 2

k2

)]
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(
p⃗ 2

k2

)
,

where we also dropped all terms proportional to Ḟn(y), since these terms vanish anyhow for the
Litim regulator due to identity (D.37).
In total, the contribution of from line (FL2) at order q⃗ 2 is

(FL2) = (Ctr2b)
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(
p⃗ 2

k2

)
− 2 (q⃗·p⃗ )2p⃗ 2

k4 r̈f

(
p⃗ 2

k2

)]
Fn

(
p⃗ 2

k2

)
−

− 2 (q⃗·p⃗ )2p⃗ 2

k4

[
1 + rf

(
p⃗ 2

k2

)]
F̈n

(
p⃗ 2

k2

)) (A.5)=
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After some simplifications by certain variable transformations, it remains to evaluate the last y-
integral. Also here, it is reasonable to split the evaluation into two separate steps. For both eval-
uations, several relations and identities for the Litim regulator from Appendix D.2.2 are needed.

The first term is evaluated using Eq. (D.38) plus some results of Appendix D.2.2,
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[
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]
. (Ctr2bI)

For the second term, we use Eq. (D.36) as well as the results of Appendix D.2.2,
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It remains to combine the two contributions (Ctr2bI) and (Ctr2bII) with our first result in
Eq. (Ctr2a).
Here, it is crucial to distinguish between d > 2, d = 2, and d = 1.
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For spatial dimensions d > 2 there are no “pitfalls” and we find,

(Ctr2a) + (Ctr2bI) + (Ctr2bII) = (E.66)

= q⃗ 2 2Ad dγ N
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]
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)
.

However, inspecting the calculation and final result of Eq. (Ctr2bII) one observes that the y-
integration in line (Ctr2bII-int) is logarithmically IR divergent for d = 2. This might point out
a non-analyticity of the bosonic two-point function at q⃗ = 0, which leads to a collapse of the
expansion in q⃗ at q⃗ = 0 and an ill-defined flow equation for the wave-function renormalization.
However, we are not really interested in d = 2 within the scope of this work and postpone a deeper
investigation of this puzzling result to future research.

For d = 1, it seems as if one runs into the same problems as for d = 2. The y-integrals in line
(Ctr2bII-int) are IR-divergent. However, the prefactor of these integrals vanishes for d = 1, such
that they do not contribute to the scale evolution of ηφ(t) at all. Therefore, the combination of
Eqs. (Ctr2a) to (Ctr2bII) for d = 1 results in

(Ctr2a) + (Ctr2bI) + (Ctr2bII) = (E.67)

= q⃗ 2 2 1
π
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)
.

Trace (Ctr3) – boson tadpole

The evaluation of the next trace is somewhat simpler. It corresponds to the bosonic tadpole
diagram, which is attached to the bosonic two-point function via the four-boson interaction vertex.
For the evaluation of trace (Ctr3) one needs the bosonic regulator (E.38) and (E.40), the full
bosonic propagator (E.43), and the bosonic four-point vertex (E.37),
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Combining this with the projection prescription (E.54), the only traces that need to be evaluated
are the spatial-momentum integrations and the Matsubara sums,
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Inspecting this result, we observe that the bosonic tadpole contribution is independent of the
external momentum p⃗II. Thus, the situation is the same as for the anomalous dimension within
the purely fermionic GN model, see Appendix E.1.1: The tadpole diagram entirely contributes
to the q⃗-independent part of the two-point function, which is the RG flow of the second field
derivative of the effective potential – the field-dependent bosonic mass. On the level of the wave-
function renormalization, respectively the bosonic anomalous dimension, there is no contribution
of the tadpole to the RG flow.

Trace (Ctr4) – fermion tadpole

It remains to evaluate the so-called fermionic tadpole diagram, which modifies the bosonic two-
point function via the field dependence of the Yukawa coupling. The corresponding trace (Ctr4)
is evaluated by replacing the fermionic regulator, the full fermionic propagator, and the fermion-
boson four-point vertex by their explicit expressions (E.5), (E.7), (E.44), and (E.35).
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Applying the projection (E.54) to this trace and evaluating the resulting equation as far as possible,
one finds
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Here, the situation is identical to the previous tadpole graphs. The external momenta and Mat-
subara frequencies do not enter the loop. Therefore, there is no p⃗II-dependence of the diagram
and no contribution to the scale evolution of the anomalous dimension. The diagram entirely
contributes to the RG flow of the second derivative of the effective action.

Flow equation of the bosonic two-point function

Combining Eqs. (E.56), (E.61), (E.69), and (E.71) we obtain the RG flow equation for the bosonic
two-point function,
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Flow equation of the bosonic two-point function – 1
N -rescaled

Rewriting Eq. (E.72) in terms of 1
N -rescaled quantities, the flow equation turns into
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Flow equation of the bosonic mass

Collecting all contributions to the RG flow of the bosonic two-point function that are independent
of the external momentum, namely Eqs. (E.57), (E.62), (E.69), and (E.71), we derive the following
result,
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This flow equation is not of relevance for any practical purposes in this work, but serves as a con-
sistency check of our calculations. Exactly the same equation is obtained if the RG flow equation
for the effective potential (E.51) is derived twice w.r.t. the renormalized bosonic background field
σr.

Flow equation of the bosonic anomalous dimension

Combining all contributions to the bosonic two-point function, that are proportional to p⃗ 2
II, which

are Eq. (E.59) and two times Eq. (E.66), one finds the equation that describes the scale evolution
of the bosonic anomalous dimension. As already anticipated before, there are distinct expressions
for spatial dimensions d ≷ 2.
For d > 2 we find,
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while for d < 2, thus d = 1,
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For d = 2 we do not provide an expression, because of unresolved IR divergences.

Flow equation of the bosonic anomalous dimension – 1
N -rescaled

Similar to Eq. (E.51) for the effective potential, we also provide evolution equations for ηφ(t) in
terms of 1

N -rescaled quantities.
For d > 2 Eq. (E.75) turns into,
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This result agrees for example with Refs. [373, Eq. (11)], [374, Eq. (36)], and [346, Eq. (196)] after
rearrangement of some of the terms. The result is also consistent with Ref. [556, Eq. (24)].
For d = 1 Eq. (E.76) is given by
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E.2.3. Infinite-N limit of the two-point function
Within the next paragraphs we shall demonstrate how the N → ∞ expression for the bosonic
two-point function is extracted from the FRG flow equations of the GNY model. The starting
point is Eq. (E.73). Inspecting the single contributions on the r.h.s. of Eq. (E.73), we observe that
the bosonic loop contributions are accompanied by factors 1

N and vanish in the N → ∞ limit.
The same applies to the fermionic anomalous dimension in any spacetime dimension for N → ∞,
see Eq. (E.115). In addition, the fermionic tadpole diagram does not contribute, because we are
studying a field-independent Yukawa coupling. The Yukawa coupling itself does also not flow with
RG time for N → ∞, see Eq. (10.31). Hence, Eq. (E.73) reduces to
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Next, we can eliminate the bosonic wave-function renormalization from the equation by replac-
ing the renormalized fields σ̌r and Yukawa coupling hr by their bare counterparts according to
Eq. (10.5). Furthermore, we define the 1

N -rescaled two-point function with argument q⃗ = p⃗II,

β (2π)d δ(d)(q⃗ + p⃗I) ∂t ˇ̄Γ(2)
t (σ̌, µ, T, |q⃗ |) ≡ 1

N ∂tΓ̄(2)φ̄IIφ̄I
t [σ̌](0, q⃗; 0, p⃗I) . (E.80)

For the sake of readability, we additionally stop indicating the 1
N -rescaling as discussed in Sec-

tion 11.2.1.
It remains to insert Def. (D.32), i.e.,
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From here, it is straightforward but tedious to show that
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The easiest way to demonstrate this is to perform the k-derivative on the r.h.s. of Eq. (E.82) to
recover all contributions in Eq. (E.79).

We find that Eq. (E.82) can be integrated trivially from the UV cutoff scale k = Λ to the IR
at k = 0. According to the truncation Eq. (10.1) and Eqs. (10.2) and (10.4) the UV initial
condition for the two-point function is Γ̄(2)
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g2 . For the IR two-point function, we
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Evaluation of the square bracket at k = 0 is simple, due to limk→0 rf(k, |p⃗ |) = 0. Furthermore,
sending Λ → ∞, the expression vanishes and we obtain
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This is the unrenormalized standard mean-field result in arbitrary dimensions, cf. Refs. [593, 5,
592].

As a consistency check, let us compare this result for q⃗ = 0, d = 1, and µ = T = 0, i.e.,
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where we used Eqs. (B.16) and (B.21) for the Matsubara sum, with the second σ-derivative of the
flow equation Eq. (11.1) of the effective potential for µ = T = 0, i.e.,
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Integrated from the UV for k = Λ → ∞ to the IR at k = 0 Eq. (E.86) has to be identical to
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Eq. (E.85). Using the UV initial potential (10.2), we obtain,
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Interestingly, this expression differs from Eq. (E.85) by a non-vanishing surface term. This is
exactly the same term which appeared in Eq. (11.11) and stems from the choice of the Litim-type
regulator and cancels during the renormalization procedure. Hence, for a consistent renormaliza-
tion of Eq. (E.84), we have to insert the asymptotic behavior of 1

g2 from Eq. (11.11) without this
surface term.

E.2.4. Fermionic two-point function – fermion mass & anomalous di-
mension

In the next step, we derive the RG flow equation of the fermionic two-point function and extract
the flow equations for the Yukawa coupling, respectively the fermion mass, and the flow equation
for the fermionic wave-function renormalization, respectively the anomalous dimension.

The fermionic two-point vertex

To derive the RG flow equation for the fermionic two-point function, we take two derivatives of the
ERG Eq. (C.51) w.r.t. the Fourier-transformed fermion fields ˜̄ψ and ψ̃. Taking these derivatives
again is not necessary and we may simply use the generic expression (C.53). Keeping only those
contributions on the r.h.s. of the equation that are compatible with our truncation of the GNY
model the universal equation turns into,
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Here, all terms are evaluated on the constant background-field configuration ψ̄(τ, x⃗ ) = ψ(τ, x⃗ ) = 0,
φ(τ, x⃗ ) = σ = const.. Additionally, we transposed some of the contributions within the single
traces and combined them. Furthermore, the field-space metric was eliminated from the equations
via Eqs. (C.12) and (C.42).
In order to illustrate the above equation in terms of physical processes, we again use the Feynman-
graph representation of the regulators, propagators, and vertices and obtain the following diagram-
matic equation,
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.

