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Abstract
Diabetes mellitus is a major risk factor for cardiovascular disease. Platelets from diabetic patients are hyperreactive and 
release microparticles that carry activated cysteine proteases or calpains. Whether platelet-derived calpains contribute to 
the development of vascular complications in diabetes is unknown. Here we report that platelet-derived calpain1 (CAPN1) 
cleaves the protease-activated receptor 1 (PAR-1) on the surface of endothelial cells, which then initiates a signaling cas-
cade that includes the activation of the tumor necrosis factor (TNF)-α converting enzyme (TACE). The latter elicits the 
shedding of the endothelial protein C receptor and the generation of TNF-α, which in turn, induces intracellular adhesion 
molecule (ICAM)-1 expression to promote monocyte adhesion. All of the effects of CAPN1 were mimicked by platelet-
derived microparticles from diabetic patients or from wild-type mice but not from CAPN1−/− mice, and were not observed 
in PAR-1-deficient endothelial cells. Importantly, aortae from diabetic mice expressed less PAR-1 but more ICAM-1 than 
non-diabetic mice, effects that were prevented by treating diabetic mice with a calpain inhibitor as well as by the platelet 
specific deletion of CAPN1. Thus, platelet-derived CAPN1 contributes to the initiation of the sterile vascular inflammation 
associated with diabetes via the cleavage of PAR-1 and the release of TNF-α from the endothelial cell surface.
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Introduction

Diabetes mellitus is a major risk factor for the develop-
ment of cardiovascular disease(s), and the morbidity and 
mortality associated with diabetes are frequently related to 
micro- and macro-vascular complications, characterized 
by accelerated atherothrombosis [2]. Several mechanisms 
contribute to such a diabetes-associated prothrombotic 
state, including endothelial dysfunction, hypercoagulabil-
ity and platelet hyperactivation [6, 45]. Although it is well 
accepted that platelets are involved in the regulation of vas-
cular homeostasis, exactly how they contribute to changes 
in the vascular wall is not fully understood. One mechanism 
by which platelets affect the vascular wall is through the 
release of factors stored in platelet granules. For example, 
following their release from α-granules chemokines; such 
as CXCL4 and CCL5, are deposited on the endothelial cell 
surface to initiate monocyte recruitment and diapedesis [22]. 
Dense granule contents also appear to play a critical role in 
thrombosis and vascular remodeling, as Hermansky–Pud-
lak syndrome 3-deficient mice; which demonstrate impaired 
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platelet dense-granule secretion, are protected from throm-
botic arterial occlusion and the development of neointimal 
hyperplasia [21]. In addition to the release of soluble fac-
tors, platelets can also affect vascular homeostasis through 
the release of platelet-derived microparticles (PMPs) that 
contain proteins and microRNAs that can be transferred to 
the vasculature [44].

One group of platelet proteins that have been linked with 
platelet hyperactivation in the context of diabetes are the 
Ca2+-dependent cysteine proteases or calpains [39]. The lat-
ter are involved in several steps of platelet activation and 
calpain activation affects integrin signaling, aggregation, 
spreading, and granule secretion [24]. Interestingly, calpains 
can also be secreted by platelets and have been detected in 
PMPs [12, 33, 37]. Indeed, calpain activity in plasma cor-
relates well with PMP levels and is significantly higher in 
plasma from diabetic subjects than from healthy volunteers 
[37]. The current study was designed to determine the rel-
evance of platelet-derived calpain 1 (CAPN1) in the vascu-
lar complications associated with diabetes by identifying 
new calpain target proteins on the surface of endothelial 
cells. Use was made of CAPN1−/− mice and mice lacking 
CAPN1 specifically in platelets (CAPN1ΔPF4 mice) to assess 
the importance of extracellular CAPN1 on endothelial cell 
activation and vascular inflammation.

Methods

The authors declare that all supporting data are avail-
able within the article and it is Electronic Supplementary 
Material.

Human subjects

A total of 30 patients with type 2 diabetes mellitus attend-
ing the clinic for routine control visits were included in the 
study (15 women, 15 men; mean age: 42.16 ± 2.39 years; age 
range: 25–60 years, hemoglobin (Hb) A1c > 8% and fast-
ing plasma glucose of 8 ± 0.75 mmol/L). The patients were 
either without treatment or treated with metformin. A total 
of 34 nondiabetic, age-matched subjects served as the con-
trol group (18 women, 16 men; mean age: 39.1 ± 2.06 years; 
age range: 23–60 years; HbA1c, 5 ± 0.7%; fasting plasma 
glucose, 5 ± 0.35 mmol/L). All individuals claimed not to 
have taken any medication known to interfere with plate-
let aggregation for at least 10 days before the experiment. 
The study protocol was approved by the ethics committee 
of the Goethe University Hospital (No. E 61/09 geschäfts 
Nr 86/09) and all of the participants gave written informed 
consent.

