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Abstract: The capacity of convalescent and vaccine-elicited sera and monoclonal antibodies 
(mAb) to neutralize SARS-CoV-2 variants is currently of high relevance to assess the 
protection against infections.  
We performed a cell culture-based neutralization assay focusing on authentic SARS-CoV-2 
variants B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.427/B.1.429 (Epsilon), all harboring the 
spike substitution L452R. 
We found that authentic SARS-CoV-2 variants harboring L452R had reduced susceptibility to 
convalescent and vaccine-elicited sera and mAbs. Compared to B.1, Kappa and Delta 
showed a reduced neutralization by convalescent sera by a factor of 5.71 and 3.64, 
respectively, which constitutes a 2-fold greater reduction when compared to Epsilon. BNT2b2 
and mRNA1273 vaccine-elicited sera were less effective against Kappa, Delta, and Epsilon 
compared to B.1. No difference was observed between Kappa and Delta towards vaccine-
elicited sera, whereas convalescent sera were 1.6-fold less effective against Delta, 
respectively. Both B.1.617 variants Kappa (+E484Q) and Delta (+T478K) were less 
susceptible to either casirivimab or imdevimab. 
In conclusion, in contrast to the parallel circulating Kappa variant, the neutralization efficiency 
of convalescent and vaccine-elicited sera against Delta was moderately reduced. Delta was 
resistant to imdevimab, which however, might be circumvented by a combination therapy 
with casirivimab together.  
 
Keywords: SARS-CoV-2; Delta; Kappa; Epsilon; B.1.617.1; B.1.617.2; corona virus; 
monoclonal antibodies; vaccination; BNT2b2; mRNA1273 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.09.21261704doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.08.09.21261704
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction 

In RNA viruses, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), mutations occur during their replication by substitution, insertion or deletion of nucleotides 
in the viral genome [1]. In most cases, silent mutations have no impact on protein structure 
and function. However, certain amino acid changes in the region coding for the spike protein 
(S), may not only affect the protein function but also alter its immunogenic capacity [2]. 
SARS-CoV-2 S binds human ACE2 receptor and is subsequently cleaved by TMPRSS2 
transmembrane protease to enter the host cell to initiate replication. 
S is the major immunogenic compound of mRNA and vector-based vaccines [3]. 
Furthermore, the formation of antibodies against the spike protein neutralizes the SARS-
CoV-2 S and protects against infection. In combination with cellular responses vaccination 
protects against severe COVID-19 disease [4, 5]. Changes in the structure, however, could 
reduce the effectiveness of vaccines as the current generation of mRNA and vector-based 
vaccines were developed against the spike protein of the Wuhan-Hu-1 isolate. Similarly, 
most of the commercially available monoclonal antibodies used for prevention and therapy 
were released in 2020. Due to emerging SARS-CoV-2 variants, there is an eminent interest 
in evaluating mutations in S for potential immune escape. 
Variant Alpha (B.1.1.7) S protein binding to the human ACE2 receptor with increased affinity 
is most probably responsible for the higher transmission rate [6]. Alpha rapidly became the 
predominant variant in UK (https://cov-lineages.org/global_report_B.1.1.7) and spread 
globally as a result of international travel, which is the major driver of the introduction and 
spread of SARS-CoV-2 variants [7, 8]. Currently, Alpha is displaced by the Delta variant 
(B.1.617.2), which was first identified in India in late 2020. Delta has since dominated over 
other sublineages including B.1.617.1 (Kappa) [9] , which was found earlier in India in 2020. 
Potential reason for globally attained dominance of delta is believed to be a higher 
transmissibility and immune evasion [10, 11]. While Alpha, Beta and Gamma all harbor the 
N501Y substitution in S, Delta and many variants of interest (VOI) such as Epsilon or Zeta 
gained other mutations e.g. the L452R[12]. The Epsilon lineages B.1.427 and B.1.429 
originated in California and differ only in Orf1a and Orf1b, but carry identical mutations in S. 
Increased infectivity observed in vitro is in line with the progressive spread of Epsilon into 
other countries [13]. It has been shown that SARS-CoV-2 variants carrying E484K have 
limited susceptibility to convalescent and vaccine-elicited sera as well as monoclonal 
antibodies in vitro [14]. Moreover, E484K located within the S-ACE2 interface contributes to 
increased affinity to ACE2 resulting in enhanced virulence of variant Beta and Gamma [15-
17]. In Kappa, but not Delta, E484 is substituted with a Glutamine (Q) and might confer 
immune escape similar to E484K [18]. In Delta, in close proximity to E484, a threonine is 
replaced by a positively charged lysine leading to T478K [19]. Little is known so far about the 
clinical relevance of the newly emerging T478K substitution. Whether T478K or E484Q, 
respectively, contribute to immune evasion similar to the E484K mutation is of great 
therapeutic importance as well as for evaluating the efficacy of currently approved vaccines.  
In this study we evaluated the antibody-mediated neutralization of authentic SARS-CoV-2 
variants Kappa and Delta in comparison to FFM1 (B), FFM7 (B.1), Alpha and Epsilon strains 
against vaccine-elicited serum samples after immunization with BNT162b2 and mRNA1273, 
convalescent sera as well as mAbs bamlanivimab and casirivimab/imdevimab. 
 