The three diagrams are ordered according to the occurrence of their mathematical counterparts
in lines (Dtr1) to (Dtr3).

Projections

Similar to what was done in Appendix E.1.1 for the purely fermionic GN model, we need to
extract the flow equation for the fermionic wave-function renormalization (the fermionic anomalous
dimension) and the flow equation for the fermion mass (Yukawa coupling) from the flow of the
fermionic two-point function (E.88). This is done by suitable projections.
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For the fermion mass this seems straightforward. Evaluating the fermionic two-point function
for vanishing external spatial momenta results in a term proportional to the fermion mass. The
remaining matrices/tensor structures are eliminated by additional contractions of the open color
and spinor indices. In total,
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.

However, it remains to specify the external fermionic Matsubara frequencies that enter and leave
the diagram. This is a non-trivial task, as we have learned already from the RG flow equation of
the four-fermion coupling for the GN model, compare Appendix E.1.2 and Section 9.4.1, because
fermions do not have a Matsubara zero mode, ν0 ̸= 0 for T ̸= 0. For the time being, we therefore
leave the Matsubara indices nI and nII unspecified and return to this problem later.
The projection onto the fermionic wave-function renormalization is the same that was already
used for the GN model in Eq. (E.13),

β δnII,nI (2π)d δ(d)(p⃗II − p⃗I) p⃗ 2
II ηψ(t) = (E.91)

= 1
N (1)cI

cII
1
dγ

(ip⃗II · γ⃗)aI
aII
Z−1
ψ (t) β2 (2π)2d δ2(∂tΓ̄t[ψ̄, ψ, φ])

δ ˜̄ψaIIcII(νnII , p⃗II) δψ̃aIcI(νnI , p⃗I)

∣∣∣∣∣
φ=σ,ψ̄=ψ=0

.

To get rid of possible admixtures from higher-order momentum dependences, it is again required
to consider only the coefficient of p⃗ 2

II on the r.h.s. of Eq. (E.91).
Henceforth, we evaluate the three diagrams of Eq. (E.89) separately and apply our projection pre-
scriptions. In the end, the single contributions are combined to the respective RG flow equations.

Trace (Dtr1) – mixed fermion-boson loop (bosonic regulator)

We start with the evaluation of trace (Dtr1), which is one of the two diagrams that are usually
referred to as fermion self-energy corrections. The type of diagram is rather universal and appears
in all kinds of QFTs with fermion-boson three-point vertices. For the evaluation of the trace we
use the explicit expressions of the bosonic regulator (E.38) and (E.40), the full bosonic propagator
(E.43), the fermion-boson three-point vertex (E.34), as well as the full fermion propagator (E.44),

(Dtr1) = +2

ψ

ϕ ϕ

ψIψ̄II
= (E.92)

= + 2 1
β6

∞∑
n1,...,n6=−∞

∫ ∞

−∞

ddp1

(2π)d · · · ddp6

(2π)d ×

× β δ−n1,n2 (2π)d δ(d)(p⃗1 + p⃗2) p⃗ 2
1 ∂t

[
Zφ(t) 1

2 rb(t, |p⃗1|)
]

×

× β δ−n2,n3 (2π)d δ(d)(p⃗2 + p⃗3) 1
Zφ(t)

[
ω2
n2

+ p⃗ 2
2 [1 + rb(t, |p⃗2|)] + ∂2

σr
U(t, σr)

] ×
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× (−1)β δnII,n3+n4 (2π)d δ(d)(p⃗3 − p⃗II + p⃗4)Zψ(t)Z
1
2
φ (t)

[
∂σrmr(t, σr)

]
(1)cII

c4
(1)aII

a4
×

× β δn4,n5 (2π)d δ(d)(p⃗4 − p⃗5) ×

×
[
i(νn4 + iµ) γd+1 + ip⃗4 · γ⃗ [1 + rf(t, |p⃗4|)] −mr(t, σr)

]
a4
a5

(1)c4
c5

Zψ(t) [(νn4 + iµ)2 + p⃗ 2
4 [1 + rf(t, |p⃗4|)]2 +m2

r (t, σr)]
×

× (−1)β δn5,n6+nI (2π)d δ(d)(p⃗6 − p⃗5 + p⃗I)Zψ(t)Z
1
2
φ (t)

[
∂σrmr(t, σr)

]
(1)c5

cI
(1)a5

aI
×

× β δ−n6,n1 (2π)d δ(d)(p⃗6 + p⃗1) 1
Zφ(t)

[
ω2
n6

+ p⃗ 2
6 [1 + rb(t, |p⃗6|)] + ∂2

σr
U(t, σr)

] .
Yukawa coupling The contribution to the RG flow of the fermion mass term is extracted via
the projection (E.90) and results in,

− 1
N (1)cI

cII
1
dγ

(1)aI
aII
Z−1
ψ (t) (Dtr1)aII cII

aI cI

∣∣
p⃗II=p⃗I=0

(D.26),(D.32)= (E.93)

= + β δnII,nI (2π)d δ(d)(0) 2
[
∂σrmr(t, σr)

]2
mr(t, σr) k−6 ×

× 1
β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d p⃗

2[ 1
2 ∂trb(t, |p⃗ |) + 1

2 ηφ(t) rb(t, |p⃗ |)
]
B2
n

(
p⃗ 2

k2

)
Fn+nII

(
p⃗ 2

k2

) (A.5)=

= + β δnII,nI (2π)d δ(d)(0) 2
[
∂σrmr(t, σr)

]2
mr(t, σr) k−6 ×

× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dp pd+1[ 1

2 ∂trb(t, p) + 1
2 ηφ(t) rb(t, p)

]
B2
n

(
p2

k2

)
Fn+nII

(
p2

k2

) (D.7)=

= + β δnII,nI (2π)d δ(d)(0) 2
[
∂σrmr(t, σr)

]2
mr(t, σr) ×

× 1
β

∞∑
n=−∞

Ad k
d−4 d

2

∫ ∞

0
dy y d2

[
y ṙb(y) + 1

2 ηφ(t) rb(y)
]
B2
n(y)Fn+nII

(y)

For the Litim regulator and integration formula Eq. (D.25) this further simplifies and we find

−2Ad
[
1 − ηφ(t)

d+2

][
∂σrmr(t, σr)

]2
mr(t, σr) kd−4 1

β

∞∑
n=−∞

B2
n(1)Fn+nII

(1) . (E.94)

Here, we dropped the infinite-volume factor etc.. Note that we still need to evaluate this expression
for a specific Matsubara index nII.

Anomalous dimension To obtain the contribution of the same diagram to the scale evolution
of the anomalous dimension, we use projection Eq. (E.91),

1
N (1)cI

cII
1
dγ

(ip⃗II · γ⃗)aI
aII
Z−1
ψ (t) (Dtr1)aII cII

aI cI
= (E.95)

= + β δnII,nI(2π)d δ(d)(p⃗II − p⃗I) 2
[
∂σrmr(t, σr)

]2
k−6 ×
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× 1
β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d p⃗

2[ 1
2 ∂trb(t, |p⃗ |) + 1

2 ηφ(t) rb(t, |p⃗ |)
]
B2
n

(
p⃗ 2

k2

)
Fn−nII

(
(p⃗−p⃗II)2

k2

)
×

× p⃗II · (p⃗− p⃗II) [1 + rf(t, |p⃗− p⃗II|)] .

We simplify the notation by defining q⃗ ≡ p⃗II and m = nII as the external spatial momentum and
“index” of the Matsubara mode. The coefficient of q⃗ 2 on the r.h.s. of Eq. (E.95) is obtained by
expanding all q⃗-dependent terms in a Taylor series about q⃗ = 0,

Fn−m

(
(p⃗−q⃗ )2

k2

) (
q⃗ · p⃗− q⃗ 2) [1 + rf

(
(p⃗−q⃗ )2

k2

)]
= (E.96)

=
[
Fn−m

(
p⃗ 2

k2

)
− 2 q⃗·p⃗

k2 Ḟn−m

(
p⃗ 2

k2

)
+ q⃗ 2

k2 Ḟn−m

(
p⃗ 2

k2

)
+ 2 (q⃗·p⃗ )2

k4 F̈n−m

(
p⃗ 2

k2

)
+ O

(
|q⃗ |3

k3

)]
×

×
(
q⃗ · p⃗− q⃗ 2) [1 + rf

(
p⃗ 2

k2

)
− 2 q⃗·p⃗

k2 ṙf

(
p⃗ 2

k2

)
+ q⃗ 2

k2 ṙf

(
p⃗ 2

k2

)
+ 2 (q⃗·p⃗ )2

k4 r̈f

(
p⃗ 2

k2

)
+ O

(
|q⃗ |3

k3

)]
,

and keeping the only relevant term, which is of order q⃗ 2 and not proportional to Ḟn−m(y) (which
vanishes under the loop integral for the Litim regulator due to Eq. (D.37)). The relevant contri-
bution from the above expansion is(

− 2 (q⃗·p⃗ )2

k2 ṙf

(
p⃗ 2

k2

)
− q⃗ 2

[
1 + rf

(
p⃗ 2

k2

)])
Fn−m

(
p⃗ 2

k2

)
. (E.97)

Hence, at order q⃗ 2 the loop contribution reads

2
[
∂σrmr(t, σr)

]2
k−6 1

β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d p⃗

2[ 1
2 ∂trb(t, |p⃗ |) + 1

2 ηφ(t) rb(t, |p⃗ |)
]
B2
n

(
p⃗ 2

k2

)
×

×
(

− 2 (q⃗·p⃗ )2

k2 ṙf

(
p⃗ 2

k2

)
− q⃗ 2

[
1 + rf

(
p⃗ 2

k2

)])
Fn−m

(
p⃗ 2

k2

) (A.5)= (E.98)

= q⃗ 2 2
[
∂σrmr(t, σr)

]2
k−6 1

β

∞∑
n=−∞

Ad d

∫ ∞

0
dp pd+1[ 1

2 ∂trb(t, p) + 1
2 ηφ(t) rb(t, p)

]
B2
n

(
p2

k2

)
×

×
(

− 2
d
p2

k2 ṙf

(
p2

k2

)
−
[
1 + rf

(
p2

k2

)])
Fn−m

(
p2

k2

) (D.7)=

= q⃗ 2 2
[
∂σrmr(t, σr)

]2
kd−4 1

β

∞∑
n=−∞

Ad
d
2

∫ ∞

0
dy y d2

[
y ṙb(y) + 1

2 ηφ(t) rb(y)
]
B2
n(y)Fn−m(y) ×

×
(

− 2
d y ṙf(y) −

[
1 + rf(y)

])
.