Animals

C57BL/6 mice (6–8 weeks of age) were purchased from 
Charles River Laboratories (Sulzfeld, Germany), and 
C57BL/6 PAR1−/− mice [4], were bred at the animal 
facilities in Mainz. C57BL/6 CAPN1 knockout mice 
(CAPN1−/−) were generated as described [37], and mice 
lacking CAPN1 specifically in platelets (referred to as 
CAPN1ΔPF4 mice) were generated by crossing C57BL/6 
floxed CAPN1 mice with PF4-deleter mice (C57BL/6-
Tg(Pf4-icre)Q3Rsko/J; The Jackson Laboratory, Bar 
Harbor, Maine, USA). Male and female mice were used 
throughout. Wild-type and CAPN1ΔPF4 littermates were 
randomly allocated to receive saline or streptozotocin 
(STZ, 50 mg/kg i.p.) to induce diabetes, blood glucose was 
controlled after 3 and 9 weeks and mice were monitored 
for total of 12 weeks. Animals with fasting plasma glucose 
more than 250 mg/dL were considered diabetic and were 
included in the study. Group sizes were determined by a 
priori power calculation. In some experiments, healthy and 
diabetic C57BL/6 mice were randomly allocated to receive 
either vehicle or the calpain inhibitor A-705253 (30 mg/
kg) in the drinking water for 12 weeks. In a second dia-
betic animal model, 6-week-old wild-type and CAPN1ΔPF4 
littermates were fed a high-fat diet (34% fat, 23.8% sugar 
and 265 mg/kg cholesterol, E15742-34, Sniff, Soest, Ger-
many) for 12 weeks. Mice that achieved a fasting plasma 
glucose over 250 mg/dL on week 12 were considered 
diabetic. Animals continued to receive the high-fat diet 
over an additional 8–12 weeks. All animals were housed 
in conditions that conform to the Guide for the Care and 
Use of Laboratory Animals published by the US National 
Institutes of Health (NIH publication no. 85–23). Both the 
university animal care committee and the Federal Authori-
ties for Animal Research, Regierungspräsidium Darmstadt 
(Hessen, Germany) approved the study (study numbers: 
F28/17_44 and FU-1204).

Statistical analysis

Data are expressed as mean ± SEM, and statistical evalua-
tion was performed using GraphPad Prism 7 software. For 
all data, D’Agostino-Pearson omnibus normality test was 
performed to confirm normal distribution. For compari-
sons between two groups, a paired or unpaired Student’s 
t test was performed where appropriate. For comparisons 
between three or more groups, one- or two-way ANOVA 
followed by Tukey’s or Sidak’s multiple comparisons post-
test were performed. Values of p < 0.05 were considered 
statistically significant. p values are given in the figures. 
Throughout the manuscript, representative images were 
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selected as those that show values close to the means of 
the results obtained from all analyzed samples.

Detailed methods can be found in the Electronic Sup-
plementary Material.

Results

Link between diabetes and the CAPN1‑dependent 
shedding of EPCR

To identify potential CAPN1 targets on the endothelial cell 
surface, cultured human endothelial cells (first passage) were 
treated with solvent or CAPN1 and the cell supernatant ana-
lyzed by mass spectrometry (MS). The calpain concentration 
used (0.3 U/ml) was chosen to match the calpain activity 
in plasma from diabetic patients (Online Fig. 1). Several 
proteins were only detected in samples from CAPN1-
treated cells, e.g. plastin-3 (an actin-binding protein) and the 
endothelial protein C receptor (EPCR), indicating that they 
are potential CAPN1 targets (Online Table 1). Consistent 
with these results, the EPCR was detectable in plasma sam-
ples from non-diabetic individuals and subjects with type 2 
diabetes, but levels were significantly higher in samples from 
the diabetic group (Fig. 1a). Moreover, there was a positive 
correlation between plasma calpain activity and EPCR levels 
(Fig. 1b). Because of these observations and the fact that 
EPCR can be cleaved from the cell membrane in different 
pathological conditions [20, 26], we focused on EPCR.

To determine whether calpain plays a causative role 
in the increase in soluble EPCR in vivo, mice were made 
diabetic with STZ and treated with either vehicle or the 
calpain inhibitor N-(1-benzyl-2-carbamoyl-2-oxoethyl)-
2-[E-2-(4-diethyl-aminomethylphenyl) ethen-1-yl]benza-
mide (A-705253; 30 mg/Kg/day) for 12 weeks. As with 
the human samples, low levels of EPCR were detected in 
plasma from healthy mice. Diabetes induction, however, 
resulted in a significant increase in plasma EPCR levels 
in the vehicle-treated, but not the calpain inhibitor-treated, 
mice (Fig. 1c). Next, intact endothelial cells were treated 
with solvent or CAPN1 to assess whether the EPCR was a 
direct CAPN1 substrate. Consistent with the MS data, west-
ern blotting and FACS analysis revealed that the expression 
of EPCR on the endothelial cell surface was attenuated by 
CAPN1 (Fig. 1d and e). However, the addition of CAPN1 to 
whole endothelial cell lysates failed to cleave EPCR, even 
though the well-characterized CAPN1 target; CD31 [30], 
was cleaved (Online Fig. 2). Thus, the effect of CAPN1 on 
EPCR shedding was indirect and not the consequence of a 
direct proteolytic cleavage (Fig. 1f).

