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a b s t r a c t 

Inter-areal coherence has been hypothesized as a mechanism for inter-areal communication. Indeed, empiri- 

cal studies have observed an increase in inter-areal coherence with attention. Yet, the mechanisms underlying 

changes in coherence remain largely unknown. Both attention and stimulus salience are associated with shifts in 

the peak frequency of gamma oscillations in V1, which suggests that the frequency of oscillations may play a role 

in facilitating changes in inter-areal communication and coherence. In this study, we used computational mod- 

eling to investigate how the peak frequency of a sender influences inter-areal coherence. We show that changes 

in the magnitude of coherence are largely determined by the peak frequency of the sender. However, the pattern 

of coherence depends on the intrinsic properties of the receiver, specifically whether the receiver integrates or 

resonates with its synaptic inputs. Because resonant receivers are frequency-selective, resonance has been pro- 

posed as a mechanism for selective communication. However, the pattern of coherence changes produced by 

a resonant receiver is inconsistent with empirical studies. By contrast, an integrator receiver does produce the 

pattern of coherence with frequency shifts in the sender observed in empirical studies. These results indicate that 

coherence can be a misleading measure of inter-areal interactions. This led us to develop a new measure of inter- 

areal interactions, which we refer to as Explained Power. We show that Explained Power maps directly to the 

signal transmitted by the sender filtered by the receiver, and thus provides a method to quantify the true signals 

transmitted between the sender and receiver. Together, these findings provide a model of changes in inter-areal 

coherence and Granger-causality as a result of frequency shifts. 
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. Introduction 

An outstanding question in neuroscience is how sparsely connected

rain areas flexibly communicate behaviorally relevant information. It

as been proposed that inter-areal synchronization flexibly gates neu-

onal communication according to behavioral and cognitive demands

 Bressler and Kelso, 2001; Fries, 2005; Varela et al., 2001 ). Indeed, sev-

ral studies have provided evidence for selective communication via co-

erence by showing that attention toward a stimulus leads to an increase

n inter-areal coherence between V1 and V4 ( Bosman et al., 2012; Ferro

t al., 2021 ). Yet the mechanism by which coherence increases remains

argely unknown. One key observation in these studies was there was

hat no difference in the oscillatory power between attention conditions,

lthough there was a clear increase in the gamma peak frequency in

1 ( Bosman et al., 2012; Ferro et al., 2021 ). Several studies have also

hown that the peak frequency of gamma oscillations (30–100 Hz) in

1 systematically varies with low-level stimulus features often associ-
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ted with bottom-up salience, such as color, contrast, and size ( Das and

ay, 2018; Friedman-Hill et al., 2000; Gieselmann and Thiele, 2008;

ray and Prisco, 1997; Henrie and Shapley, 2005; Jia et al., 2013; Peter

t al., 2019; Ray and Maunsell, 2010; Shirhatti and Ray, 2018 ). This

uggests that shifts in the peak frequency of gamma oscillations may be

 common mechanism by which both salient and attended stimuli are

electively processed and communicated between brain areas ( Bosman

t al., 2012; Fries, 2015 ). 

Importantly, to understand how one sender can be more effective

han another, it is necessary to understand how the receiver selects that

ender’s synaptic inputs and not others (i.e., the receiver’s input trans-

er function). Broadly speaking, neurons can be classified as either in-

egrators or resonators. Both integration and resonance have been ob-

erved experimentally and are emergent properties of biophysical mod-

ls of neurons ( Hodgkin and Huxley, 1952; Hutcheon and Yarom, 2000;

zhikevich, 2001 ). Whereas resonators amplify inputs that match the re-

eiver’s resonant frequency, integrators are not frequency selective but
 2023 

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.neuroimage.2023.120256
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ynimg
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2023.120256&domain=pdf
mailto:jarrod.dowdall@gmail.com
https://doi.org/10.1016/j.neuroimage.2023.120256
http://creativecommons.org/licenses/by/4.0/


J.R. Dowdall, M. Schneider and M. Vinck NeuroImage 277 (2023) 120256 

r  

q  

r  

c  

a  

f  

e

 

t  

r  

t  

i  

f  

a  

p  

t  

(  

D  

H  

L  

2  

c  

u  

2  

s  

o  

t  

r  

p  

s  

m  

s  

n  

P  

s  

i

2

2

 

h  

m

𝑥  

w  

0  

o  

t  

m  

g  

v  

(

 

a  

a  

a  

o  

𝑥  

b  

a

𝑥

𝑥

w  

c

i

 

h  

t  

s  

T  

i

 

r

𝑆

𝑆

 

u  

b  

t

𝑆  

𝐶

𝛼  

𝐶  

L  

d

𝐶  

2

 

s  

ℎ

𝑥

𝑥

w

𝑆

𝑆

 

d

𝑆  
ather tend to act as low-pass filters ( Izhikevich, 2001 ). Due to the fre-

uency selective properties of resonators, it has been proposed that the

esonance may facilitate selective communication ( “selective communi-

ation via resonance ”) ( Izhikevich et al., 2003 ). However, this appears

t odds with the studies reporting a coherence increase with a greater

requency mismatch between V1 and V4 ( Bosman et al., 2012; Ferro

t al., 2021 ). 

In this study, we addressed two fundamental aspects of inter-areal in-

eractions: how to quantify the transmitted signal, and how the receiver

esponds to those inputs. Thus, we consider the general problem of how

he oscillation frequency of the sender compared to the receiver results

n selective communication according to the receiver’s input transfer

unction. Such a problem is not only relevant for understanding inter-

real neuronal communication but also more generally how neuronal

opulations selectively respond to certain frequencies and rhythms in

heir sensory input (e.g., speech, visual flicker) or brain stimulation

e.g., optogenetic, electric) ( Adaikkan et al., 2019; Cardin et al., 2009;

oelling and Assaneo, 2021; Doelling et al., 2019; Duecker et al., 2021;

aegens and Golumbic, 2018; Jang et al., 2020; Lakatos et al., 2008;

ewis et al., 2021; Obleser and Kayser, 2019; Schroeder and Lakatos,

009 ). In fact, modulating the frequency of stimuli, or stimulation, is a

ommon method for probing the input-output function of neuronal pop-

lations ( Cardin et al., 2009; Doelling and Assaneo, 2021; Doelling et al.,

019; Duecker et al., 2021; Lewis et al., 2021 ). Using theoretical analy-

is and numerical simulations, we systematically investigated the effect

f frequency shifts in a source area on coherence with a downstream

arget area. Counter to the hypothesis of selective communication via

esonance, we found that only the integrator receiver reproduced the ex-

erimentally observed changes in inter-areal coherence with frequency

hifts in the sender ( Bosman et al., 2012; Ferro et al., 2021 ). Further-

ore, these results revealed that coherence is not a straightforward mea-

ure of inter-areal interactions. Thus, we were motivated to develop a

ew measure of inter-areal interactions, which we refer to as Explained

ower. To that end, we show that Explained Power maps directly to the

ignal transmitted by the sender filtered by the receiver, providing an

mproved method to quantify frequency-specific signal transmission. 