Before we further evaluate the y-integrals, we note that for d = 1 the entire expression vanishes,
since the integrand (the factor in the last line) is exactly zero when Eqs. (D.17) and (D.18) are
used.
Otherwise, for d > 1 the y-integration is worked out to

− q⃗ 2 2
[
∂σrmr(t, σr)

]2
kd−2 1

β

∞∑
n=−∞

Ad
1
2 (d− 1)

∫ 1

0
dy
[

− y
d−3

2 + 1
2 ηφ(t)

(
y
d−3

2 − y
d−1

2
)]

×

× B2
n(y) Fn−m(y) (E.99)

= q⃗ 2 2Ad
[
1 − ηφ(t)

d+1

][
∂σrmr(t, σr)

]2
kd−2 1

β

∞∑
n=−∞

B2
n(y)Fn−m(y) .
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Trace (Dtr2) – boson tadpole

The evaluation of the following diagram is again a little bit simpler than the previous diagram,
because it is of tadpole type. The trace (Dtr2) corresponding to the bosonic tadpole is first
expressed in terms of the explicit regulators, propagators, and vertices. These are provided by
Eqs. (E.38), (E.40), (E.35), and (E.43).

(Dtr2) = −

ϕ ϕ

ψIψ̄II
= (E.100)

= − 1
β4

∞∑
n1,...,n4=−∞

∫ ∞

−∞

ddp1

(2π)d · · · ddp4

(2π)d ×

× β δ−n1,n2 (2π)d δ(d)(p⃗1 + p⃗2) p⃗ 2
1 ∂t

[
Zφ(t) 1

2 rb(t, |p⃗1|)
]

×

× β δ−n2,n3 (2π)d δ(d)(p⃗2 + p⃗3) 1
Zφ(t)

[
ω2
n2

+ p⃗ 2
2 [1 + rb(t, |p⃗2|)] + ∂2

σr
U(t, σr)

] ×

× (−1)β δnII,n3+n4+nI (2π)d δ(d)(p⃗3 + p⃗4 − p⃗II + p⃗I)Zψ(t)Zφ(t)
[
∂2
σr
mr(t, σr)

]
(1)cII

cI
(1)aII

aI
×

× β δ−n4,n1 (2π)d δ(d)(p⃗4 + p⃗1) 1
Zφ(t)

[
ω2
n4

+ p⃗ 2
4 [1 + rb(t, |p⃗4|)] + ∂2

σr
U(t, σr)

] .
Yukawa coupling Inserting the previous equation into the r.h.s. of Eq. (E.90), which is the
projection onto the fermion mass term, we obtain

− 1
N (1)cI

cII
1
dγ

(1)aI
aII
Z−1
ψ (t) (Dtr2)aII cII

aI cI

∣∣
p⃗II=p⃗I=0

(D.26)= (E.101)

= + β δnII,nI (2π)d δ(d)(0)
[
∂2
σr
mr(t, σr)

]
k−4 ×

× 1
β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d p⃗

2[ 1
2 ∂trb(t, |p⃗ |) + 1

2 ηφ(t) rb(t, |p⃗ |)
]
B2
n

(
p⃗ 2

k2

) (A.5)=

= + β δnII,nI (2π)d δ(d)(0)
[
∂2
σr
mr(t, σr)

]
k−4 ×

× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dp pd+1[ 1

2 ∂trb(t, p) + 1
2 ηφ(t) rb(t, p)

]
B2
n

(
p2

k2

) (D.7)=

= + β δnII,nI (2π)d δ(d)(0)
[
∂2
σr
mr(t, σr)

]
kd−2 ×

× 1
β

∞∑
n=−∞

Ad
d
2

∫ ∞

0
dy y d2

[
y ṙb(y) + 1

2 ηφ(t) rb(y)
]
B2
n(y) .

Using the Litim regulator and the integration formula Eq. (D.15) the tadpole contribution to the
RG flow of the fermion mass boils down to,

−Ad

[
1 − ηφ(t)

d+2

][
∂2
σr
mr(t, σr)

]
kd−2 1

β

∞∑
n=−∞

B2
n(1) . (E.102)
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Anomalous dimension The bosonic tadpole diagram does not contribute to the scale evolution
of the anomalous dimension for two reasons: Firstly, applying the projection Eq. (E.91) the trace
in Dirac space vanishes, because it is a trace over an odd number of gamma matrices,

1
N (1)cI

cII
1
dγ

(ip⃗II · γ⃗)aI
aII
Z−1
ψ (t) (Dtr2)aII cII

aI cI
= 0 (E.103)

Secondly, the external spatial momentum does not enter the tadpole loop anyhow, such that this
diagram has no non-trivial momentum structure and a vanishing q⃗ 2-coefficient.

Trace (Dtr3) – mixed fermion-boson loop (fermionic regulator)

The last trace that needs to be evaluated is of the same type as (Dtr1). However, the regulator
insertion is moved from the internal boson lines to the internal fermion lines of the diagram. The
regulators, propagators, and vertices of this diagram are replaced by their explicit formulae from
Eqs. (E.5), (E.7), (E.34), (E.43), and (E.44),

(Dtr3) = +2

ψ ψ

ϕ

ψIψ̄II
= (E.104)

= + 2 1
β6

∞∑
n1,...,n6=−∞

∫ ∞

−∞

ddp1

(2π)d · · · ddp6

(2π)d ×

× (−1)β δn1,n2 (2π)d δ(d)(p⃗1 − p⃗2) (1)c1
c2

ip⃗1 · (γ⃗ )a1
a2
∂t
[
Zψ(t) 1

2 rf(t, |p⃗1|)
]

×

× β δn2,n3 (2π)d δ(d)(p⃗2 − p⃗3) ×

×
[
i(νn2 + iµ) γd+1 + ip⃗2 · γ⃗ [1 + rf(t, |p⃗2|)] −mr(t, σr)

]
a2
a3

(1)c2
c3

Zψ(t) [(νn2 + iµ)2 + p⃗ 2
2 [1 + rf(t, |p⃗2|)]2 +m2

r (t, σr)]
×

× (−1)β δn3,n4+nI (2π)d δ(d)(p⃗4 − p⃗3 + p⃗I)Zψ(t)Z
1
2
φ (t)

[
∂σrmr(t, σr)

]
(1)c3

cI
(1)a3

aI
×

× β δ−n4,n5 (2π)d δ(d)(p⃗4 + p⃗5) 1
Zφ(t)

[
ω2
n4

+ p⃗ 2
4 [1 + rb(t, |p⃗4|)] + ∂2

σr
U(t, σr)

] ×

× (−1)β δnII,n5+n6 (2π)d δ(d)(p⃗5 − p⃗II + p⃗6)Zψ(t)Z
1
2
φ (t)

[
∂σrmr(t, σr)

]
(1)cII

c6
(1)aII

a6
×

× β δn6,n1 (2π)d δ(d)(p⃗6 − p⃗1) ×

×
[
i(νn6 + iµ) γd+1 + ip⃗6 · γ⃗ [1 + rf(t, |p⃗6|)] −mr(t, σr)

]
a6
a1

(1)c6
c1

Zψ(t) [(νn6 + iµ)2 + p⃗ 2
6 [1 + rf(t, |p⃗6|)]2 +m2

r (t, σr)]
.

Yukawa coupling Projecting the diagram onto its contribution to the RG of the fermion mass
via Eq. (E.90) one has to simplify the following expression,

− 1
N (1)cI

cII
1
dγ

(1)aI
aII
Z−1
ψ (t) (Dtr3)aII cII

aI cI

∣∣
p⃗II=p⃗I=0

(D.26),(D.32)= (E.105)

= + β δnII,nI (2π)d δ(d)(0) 2
[
∂σrmr(t, σr)

]2
mr(t, σr) k−6 ×
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× 1
β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d 2 p⃗ 2[ 1

2 ∂trf(t, |p⃗ |) + 1
2 ηψ(t) rf(t, |p⃗ |)

]
[1 + rf(t, |p⃗ |)] ×

× Bn−nII

(
p⃗ 2

k2

)
F2
n

(
p⃗ 2

k2

) (A.5)=

= + β δnII,nI (2π)d δ(d)(0) 2
[
∂σrmr(t, σr)

]2
mr(t, σr) k−6 ×

× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dp pd+1 2

[ 1
2 ∂trf(t, p) + 1

2 ηψ(t) rf(t, p)
]
[1 + rf(t, p)] ×

× Bn−nII

(
p2

k2

)
F2
n

(
p2

k2

) (D.7)=

= + β δnII,nI (2π)d δ(d)(0) 2
[
∂σrmr(t, σr)

]2
mr(t, σr) kd−4 ×

× 1
β

∞∑
n=−∞

Ad d

∫ ∞

0
dy y d2

[
y ṙf(y) + 1

2 ηψ(t) rf(y)
]
[1 + rf(y)]Bn−nII

(y)F2
n(y) .

Finally, using again the Litim regulator and the integration formula Eq. (D.25), we find

− 2Ad
[
1 − ηψ(t)

d+1

][
∂σrmr(t, σr)

]2
mr(t, σr) kd−4 1

β

∞∑
n=−∞

Bn−nII
(1)F2

n(1) . (E.106)

Anomalous dimension On the other hand, the projection Eq. (E.91) leads to

1
N (1)cI

cII
1
dγ

(ip⃗II · γ⃗)aI
aII
Z−1
ψ (t) (Dtr3)aII cII

aI cI
= (E.107)

= + β δnII,nI (2π)d δ(d)(p⃗II − p⃗I) 2
[
∂σrmr(t, σr)

]2
k−4 ×

× 1
β

∞∑
n=−∞

∫ ∞

−∞

ddp
(2π)d 2

[ 1
2 ∂trf(t, |p⃗ |) + 1

2 ηψ(t) rf(t, |p⃗ |)
]
Bn−nII

(
(p⃗−p⃗II)2

k2

)
F2
n

(
p⃗ 2

k2

)
×

× (p⃗II · p⃗ )
[
F−1
n

(
p⃗ 2

k2

)
− 2 p⃗ 2

k2 [1 + rf(t, |p⃗ |)]2
]
,

Again, we rename q⃗ ≡ p⃗II and m ≡ nII and expand the q⃗-dependent factors about q⃗ = 0 up to
terms of order q⃗ 2,

Bn−m

(
(p⃗−q⃗ )2

k2

)
(q⃗ · p⃗ ) =

[
Bn−m

(
p⃗ 2

k2

)
− 2 q⃗·p⃗

k2 Ḃn−m

(
p⃗ 2

k2

)
+ O

(
|q⃗ |2

k3

)]
(q⃗ · p⃗ ) .