The shedding of the EPCR is known to be regulated by 
an intracellular signaling-dependent process involving the 
tumor necrosis factor (TNF)-α-converting enzyme (TACE) 

[35]. Therefore, the possibility that CAPN1 might activate 
TACE to elicit secondary EPCR shedding was investigated. 
A basal TACE activity was detected in endothelial cells and 
was significantly increased following exposure to CAPN1 
(Fig. 1g). More importantly, a TACE inhibitor; N-(R)-[2-
(hydroxyaminocarbonyl)methyl]-4-methylpentanoyl-L–t-
butyl-alanyl-L-alanine, 2-aminoethyl amide (TAPI), pre-
vented the CAPN1-induced shedding of the EPCR (Fig. 1h). 
Thus, the effects of CAPN1 on the surface expression of 
EPCR were secondary to the CAPN1-dependent activation 
of TACE. Since the activation of TACE should logically 
lead to the generation of its primary product i.e. TNF-α, 
the effects of CAPN1 on the production of TNF-α were 
assessed. CAPN1 treatment resulted in the shedding of 
TNF-α from the endothelial cell surface confirming CAPN1-
mediated TACE activation (Fig. 1i).

Role of the protease‑activated receptor 1 (PAR‑1) 
in the response to extracellular CAPN1

Proteases such as thrombin can activate the protease-acti-
vated receptor (PAR)-1 to promote the activation of TACE 
and the subsequent shedding of EPCR [17, 18]. Therefore, 
we investigated the possibility that CAPN1 might target 
PAR-1. It was possible to show that CAPN1 induced a time-
dependent decrease in the surface expression of the N-ter-
minal domain of PAR-1, which is consistent with receptor 
activation (Fig. 2a). In this case, treating endothelial cell 
lysates with CAPN1 also resulted in the proteolytic cleav-
age of PAR-1, indicating that it was directly cleaved by the 
protease (Fig. 2b). To identify the potential CAPN1 cleav-
age site, recombinant PAR-1 was incubated with CAPN1 
in vitro and the peptides generated analyzed by MS (Online 
Table 2). Several N-terminal PAR-1 peptides were detected 
after CAPN1 treatment and although it was not possible to 
identify a specific calpain cleavage site, the peptides identi-
fied were concentrated around Arg41, which is the canonical 
thrombin cleavage site [46]. Should CAPN1 act similarly to 
thrombin, PAR-1 signaling would be expected to link extra-
cellular CAPN1 with EPCR shedding. This was the case 
as the PAR-1 antagonist; vorapaxar, prevented the CAPN1-
induced loss of EPCR from the endothelial cell surface 
(Fig. 2c). Similarly, an antibody that prevents PAR-1 cleav-
age and activation [31], also prevented the CAPN1-induced 
EPCR shedding (Online Fig. 3).

Thrombin-induced PAR-1 activation elicits Gαq-
dependent signaling to result in increased intracellular Ca2+, 
Rho activation and the phosphorylation of protein kinase 
(PK) C, extracellular regulated kinase (ERK) 1/2 and AKT 
[32]. We reasoned, therefore, that should the CAPN1-
mediated cleavage of the N-terminus of PAR-1 lead to the 
generation of a tethered ligand similar to that generated by 
thrombin, then the addition of CAPN1 to endothelial cells 
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should initiate PAR-1-dependent signaling. Indeed, extra-
cellular CAPN1 elicited a rapid (within 60 s), but subtle 
increase in intracellular Ca2+ that was not observed in cells 
pretreated with the PAR-1 antagonist (Online Fig. 4). More-
over, CAPN1 increased the phosphorylation of PKCα/β and 
ERK1/2 (Fig. 3a), without affecting AKT phosphorylation 
(Online Fig. 5a). The CAPN1-induced phosphorylation of 
ERK1/2 was prevented by the calpain inhibitor calpeptin 
as well as by the PAR-1 antagonist, and the PKC inhibitor 

Ro-318220 (Fig. 3b). A further characteristic consequence 
of PAR-1 activation in endothelial cells is the activation of 
RhoA to alter barrier function [3, 36]. CAPN1 also initiated 
RhoA activation (Fig. 3c), and increased endothelial cell 
permeability to FITC-dextran to a similar extent as thrombin 
(Fig. 3d). The latter effect of CAPN1 was also prevented by 
the PAR-1 antagonist. However, CAPN1 had no effect on 
Rac1 which has been shown to enhance barrier integrity 
(Online Fig. 5b). The effects of CAPN1 were also unrelated 