. Methods 

.1. The source mixing model 

We modeled the intrinsic activity of each area as a simple damped

armonic oscillator excited by stochastic drive implemented as an AR(2)

odel of the form 

 [ 𝑡 ] = 𝑎 1 𝑥 [ 𝑡 − 1] + 𝑎 2 𝑥 [ 𝑡 − 2] + 𝑏 1 𝜖[ 𝑡 ] , (1)

here 𝜖[ 𝑡 ] is the stochastic drive, such that 𝜖[ 𝑡 ] =  ( 𝜇, 𝜎2 ) where 𝜇 =
 , 𝜎2 = 1 , which drives the system producing oscillatory behavior as

bserved in the time-series 𝑥 [ 𝑡 ] . We chose to model the intrinsic ac-

ivity in each area using pseudo-periodic AR(2) models because these

odels have been shown to reproduce the statistical properties of

amma oscillations in macaque primary visual cortex (V1) and pro-

ide mean-field approximations of E-I circuits driven by stochastic input

 Spyropoulos et al., 2022 ). 

In our model system, the time-series 𝑥 
( 𝑖𝑛𝑡 ) 
1 [ 𝑡 ] is the intrinsic activity of

 local network of neurons, and 𝑥 1 [ 𝑡 ] is the observed time-series, which is

 linear sum of the intrinsic activity, synaptic input from remote sources,

nd background fluctuations (e.g., 1∕ 𝑓 ). We first derive a simplified case

f the Source Mixing in which there is one sender 𝑥 1 [ 𝑡 ] and one receiver

 2 [ 𝑡 ] with unidirectional (feedforward) connectivity in the absence of

ackground fluctuations. In this simplified case the observed time-series

re 

 1 [ 𝑡 ] = 𝑥 
( 𝑖𝑛𝑡 ) 
1 [ 𝑡 ] , (2) 

 2 [ 𝑡 ] = 𝑥 
( 𝑖𝑛𝑡 ) 
2 [ 𝑡 ] + 𝑤𝑥 

( 𝑖𝑛𝑡 ) 
1 [ 𝑡 − 𝜏] . (3) 
2 
here 𝑤 is the connectivity weight, which scales the output of 𝑥 1 ac-

ording the inter-areal connectivity strength between 𝑥 1 and 𝑥 2 , and 𝜏

s the transmission delay. 

Note, the Source Mixing model does not make an assumption about

ow the intrinsic activity in the sender and receiver is generated. Rather,

he only assumption of the Source Mixing model is that the output of the

ender is linearly superimposed on the intrinsic activity of the receiver.

his means that the resulting coherence can be completely determined

n terms of the shape of the observed power spectral densities. 

The observed power spectral densities (PSD) of the sender 𝑥 1 and

eceiver 𝑥 2 are 

 11 ( 𝑓 ) = 𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) , (4) 

 22 ( 𝑓 ) = 𝑆 

( 𝑖𝑛𝑡 ) 
22 ( 𝑓 ) + 𝑤 

2 𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) . (5) 

The stochastic drive in the sender 𝜖1 [ 𝑡 ] and receiver 𝜖2 [ 𝑡 + 𝜏] were

ncorrelated for all 𝜏. Thus the observed cross-spectral density (CSD)

etween the sender and receiver reduces to the output of 𝑥 1 scaled by

he connectivity weight 

 12 ( 𝑓 ) = 𝑤 𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) . (6)

Therefore, coherence given Source Mixing is 

 

2 
12 ( 𝑓 ) ≈

||𝑆 12 ( 𝑓 ) ||2 
𝑆 11 ( 𝑓 ) 𝑆 22 ( 𝑓 ) 

≈
𝑤 

2 
(
𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) 

)2 

𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) 

(
𝑆 

( 𝑖𝑛𝑡 ) 
22 ( 𝑓 ) + 𝑤 

2 𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) 

)
≈

𝑤 

2 𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) 

𝑆 

( 𝑖𝑛𝑡 ) 
22 ( 𝑓 ) + 𝑤 

2 𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) 

. (7) 

Let 𝛼( 𝑓 ) be the power ratio between the sender and receiver 

( 𝑓 ) ≡ 𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) 

𝑆 

( 𝑖𝑛𝑡 ) 
22 ( 𝑓 ) 

. (8)

Substituting 𝛼( 𝑓 ) into Eq. (7) 

 

2 
12 ( 𝑓 ) = 

𝑤 

2 𝛼( 𝑓 ) 
𝑤 

2 𝛼( 𝑓 ) + 1 
. (9)

et 𝑧 = ln 𝑤 

2 𝛼( 𝑓 ) , where 𝑤 

2 𝛼( 𝑓 ) > 0 , shows coherence follows the stan-

ard logistic function 

 

2 
12 ( 𝑓 ) = 

𝑒 𝑧 

𝑒 𝑧 + 1 
= 

1 
1 + 𝑒 − 𝑧 

. (10)

.2. Source mixing with an input transfer function 

In the Source Mixing model with an input transfer function, the

ender’s output 𝑥 1 is filtered by the receiver’s input transfer function

 𝑖𝑛𝑝𝑢𝑡 as follows: 

 1 [ 𝑡 ] = 𝑥 
( 𝑖𝑛𝑡 ) 
1 [ 𝑡 ] , (11) 

 2 [ 𝑡 ] = 𝑥 
( 𝑖𝑛𝑡 ) 
2 [ 𝑡 ] + 𝑤 

(
ℎ 𝑖𝑛𝑝𝑢𝑡 ∗ 𝑥 

( 𝑖𝑛𝑡 ) 
1 

)
[ 𝑡 − 𝜏] , (12) 

here ∗ denotes convolution. 

The PSD of the sender 𝑥 1 and receiver 𝑥 2 is then 

 11 ( 𝑓 ) = 𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) , (13) 

 22 ( 𝑓 ) = 𝑆 

( 𝑖𝑛𝑡 ) 
22 ( 𝑓 ) + 𝑤 

2 𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) 𝐻 

2 
𝑖𝑛𝑝𝑢𝑡 ( 𝑓 ) . (14) 

As before, 𝜖1 [ 𝑡 ] and 𝜖2 [ 𝑡 ] were uncorrelated, thus the cross-spectral

ensity (CSD) simplifies to 

 12 ( 𝑓 ) = 𝑤 𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) 𝐻 𝑖𝑛𝑝𝑢𝑡 ( 𝑓 ) . (15)
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Thus coherence is defined as 

 

2 
12 ( 𝑓 ) = 

𝑤 

2 
(
𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) 

)2 
𝐻 

2 
𝑖𝑛𝑝𝑢𝑡 

( 𝑓 ) 

𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) 

(
𝑆 

( 𝑖𝑛𝑡 ) 
22 ( 𝑓 ) + 𝑤 

2 𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) 𝐻 

2 
𝑖𝑛𝑝𝑢𝑡 

( 𝑓 ) 
)

= 

𝑤 

2 𝛼( 𝑓 ) 𝐻 

2 
𝑖𝑛𝑝𝑢𝑡 

( 𝑓 ) 

𝑤 

2 𝛼( 𝑓 ) 𝐻 

2 
𝑖𝑛𝑝𝑢𝑡 

( 𝑓 ) + 1 
. (16) 

Therefore, without loss of generality, a linear transform applied to

he receiver’s input follows the simplified Source Mixing model Eq. (9) ,

nd coherence maps non-linearly to the sender-receiver power ratio 𝛼

caled by the connectivity weight 𝑤 and receiver’s input transfer func-

ion 𝐻 𝑖𝑛𝑝𝑢𝑡 . 