The first term on the r.h.s. of the previous equation is not of order q⃗ 2 and can be ignored. However,
the second term, which is proportional to Ḃn−m(y), does also vanish in the loop-integral due to
Eq. (D.30). Consequently, there is no contribution of this diagram to the RG flow of the anomalous
dimension.
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Flow equation of the fermion mass

Finally, we can combine our intermediate results (E.94), (E.102), and (E.106). For the RG flow
equation of the fermion-mass (Yukawa coupling) we find in d ≥ 1,

∂tmr(t, σr) + ηψ(t)mr(t, σr) + 1
2 ηφ(t)σr ∂σrmr(t, σr) = (E.108)

= − 2Ad
[
1 − ηφ(t)

d+2

][
∂σrmr(t, σr)

]2
mr(t, σr) kd+2 ×

× 1
β

∞∑
n=−∞

1
[ω2
n + k2 + ∂2

σr
U(t, σr)]2

1
(νn+m + iµ)2 + k2 +m2

r (t, σr)
−

− 2Ad
[
1 − ηψ(t)

d+1

][
∂σrmr(t, σr)

]2
mr(t, σr) kd+2 ×

× 1
β

∞∑
n=−∞

1
ω2
n−m + k2 + ∂2

σr
U(t, σr)

1
[(νn + iµ)2 + k2 +m2

r (t, σr)]2
−

−Ad

[
1 − ηφ(t)

d+2

][
∂2
σr
mr(t, σr)

]
kd+2 1

β

∞∑
n=−∞

1
[ω2
n + k2 + ∂2

σr
U(t, σr)]2

.

Flow equation of the fermion mass – 1
N -rescaled

Rescaling the appropriate variables in Eq. (E.108) with N , the 1
N -rescaled flow equation reads,

∂tmr(t, σ̌r) + ηψ(t)mr(t, σ̌r) + 1
2 ηφ(t) σ̌r ∂σ̌rmr(t, σ̌r) = (E.109)

= − 2Ad
[
1 − ηφ(t)

d+2

]
1
N

[
∂σ̌rmr(t, σ̌r)

]2
mr(t, σ̌r) kd+2 ×

× 1
β

∞∑
n=−∞

1[
ω2
n + k2 + ∂2

σ̌r
Ǔ(t, σ̌r)

]2 1
(νn+m + iµ)2 + k2 +m2

r (t, σ̌r)
−

− 2Ad
[
1 − ηψ(t)

d+1

]
1
N

[
∂σ̌rmr(t, σ̌r)

]2
mr(t, σ̌r) kd+2 ×

× 1
β

∞∑
n=−∞

1
ω2
n−m + k2 + ∂2

σ̌r
Ǔ(t, σ̌r)

1[
(νn + iµ)2 + k2 +m2

r (t, σ̌r)
]2 −

−Ad

[
1 − ηφ(t)

d+2

]
1
N

[
∂2
σ̌r
mr(t, σ̌r)

]
kd+2 1

β

∞∑
n=−∞

1[
ω2
n + k2 + ∂2

σ̌r
Ǔ(t, σ̌r)

]2 .
This result agrees for example with Refs. [373, Eq. (13)], [374, Eq. (35)], and [346, Eq. (195)]. It is
also consistent with Ref. [556, Eq. (23)]. However, the contribution of the field-dependent Yukawa
coupling (the tadpole diagram) was not considered in Refs. [373, 374].

Flow equation of the fermion mass – N → ∞ limit

Considering the flow equation (E.109) in the limit N → ∞, we find that the r.h.s. vanishes,
because this limit suppresses all contributions of Feynman diagrams with internal boson lines
(bosonic propagators) via factors 1

N ,

∂tmr(t, σ̌r) + ηψ(t)mr(t, σ̌r) + 1
2 ηφ(t) σ̌r ∂σ̌rmr(t, σ̌r) = 0 . (E.110)
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Flow equation of the anomalous dimension fermion

The only non-vanishing contribution to the fermionic anomalous dimension in d > 1 is given by
Eq. (E.99) such that

ηψ(t) = 2Ad
[
1 − ηφ(t)

d+1

][
∂σrmr(t, σr)

]2
kd+2 × (E.111)

× 1
β

∞∑
n=−∞

1
[ω2
n + k2 + ∂2

σr
U(t, σr)]2

1
(νn−m + iµ)2 + k2 +m2

r (t, σr)
.

This result agrees with Ref. [346, Eq. (197)]. It is also consistent with Ref. [556, Eq. (25)]. For
the special case d = 1 the fermion anomalous dimension vanishes,

ηψ(t) = 0 . (E.112)

Flow equation of the anomalous dimension fermion – 1
N -rescaled

In terms of 1
N -rescaled quantities the Eq. (E.111) is given by

ηψ(t) = 2Ad
[
1 − ηφ(t)

d+1

]
1
N

[
∂σ̌rmr(t, σ̌r)

]2
kd+2 × (E.113)

× 1
β

∞∑
n=−∞

1[
ω2
n + k2 + ∂2

σ̌r
Ǔ(t, σ̌r)

]2 1
(νn−m + iµ)2 + k2 +m2

r (t, σ̌r)
,

while for d = 1 we still find

ηψ(t) = 0 . (E.114)

Flow equation of the anomalous dimension fermion – N → ∞ limit

In the limit N → ∞ one finds that the fermionic anomalous dimension does not evolve at all –
independent of the number of spatial dimensions d,

lim
N→∞

ηψ(t) = 0 . (E.115)



Appendix F

Mean-field Gross-Neveu
calculations

Abstract In this appendix we provide supplemental material to Chapter 11. This comprises
renormalization and explicit evaluation of several quantities in the N → ∞ bGN model for zero or
non-zero values of µ, T , σ, (and q). We provide formulae for the effective potential and its field-
space derivative, the bosonic wave-function renormalization, and the bosonic two-point function in
Appendix F.1. In the second half, in Appendix F.2, we present formulae for some thermodynamic
quantities.

Disclosure The explicit calculations and results for the bosonic wave-function renormalization
and bosonic two-point function are – to the best of our knowledge – mostly new and complement
our own Ref. [5]. Also the evaluation of the other quantities up to this level of details seems to be
new. Still, the general expressions can be found elsewhere, see main text.

F.1. Field-theoretical quantities
First, we renormalize and evaluate several field-theoretical quantities of the GN model at N → ∞.

F.1.1. The effective potential
Consider the renormalized effective potential (11.21),

U(σ, µ, T ) = (F.1)

= dγ
4π

[
1
2 (hσ)2

[
ln
(

(hσ)2

(hσ0)2

)
− 1
]

−
∫ ∞

−∞
dp
[
T ln

(
1 + e−E+µ

T

)
+ T ln

(
1 + e−E−µ

T

)]]
.

For the sake of simplicity, we define the “thermal contribution” to the effective potential,

U th(σ, µ, T ) ≡ − dγ
4π

∫ ∞

−∞
dp
[
T ln

(
1 + e−E+µ

T

)
+ T ln

(
1 + e−E−µ

T

)]
. (F.2)

To obtain an expression for T = 0, we first study the limit

lim
x→∞

1
x ln

(
1 + e−xb ) , (F.3)
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where x = |µ|
T and b = E

|µ| ± 1. For b ≥ 0 the expression vanishes, which is always true for the
positive sign in b. However, for b < 0 we can use l’Hôpital’s rule, because the limit

lim
x→∞

− b

exb +1 = −b , (F.4)

exists. Hence, we find for Eq. (F.2),

U th(σ, µ, 0) = dγ
4π |µ|

∫ ∞

−∞
dp
(
E
|µ| − 1

)
Θ
(

|µ|
E − 1

)
= (F.5)

= dγ
2π µ

2 Θ
(

µ2

(hσ)2 − 1
)∫ √1− (hσ)2

µ2

0
dt
[√

t2 + (hσ)2

µ2 − 1
]

=

=


dγ
4π (hσ)2

[
arsinh

(√
µ2

(hσ)2 − 1
)

− µ2

(hσ)2

√
1 − (hσ)2

µ2

]
, if (hσ)2 < µ2 ,

0 , if (hσ)2 ≥ µ2 .

Here, the Heaviside function in the second line is to be understood symbolically as a distinction
of cases. From Eq. (F.5) we directly observe that the vacuum part of the effective potential (F.1)
at T = 0 is only modified for field values (hσ)2 < µ2.

On the other hand, setting σ = 0 in Eq. (F.2), we can use the definition of the dilogarithm (A.75)
and the corresponding identity (A.76),

U th(0, µ, T ) = (F.6)

= − dγ
2π T

2
∫ ∞

0
du
(

ln
[
1 + e−(u+ µ

T ) ]+ ln
[
1 + e−(u− µ

T ) ]) =

= − dγ
2π T

2
[ ∫ − e− µ

T

0
dt 1

t ln(1 − t) +
∫ − e

µ
T

0
dt 1

t ln(1 − t)
]

=

= dγ
2π T

2[Li2
(

− e−µ̃ )+ Li2
(

− e+µ̃ )] =

= − dγ
2π
[
π2

6 T 2 + 1
2 µ

2] .
From the second to the third line we substituted

t = − e−u∓ µ
T , du = − dt

t . (F.7)

Apart from the normalization of the vacuum pressure, the thermal contribution to the effective
potential from Eq. (F.6) actually corresponds to the negative of the Boltzmann pressure of a free
gas in 1 + 1 dimensions.