Fig. 1   Diabetes-induced calpain activation enhances EPCR shedding. 
a Plasma levels of EPCR in samples from healthy (H, n = 34) and dia-
betic patients (Dia, n = 30); (Student’s t test). b Correlation between 
EPCR levels and calpain activity assessed as the generation of 
7-amino-4-methylcoumarin (AMC) in human plasma; n = 26 individ-
uals. c EPCR levels in plasma from healthy (CTL) and streptozocin 
(STZ) diabetic mice treated in  vivo with vehicle (Veh) or A705232 
(A70, 30 mg/kg/day) for 12 weeks; n = 9 animals per group (one-way 
ANOVA and Tukey’s post-test). d Representative blot showing EPCR 
levels in membrane preparations from human endothelial cells treated 
with either solvent or CAPN1 (C1; 0.3 U/ml, 4 h). The blot shown is 
representative of 4 additional experiments. e FACS analysis of EPCR 

levels on the surface of human endothelial cells treated with either 
solvent or CAPN1 (C1; 0.3 U/ml, 4  h); n = 5 different cell batches 
each studied in duplicate (Student’s t test). f EPCR in endothelial cell 
lysates treated with solvent (Sol) or CAPN1 (C1; 0.3 U/ml, 30 min); 
n = 5 independent cell batches. g TACE activity in endothelial cells 
treated with solvent (Sol) or CAPN1 (C1; 0.3 U/ml, 15  min); n = 6 
different cell batches (Student’s t test). h EPCR levels in culture 
medium from endothelial cells treated with solvent (Sol) or CAPN1 
(0.3 U/ml, 15 min) in the absence or presence of TAPI; n = 7 different 
cell batches (two-way ANOVA and Sidak’s post-test). i Consequence 
of extracellular CAPN1 (C1; 0.3 U/ml, 4 h) on the surface expression 
of TNFα, bar = 10 µm; n = 6 different cell batches (Student’s t test)
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to non-specific effects on cell viability since neither cas-
pase 3 nor the numbers of early (FITC Annexin V positive 
and propidium iodide negative) or late (FITC Annexin V 
and propidium iodide positive) apoptotic cells were altered 
even at concentrations of up to 1 U/ml for up to 4 h (Online 
Fig. 6). These findings indicate that extracellular calpains 
can cleave the PAR-1 receptor to initiate a signaling cascade 
similar to that activated by thrombin.

CAPN1‑mediated PAR‑1 activation on endothelial 
cells induces adhesion molecule expression 
and enhances monocyte adhesion

Next, the functional consequences of CAPN1-mediated 
PAR-1 activation on endothelial cells were assessed. 
TNF-α liberated by TACE can elicit vascular inflammation 
by inducing the expression of adhesion molecules, such as, 
intercellular adhesion molecule (ICAM)-1. In endothelial 
cells cultured under basal conditions, there was no detect-
able expression of ICAM-1 and N-terminal intact PAR-1 
was readily detectable on the endothelial cell surface. 
Within four hours of CAPN1 addition to the cells, there was 
a decrease in the N-terminal PAR-1 signal and the induction 
of ICAM-1 (Fig. 4a). The effects of CAPN1 were compara-
ble with those initiated by TNF-α, and were abrogated in the 
presence of calpeptin, the PAR-1 antagonist and the TACE 

inhibitor. A similar effect was observed when TACE was 
downregulated with small interfering RNAs (Online Fig. 7a 
and b), confirming the involvement of TACE in CAPN-1-in-
duced ICAM-1 expression. Moreover, the CAPN1-induced 
increase in ICAM-1 expression was sensitive to the TNF-α 
receptor antagonist; R7050 (Fig. 4b). Extracellular CAPN1 
also elicited the rapid phosphorylation of the p65 subunit 
of nuclear factor (NF) κB (Online Fig. 7c), which was also 
inhibited by R7050 (Online Fig. 7d). Thus, the CAPN1-
induced expression of ICAM-1 was secondary to the local 
liberation of TNF-α.

Consistent with the data on ICAM-1 expression, CAPN1 
also increased the adhesion of monocytes to endothe-
lial cells, via a calpeptin-, vorapaxar- and TAPI-sensitive 
mechanism (Fig. 4c). To further confirm the dependency on 
PAR-1, experiments were repeated using endothelial cells 
from wild-type and PAR-1−/− mice. The addition of CAPN1 
or TNF-α to cells from wild-type mice resulted in changes 
similar to those observed in human endothelial cells that 
were also sensitive to calpeptin, vorapaxar and PD98059 
(Fig. 4d and e, Online Fig. 7e). Endothelial cells from PAR-
1−/− mice failed to increase ICAM-1 expression following 
the application of CAPN1, but did respond to TNF-α in a 
manner similar to the cells from wild-type mice.