.3. Source mixing with matching transfer functions 

An interesting property emerges when the receiver’s input transfer

unction 𝐻 𝑖𝑛𝑝𝑢𝑡 matches the receiver’s power spectrum 

 

( 𝑖𝑛𝑡 ) 
22 ( 𝑓 ) = 

|||𝑆 𝜖2 
( 𝑓 ) 𝐻 𝑖𝑛𝑝𝑢𝑡 ( 𝑓 ) 

|||2 , (17)

here 
|||𝑆 𝜖2 

( 𝑓 ) |||2 is the power spectrum of the stochastic drive 𝜖2 . 

Note, the power spectrum of a time-series is the stochastic drive 𝜖2 
s described by its time-domain variance 𝜎2 𝜖2 

 

[ |||𝑆 𝜖2 
( 𝑓 ) |||2 

] 
= 𝜎2 𝜖2 

. (18)

Thus, Eq. (16) simplifies to 

 

2 
12 ( 𝑓 ) = 

𝑤 

2 𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) 

𝑤 

2 𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) + 𝜎2 𝜖2 

. (19)

Therefore, in the special case where the receiver’s input transfer

unction 𝐻 𝑖𝑛𝑝𝑢𝑡 matches its power spectrum, coherence is invariant to

he receiver’s power spectrum. Note, although coherence still depends

n the receiver’s variance 𝜎2 𝜖2 
, the frequency dependence has been re-

oved and coherence no longer depends on the power ratio between

he sender and receiver per frequency. However, this result implies co-

erence only becomes independent of the receiver when the power in

he receiver is perfectly compensated for by the receiver’s input transfer

unction. Any uncompensated power in the receiver, such as background

∕ 𝑓 and any linear mixing from additional inputs. 

.4. Explained power 

We have shown that coherence can be a misleading measure of inter-

real interactions. For instance, coherence differences are misleading

hen there are frequency-dependent interactions between the sender(s)

nd the receiver. Here we motivate a more veridical measure of inter-

real interactions, which we refer to as Explained Power. 

Note that magnitude-squared coherence is akin to the coefficient of

etermination in linear regression analysis (i.e., explained variance).

herefore, Explained Power 𝐸 12 can be computed by taking the product

f magnitude squared coherence 𝐶 

2 
12 and the receiver’s power spectrum

 22 

 12 ( 𝑓 ) ≡ 𝑆 22 ( 𝑓 ) 𝐶 

2 
12 ( 𝑓 ) 

≡ ||𝑆 12 ( 𝑓 ) ||2 
𝑆 11 ( 𝑓 ) 

. (20) 

Expanding the definition above shows that explained power captures

he sender’s projected signal scaled by the connectivity weight 𝑤 and

eceiver’s input transfer function 𝐻 𝑖𝑛𝑝𝑢𝑡 , 

 12 ( 𝑓 ) = 𝑆 22 ( 𝑓 ) 
𝑤 

2 ||𝑆 11 ( 𝑓 ) ||2 𝐻 

2 
𝑖𝑛𝑝𝑢𝑡 

𝑆 11 ( 𝑓 ) 𝑆 22 ( 𝑓 ) 
= 𝑤 

2 𝑆 11 ( 𝑓 ) 𝐻 

2 
𝑖𝑛𝑝𝑢𝑡 . (21) 
3 
n this example, the interaction between the sender and receiver is uni-

irectional, which leads to a straightforward interpretation of Explained

ower. 

We have assumed the observed power spectrum of the sender is

quivalent to the projected signal from the sender. In practice, this may

ot be the case, and Explained Power will depend on the spectrum of

he unprojected part of the sender, such as additive background fluctu-

tions (e.g., 1∕ 𝑓 ). This naive estimation of Explained Power will tend

o underestimate the signal transmitted by the sender. However, it is

ossible to correct this underestimation in Explained Power as follows 

̂
 12 ( 𝑓 ) ≡

||𝑆 12 ( 𝑓 ) ||2 
( 𝑆 11 ( 𝑓 ) − 𝑆 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ( 𝑓 )) 

, (22)

rovided estimating the unprojected signal can be reasonably motivated

e.g., with a pre-stimulus or baseline condition). Note that the derivation

ere is just based on the expression of the coherence magnitude squared.

Note, this correction comes at the expense of the potential overes-

imation, i.e., can lead to negative values, and is therefore, unreliable

s 𝑆 11 ( 𝑓 ) − 𝑆 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ( 𝑓 ) → 0 . Taking these limitations into consideration,
̂
 12 should only be estimated over a frequency range where the power

s maximal in the sender (e.g., full width at half-maximum). 

We note that the equivalence of the integral of the power spectral

ensity and time-domain variance of 𝑥 2 

 𝑎𝑟 
[
𝑥 2 
]
= ∫ 𝑆 22 ( 𝑓 ) 𝑑𝑓 . (23)

hich leads to a unitless measure of Explained Power we refer to as the

roportion of Explained Power (PEP). 

PEP (see Fig. 5 (g)–(i)) is then defined as 

̃
 12 ≡ 𝐸 12 

∫ 𝑆 22 ( 𝑓 ) 𝑑𝑓 
. (24) 

Furthermore, it follows then that the integral of explained power is

quivalent to the total explained variance 

 𝑎𝑟 2 ,𝑒𝑥𝑝 = ∫ 𝑆 22 ( 𝑓 ) 𝐶 

2 
12 ( 𝑓 ) 𝑑𝑓 . (25)

The Explained Power measure is further supported by the re-

ationship of coherence with the Wiener filter ( Wiener, 1949 ).

iener (1949) showed that for an acausal filter, where a signal 𝑥 2 is

redicted from a linear combination of 𝑥 1 (at different delays), the min-

mum mean squared error (in the prediction of 𝑥 2 ) is given by 

 𝑎𝑟 2 , residual = ∫ 𝑆 22 
(
1 − 𝐶 

2 
12 ( 𝑓 )) 

)
𝑑𝑓 , (26) 

nd thus, 

𝑆 22 𝐶 

2 
12 ( 𝑓 ) = 𝑉 𝑎𝑟 

[
𝑥 2 
]
− 𝑉 𝑎𝑟 2 , residual 

∫ 𝐸 12 ( 𝑓 ) 𝑑𝑓 = 𝑉 𝑎𝑟 
[
𝑥 2 
]
− 𝑉 𝑎𝑟 2 , residual , (27) 

here 𝑉 𝑎𝑟 2 , residual is the residual (or unexplained) variance, 𝑉 𝑎𝑟 
[
𝑥 2 
]

is

he variance of 𝑥 2 , and 𝐶 

2 
12 is magnitude squared coherence between 𝑥 1 

nd 𝑥 2 . Note that normalizing the residual variance by the total variance

s equivalent to 1 − ∫ PEP ( 𝑓 ) 𝑑𝑓 

𝐸 12 𝑑𝑓 = 1 − 

𝑉 𝑎𝑟 2 , residual 

𝑉 𝑎𝑟 
[
𝑥 2 
] . (28) 