Summarizing, we find from Eqs. (F.1) and (F.6) for σ = 0,

U(0, µ, T ) = − dγ
2π
[
π2

6 T 2 + 1
2 µ

2] , (F.8)

which is especially relevant in the Z2-symmetric phase, where the physical minimum is located at
σ = 0. For µ = 0 and σ ̸= 0 Eq. (F.1) slightly simplifies,

U(σ, 0, T ) = dγ
4π

[
1
2 (hσ)2

[
ln
(

(hσ)2

(hσ0)2

)
− 1
]

− 4
∫ ∞

0
dp T ln

(
1 + e−E

T

)]
. (F.9)
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Setting σ = 0 in this result, we can again use the dilogarithm Eq. (A.75) and relation (A.77) to
simplify

U(0, 0, T ) = dγ
2π T

2 2 Li2(−1) = − dγ
2π

π2

6 T 2 . (F.10)

This is consistent with Eq. (F.8).
On the other hand, combining Eqs. (F.1) and (F.5), we find for T = 0,

U(σ, µ, 0) = (F.11)

= dγ
8π (hσ)2

[
ln
(

(hσ)2

(hσ0)2

)
− 1
]

+

+


dγ
4π (hσ)2

[
arsinh

(√
µ2

(hσ)2 − 1
)

− µ2

(hσ)2

√
1 − (hσ)2

µ2

]
, if (hσ)2 < µ2 ,

0 , if (hσ)2 ≥ µ2 .

Evaluating the last expression for µ ̸= 0 and taking the limit σ → 0 or evaluating Eq. (F.8) for
T = 0, we find

U(0, µ, 0) = − dγ
4π µ

2 . (F.12)

In vacuum, for T = 0 and µ = 0, we obtain

U(σ, 0, 0) = dγ
8π (hσ)2

[
ln
(

(hσ)2

(hσ0)2

)
− 1
]
, (F.13)

U(0, 0, 0) = 0 . (F.14)

All results of this section can in principle be modified by an overall additional constant, which
cannot be observed since one can only measure energy differences and not absolute energies.

F.1.2. The derivative of the effective potential
The starting point is Eq. (11.22),

∂σU(σ, µ, T ) = dγ
2π h

2σ

[
1
2 ln

(
(hσ)2

(hσ0)2

)
+
∫ ∞

0
dp 1

E

[
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)]]
= (F.15)

= dγ
2π h

2σ

[
1
2 ln

(
(hσ)2

(hσ0)2

)
+
∫ ∞

0
dp 1

E

[
1 − 1

2 tanh
(
E+µ
2T
)

− 1
2 tanh

(
E−µ
2T
)]]

.

First, we study non-zero temperatures. For σ = 0 this expression vanishes,

∂σU(0, µ, T ) = 0 , (F.16)

because both terms in the square bracket in Eq. (F.15) are merely logarithmically divergent at
σ = 0. This divergence is regulated by the linear prefactor σ.
On the other hand, for µ = 0, only the momentum integral in Eq. (F.15) simplifies slightly,

∂σU(σ, 0, T ) = dγ
2π h

2σ

[
1
2 ln

(
(hσ)2

(hσ0)2

)
+ 2

∫ ∞

0
dp 1

E nf
(
E
T

)]
= (F.17)

= dγ
2π h

2σ

[
1
2 ln

(
(hσ)2

(hσ0)2

)
+
∫ ∞

0
dp 1

E

[
1 − tanh

(
E
2T
)]]

.
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Again, taking σ = 0 in this expression, we find

∂σU(0, 0, T ) = 0 . (F.18)

For T = 0 we can use Eq. (B.10) to rewrite Eq. (F.15),

∂σU(σ, µ, 0) = dγ
2π h

2σ

[
1
2 ln

(
(hσ)2

(hσ0)2

)
+
∫ ∞

0
dp 1

E Θ
(

|µ|
E − 1

)]
= (F.19)

= dγ
4π h

2σ ln
(

(hσ)2

(hσ0)2

)
+


dγ
2π h

2σ arsinh
(√

µ2

(hσ)2 − 1
)
, if (hσ)2 < µ2 ,

0 , if (hσ)2 ≥ µ2 .

This result is consistent with taking a σ-derivative of Eq. (F.11). Setting T = 0 in Eq. (F.16) or
considering the limit σ → 0 in Eq. (F.19) results in,

∂σU(0, µ, 0) = 0 . (F.20)

Finally, for µ = 0 and T = 0 we consistently obtain from the above equations

∂σU(σ, 0, 0) = dγ
4π h

2σ ln
(

(hσ)2

(hσ0)2

)
, (F.21)

∂σU(0, 0, 0) = 0 . (F.22)

F.1.3. The bosonic two-point function
In this appendix, we evaluate the bosonic two-point function as far as possible in terms of known
functions. For this purpose, we distinguish the 16 cases where the variables σ, µ, T , and q take
values that are either zero or non-zero.
The starting point of our discussion are the intermediate results (11.50) and (11.51) after evaluation
of the Matsubara sum in Eq. (11.46) for (non-)vanishing external momentum,

Γ(2)(σ, µ, T, q) = (F.23)

= dγ
2π h

2
[

1
2 ln

(
(2Λ)2

(hσ0)2

)
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)
−
∫ ∞
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)
− nf

(
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−

−
∫ ∞

−∞
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[
p q − 2 (hσ)2]( 1
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q

[
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(Eq+µ
T

)
− nf
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T
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+

+ 1
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1
E2
q−E2

[
1 − nf

(
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T

)
− nf

(
E−µ
T

)])]
,

Γ(2)(σ, µ, T, 0) = (F.24)

= dγ
2π h

2
[

1
2 ln

(
(2Λ)2

(hσ0)2

)
+ O

(
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)
−
∫ ∞

−∞
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2E
[
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(
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)
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(
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+
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∫ ∞

−∞
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4E3

(
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+
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(
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(
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T

)
− nf

(
E+µ
T

)
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(
E−µ
T

)]))]
.
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We start our analysis considering non-zero temperatures, T ̸= 0. First, we analyze the case µ ̸= 0
and σ ̸= 0. Having σ ̸= 0 is crucial in the next steps, because the non-zero fermion mass hσ in
the energies E renders all integrals in Eqs. (F.23) and (F.24) IR-finite.
To treat the UV-divergent contribution, which is identical for both expressions and q-independent,
we have to use a sharp UV-cutoff Λ,

∫ ∞

−∞
dp 1

2E ⇒
∫ Λ

0
dp 1√

p2+(hσ)2
= arcoth

(√
1 + (hσ)2

Λ2

)
= (F.25)

= 1
2 ln

(
(2Λ)2

(hσ)2

)
+ O

(
(hσ)2

Λ2

)
.

With the substitution p′ = −(p+ q) we rewrite the second integral in Eq. (F.23) as follows

−
∫ ∞

−∞
dp
[
p q − 2 (hσ)2]( 1

2Eq
1

E2−E2
q

[
1 − nf

(Eq+µ
T

)
− nf

(Eq−µ
T

)]
+ (F.26)

+ 1
2E

1
E2
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[
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(
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)
− nf

(
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T

)])]
=

= 2
[
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]

(hσ)2
∫ ∞

−∞
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E
1

E2
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[
1 − nf

(
E+µ
T

)
− nf

(
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T

)]
=

= 2
[
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]

(hσ)2
∫ ∞

0
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(
1

E2
q−E2 + 1

E2
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) [
1 − nf

(
E+µ
T

)
− nf

(
E−µ
T

)]
.

In the last step, we split the integral at p = 0 and substituted p → −p in the domain of negative
p. To the best of our knowledge, the contribution to the integral involving the Fermi-Dirac
distribution functions (B.2) cannot be further evaluated analytically in a reasonable way for T ̸= 0,
µ ̸= 0, and σ ̸= 0 and a numerical calculation is needed. Here, some care is required, due to the
pole at p = |q|

2 .
However, the T -independent part can be integrated analytically. In a first step, we introduce the
variables t = p

hσ and a = q
hσ .

(hσ)2
∫ ∞

0
dp 1

E

(
1

E2
q−E2 + 1

E2
−q−E2

)
=
∫ ∞

0
dt 1√

t2+1

(
1

(t+a)2−t2 + 1
(t−a)2−t2

)
(F.27)

For the sake of simplicity, we for the moment assume that q > 0 and hσ > 0, thus also a > 0,
which will not alter the final result. To handle the pole at t = a

2 in the second term, one has to
split the integral about the pole into two integration domains [0, a2 − ε] and [a2 + ε,∞] and use the
Cauchy principal value [33] for the integral. The solution of the integral over the first term is

∫ ∞

0
dt 1√

t2+1
1

(t+a)2−t2 = 1
a

1√
a2+4 artanh

(
at−2√

a2+4
√

1+t2

)∣∣∣∞
0

= (F.28)

= 1
a

1√
a2+4

[
arcoth

(√
4
a2 + 1

)
+ arcoth

(√
a2

4 + 1
)]
.

The Cauchy principal value, for ε → 0, of the integral over the second term is

p. v.
∫ ∞

0
dt 1√

t2+1
1

(t−a)2−t2 = 1
a

1√
a2+4

[
arcoth

(√
4
a2 + 1

)
− arcoth

(√
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4 + 1
)]
. (F.29)
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Combining these intermediate results, we find

2
[

q2

(2hσ)2 + 1
]

(hσ)2
∫ ∞

0
dp 1

E

(
1

E2
q−E2 + 1

E2
−q−E2

)
= (F.30)

=
√

(2hσ)2

q2 + 1 arcoth
(√

(2hσ)2

q2 + 1
)
,

which is again formulated symmetrically in q and hσ and therefore also valid for negative values
of q and hσ.
It remains to evaluate the T -independent integral

2 (hσ)2
∫ ∞

−∞
dp 1

4E3 =
∫ ∞

0
dt (t2 + 1)− 3

2 = 1 , (F.31)

from Eq. (F.24).
Combing Eqs. (F.23), (F.25), (F.26), and (F.30) and sending the UV cutoff to infinity our first
renormalized final result for the bosonic two-point function is

Γ(2)(σ, µ, T, q) = (F.32)

= dγ
2π h

2
[

1
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+
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[
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)
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(
E−µ
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)]]
,

Note that the remaining integral in the last line still has a pole at p = |q|
2 .