2. Materials and Methods 

2.1 Cell culture and virus propagation 
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Caco2 and A549-AT cells [20] were cultured in Minimum Essential Medium (MEM) 
supplemented with 10% fetal calf serum (FCS), 4 mM L-glutamine, 100 IU/ml of penicillin and 
100 μg/ml of streptomycin at 37°C and 5% CO2. The Caco2 cells were obtained from DSMZ 
(Braunschweig, Germany, no: ACC 169) and selected for high permissiveness to SARS-
CoV-2 infection by serial dilution and passaging. SARS-CoV-2 isolates were grown using 
Caco2 cells as described previously [7]. Cell free cell culture supernatant containing 
infectious virus was harvested after complete cytopathic effect (CPE) and aliquots were 
stored at −80°C. Titers were determined by median tissue culture infective dose (TCID50) 
method as described by Spearman [21] and Kaerber [22] using Caco2 cells. GenBank 
accession numbers for the strains used in this study are as follows: B (FFM1/2020), 
MT358638, [23]; B (FFM5/2020), MT358641, [23]; B.1 (FFM7/2020), MT358643, [23]; 
B.1.1.7 (FFM-UK7931/2021), MZ427280, [14]; B.1.427 (FFM-CAL6541/2021), MZ317895; 
B.1.429 (FFM-CALsprt/2021), MZ317896.2; B.1.617.1 (FFM-IND5881/2021), MZ315140; 
B.1.617.2 (FFM-IND8424/2021), MZ315141. All virus-containing samples were inactivated 
according to standardized methods as described previously [24].  

 

2.2 SARS-CoV-2 Neutralization Assay 

SARS-CoV-2 antibody concentrations of this cohort were tested previously [14] with the 
SARS-CoV-2 IgG II Quant assay (Abbott Diagnostics) performed on the Alinity I with an 
analytical measurement range from 2.98–5680 binding antibody units per mL (BAU/mL).  

Serum samples from convalescent and mRNA-1273 or BNT162b2 vaccinated individuals 
were serially diluted (1:2) and incubated with 4000 TCID50/mL of the indicated SARS-CoV-2 
variant. Infected cells were monitored for cytopathic effect (CPE) formation after 72-hour 
inoculation. Values represent reciprocal dilutions of SARS-CoV-2 microneutralization titers 
resulting in 50% virus neutralization (NT50). The indicated monoclonal antibody solutions 
bamlanivimab, imdevimab and casirivimab were used in physiological concentrations 
according to the manufacturer’s instructions. For the evaluation of the neutralization capacity 
of mAbs, physiological concentrations according to the manufacturer’s instructions of 
monoclonal antibody solutions bamlanivimab, imdevimab, casirivimab and 
casirivimab/imdevimab (1:1) were serially diluted (1:2) and incubated with 4000 TCID50/mL of 
the indicated SARS-CoV-2 variant. CPE was evaluated microscopically after 72-hour 
inoculation. 

 

2.3 Statistical analysis 

Data analysis was performed in Microsoft Excel and GraphPad Prism 8 (GraphPad Software, 
USA). Statistical significance compared to untreated control was determined using unpaired 
Student’s t test on non-log-transformed data. Asterisks indicated p values as *p�<�0.05, 
**p�≤�0.01, and ***p�≤�0.005. 