Note, when the interaction between the sender and receiver is bidi-

ectional, separating feedforward and feedback Explained Power is not

ntirely straightforward. It would appear reasonable to isolate feedfor-

ard and feedback Explained Power utilizing the causal power equa-

ions derived from Granger–Geweke causality (GGC) ( Dhamala et al.,

018 ). However, this approach inherits the biases known to affect GGC,

amely the issue that additive noise in the sender can reverse the direc-

ion of causality ( Vinck et al., 2015 ). A more problematic issue is that

idirectional phase delays lead to interference patterns in the coher-

nce spectra that mask the true underlying feedforward and feedback
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ausal interactions. A full discussion on this topic is beyond the scope

f this manuscript, but we have briefly noted this issue here as it gen-

rally pertains to causal inference based on phase (time) delays applied

o bidirectional systems. 

.5. Determining the coefficients of the autoregressive model 

For our simulations, we modeled the intrinsic activity of each cor-

ical ensemble with a causal second-order autoregressive model with

omplex roots. The impulse response function ( ℎ ) of an AR(2) model

ith complex roots is a dampened oscillation. When driven by white

oise, an AR(2) model can exhibit pseudo-periodic stochastic fluctua-

ions around its resonant frequency. 

An autoregressive process of order 𝑚 is defined as 

 𝑡 = 𝑎 0 + 

𝑚 ∑
𝑘 =1 

𝑎 𝑘 𝑦 𝑡 − 𝑘 + 𝜖𝑡 , (29)

here 𝜖𝑡 is a white noise process 𝜖𝑡 ∼  ( 𝜇, 𝜎2 ) with mean 𝜇 = 0 , variance
2 , and expected value 𝔼 [ 𝑦 𝑡 ] = 𝑎 0 . 

We were particularly interested in AR(2) models with roots 𝜆1 , 2 that

orm a complex conjugate pair 

1 , 2 = 

𝑎 1 ± 𝑖 
√ 

− 

(
𝑎 2 1 + 4 𝑎 2 

)
2 

. (30)

The concentration of spectral energy, or peakiness, of an AR(2) with

omplex roots is proportional to the modulus, 𝑅 , of its roots 𝜆1 , 2 , where

 < 𝑅 < 1 . When 𝑅 is close to 1 the resulting time-series is almost per-

ectly sinusoidal, and as 𝑅 approaches zero, the power spectrum of the

ime-series becomes less peaked (i.e., flat). 

𝑅 is determined by taking the Pythagorean sum of the real and imag-

nary parts of the complex roots ( Eq. (30) ) 

 

2 = 

𝑎 2 1 
4 

+ 

− 

(
𝑎 2 1 + 4 𝑎 2 

)
4 

= − 𝑎 2 . (31) 

ote, the boundary conditions 𝑎 2 = −0 . 25 𝑎 2 1 and 𝑎 2 = −1 force −1 < 𝑎 2 <

 , which ensures 𝑅 is real-valued. 

The analytic expression of the one-sided power spectrum of an AR(2)

rocess is 

 𝑦𝑦 ( 𝜔 ) = 

𝜎2 𝜖||1 − 𝑎 1 𝑒 
− 𝑖𝜔 − 𝑎 2 𝑒 

− 𝑖 2 𝜔 ||2 , (32)

here 𝜔 is the normalized frequency in radians per sample (i.e., 𝜔 =
 𝜋

𝑓 

𝑓𝑠 
, for frequency 𝑓 and sampling rate 𝑓𝑠 ). 

For simplicity, Eq. (32) can be written in the real-domain as 

 𝑦𝑦 ( 𝜔 ) = 

𝜎2 𝜖

1 + 𝑎 2 1 + 𝑎 2 2 − 2 𝑎 1 (1 − 𝑎 2 ) cos ( 𝜔 ) − 2 𝑎 2 cos (2 𝜔 ) 
. (33)

To derive the analytical expression for the AR(2) coefficients as a

unction of the peak frequency, 𝜔 max , we only need to take the partial

erivative of Eq. (33) over 𝜔 . That is, the power spectrum of an AR(2)

eaches its peak when the denominator in Eq. (33) reaches its minimum.

he analytic expression for the peak frequency 𝜔 max is then 

 𝑚𝑎𝑥 = cos −1 
( 

𝑎 1 
(
𝑎 2 − 1 

)
4 𝑎 2 

) 

, (34)

here 𝜔 max is the peak frequency in radians per sample. 

Thus, Eqs. (31) and (34) allow us to derive the coefficients of an

R(2) with complex roots with the desired modulus 𝑅 and peak fre-

uency 𝜔 max 

 1 = 

4 𝑎 2 cos ( 𝜔 𝑚𝑎𝑥 ) 
𝑎 2 − 1 

, (35) 

 2 = − 𝑅 

2 . (36) 
t

4 
otice that Eq. (35) implies 𝑎 2 < 𝑎 1 ∕( 𝑎 1 ± 4) . 
Thus, the AR(2) models of interest in this study were those enclosed

y the boundary conditions 

 < 𝑎 1 < 2 , (37) 

1 < 𝑎 2 < 

𝑎 1 
𝑎 1 − 4 

. (38) 

.5.1. Controlling peak power while varying other parameters 

In our simulations, we wanted to control the maximum power (peak

ower) at the resonant frequency 𝜔 max , while changing other parameters

uch as the modulus of the eigenvalue 𝑅 , or the variance of the time-

eries. To that end, we derived the equations that describe the peak

ower and variance as a function of 𝑅 . 

The equation for peak power is easily derived by substituting

q. (35) into Eq. (33) and solving for 𝑆 𝑦𝑦 ( 𝜔 max ) = 𝑆 max 

 𝑚𝑎𝑥 = 

𝜎2 𝜖
(
𝑎 2 − 1 

)2 (
𝑎 2 + 1 

)2 (
𝑎 2 2 + 2 𝑎 2 cos (2 𝜔 𝑚𝑎𝑥 ) + 1 

) . (39)

ote, this equation can be further written in terms of 𝑅 by substituting

n Eq. (36) . 