For vanishing external momentum, it follows from Eqs. (F.24), (F.25), and (F.31),

Γ(2)(σ, µ, T, 0) = (F.33)

= dγ
2π h
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−
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−
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)
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− nf

(
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)])]
.

Next, we study the cases where σ vanishes. However, we restart with Eqs. (F.23) and (F.24) and
do not use our previous results, to better handle the newly introduced IR divergences. This can be
seen from the second term in the first line and the integral in the last line of Eq. (F.32), which are
separately IR-divergent, but arise from the second integral in Eq. (F.23) that is actually IR-finite
for σ → 0. This is seen best by analyzing the limit p → 0 of the argument of the integral in the
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last line of Eq. (F.26) with σ = 0,

lim
p→0

1
E

(
1

E2
q−E2 + 1

E2
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) [
1 − nf

(
E+µ
T

)
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) [
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+ tanh
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=

= 1
q2

1
T

1
cosh2( µ

2T ) ,

which does not diverge as long as T ̸= 0 and q ̸= 0. The same is true for the second integral in
Eq. (F.24), which vanishes due to the (hσ)2 prefactor. This is directly understood by returning
to Eq. (11.46), before the Matsubara frequencies are evaluated and where hσ can be safely set to
zero.
Hence, the q-independent and identical parts of Eqs. (F.23) and (F.24) are the problematic IR-
(and UV-)divergent contributions, which are evaluated as follows,

∫ ∞
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⇒ (F.35)

⇒
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( Λ
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( Λ
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(
µ
T

)
− γ + ln(ε) =

= ln
(Λ
T

)
+ DLi0

(
µ
T

)
+ γ .

Here, we first introduced the new variable t = p
T , the same UV-cutoff Λ as before (for the UV-

divergent contribution), and the dimensionless IR-cutoff ε. Additionally, we used the definition
of the incomplete polylogarithm Eq. (A.61). The limit s → 0 from the third to fourth line can
be evaluated according to Eq. (A.94) for small ε. In total the IR divergences perfectly cancel.
Inserting this result into Eqs. (F.23) and (F.24) for σ = 0 also the UV divergence cancels and we
obtain the renormalized results

Γ(2)(0, µ, T, q) = dγ
2π h

2
[

1
2 ln

(
(2T )2

(hσ0)2

)
− γ − DLi0

(
µ
T

)
+ (F.36)

+ q2

2

∫ ∞

0
dp 1

p

(
1

(p+q)2−p2 + 1
(p−q)2−p2

) [
1 − nf

(
p+µ
T

)
− nf

(
p−µ
T

)]]
,

Γ(2)(0, µ, T, 0) = dγ
2π h

2
[

1
2 ln

(
(2T )2

(hσ0)2

)
− γ − DLi0

(
µ
T

)]
. (F.37)

The remaining integral in Eq. (F.36) again needs numerical evaluation with careful treatment of
the pole at p = |q|

2 , but is, as already mentioned, IR-finite for T ̸= 0 and q ̸= 0.
Next, we provide the results for µ = 0, but T ̸= 0, σ ̸= 0. These can be derived by setting µ = 0
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in Eqs. (F.32) and (F.33) and slightly simplifying the integrals,

Γ(2)(σ, 0, T, q) = (F.38)

= dγ
2π h

2
[

1
2 ln

(
(hσ)2

(hσ0)2

)
+
√

(2hσ)2

q2 + 1 arcoth
(√

(2hσ)2

q2 + 1
)

+ 2
∫ ∞

0
dp 1

E nf
(
E
T

)
−

− 4
[

q2

(2hσ)2 + 1
]

(hσ)2
∫ ∞

0
dp 1

E

(
1

E2
q−E2 + 1

E2
−q−E2

)
nf
(
E
T

)]
,

Γ(2)(σ, 0, T, 0) = (F.39)

= dγ
2π h

2
[

1
2 ln

(
(hσ)2

(hσ0)2

)
+ 1 + 2

∫ ∞

0
dp 1

E nf
(
E
T

)
−

− 2 (hσ)2
∫ ∞

0
dp 1

E3

(
nf
(
E+µ
T

)
− E

T

[
n2

f
(
E
T

)
− nf

(
E
T

)]))]
.

In order to study the scenario µ = 0 at vanishing σ, we return to Eqs. (F.36) and (F.37) and use
Eq. (A.83). We find,

Γ(2)(0, 0, T, q) = dγ
2π h

2
[

1
2 ln

(
(πT )2

(hσ0)2

)
− γ + (F.40)

+ q2

2

∫ ∞

0
dp 1

p

(
1

(p+q)2−p2 + 1
(p−q)2−p2

) [
1 − 2nf

(
p
T

)]]
,

Γ(2)(0, 0, T, 0) = dγ
2π h

2
[

1
2 ln

(
(πT )2

(hσ0)2

)
− γ

]
. (F.41)

The integral Eq. (F.40) is still IR-finite, compare Eq. (F.34) at µ = 0, but again needs numerical
treatment with focus on the pole at p = |q|

2 .
To analyze Eqs. (F.23) and (F.24) in the limit of vanishing temperature, we first study the zero-
temperature limit of the integral

lim
|µ|
T →∞

∫ ∞

0
dp 1

E3
E
T

[
n2

f
(
E+µ
T

)
+ n2

f
(
E−µ
T

)
− nf

(
E+µ
T

)
− nf

(
E−µ
T

)])
= (F.42)

= lim
|µ|
T →∞

− 1
|µ|

∫ ∞

0
dp 1

E2

[
|µ|
2T

2 cosh2
(

|µ|
2T

(
E
|µ| + 1

)) +
|µ|
2T

2 cosh2
(

|µ|
2T

(
E
|µ| − 1

))] =

= − 1
|µ|

∫ ∞

0
dp 1

E2

[
δ
(
E
|µ| + 1

)
+ δ
(
E
|µ| − 1

)]
.

In the first step, we used relation (B.4). In the second step the representation (A.2) of the Dirac
delta distribution was used. This result as well as Eq. (B.10) is inserted into Eqs. (F.32) and (F.33),

Γ(2)(σ, µ, 0, q) = (F.43)

= dγ
2π h

2
[

1
2 ln

(
(hσ)2

(hσ0)2

)
+
√

(2hσ)2

q2 + 1 arcoth
(√

(2hσ)2

q2 + 1
)

+
∫ ∞

0
dp 1

E Θ
(

|µ|
E − 1

)
−
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− 2
[

q2

(2hσ)2 + 1
]

(hσ)2
∫ ∞

0
dp 1

E

(
1

E2
q−E2 + 1

E2
−q−E2

)
Θ
(

|µ|
E − 1

)]
,

Γ(2)(σ, µ, 0, 0) = (F.44)

= dγ
2π h

2
[

1
2 ln

(
(hσ)2

(hσ0)2

)
+ 1 +

∫ ∞

0
dp 1

E Θ
(

|µ|
E − 1

)
−

− (hσ)2
(∫ ∞

0
dp 1

E3 Θ
(

|µ|
E − 1

)
+ 1

|µ|

∫ ∞

0
dp 1

E2

[
δ
(
E
|µ| + 1

)
+ δ
(
E
|µ| − 1

)])]
.

Next, we evaluate the individual contributions. The integral in the first lines of Eqs. (F.43)
and (F.44) evaluates to

∫ ∞

0
dp 1

E Θ
(

|µ|
E − 1

)
=


artanh

(√
1 − (hσ)2

µ2

)
, if (hσ)2 < µ2 ,

0 , if (hσ)2 ≥ µ2 .
(F.45)

The integrals in the third line of Eq. (F.44) are solved by

(hσ)2
∫ ∞

0
dp 1

E3 Θ
(

|µ|
E − 1

)
=


√

1 − (hσ)2

µ2 , if (hσ)2 < µ2 ,

0 , if (hσ)2 ≥ µ2 ,
(F.46)

and

(hσ)2

|µ|

∫ ∞

0
dp 1

E2

[
δ
(
E
|µ| + 1

)
+ δ
(
E
|µ| − 1

)]
=


(hσ)2

µ2
1√

1− (hσ)2
µ2

if (hσ)2 < µ2 ,

0 if (hσ)2 ≥ µ2 ,

(F.47)

where we used identity (A.3).
The tricky contribution is the integral in the last line of Eq. (F.43),

− 2
[

q2

(2hσ)2 + 1
]

(hσ)2
∫ ∞

0
dp 1

E

(
1

E2
q−E2 + 1

E2
−q−E2

)
Θ
(

|µ|
E − 1

)
. (F.48)

If (hσ)2 ≥ µ2 this integral vanishes, due to the Heaviside function. Otherwise, for (hσ)2 < µ2, the
integral is cut off in the UV at momenta

√
µ2 − h2σ2. The challenge in evaluating the latter case

is again the pole p = |q|
2 in the second term. If the pole is outside the integration domain, hence

|q|
2 >

√
µ2 − h2σ2 the integral can be solved directly. If the pole is inside the integration domain,

thus |q|
2 <

√
µ2 − h2σ2, one has to use again the Cauchy principal value by splitting the integral

about the pole, cf. Eq. (F.30).
In total, the combined results are

Γ(2)(σ, µ, 0, q) = (F.49)

= dγ
2π h

2
[

1
2 ln

(
(hσ)2

(hσ0)2

)
+
√

1 + (2hσ)2

q2 arcoth
(√

1 + (2hσ)2

q2

)]
+
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+ dγ
2π h

2


artanh

(√
1 − (hσ)2

µ2

)
− 1

2

√
1 + (2hσ)2

q2

artanh

 2(hσ)2
µq +

√
1− (hσ)2

µ2√
1+ (2hσ)2

q2

+

0 ,

+ artanh

− 2(hσ)2
µq +

√
1− (hσ)2

µ2√
1+ (2hσ)2

q2

 , if (hσ)2 < µ2 ,

if (hσ)2 ≥ µ2 .

Inserting Eqs. (F.45) to (F.47) in Eq. (F.44)

Γ(2)(σ, µ, 0, 0) = (F.50)

= dγ
2π h

2
[

1
2 ln

(
(hσ)2

(hσ0)2

)
+ 1
]

+ dγ
2π h

2


artanh

(√
1 − (hσ)2

µ2

)
− 1√

1− (hσ)2
µ2

, if (hσ)2 < µ2 ,

0 , if (hσ)2 ≥ µ2 .