CAPN1 carried by PMPs mediates the effect in vivo

Circulating PMPs from diabetic subjects contained higher 
levels of CAPN1 than those from non-diabetic donors, 
whereas the levels of CAPN2 were not significantly differ-
ent between the two groups (Online Fig. 8). To determine 
whether the CAPN1 carried by PMPs also targeted PAR-1, 
human endothelial cells were incubated with microparticles 
isolated from the plasma of healthy volunteers or individuals 
with type 2 diabetes. Microparticles from healthy individu-
als elicited the phosphorylation of endothelial cell ERK1/2 
(Fig. 5a), and stimulated EPCR shedding (Fig. 5b), but the 
effects were clearly more pronounced when microparticles 
from diabetic patients were used. Although the majority 
of circulating microparticles are known to be PMPs, the 
involvement of PMPs in mediating these effects was further 
confirmed using washed human platelet-derived micropar-
ticles. Indeed, in vitro generated PMPs also elicited EPCR 
shedding (Fig. 5c), and increased ICAM-1 expression on 
human endothelial cells (Fig. 5d). Both effects were inhib-
ited by pre-incubation of the PMPs with calpeptin or by 
treating endothelial cells with either the PAR-1 antagonist 
or the MEK inhibitor. A similar approach using platelets 
from wild-type mice gave identical results (Fig. 5e); however 
PMPs from CAPN1−/− mice elicited much weaker effects. 
The residual effects observed are most likely attributable to 
CAPN2 which is also activated by the ionomycin used to 
generate murine PMPs [37].

Fig. 2   CAPN1 cleaves PAR-1. a Comparison of the effects of throm-
bin (1 U/ml, 15  min) and CAPN1 (0.3 U/ml for up to 4  h) on the 
surface expression of PAR-1 in human endothelial cells; n = 5 differ-
ent cell batches (one-way ANOVA and Tukey’s post-test). b PAR-1 
levels in endothelial cell lysates treated with solvent (Sol) or CAPN1 
(0.3 U/ml, 30  min); n = 6 different cell batches (Student’s t test). c 
EPCR levels in culture medium from endothelial cells treated with 
solvent (Sol) or CAPN1 (0.3 U/ml, 15 min) in the absence or pres-
ence of vorapaxar (Vor, 1 µmol/L); n = 7 different cell batches (two-
way ANOVA and Sidak’s post-test)
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Specific deletion of CAPN1 in platelets protects mice 
from diabetes‑associated vascular inflammation

To confirm the link between platelet-derived CAPN1 and the 
vascular inflammation associated with diabetes in vivo, dia-
betes was induced in mice using STZ. While aortic endothe-
lial cells from non-diabetic mice clearly expressed PAR-1 
with no detectable ICAM-1 expression, the situation was 
reversed in arteries from the STZ-treated mice, as ICAM-1 
was strongly expressed while little or no N-terminal PAR-1 

was detectable (Fig. 6a). Treating the animals with the cal-
pain inhibitor, A705232, protected against the diabetes-
induced expression of ICAM-1 and prevented the loss of 
PAR-1 in aortic endothelial cells in situ. Importantly, the 
loss of PAR-1 and the increase in ICAM-1 were not lim-
ited to STZ-induced diabetes as aortic endothelial cells 
from Ins2Akita diabetic mice displayed a similar phenotype 
(Fig. 6b).

To demonstrate the role played by platelet-derived 
CAPN1 in this process, floxed CAPN1 mice were crossed 

Fig. 3   CAPN1 initiates intra-
cellular signaling. a Effect of 
extracellular CAPN1 (0.3 U/
ml) on the phosphorylation of 
PKCα/β (pPKC) and ERK1/2 
(pERK) in human endothelial 
cells; n = 7 different cell batches 
for pERK and n = 5 different 
cell batches for pPKC (two-way 
ANOVA and Tukey’s post-
test). b Effect of calpeptin (Cpt, 
10 µmol/L), vorapaxar (Vor, 
1 µmol/L) and Ro-318220 (Ro, 
300 nmol/L) on the CAPN1-
induced phosphorylation of 
PKC (after 1 min) and ERK1/2 
(after 15 min); n = 5 different 
cell batches (Two-way ANOVA 
and Tukey’s post-test). c Effect 
of extracellular CAPN1 (0.3 U/
ml, up to 5 min) on the mem-
brane translocation of RhoA in 
human endothelial cells; n = 5 
different cell batches (Two-way 
ANOVA and Tukey’s post-test). 
d Effect of CAPN1 (0.3 U/ml, 
15 min) and thrombin (1 U/ml, 
15 min) on the permeability 
of endothelial cells to FITC-
dextran (10 kDa). Experiments 
were performed in the absence 
and presence of vorapaxar (Vor, 
1 µmol/L); n = 5 different cell 
batches (one-way ANOVA and 
Tukey’s post-test)
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with PF4-deleter mice to generate animals lacking CAPN1 
specifically in platelets, so called CAPN1ΔPF4 mice. Com-
pared to their wild-type littermates, plasma from CAPN1ΔPF4 
mice contained low levels of PMPs and the induction of 
diabetes significantly increased plasma PMP numbers in 
wild-type but not in CAPN1ΔPF4 mice (Fig. 6c). Similarly, 
plasma EPCR levels were enhanced by diabetes in wild type, 
but not in CAPN1ΔPF4 mice (Fig. 6d). In animals made dia-
betic using a high-fat diet (20 weeks), significant numbers 
of monocytes adhered (ex vivo) to the aortic endothelium 
(Online Fig. 9). Significantly fewer monocytes adhered 
to the endothelium of CAPN1ΔPF4 mice. The CAPN1ΔPF4 
mice were also protected from diabetes-induced vascular 
inflammation as while STZ-treatment resulted in a decrease 
in PAR-1 and an increase in ICAM-1 expression in aor-
tic endothelial cells from wild-type mice no such changes 
were observed in aortae from mice lacking platelet CAPN1 
(Fig. 6e).