In order to control the time-domain variance (i.e., integral of the

SD) of the AR(2) model, we first derived the equation for the variance

f an AR(2) process in terms of its coefficients 

 𝑎𝑟 
[
𝑦 𝑡 
]
= 

(
1 − 𝑎 2 

)
𝜎2 𝜖(

1 + 𝑎 2 
) (

(1 − 𝑎 2 ) 2 − 𝑎 2 1 
) . (40)

Eq. (35) was then substituted in to remove 𝑎 1 

 𝑎𝑟 
[
𝑦 𝑡 
]
= 

( 

−( 𝑎 2 − 1) 3 

𝑎 2 + 1 

) 

( 

𝜎2 𝜖

( 𝑎 2 − 1) 4 − 16 𝑎 2 2 cos 
2 ( 𝜔 𝑚𝑎𝑥 ) 

) 

. (41)

Finally, Eqs. (39) and (36) can then be substituted into Eq. (41) , 

 𝑎𝑟 
[
𝑦 𝑡 
]
= − 𝑆 𝑚𝑎𝑥 

(
𝑅 

4 − 1 
)(
𝑅 

4 − 2 𝑅 

2 cos (2 𝜔 𝑚𝑎𝑥 ) + 1 
)

(
𝑅 

2 + 1 
)4 − 16 𝑅 

4 cos 2 ( 𝜔 𝑚𝑎𝑥 ) 
. (42)

Notice that 𝑉 𝑎𝑟 
[
𝑦 𝑡 
]
∈ [0 , 𝑆 max ] , thus as 𝑉 𝑎𝑟 

[
𝑦 𝑡 
]
→ 0 the waveform

ends to a near perfect sinusoidal oscillation, whereas when 𝑉 𝑎𝑟 
[
𝑦 𝑡 
]
→

 max the power spectrum flattens. 

We used the Matlab function vpasolve() to solve Eqs. (39) and

42) to determine 𝑅 given the desired 𝜔 max , 𝑆 max , or 𝑉 𝑎𝑟 
[
𝑦 𝑡 
]
. 

.5.2. Resonator input transfer function 

As defined previously, we modeled the resonator input transfer func-

ion with a second-order autoregressive model. The resonator’s input

ransfer function was always identical to the receiver’s intrinsic power

pectrum (peak frequency at 60 Hz). However, because we set the peak

ower of the intrinsic oscillations equal to 1, this would have meant

he input transfer function would act as a unit-gain (at the resonant

requency) band-pass filter. Therefore, we added a gain factor 𝑔 that

onverted the input transfer function from unit gain to amplifying at

he resonant frequency when 𝑔 > 1 . Note that the gain factor did not

hange the pattern of coherence across frequencies, only the absolute

agnitude. 

Thus, the resonator input transfer function was 

 𝑖𝑛𝑝𝑢𝑡 = 𝑔 𝐻 2 , (43)

here 𝐻 2 is the receiver’s intrinsic transfer function. The gain factor

or the bivariate sender-receiver simulations with a resonator was 𝑔 =
 . 5 ( Figs. 2 and 5 ). For the triplet model simulation, the resonator gain

actor was 𝑔 = 1 . 6 ( Fig. 3 (d) and (e)). Note, the gain factor only applied

o the resonator transfer function, and was otherwise equal to 1. 
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.5.3. Integrator input transfer function 

We modeled the integrator input transfer function with an exponen-

ial decay 

 [ 𝑛 ] = ( 1 − 𝛼) 𝑥 [ 𝑛 − 1] + 𝛼 𝑥 ( 𝑝𝑟𝑜𝑗) [ 𝑛 ] , (44)

here 𝑥 ( 𝑝𝑟𝑜𝑗) is the signal projected to, and filtered by the receiver’s input

ransfer function, and 𝛼 is 

= 1 − 𝑒 
− Δ𝑇 

𝜏 . (45)

The transfer function of the exponential filter is 

( 𝜔 ) = 

𝛼

1 − (1 − 𝛼) 𝑒 − 𝑗𝜔 
. (46)

The exponential filter is a low-pass filter, and thus it is possible to

escribe the filter by its corner frequency (i.e., the frequency where the

ower of the input is attenuated by 3 decibels). 

From the spectrum, we derived the equation for the corner frequency

 𝑐𝑜𝑟𝑛𝑒𝑟 = 

𝑓𝑠 

2 𝜋
cos −1 

( 

1 − 

𝛼2 

2(1 − 𝛼) 

) 

, (47)

here 𝑓𝑠 = 1000 Hz is the sampling frequency of the time-series. 

.6. Background 1∕ 𝑓 fluctuations and numerical simulations 

Note that in the presence of 1∕ 𝑓 fluctuations, we can describe 

 

( 𝑜𝑏𝑠 ) [ 𝑡 ] = 𝑥 ( 𝑖𝑛𝑡 ) [ 𝑡 ] + 𝜂𝑥 [ 𝑡 ] , (48) 

here 𝜂𝑥 [ 𝑡 ] is a background term containing 1∕ 𝑓 fluctuations. We as-

umed that these 1∕ 𝑓 fluctuations were not projected, nor correlated

ith each area’s intrinsic activity. 

The power spectrum of 1∕ 𝑓 is approximately equal to the inverse of

he frequency 

( 𝑓 ) ∝ 1 
𝑓 
. (49)

We simulated the 1∕ 𝑓 spectrum according to 

( 𝑓 ) = 

𝑓 0 
𝑓 
𝑃 , (50)

hen inverse Fourier transformed the spectrum to arrive at the time-

omain coefficients of an 𝑁 

𝑡ℎ order FIR filter, where N was equal to the

umber of samples in each simulated time-series epoch. For all simula-

ions that included background 1∕ 𝑓 , 𝑓 0 was set to the receiver’s peak

requency (60 Hz) and 𝑃 = 3 −1 . 
The peak power for all intrinsic oscillations (simulated with AR(2)

lters) was always equal to 1. 

The sampling rate for all simulations was 𝑓𝑠 = 1000 . The epoch

ength was 𝑁 = 1000 samples, and 2500 independent epochs were gen-

rated for each run of a simulation. Each simulation was run 15 times

with a unique seed for the random number generator), the first 50,000

amples were discarded, and the results overall runs were averaged. 

Note, the pattern of coherence changes was not significantly altered

y changing the parameters of the simulations. That is, the result that co-

erence increased with increasing sender-receiver frequency mismatch

or the integrator receiver, and decreased for the resonator receiver held

rue over a wide range of the parameter space. 

. Results 

Our primary question was how shifts in the oscillation frequency

f the sender lead to changes in coherence between sender and re-

eiver. To investigate this, we simulated the local field potential (LFP)

f two anatomically connected brain areas with pseudo-periodic causal

utoregressive (AR) models. Pseudo-periodic AR models reproduce the

tatistical properties of stationary gamma oscillations in V1 and pro-

ide mean-field approximations of E-I circuits driven by stochastic in-

ut ( Spyropoulos et al., 2022 ). However, note that the results presented
5 
ere do not depend on AR models specifically. To elucidate how the

ender oscillation frequency affects coherence, we systematically varied

he sender frequency and computed coherence between the sender and

eceiver. 

Recently, Schneider et al. (2021) demonstrated that differences in

he magnitude of inter-areal coherence can be explained by differences

n the oscillatory power of the source projecting areas. The authors de-

ived an analytical model of coherence, referred to as the Source Mix-

ng model, which can be expressed in terms of the input-output rela-

ionships of linear systems perturbed by stochastic noise ( Bendat and

iersol, 2010; Trueblood and Alspach, 1977 ). Conceptually, the Source

ixing model follows from the non-local nature of the LFP and relies

n the assumption that input spikes from the sender depolarize target

ells in the receiver leading to correlated fluctuations in the LFPs of the

ender and receiver. 