Equations (F.49) and (F.50) are consistent, because in the limit of vanishing external momentum
q, but constant σ ̸= 0,

lim
|hσq |→∞

√
1 + (2hσ)2

q2 arcoth
(√

1 + (2hσ)2

q2

)
= 1 , (F.51)

and

lim
|hσq |→∞

√
1 + (2hσ)2

q2

artanh

 2(hσ)2
µq +

√
1− (hσ)2

µ2√
1+ (2hσ)2

q2

+ artanh

− 2(hσ)2
µq +

√
1− (hσ)2

µ2√
1+ (2hσ)2

q2

 =

= 2√
1− (hσ)2

µ2

. (F.52)

On the other hand, to study the limit σ → 0 of Eqs. (F.49) and (F.50), we need the asymptotic
expansion

lim
|σ|→0

artanh
(√

1 − (hσ)2

µ2

)
= 1

2 ln
(

(2µ)2

(hσ)2

)
+ O(σ2) , (F.53)

and for Eq. (F.49) additionally the limiting behavior of

lim
|σ|→0

√
1 + (2hσ)2

q2 arcoth
(√

1 + (2hσ)2

q2

)
= 1

2 ln
(

q2

(hσ)2

)
+ O(σ2) , (F.54)

as well as,

lim
|σ|→0

√
1 + (2hσ)2

q2

artanh

 2(hσ)2
µq +

√
1− (hσ)2

µ2√
1+ (2hσ)2

q2

+ artanh

− 2(hσ)2
µq +

√
1− (hσ)2

µ2√
1+ (2hσ)2

q2

 =

= 1
2 ln

(
(hσ)2

(2µ)2

)
+ 1

2 ln
(

|(2µ)2−q2|
q2

)
+ O(σ2) . (F.55)
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Combining these results, we find that all IR divergences perfectly cancel, such that the final results
read

Γ(2)(0, µ, 0, q) = dγ
4π h

2 ln
(

|(2µ)2−q2|
(hσ0)2

)
, (F.56)

Γ(2)(0, µ, 0, 0) = dγ
4π h

2 ln
(

(2µ)2

(hσ0)2

)
. (F.57)

To study the cases where T = 0, µ = 0, but σ ̸= 0 we can again use Eqs. (F.49) and (F.50) and
just set µ = 0,

Γ(2)(σ, 0, 0, q) = dγ
2π h

2
[

1
2 ln

(
(hσ)2

(hσ0)2

)
+
√

1 + (2hσ)2

q2 arcoth
(√

1 + (2hσ)2

q2

)]
, (F.58)

Γ(2)(σ, 0, 0, 0) = dγ
2π h

2
[

1
2 ln

(
(hσ)2

(hσ0)2

)
+ 1
]
. (F.59)

Both expressions are consistent for σ ̸= 0 because of Eq. (F.51).
However, keeping q ̸= 0 and sending σ → 0, we can use Eq. (F.54) to derive the last renormalized
result

Γ(2)(0, 0, 0, q) = dγ
4π h

2 ln
(

q2

(hσ0)2

)
. (F.60)

The same result is found, by setting µ = 0 in Eq. (F.56).
For T = µ = q = 0 and σ → 0 the bosonic two-point function diverges.

F.1.4. The bosonic wave-function renormalization
In this appendix we present detailed calculations for the bosonic wave-function renormalization
Zσ(σ, µ, T ) in the mean-field approximation. We start with the derivation of Eq. (11.44), which
is the generic formula for Zσ(σ, µ, T ) before the Matsubara sums are performed. Afterwards, we
evaluate this result as far as possible in terms of known functions and regularize and renormalize
divergent contributions, if needed. However, some leftover integrals still call for a numerical treat-
ment. Finally, we end up with eight different cases for Zσ(σ, µ, T ), where σ, µ, and T take either
values that are zero or non-zero.

The starting point for the derivation of Eq. (11.44) is the generic formula for the bosonic two-point
function in Eq. (11.46). The bosonic wave-function renormalization is defined as the second-order
coefficient of the Taylor series of Γ(2)(σ, µ, T, q) in q about q = 0, as long as Γ(2)(σ, µ, T, q) is
expandable about q = 0. A straightforward calculation demonstrates the correctness of Eq. (11.44),

Zσ(σ, µ, T ) ≡ (F.61)

≡ 1
2

d2Γ(2)(σ, µ, T, q)
dq2

∣∣∣∣
q=0

=

= − dγh
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2

∫ ∞
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]∣∣∣∣
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=
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2

2

∫ ∞
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1
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× d
dq

[
p

(νn + iµ)2 + E2
q
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It remains the perform the Matsubara sums, which can be evaluated by hand. Using the results
of the sums (B.20) and (B.23) and identities (B.2), (B.4), and (B.6) one finds

Zσ(σ, µ, T ) = (F.62)
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+
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.
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This is our starting point for a detailed analysis of the various cases.
First, we analyze this result for non-zero temperatures, T ̸= 0, and σ ̸= 0 as well as µ ̸= 0. In
this setup, all terms that are contributing to Zσ(σ, µ, T ) are UV- and IR-finite. However, the only
contributions which can be further simplified are the two vacuum contributions,∫ ∞

−∞
dp 1

E3 = 2
(hσ)2 ,

∫ ∞

−∞
dp 1

E5 = 4
3

1
(hσ)4 . (F.63)

Hence, the first (renormalized) result reads,

Zσ(σ, µ, T ) = (F.64)
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−
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.

The same result is obtained when 1
2

d2

dq2 is directly applied to the renormalized bosonic two-point
function (F.32) and evaluated for q → 0. This was cross-checked using Mathematica [147].
The more tricky scenario at non-zero temperature is when σ = 0, because the first integral
in Eq. (F.62) is strongly IR-divergent without the fermion mass (hσ)2 in the energies E. The
second integral does no longer contribute to Zσ(σ, µ, T ), due to the (hσ)2 prefactor. This is easily
understood from the last line of Eq. (F.61), where the Matsubara sums are not yet evaluated.
Consequently, within the following steps it is required to introduce a (dimensionless) IR-cutoff
ε, which is removed after renormalization. To this end we also substitute t = p

T during the
calculation.

Zσ(0, µ, T ) = (F.65)
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ε,− exp

(
µ
T

))
+ Lis

(
ε,− exp

(
− µ

T

))]
=

= − dγh
2

8π
1
T 2

[
− 1

2 cosh2
( µ

2T
) lim
ε→0

1
ε + 1

2 lim
ε→0

1
ε2 +

+ 1
2 DLi−2

(
µ
T

)
− 1

2 lim
ε→0

1
ε2 + 1

2 cosh2
( µ
T

) lim
ε→0

1
ε

]
=

= − dγh
2

16π
1
T 2 DLi−2

(
µ
T

)
.

In this calculation, we first used integration by parts to formulate the problem in terms of (incom-
plete) polylogarithms Eq. (A.61). The last step, the limit s → −2, which corresponds to a careful
extraction of the IR divergences, is actually derived in Eq. (A.97). Since all IR-cutoff dependent
terms cancel exactly, the cutoff is easily removed from the final result.
Again, we cross-checked our result with directly taking the derivative of Eq. (F.36) w.r.t. q and
evaluating at q = 0.
A result that trivially follows from Eq. (F.64) for σ ̸= 0, µ = 0, and T ̸= 0 is

Zσ(σ, 0, T ) = (F.66)

= dγh
2

8π

[
1
3

1
(hσ)2 − 2

∫ ∞

0
dp 1

E3

(
nf
(
E
T

)
− E

T

[
n2

f
(
E
T

)
− nf

(
E
T

)])
+

+ 2 (hσ)2
∫ ∞

0
dp 1

E5

(
nf
(
E
T

)
− E

T

[
n2

f
(
E
T

)
− nf

(
E
T

)]
+

+ 1
3
E2

T 2

[
2n3

f
(
E
T

)
− 3n2

f
(
E
T

)
+ nf

(
E
T

)])]
=

= dγh
2

8π

[
1
3

1
(hσ)2 −

∫ ∞

0
dp 1

E3

(
1 − tanh

(
E
2T
)

+ 2
E

2T
2 cosh2( E2T )

)
+

+ (hσ)2
∫ ∞

0
dp 1

E5

(
1 − tanh

(
E
2T
)

+ 2
E

2T
2 cosh2( E2T ) + 2

3
( E2T )2 sinh( E2T )

cosh3( E2T )

)]
.

The last case, where T ̸= 0, but σ = 0 and µ = 0 can be derived from Eq. (F.65) making use of
Eq. (A.84),

Zσ(0, 0, T ) = 7dγh2

32π3
1
T 2 ζ(3) . (F.67)

Next, we turn to the zero-temperature results for the bosonic wave-function renormalization.
In this limit, the powers and combinations of the Fermi-Dirac distribution functions turn into
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Heaviside functions, Dirac delta distributions and derivatives of the latter, cf. Appendix B.1. We
find,

Zσ(σ, µ, 0) = (F.68)

= dγh
2

8π

[
1
3

1
(hσ)2 −

∫ ∞

0
dp 1

E3 Θ
(

|µ|
E − 1

)
− 1

|µ|

∫ ∞

0
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E2

[
δ
(
E
|µ| + 1

)
+ δ
(
E
|µ| − 1

)]
+

+ (hσ)2
(∫ ∞

0
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E5 Θ
(

|µ|
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+ 1

|µ|
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[
δ
(
E
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)
+ δ
(
E
|µ| − 1
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−

− 1
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0
dp 1

E3

[
δ′
(
E
|µ| + 1

)
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(
E
|µ| − 1

)])]
=

= dγh
2

24π
1

(hσ)2 − dγh
2

24π
1

(hσ)2


1(

1− (hσ)2
µ2

) 3
2
, if (hσ)2 < µ2 ,

0 , if (hσ)2 ≥ µ2 .

Here, we used Eqs. (F.46) and (F.47) for the integrals in the second line. The first integral in the
third line evaluates to

(hσ)2
∫ ∞

0
dp 1

E5 Θ
(

|µ|
E − 1

)
= (F.69)

= 1
3

1
(hσ)2


3
(

1 − (hσ)2

µ2

) 1
2 −

(
1 − (hσ)2

µ2

) 3
2
, if (hσ)2 < µ2 ,

0 , if (hσ)2 ≥ µ2 ,

while the second integral in the third line is

(hσ)2

|µ|

∫ ∞

0
dp 1

E4

[
δ
(
E
|µ| + 1

)
+ δ
(
E
|µ| − 1

)]
=


(hσ)2

µ4
1(

1− (hσ)2
µ2

) 1
2

if (hσ)2 < µ2 ,

0 if (hσ)2 ≥ µ2 .