Discussion

The results of this study indicate that platelet-derived 
CAPN1, carried by PMPs, cleaves PAR-1 on endothelial 
cells to initiate a cascade of events leading to the activa-
tion of TACE and the shedding of EPCR and TNF-α. The 
latter increases the expression of adhesion molecules and 
promotes vascular inflammation. It was possible to dem-
onstrate correlative changes in circulating EPCR levels in 
plasma from healthy and diabetic subjects as well as non-
diabetic and diabetic mice. Also in mice, calpain inhibition 
and the platelet-specific deletion of CAPN1 both prevented 
the diabetes-induced increase in circulating EPCR as well as 
the associated vascular inflammation. These data highlight 
a novel mechanism by which activated platelets can directly 
affect the homeostasis of the vascular wall to initiate the 
vascular complications associated with diabetes and vascular 
disease (see Online Fig. 10).

Calpains are involved in a variety of Ca2+-regulated cel-
lular processes by inducing the partial proteolysis of a broad 
spectrum of substrates [16]. Although these effects have 
been mainly attributed to the activation of intracellular cal-
pains, the proteases are also found in the circulation [14, 34], 
where they have been linked with angiogenesis and vascular 
repair, in part by cleaving fibronectin and amplifying the 
effects of vascular endothelial growth factor [27]. In the pre-
sent study, CAPN1 carried by PMPs was found to induce the 
shedding of EPCR from the vascular wall. EPCR is a type I 
transmembrane protein that is important for the generation 
of the potent anticoagulant and cytoprotective protein; acti-
vated protein C (APC) [13, 43]. While APC inactivates fac-
tors Va and VIIIa to exert its anticoagulant effects, its cell-
protective actions are attributed to the cleavage of PAR-1 

[41], an effect that requires its binding to EPCR [29, 40, 41]. 
This explains why EPCR has been generally classified as 
cytoprotective and why EPCR shedding has been associated 
with vasculopathy [26, 42]. Although the EPCR was picked 
up by the proteomic approach used to identify endothelial 
cell surface proteins targeted by CAPN1, the protease was 
unable to cleave the EPCR in cell lysates, indicating that it 
was an indirect target. Rather, fitting with the fact that the 
shedding of the EPCR is controlled by TACE [18, 35], it was 
possible to prevent the CAPN1-induced decrease in EPCR 
using a TACE inhibitor. Ours is not the first report to link 
calpain with the regulation of TACE as the Ca2+ ionophore-
induced, TACE-dependent shedding of glycoprotein Ibα in 
platelets was previously attributed to calpain activation [47]. 
However, the authors of the latter study did not address the 
mechanisms involved or the physiological consequences in 
any detail. Perhaps the best known target of TACE is TNF-α 
[28], which is synthesized as a 26 kDa transmembrane pro-
protein that is bound to the endothelial cell surface. TNF-α 
released as a 17 kDa peptide into the extracellular space only 
after TACE activation. We found that TNF-α was present on 
the endothelial cell surface and that extracellular CAPN1 
effectively decreased the cell-bound form of the protein. The 
consequence of this process was endothelial cell activation 
and the expression of ICAM-1. Such an increase in the levels 
of adhesion molecules on the surface of endothelial cells is 
a prerequisite for the adhesion of circulating monocytes and 
represents an early step in the development of inflammatory 
responses.

The next step was to identify a link between extracellular 
CAPN1 and the activation of a signaling cascade that could 
affect TACE activation. We focused on PAR-1, as this recep-
tor has been previously linked with TACE-dependent EPCR 
shedding [17]. Moreover, the activation of PAR-1 requires 
the proteolytic cleavage of the extracellular N-terminal 
domain of the protein, thus generating an amino terminus 
that functions as a tethered ligand to initiate signaling [1]. 
CAPN1 was found to cleave the PAR1 receptor and generate 
PAR-1-derived peptides similar to those generated by throm-
bin, which cleaves the N-terminal domain of the protein at 
Arg41 [46]. That a protease other than thrombin is able to 
activate the PAR-1 receptor is not that unusual, as other 
proteases can cleave the receptor, albeit at distinct sites. 
For example, the APC/EPCR complex can cleave PAR-1 
at Arg41 and Arg46 [40], while matrix metalloprotease-1 
cleaves PAR-1 to create a longer tethered ligand [23]. The 
different proteases activate different signaling pathways, 
depending on the ligands released. While thrombin-induced 
PAR-1 activation leads to Gq-dependent signaling resulting 
in increased intracellular Ca2+, Rho activation as well as 
the phosphorylation of protein kinase C, ERK1/2 and AKT 
[32], APC-induced signaling involves Gi proteins, Rac and 
even transactivation of the sphingosine 1-phosphate receptor 
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[8, 9]. We found that the CAPN1-induced signaling via the 
PAR-1 receptor resulted in the activation of ERK1/2 and 
RhoA but not AKT. Like thrombin, CAPN1 also disrupted 
endothelial cell barrier function to increase permeability as 
well as TACE activity. Such a mechanism very probably 
contributes to the diabetes-associated vascular leakage that 
characterizes diabetic microangiopathy.