 

3. Results 

3.1. Limited neutralization of SARS-COV-2 variants by convalescent and vaccine-elicited 
sera  
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In order to assess the susceptibility of SARS-CoV-2 to neutralizing antibodies, we tested 
convalescent and vaccine-elicited sera samples after immunization with BNT162b2 and 
mRNA1273. We found that the tested sera were less effective against authentic SARS-CoV-
2 variants harboring L452R.  
Convalescent sera showed reduced neutralization of Kappa and Delta by a factor of 5.71 and 
3.64, respectively, relative to B.1 (Fig. 1A). For the Epsilon lineages B.1.427 and B.1.429 
harboring D614G and L452R, the reduction in neutralization efficiency by convalescent sera 
of both variants was less severe with only 1.74 and 2.35, respectively. 
In presence of L452R, limited neutralization efficacy to BNT2b2 or mRNA1273 vaccine-
elicited sera was detected (Fig. 1B). Both mRNA vaccine elicited sera neutralized Kappa and 
Delta 2-fold weaker than B.1, whereas B.1.427 and B.1.429 were less sensitive by a factor of 
1.20 and 1.31, respectively (Fig. 1B). For both sera, the neutralization capacity against the 
B.1617 strains were 2-fold reduced compared to B.1.427 and B.1.429 (Fig. 1A and B).  
Kappa and Delta were equally sensitive towards vaccine-elicited sera (Fig. 1B). However, 
using convalescent sera, neutralizing titers obtained for Kappa versus Delta were 1.2-fold (cf. 
B) or 1.6-fold (cf. B.1) reduced, respectively (Fig. 1A). 
 

3.2. Relative resistance of SARS-CoV-2 variants to monoclonal antobodies 

Next, we sought to find out whether the efficacy of mAbs bamlanivimab, casirivimab, 
imdevimab, and the combination of casirivimab/imdevimab were reduced towards authentic 
SARS-CoV-2 variants harboring L452R and other substitutions in S. As evaluated in A549-
AT cells [20], authentic SARS-CoV-2 variants harboring L452R were resistant against 
bamlanivimab (Fig. 2). In agreement with previously published data [14], all applied mAbs 
could efficiently neutralize variants B, B.1, and Alpha (Fig. 2). Kappa additionally harboring 
E484Q revealed strongly reduced susceptibility against casirivimab, which was approx. 5.5-
fold lower compared to D614G alone (cf. B.1). Neutralization of Kappa by imdevimab or a 
combination therapy with casirivimab/imdevimab together was slightly reduced relative to 
non E484Q harboring variants. In contrast to Kappa, testing the Delta variant revealed a 
substantial resistance against imdevimab while casirivimab-mediated neutralization was still 
effective (Fig. 2).  
In agreement with previous studies both Epsilon variants were less susceptible towards 
imdevimab, but were efficiently neutralized by casirivimab alone or in combination with 
imdevimab. Of note, using imdevimab or the combination of casirivimab/imdevimab, the 
B.1.429 strain used in this study was less susceptible when compared to B.1.427 (Fig. 2). 
In conclusion, all SARS-CoV-2 variants carrying L452R were resistant to bamlanivimab. 
Even at high concentrations imdevimab was not effective against Delta indicating high 
resistance, but only a moderate reduction in neutralization of all L452R variants was 
observed for the treatment with the clinically approved combination of 
casirivimab/imdevimab. 
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Figure 1. Antibody-mediated neutralization efficacy against SARS-CoV-2 variants. A549-AT cells 
were incubated with serially diluted (1:2) sera from (A) convalescent plasma or (B) vaccinated 
individuals together with the indicated SARS-CoV-2 variant. Dots specify sera from BNT162b2 (blue) 
and mRNA1273 (red) vaccinated persons, respectively. Additionally, a serum from a BNT162b2-
vaccinated, initially seropositive individual (green) is shown, that was excluded from statistical 
analysis. Statistical significance compared to FFM1 (B) and FFM7 (B.1) was calculated by one-tailed, 
paired student’s t-tests. Mean values are depicted from two replicates. Asterisks indicate p-values as * 
(p < 0.05), ** (p ≤ 0.01), and *** (p ≤ 0.001). 
 
 

 
Figure 2. Neutralization efficacy of monoclonal antibodies against SARS-CoV-2 variants. 
Serially diluted (1:2) monoclonal antibodies (mAbs) were incubated with the indicated SARS-CoV-2 
variants. CPE formation was analyzed after 72 h. Average values of 16 biological replicates (except 
n=8 for bamlanivimab) are depicted. Using A549-AT cells, CPE formation was microscopically 
evaluated. Physiological concentrations of mAbs were applied according to manufacturer’s 
instructions. 
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4. Discussion 