However, the Source Mixing model presented in

chneider et al. (2021) assumed the receiver responds to all in-

uts identically independent of their frequency (i.e., the receiver acts

s an all-pass filter). Yet, it is known that some neurons integrate

heir synaptic inputs (i.e., act as a low-pass filter), and other neurons

esonate at a particular frequency according to their synaptic inputs

i.e., act as a band-pass filter) ( Hutcheon and Yarom, 2000; Izhikevich

t al., 2003 ). Importantly, integration and resonance represent distinct

orms of excitability of neurons according to the temporal structure of

heir synaptic input. We reasoned that coherence should depend on the

ntrinsic filtering properties of neurons. 

To explore the filtering effect of the receiver on coherence we com-

ared the effect of frequency shifts in the sender with an integrator and a

esonator receiver. Although integration and resonance are conceptually

istinct and have opposing effects on coherence with frequency shifts

n the sender, both are reducible to the same analytical equation (see

ection 2.2 ). 

.1. Integrator vs. resonator: feedforward communication between 

ender-receiver pairs 

We first simulated a set of bivariate models with unidirectional feed-

orward communication between a single sender and receiver. We simu-

ated five sender-receiver pairs in which the sender’s peak frequency was

aried between 60 and 100 Hz while the receiver’s intrinsic power spec-

rum remained constant (peak frequency at 60 Hz). The output of the

ender was scaled by the connectivity weight ( 𝑤 = 0 . 35 ), passed through

he receiver’s input transfer function ( 𝐻 𝑖𝑛𝑝𝑢𝑡 ), delayed ( 𝜏 = 3 ms), and

hen superimposed on the intrinsic activity of the receiver ( Fig. 1 (a)).

ote, only the oscillatory part of the sender was projected to the receiver

see Section 2.1 ). Furthermore, we simplified our simulations by assum-

ng the transmitted signal from the sender is perfectly correlated with

he oscillatory part of the LFP. That is, we explicitly avoided introduc-

ng any frequency-dependent transforms between the transmitted signal

nd LFP in the sender in order to isolate the effect of the receiver’s power

pectrum and input transfer function on coherence. Thus, the intrinsic

scillations in the sender and receiver can be assumed to directly reflect

he average instantaneous firing rate within each area. We refer to the

uperposition of an area’s intrinsic activity, additive background 1∕ 𝑓
uctuations, and any inputs to that area as the observed activity in that

rea. We always computed coherence between observed signals in the

ender and receiver. 

In Fig. 1 , we show the results for an integrator receiver mod-

led as a first-order exponential moving average (cutoff: 100 Hz, see

ection 2.5.3 ). We observed that coherence increased as the sender fre-

uency shifted away from the peak frequency of the receiver ( Fig. 1 (e)),

hich was also true for simulations with and without additive 1∕ 𝑓 fluc-

uations. The effect of sender frequency on coherence with an integrator

eceiver was qualitatively similar given a flat (all-pass) input transfer

unction (see Fig. 5 (a) and (b)). The increase in coherence is explained

y the change in the power ratio between the sender and receiver as the
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Fig. 1. Source Mixing with an integrating receiver. Comparison between five sender-receiver pairs with unidirectional feedforward communication in the presence 

of additive 1∕ 𝑓 background fluctuations. (a) Simulation circuit diagram. For these simulations, the feedforward connectivity weight was 𝑤 = 0 . 35 and the inter-areal 

delay was 𝜏 = 3 ms. The receiver’s input transfer function was a low-pass filter (exponential moving average, cutoff: 100 Hz) applied identically to each sender’s 

output. Note, Only the oscillatory part of the sender was projected. The max power (peak in the PSD) of the oscillatory (i.e., transmitted) signals in all senders 

was identical, that is, only the peak frequency was varied. (b) Example of 1 s of the simulated time-series of the sender (black line) and receiver (red line). For 

the receiver’s time-series example only, the receiver’s observed time series without (black line) the projected signal from the sender is plotted under the time-series 

with (red line) the projected signal from the sender. This illustrates the contribution of the sender’s projected signal relative to the intrinsic (and 1∕ 𝑓 ) fluctuations 

in the receiver. (c) The observed PSDs of the five senders with a peak frequency at 60, 70, 80, 90, and 100 Hz, respectively. Note, the observed sender PSD is the 

sum of the PSDs of the sender’s intrinsic oscillatory signal and background 1∕ 𝑓 . (d) The observed PSDs of the receiver paired with each of the five senders. The 

receiver’s PSD was the same in all sender-receiver pairs, i.e., only the sender’s frequency was shifted. Note, the observed receiver PSD is the sum of the PSDs of the 

receiver’s intrinsic signal, the signal received from the sender, and background 1∕ 𝑓 . (e) Magnitude squared coherence between the observed power spectra for each 

sender-receiver pair. Note, the intrinsic oscillations, and background 1∕ 𝑓 , in the sender and receiver, were fully uncorrelated. Thus, all coherence was due to the 

signal projected from the sender to the receiver. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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ender’s peak frequency shifts away from the peak of the power in the

eceiver. That is, as the sender’s peak frequency shifted further away

rom the peak power in the receiver, the sender’s projected signal was

ess diluted by the power in the receiver and coherence increased. 

In Fig. 2 , we show the results for a resonant receiver modeled as

n AR(2) process (peak frequency at 60 Hz, see Section 2.5.2 ). We as-

umed that the receiver’s input transfer function was identical to the

ntrinsic power spectrum of the receiver. Contrary to the integrator re-

eiver, coherence decreased with a resonant receiver as the sender fre-

uency shifted away from the receiver’s peak frequency ( Fig. 2 (e)). Be-

ause the resonant receiver amplifies inputs at its resonant frequency

nd suppresses frequencies further away from its resonant frequency,

t directly influences the power ratio of the sender’s projected signal

elative to the receiver’s intrinsic power. The net effect is that the res-

nant receiver dampens the rise in coherence with increasing sender-

eceiver frequency mismatch, unlike the integrator receiver. In general,

his effect applies to all resonators, however, a special case arises when

he receiver’s input transfer function matches its intrinsic power spec-

rum, as in our simulation. In this special case, the receiver’s input

ransfer function perfectly compensates for the intrinsic power in the

eceiver, and the magnitude of coherence becomes invariant to the in-

rinsic power spectrum of the receiver. The change in coherence with

ncreasing sender frequency shown in Fig. 2 (e) arises because of the

resence of additive background fluctuations in the receiver. Thus, in

he absence of background 1∕ 𝑓 the magnitude of coherence does not

hange with shifts in the sender frequency (see Fig. 5 (c)). Note, we chose

o match the input transfer function of the receiver to its power spec-

rum, because this was the most parsimonious case. 
6 
.2. The triplet model: feedforward competition between two senders 

Next, we aimed to simulate the study design in empirical studies

hat observed inter-areal coherence differences between two competing

enders with different peak frequencies, but equal peak power, project-

ng to the same receiver ( Bosman et al., 2012; Ferro et al., 2021 ). We

efer to this simulation as the triplet model. 