Where does extracellular CAPN1 come from? CAPN1 
has been identified in the platelet secretome [11], but most 

circulating CAPN1 in diabetic individuals is contained in 
PMPs. Such microparticles are an effective way to transport 
and transfer biological information as they can fuse with the 
membrane of target cells to deliver their contents at the cell 
surface or can be internalized through presentation of spe-
cific antigens [10, 25]. Although recombinant CAPN1 was 
used in many of the experiments performed in the present 
study, the effects of CAPN1 could be reproduced by micro-
particles generated in vitro from washed platelets. Given that 
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platelets contain CAPN1 and CAPN2 [24], and that PMPs 
represent up to 80% of all circulating microparticles [10, 
19], it seems reasonable to assume that PMPs are the main 
source of circulating calpains. However, not all PMPs are 
able to cleave PAR-1, possibly because not all PMPs carry 
high amounts of activated calpains. Importantly, we could 
show that microparticles isolated from healthy individuals 
had minimal effects on EPCR shedding while microparticles 
from diabetic subjects (which contain more active CAPN1) 
elicited a pronounced effect. In the present study, ionomy-
cin was used to generate murine PMPs in vitro, a stimu-
lus known to activate both CAPN1 and CAPN2 [15, 37]. 
However, it was possible to demonstrate that PMPs from 
CAPN1−/− mice were less effective at decreasing PAR-1 
levels and increasing endothelial cell ICAM-1 expres-
sion than PMPs from wild-type mice. To demonstrate the 

in vivo relevance of the pathway described, mice were made 
diabetic with STZ. While the induction of diabetes led to 
the loss of the N-terminal of the PAR-1 receptor on aortic 
endothelial cells and a concomitant induction of ICAM-1, 
the animals given the calpain inhibitor were protected. Some 
authors have expressed concern about the use of STZ to 
induce diabetes [5], but we were able to confirm our findings 
in diabetic (type I) Ins2Akita mice which carry a mutation 
in the Ins2 gene [48, 49]. Moreover, we have previously 
reported that calpain activation in platelets was found in both 
type 1 and type 2 diabetes [37].

The calpain inhibitor used was previously reported to 
prevent platelet activation in diabetic mice [37], as well 
as to prevent the diabetes-induced generation of platelet 
microRNAs that could potentially affect endothelial cell 
protein expression [7]. Therefore, diabetes-induced changes 
in PAR-1 and ICAM-1 expression were studied in animals 
specifically lacking CAPN1 in platelets. The importance of 
platelet-derived CAPN1 in the vascular complications of 
diabetes was demonstrated by the fact that diabetes induc-
tion in CAPN1ΔPF4 mice failed to increase circulating levels 
of the EPCR or to alter the surface expression of PAR-1 
or ICAM-1 on endothelial cells. Our findings have a clear 
pathophysiological relevance as they imply that increased 
circulating levels of calpain-enriched PMPs in diabetic 
patients are responsible for the activation of the endothe-
lial cell PAR-1 receptor. This in turn can initiate a sterile 
vascular inflammation via the release of TNF-α, to promote 
EPCR shedding and thus attenuate cytoprotective EPCR-
APC signaling. As CAPN1 is ubiquitously expressed, it is 
clear that the activation of the protease in endothelial cells 
can also contribute to vascular dysfunction and the activa-
tion of endothelial cell CAPN1 was reported to cleave pros-
taglandin synthase in small arteries to decrease prostacyclin 
formation [38]. However, the finding that platelet-derived 
calpain carried by PMPs circulates has important impli-
cations for the development of vascular disease, and can 
contribute to the spread of endothelial cell activation and 
vascular inflammation.