The emergence of SARS-CoV-2 variants of concern which in addition to increased 
transmission rates might be less sensitive to neutralizing antibodies challenge the health 
systems worldwide. The ongoing evolution of SARS-CoV-2 requires constant 
characterization of emerging mutations with regard to the efficacy of neutralizing mAbs. For 
the Alpha variant, which became dominant in late 2020, it could be shown that the N501Y 
substitution in S is associated with higher affinity for the ACE2 receptor and higher 
transmissibility [2, 25-27]. Nevertheless, the neutralizing ability of Alpha by convalescent sera 
or BNT162b2 was preserved towards authentic viruses [10, 28]. The global displacement of 
Alpha and the dominance of Delta since spring 2021 shifted the focus towards L452R-
carrying variants Epsilon and in particular the lineage B.1.617. In this study, we observed a 
reduced sensitivity of variants carrying L452R towards convalescent and vaccine-elicited 
sera that was further diminished by substitutions at E484 and T478K in S, respectively (Fig. 
1). Hence, the B.1.617 lineage (Kappa and Delta) exhibited a stronger immune escape 
relative to Epsilon.  
The position E484 on the receptor binding domain (RBD) in S is a well-described 
immunodominant site [6, 29-31]. In this work, we detected a lower capacity of convalescent 
or vaccine-elicited sera to neutralize the E484Q-carrying variant Kappa matching the 
previously shown reduced neutralization of variants Beta and Zeta carrying E484K (Widera 
et al. 2021). Hence, both substitutions E484K and E484Q might limit the sensitivity of SARS-
CoV-2 to neutralizing antibodies.  
Specifically, using convalescent but not vaccine-elicited sera Kappa was neutralized 1.6-fold 
less effective than the T478K-carrying Delta variant . The T478K substitution appears more 
relevant for neutralization by convalescent sera. Thus, or data suggests that mRNA-based 
vaccination confers better protection against both B.1.617 strains when compared to 
convalescent sera.  
The capacity to neutralize the L452R carrying Epsilon lineages was only moderately reduced 
for casirivimab and imdevimab (Fig. 2). Using pseudoviruses the L452R substitution was 
recently described as sensitive to both mAbs casirivimab and imdevimab, but has also been 
associated with increased viral shedding in vivo and reduced neutralization of RBD- and N-
terminal Domain (NTD) antibodies [13]. 
Our data indicates that in contrast to casirivimab, imdevimab is less affected by substitutions 
at position E484 and thus effectively neutralizes Kappa and Epsilon. Based on structural 
comparisons of human SARS-CoV-2 neutralizing antibodies, casirivimab belongs to class 1 
antibodies blocking ACE2 and binding to exclusively the ‘up’ RBDs of S [32]. Imdevimab, 
classified as class 3 antibody, binds outside the ACE2-binding site matching the here 
observed high sensitivity to Kappa and efficient neutralizing of E484K carrying variants Beta 
and Gamma, as documented recently [14, 33]. Hence, the combination of casirivimab and 
imdevimab confers unrestricted protection in variants carrying substitutions at L452 and 
E484.  
In discrepancy to our study a recently published work by Planas and collegues [10], showed 
no reduction in the neutralization capacity of casirivimab or imdevimab for Delta relative to 
B.1. Our assays, however, revealed a substantial loss in the neutralization capacity of 
imdevimab against Delta. This was in agreement with another recent study demonstrating a 
>10-fold resistance of Delta towards imdevimab and further receptor binding motive (RBM) 
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binding antibodies suggesting that both the L452R and T478K substitutions reduce the 
neutralizing activity [34]. 
The reduced imdevimab susceptibility towards Delta compared to Kappa indicates that 
T478K possibly in combination with other mutations found in Delta S might mediate the 
observed immune escape. Although imdevimab was predicted to bind S distal to the ACE2-
binding site and potentially hinders receptor binding via steric interference [32]. Most likely, 
T478K could affect imdevimab neutralizing capacity, however, more studies are needed to 
evaluate the impact of T478K on S secondary structure and antibody binding. Both 
discussed studies [10, 34] were conducted with authentic viruses and are methodically 
comparable to our work. Since Delta exhibits a partial resistance towards imdevimab, the 
resistance barrier to the combination therapy of casirivimab and imdevimab together is also 
reduced. Consequently, a further single mutation in S of Delta could hamper the clinical 
efficacy of mAb combination therapy of casirivimab and imdevimab.  
 

5. Conclusions 
In contrast to the parallel circulating Kappa variant, the neutralization efficiency of 
convalescent and vaccine-elicited sera against Delta was only moderately reduced. SARS-
CoV-2 Kappa variant harboring E484Q mediate resistance to casirivimab while the 
substitution T478K present in Delta results in limited neutralization by imdevimab. However, 
a combination therapy with imdevimab and casirivimab together is still effective against both 
B1.617 variants. 
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