First, we ran the triplet simulation with unidirectional feedforward

onnectivity ( 𝑤 𝑓𝑓 = 0 . 12 , 𝜏 = 3 ms) from the senders (peak frequencies

t 62 and 66 Hz, respectively) to the receiver (peak frequency at 60 Hz).

his simulation was otherwise identical to the previous simulations with

ivariate sender-receiver pairs. Similarly, we compared the influence of

he receiver’s transfer function (the integrator and resonator, as previ-

usly defined) on coherence in the presence of 1∕ 𝑓 background fluctu-

tions ( Fig. 3 (c)–(e)). Note, the senders were unconnected and uncorre-

ated with each other. 

Consistent with the bivariate simulations, the magnitude of the co-

erence was greater for the higher frequency sender with an integrator

eceiver ( Fig. 3 (c)), and lower with the resonant receiver ( Fig. 3 (e)). To-

ether these results indicate that source mixing with frequency differ-

nces between two senders, feedforward connectivity, and an integrator

eceiver is sufficient to explain the empirically observed increase in V1–

4 coherence with attention ( Bosman et al., 2012; Ferro et al., 2021 ).

owever, thus far our simulations have ignored the known anatomical

eedback connectivity from V4 to V1 ( Markov et al., 2014a; 2014b ). 

We then asked whether the pattern of coherence observed with the

ntegrator receiver would change with feedback (see Fig. 4 ). To that

nd, we added feedback ( 𝑤 𝑓𝑏 = 0 . 06 , 𝜏 = 3 ms) to the triplet model,
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Fig. 2. Source Mixing with a resonant receiver. Comparison between five sender-receiver pairs with unidirectional feedforward communication in the presence of 

additive 1∕ 𝑓 background fluctuations. (a) Simulation circuit diagram. For these simulations, the feedforward connectivity weight was 𝑤 = 0 . 35 and the inter-areal 

delay was 𝜏 = 3 ms. The receiver’s input transfer function was a band-pass filter (AR(2) model with a peak at 60 Hz) applied identically to each sender’s output. 

Note, only the oscillatory part of the sender was projected. (b) Example of 1 s of the simulated time-series of the sender (black line) and receiver (red line). For the 

receiver’s time-series example only, the receiver’s observed time-series without (black line) the projected signal from the sender is plotted under the time-series with 

(red line) the projected signal from the sender. This illustrates the contribution of the sender’s projected signal relative to the intrinsic (and 1∕ 𝑓 ) fluctuations in the 

receiver. Note, the intrinsic activity in these simulations is identical to the simulations shown in Fig. 1 (b). The only difference between these simulations was the 

receiver’s input transfer function, yet the effect on coherence was the complete opposite. (c) The observed PSDs of the five senders with a peak frequency at 60, 70, 

80, 90, and 100 Hz, respectively. (d) The observed PSDs of the receiver paired with each of the five senders. The receiver’s PSD was the same in all sender-receiver 

pairs, i.e., only the sender’s frequency was shifted. (e) Magnitude squared coherence between the observed power spectra for each sender-receiver pair. Note, the 

intrinsic oscillations in the sender and receiver were fully uncorrelated. Thus, all coherence was due to the signal projected from the sender to the receiver. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ut otherwise, the model remained identical to the feedforward-only

odel. Note, the receiver projected the identical signal to both senders

ith the same connectivity weight and delay. In this simulation, both

he senders and receiver were modeled as integrators with the identical

nput transfer function as defined previously (exponential moving aver-

ge, cutoff: 100 Hz). In addition to computing coherence, for this simula-

ion only, we also computed non-parametric Granger–Geweke Causality

 Dhamala et al., 2018 ) ( Fig. 4 (d) and (e)). 

The pattern of coherence observed in the feedback triplet model

ith integrator transfer functions was consistent with the results from

he feedforward-only model. However, with feedback, the difference in

oherence between the two senders and the receiver was magnified.

 complete explanation as to why the coherence difference is magni-

ed with feedback is beyond the scope of this manuscript ( Dowdall and

inck, 2023 ). However, we have noted that this is an artifact of the

ay coherence is computed. That is, this is a methodological issue, and

urther points to the difficulty in interpreting coherence differences as

eflecting true differences in the strength of inter-areal communication.

.3. Explained power 

These results reveal the limitations of coherence to characterize

nter-areal interactions when there are frequency shifts between the

enders and the receiver. In our simulations, the signals the senders

rojected to the receiver were equal in magnitude (i.e., power at the

esonant frequency), but varied in frequency. Yet, the magnitude of

oherence depended systematically on the frequency of the sender

 Fig. 5 (a)–(c)). 

Magnitude-squared coherence is a meaningful measure in the sense

hat it quantifies the proportion of explained variance at each frequency.
7 
owever, coherence may not be physiologically meaningful even when

t is close to one. For example, the sender may explain all of the power

n the receiver over a particular frequency range, but those frequencies

ay only account for an arbitrarily small fraction of the total power in

he receiver. 

Considering that neurons in the receiver will be driven (at least to

ome extent) by membrane potential fluctuations at all frequencies, it is

easonable that the physiological impact of the sender on the receiver

epends on the extent to which the sender changes the receiver’s power

pectrum. This motivates an alternative measure of inter-areal interac-

ions, which we refer to as Explained Power ( Fig. 5 (d)–(f)). Explained

ower 𝐸 12 is computed by taking the product of coherence 𝐶 

2 
12 and the

eceiver’s power spectrum 𝑆 22 , 

 12 ≡ 𝐶 

2 
12 𝑆 22 . (51)

Explained Power (EP) should be interpreted as explained variance

er frequency (see Eq. (23) ). However, in the absence of 1∕ 𝑓 back-

round fluctuations, EP is equivalent to the signal projected by the

ender scaled by the connectivity weight 𝑤 

2 and the receiver’s input

ransfer function 𝐻 

2 
𝑖𝑛𝑝𝑢𝑡 

, 

 12 = 𝑤 

2 𝑆 11 𝐻 

2 
𝑖𝑛𝑝𝑢𝑡 , (52)

 5 g–i; see Section 2 ). Furthermore, normalizing EP by the sender’s

ower spectrum EP provides a method for estimating the receiver’s input

ransfer function (ITF) 𝐻 𝑖𝑛𝑝𝑢𝑡 , 

̂
 

2 
𝑖𝑛𝑝𝑢𝑡 = 

𝐸 12 
𝑆 11 

(53) 

= 𝑤 

2 𝐻 

2 
𝑖𝑛𝑝𝑢𝑡 . (54) 
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Fig. 3. The triplet: Feedforward competi- 

tion between two senders with different fre- 

quencies. (a) Illustration of the circuit. For 

these simulations, the feedforward connectiv- 

ity weight was 𝑤 𝑓𝑓 = 0 . 12 and the inter-areal 

delay was 𝜏 = 3 ms. The activity from both 

senders was filtered by the receiver’s input 

transfer function, 𝐻 𝑖𝑛𝑝𝑢𝑡 , and superimposed on 

the receiver’s intrinsic activity. Note, only the 

oscillatory part of the sender was projected 

from each sender. (b-c) Simulation with an 

integrator receiver modeled as an exponen- 

tial moving average low-pass filter (cutoff: 

100 Hz). (b) Observed power spectra of the 

senders with a peak frequency of 62 and 66 Hz 

(blue and red lines, respectively) and the re- 

ceiver with a peak at 60 Hz (black line). (c) Co- 

herence between the receiver with each sender. 