Fig. 4   Effect of CAPN1 on the expression of inflammatory mark-
ers and monocyte adhesion. a Effect of extracellular CAPN1 (0.3 
U/ml, 4 h) on the surface expression of PAR-1 (green) and ICAM-1 
(red) in human endothelial cells. Experiments were performed in the 
absence or presence of calpeptin (Cpt, 10  µmol/l), vorapaxar (Vor, 
1  µmol/L) and PD98059 (PD, 10  µmol/L). TNF-α was included as 
positive control; CD31 = blue, DAPI = grey, bar = 10  µm; n = 9 dif-
ferent cell batches for CTL and five different cell batches for the 
CAPN1-treated (one-way ANOVA and Tukey’s post-test). b Effect of 
the TNF-α receptor antagonist; R-7050 (10  µmol/L) on the CAPN1 
(0.3 U/ml, 4  h)-induced surface expression of ICAM-1 (red) in 
human endothelial cells. CD31 = blue, DAPI = grey, bar = 10  µm; 
n = 5 different cell batches (one-way ANOVA and Tukey’s post-test). 
c Monocyte adhesion to endothelial cells treated with solvent (Sol) or 
CAPN1 (0.3 U/ml, 4 h) in the absence or in the presence of calpep-
tin (Cpt, 10 µmol/L), vorapaxar (Vor, 1 µmol/L) and PD98059 (PD, 
10 µmol/L); n = 5 different cell batches (one-way ANOVA and Tuk-
ey’s post-test). d Effects of CAPN1 (C1; 0.3 U/ml, 4 h) and TNF-α 
(10  ng/ml, 4  h) on the surface expression of PAR-1 (green) and 
ICAM-1 (red) in endothelial cells from wild-type (WT) and PAR-1−/− 
(−/−) mice; CD31 = blue, DAPI = grey, bar = 10  µm; n = 4 different 
cell batches (two-way ANOVA and Tukey’s post-test). e Monocyte 
adhesion to endothelial cells isolated from wild-type or PAR1−/− 
mice after stimulation with solvent, CAPN1 (C1; 0.3 U/ml, 4  h) or 
TNF-α (10 ng/ml, 4 h); n = 4 different cell batches (two-way ANOVA 
and Tukey’s post-test)

◂
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Fig. 5   CAPN carried by PMPs initiates intracellular signaling. a 
Phosphorylation of ERK1/2 (pERK1/2) in human endothelial cells 
treated with solvent (Sol) or PMPs (2 × 105/ml) from healthy or dia-
betic subjects for 15  min or 1  h; n = 8 subjects per group (two-way 
ANOVA and Tukey’s post-test). b EPCR levels in culture medium 
collected from human endothelial cells treated with PMPs from 
healthy (H) versus diabetic (Dia) subjects; n = 8 subjects per group 
(Student’s t test). c EPCR in the endothelial cell supernatant follow-
ing treatment with PMPs generated from washed human platelets. 
Experiments were performed in the absence or presence of calpep-
tin (Cpt, 10 µmol/L), vorapaxar (Vor, 1 µmol/L) and PD98059 (PD, 
10 µmol/L); n = 8 different cell batches and PMP preparations (two-
way ANOVA and Tukey’s post-test). d Effect of solvent (Sol), PMPs 

(2 × 105 /ml, 1  h) and TNF-α on the expression of PAR-1 (green) 
and ICAM-1 (red) by human endothelial cells. Experiments were 
performed in the absence or presence of calpeptin (Cpt, 10 µmol/L), 
vorapaxar (Vor, 1  µmol/L) and PD98059 (PD, 10  µmol/L). 
CD31 = blue, DAPI = grey, bar = 10  µm; n = 5 different cell batches 
and PMP preparations (one-way ANOVA and Tukey’s post-test). 
e ICAM-1 (red) and PAR-1 (green) expression on the surface of 
endothelial cells from wild-type mice following treatment with sol-
vent (Sol) or PMPs generated from wild-type (WT) or CAPN1−/− 
mice. CD31 = blue, DAPI = grey, bar = 10  µm; n = 5 different cell 
batches and PMP preparations (one-way ANOVA and Tukey’s post-
test)
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Fig. 6   Effect of calpain inhibition and platelet-specific CAPN1 dele-
tion on diabetes-induced vascular inflammation. a PAR-1 (green) 
and ICAM-1 (red) expression in en face preparations of aortae from 
wild-type mice given saline (CTL) or made diabetic with streptozocin 
(STZ) and treated with either vehicle (Veh) or the calpain inhibitor 
A705232 (A70, 30 mg/kg/day) for 12 weeks; bar = 10 µm, n = 6 ani-
mals per group (one-way ANOVA and Tukey’s post-test). b PAR-1 
(green) and ICAM-1 (red) expression in en face preparations of aor-
tae from 8-month-old non-diabetic wild-type mice or their diabetic 
Ins2Akita mice littermates. CD144 = blue, DAPI = grey, bar = 10  µm; 

n = 5 mice per group (Student’s t test). c Circulating PMPs in plasma 
from wild type (WT) and CAPN1ΔPF4 (ΔPF4) mice treated with vehi-
cle (CTL) or made diabetic with streptozocin (STZ) and maintained 
for 8 weeks; n = 5 animals in the ΔPF4 group and six animals in the 
WT group (one-way ANOVA and Tukey’s post-test). d Levels of 
EPCR in plasma and e PAR-1 (green) and ICAM-1 (red) in en face 
preparations of aortae from the same animals as in c; CD144 = blue, 
DAPI = grey, bar = 10 µm; n = 5 animals in the CTL-ΔPF4 group and 
n = 6 animals in the other groups (one-way ANOVA and Tukey’s 
post-test)
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