(F.70)

The last integral involving the derivatives of the Dirac delta distribution yields,

− 1
3|µ|

∫ ∞

0
dp 1

E3

[
δ′
(
E
|µ| + 1

)
+ δ′

(
E
|µ| − 1

)]
= (F.71)

=


− 1

3
1

(hσ)2
(hσ)4

µ4
1(

1− (hσ)2
µ2

) 1
2

[
1(

1− (hσ)2
µ2

) + 2
]

if (hσ)2 < µ2 ,

0 if (hσ)2 ≥ µ2 .

Altogether, we obtain a result that is also found when applying 1
2

d2

dq2 to Eq. (F.49) and evaluating
the result at q = 0. This consistency check was explicitly done with Mathematica [147].
If we want to study Eq. (F.68) for σ = 0, we need to consider the following asymptotic expansion,

lim
|σ|→0

1
(hσ)2

[
1 − 1(

1− (hσ)2
µ2

) 3
2

]
= − 3

2µ2 + O(σ2) . (F.72)
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We conclude,

Zσ(0, µ, 0) = − dγh
2

16π
1
µ2 . (F.73)

However, to study σ ̸= 0 in vacuum, we merely have to evaluate Eq. (F.68) at µ = 0, which
corresponds to the second case in the distinction of cases,

Zσ(σ, 0, 0) = dγh
2

24π
1

(hσ)2 . (F.74)

It is also possible to derive the last two results directly from Eqs. (F.56) and (F.58), which was
explicitly checked. For σ = 0, µ = 0, and T = 0, the bosonic wave-function renormalization
diverges. Anyhow, this case is not physical.

F.2. Thermodynamic quantities
Here, we present calculations for some thermodynamic observables.

F.2.1. The pressure
Here, we provide the explicit expressions listed in Table 11.2a. First, we consider the pressure at
non-zero temperature.
Subtracting the vacuum pressure (11.31) from Eq. (F.8) we find for σ = 0, µ ̸= 0 and T ̸= 0,

p(0, µ, T ) = dγ
2π
[
π2

6 T 2 + 1
2 µ

2 − 1
4 (hσ0)2] , (F.75)

which is only physical in the Z2-symmetric phase.
For σ ̸= 0 and µ = 0 we combine Eqs. (11.31) and (F.9) and find

p(σ, 0, T ) = dγ
4π

[
− 1

2 (hσ)2
[

ln
(

(hσ)2

(hσ0)2

)
− 1
]

− 1
2 (hσ0)2 + (F.76)

+ 4
∫ ∞

0
dp T ln

(
1 + e−E

T

)]
.

This result can be used in the Z2-symmetry broken phase along the T -axis.
From the above two results or by combining Eqs. (11.31) and (F.10) it directly follows that

p(0, 0, T ) = dγ
2π
[
π2

6 T 2 − 1
4 (hσ0)2] , (F.77)

which is physical on the T -axis above the critical temperature Tc = eγ
π

.
Next, we turn to T = 0 and find from Eqs. (11.31) and (F.11),

p(σ, µ, 0) = (F.78)

= − dγ
8π

[
(hσ)2

[
ln
(

(hσ)2

(hσ0)2

)
− 1
]

+ (hσ0)2
]

−

−


dγ
4π (hσ)2

[
arsinh

(√
µ2

(hσ)2 − 1
)

− µ2

(hσ)2

√
1 − (hσ)2

µ2

]
, if (hσ)2 < µ2 ,

0 , if (hσ)2 ≥ µ2 .

Only the second case is physical for σ ̸= 0.
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For vanishing σ, the combination of Eqs. (11.31) and (F.12) or the limit σ → 0 of the previous
result yields

p(0, µ, 0) = dγ
4π
[
µ2 − 1

2 (hσ0)2] , (F.79)

which describes the physical situation in the Z2-symmetric phase on the µ-axis. At µ = 0 and
T = 0, we obtain the physically relevant result from combining Eqs. (11.31) and (F.13),

p(σ, 0, 0) = − dγ
8π

[
(hσ)2

[
ln
(

(hσ)2

(hσ0)2

)
− 1
]

+ (hσ0)2
]
, (F.80)

which vanishes for σ = σ0 by construction. From Eqs. (11.31) and (F.14) we also find the non-
physical expression,

p(0, 0, 0) = − dγ
8π (hσ0)2 . (F.81)

F.2.2. The baryon number density
In Section 11.2.4 we derived the formula for the baryon number density (11.35). Here, we derive
the formula for the various limits and cases listed in Table 11.2b. We start with Eq. (11.35),

n(σ, µ, T ) = − ∂
∂µU(σ, µ, T ) = (F.82)

= − dγ
4π

∫ ∞

−∞
dp
[
nf
(
E+µ
T

)
− nf

(
E−µ
T

)]
=

= − dγ
4π

∫ ∞

−∞
dp
[

− 1
2 tanh

(
E+µ
2T
)

+ 1
2 tanh

(
E−µ
2T
)]
.

For σ = 0 we identify the integral as a Fermi-Dirac integral (A.86) with s = 0, thus Eq. (A.91),
which can be solved analytically,

n(0, µ, T ) = − dγ
4π

∫ ∞

−∞
dp
[
nf
(
p+µ
T

)
− nf

(
p−µ
T

)]
= (F.83)

= − dγ
2π T
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[
nf
(
t+ µ

T

)
− nf

(
t− µ

T
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=

= − dγ
2π T Γ(1)

[
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(
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)
− F0

(
µ
T

)]
=

= − dγ
2π T ln

(
1+e− µ

T

1+e
µ
T

)
=

= dγ
2π µ .

This expression is the physical result in the Z2-symmetric phase at non-zero µ and non-zero T
and consistent with taking the negative of the µ-derivative of Eq. (F.8).
The baryon number density is anti-symmetric in µ and therefore vanishes for µ = 0 along the
T -axis of the phase diagram, independent of whether one is in the Z2-symmetric or symmetry
broken phase, hence independent of σ,

n(σ, 0, T ) = 0 , (F.84)

n(0, 0, T ) = 0 , (F.85)
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Assuming σ ̸= 0, one finds along the µ-axis for T = 0 from Eq. (B.11),

n(σ, µ, 0) = dγ
2π sgn(µ)

∫ ∞

0
dpΘ

(
|µ|
E − 1

)
=


dγ
2π µ

√
1 − (hσ)2

µ2 if (hσ)2 < µ2 ,

0 if (hσ)2 ≥ µ2 .
(F.86)

This result is consistent with taking the negative µ-derivative of Eq. (F.11). The upper case, where
(hσ)2 < µ2 is of physical relevance in the Z2-symmetric phase for T = 0, where σ is evaluated at
the trivial minimum, thus σ = 0. In this scenario, the expression further simplifies and we again
obtain Eq. (F.83), which is T -independent,

n(0, µ, 0) = dγ
2π µ , (F.87)

In the Z2-symmetry broken phase (hσ)2 evaluated at the physical minimum is always larger than
µ2 and the second case of Eq. (F.86) applies where the baryon density vanishes. In vacuum, µ = 0
and T = 0,

n(σ, 0, 0) = 0 , (F.88)

n(0, 0, 0) = 0 . (F.89)

Even though both expressions are consistent with all previous equations, the physical situation
for µ = 0 and T = 0 is described by a non-vanishing condensate, thus Eq. (F.88).

F.2.3. The internal energy

The internal energy density is discussed for all limiting cases of Table 11.2c. We start by considering
Eq. (11.40),

E(σ, µ, T ) = dγ
4π

[
1
2 (hσ)2

[
ln
(

(hσ)2

(hσ0)2

)
− 1
]

+ 1
2 (hσ0)2 + (F.90)

+
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[
nf
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)
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(
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T

)]]
.

Using the definition of the Fermi-Dirac integral (A.86) and relation (A.92), one arrives at

E(0, µ, T ) = dγ
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[
1
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[
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2π
( 1

4 (hσ0)2 + T 2 [F1
(

− µ
T

)
+ F1

(
µ
T

)])
=

= dγ
2π
[ 1

4 (hσ0)2 + π2

6 T 2 + 1
2 µ

2] .
Keeping σ ̸= 0 but setting µ = 0 in Eq. (F.90) only the momentum integral simplifies,

E(σ, 0, T ) = dγ
4π

[
1
2 (hσ)2

[
ln
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)
− 1
]

+ 1
2 (hσ0)2 + 4
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0
dpE nf

(
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)]
. (F.92)
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However, for σ = 0 the previous expression can be written in terms of Fermi-Dirac integral (A.86)
and one can use relation (A.92),

E(0, 0, T ) = dγ
4π

[
1
2 (hσ0)2 + 4

∫ ∞

0
dp p nf

(
p
T

)]
= (F.93)

= dγ
2π
[ 1

4 (hσ0)2 + 2T 2 F1(0)
]

=

= dγ
2π
[ 1

4 (hσ0)2 + π2

6 T 2] ,
which is consistent with µ = 0 in Eq. (F.91).
Equation (F.90) at vanishing temperature is evaluated as follows,

E(σ, µ, 0) = dγ
4π

[
1
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(F.94)

= dγ
8π

[
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− 1
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µ2 arsinh
(√
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(hσ)2 − 1
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, if (hσ)2 < µ2 ,

0 , if (hσ)2 ≥ µ2 .

Here, only the latter case corresponds to physically meaningful situations.
The correct limit of Eq. (F.94) for σ → 0 and Eq. (F.91) for T = 0 is,

E(0, µ, 0) = dγ
2π
[ 1

4 (hσ0)2 + 1
2 µ

2] . (F.95)

Consistently from Eqs. (F.92) and (F.94),

E(σ, 0, 0) = dγ
8π

[
(hσ)2

[
ln
(

(hσ)2

(hσ0)2

)
− 1
]

+ (hσ0)2
]
. (F.96)

Finally and consistent with all above results, we find the non-physical expression

E(0, 0, 0) = dγ
8π (hσ0)2 . (F.97)
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