(d-e) Same as the integrator receiver, but now 

for the resonant receiver modeled with an 

AR(2) model (peak frequency at 60 Hz). All in- 

trinsic oscillations were uncorrelated to each 

other. Thus, all coherence was due to the sig- 

nals projected from the sender to the receiver. 

(For interpretation of the references to color in 

this figure legend, the reader is referred to the 

web version of this article.) 
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A unit-less measure of Explained Power can be obtained by normal-

zing 𝐸 12 by the integral of the receiver power spectrum, 

̃
 12 = 

𝐸 12 

∫ 𝑆 22 ( 𝑓 ) 𝑑𝑓 
. (55) 

e refer to the resulting EP measure after normalization as the Pro-

ortion of Explained Power (PEP) ( Fig. 5 g–(i)), Note that the time-

omain variance of a time-series equals the integral of its power spec-

rum ( Eq. (23) ). Thus, PEP quantifies the proportion of the total vari-

nce explained by the sender per frequency. For example, a PEP equal

o 0.01 indicates that the sender explains 1% of the receiver’s total sig-

al energy at that frequency. However, in some cases, changes in PEP

ay be difficult to interpret. For example, such a situation may arise

hen the integral of the receiver’s PSD (i.e., variance) changes due to a

hange in the power of a single frequency band. Therefore, EP, rather

han PEP, is preferred when comparing two conditions with unequal (to-

al) variance. PEP has a straightforward relationship to an acausal linear

rediction kernel where the integral of PEP equals the total explained

ariance (see Section 2.4 ). 

To illustrate the utility of EP, PEP, and ITF compared to coher-

nce, we repeated the bivariate sender-receiver simulations varying the

ender frequency for three kinds of receivers: integrator, resonator, and

requency invariant (i.e., a flat input transfer function). Note, these sim-
8 
lations were identical to those shown in Figs. 1 and 2 except without

ackground 1∕ 𝑓 fluctuations. 

In the case of the integrator receiver, coherence increased with

 greater frequency mismatch between the sender and the receiver

 Fig. 5 (a)). By contrast, EP scaled according to the integrator re-

eiver’s input transfer function, which in this case, was a low-pass filter

 Fig. 5 (d)). In the case of a resonant receiver, coherence was invariant

o the sender oscillation frequency, but again, EP followed the receiver’s

nput transfer function ( Fig. 5 ). 

Lastly, we compared the integrator and resonator input transfer func-

ions to a receiver with a flat transfer function (equivalent to an all-pass

lter). In the case of a flat input transfer function coherence increased

imilarly to the integrator receiver ( Fig. 5 (c)). Accordingly, EP was in-

ariant to the oscillation frequency, that is, the receiver’s transfer func-

ion did not distinguish between frequencies of the senders ( Fig. 5 (f)). 

These results demonstrate that in all cases, EP follows the receiver’s

nput transfer function ( Fig. 5 (d)–(f)), whereas coherence predomi-

antly depends on the receiver’s power spectrum and how the receiver’s

nput transfer function alters the power of the input ( Fig. 5 (a)–(c)). Us-

ng EP, the input transfer function could, for all three cases, be reli-

bly estimated ( Fig. 5 (g)–(i)). For empirical data, the ability to estimate

he input transfer function will depend on a high signal-to-noise ratio,

hich is not always given in real data (for further caveats on how to
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Fig. 4. The triplet: feedforward competition 

with feedback. (a) Illustration of the circuit. 

For these simulations, the feedforward connec- 

tivity weight was 𝑤 𝑓𝑓 = 0 . 12 , and the feed- 

back connectivity was 𝑤 𝑓𝑏 = 0 . 06 . The inter- 

areal delay was 𝜏 = 3 ms for both feedforward 

and feedback communication. Both senders’ re- 

ceived identical feedback from the receiver. 

Note, only the oscillatory part of the sender was 

projected from each sender. Here we only show 

the results for the simulation with an integra- 

tor receiver modeled as an exponential mov- 

ing average low-pass filter (cutoff: 100 Hz). (b) 

Observed power spectra of the senders with a 

peak frequency of 62 and 66 Hz (blue and red 

lines, respectively) and the receiver with a peak 

at 60 Hz (black line). (c) Coherence between 

the receiver with each sender. Note, the co- 

herence pattern shows a strong increase simi- 

lar to ( Bosman et al., 2012 ). (d) Feedforward 

non-parametric Granger–Geweke Causality be- 

tween the receiver with each sender. (e) Feed- 

back non-parametric Granger–Geweke Causal- 

ity. (For interpretation of the references to 

color in this figure legend, the reader is referred 

to the web version of this article.) 
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ompute EP, PEP, and ITF in practice, see Section 2.4 ). Thus, in a typ-

cal experiment estimating the ITF may only be possible in a relatively

arrow frequency range when the sender has the most power. However,

e show that within this narrow frequency range around the peak fre-

uency of the sender, the ITF can be reliably estimated ( Fig. 5 (j)–(l)).

herefore, estimating the entire bandwidth of the ITF will depend on the

xperimenter’s ability to evoke oscillations across the frequency range

f interest. 

. Discussion 

.1. Summary 

Coherence and Geweke–Granger-causality (GCC) are commonly

sed methods to investigate inter-areal interactions ( Pesaran et al.,

018 ). It has been proposed that inter-areal coherence reflects the flex-

ble gating of neuronal communication ( Bressler and Kelso, 2001; Fries,

005; Varela et al., 2001 ). However, recent work has raised concerns

egarding the physiological and functional interpretation of inter-areal

oherence given the non-local nature of the LFP, referred to as Source

ixing ( Buzsáki and Schomburg, 2015; Pesaran et al., 2018; Schnei-

er et al., 2021; Schomburg et al., 2014 ). The Source Mixing model is

ased on the understanding that the LFP is the superposition of all ex-
9 
racellular currents in the brain ( Buzsáki et al., 2012 ), and in particular

ynaptic inputs from local and remote sources ( Buzsáki and Schomburg,

015; Pesaran et al., 2018; Schneider et al., 2021 ). Source Mixing refers

o the phenomenon whereby spiking activity in one area gives rise to

orrelated synaptic currents both locally and in remote areas according

o that area’s pattern of anatomical connectivity. Therefore, the only as-

umption of the Source Mixing Model is that the intrinsic activity of the

ender is superimposed on the receiver. 

Thus, according to the Source Mixing model, coherence is explained

y linear signal mixing, and its magnitude depends on the power ratio

etween the sender and receiver (see Eq. (7) ) ( Schneider et al., 2021 ).

et, several studies have observed changes in inter-areal coherence (be-

ween V1 and V4) without a difference in the peak power of V1 gamma

scillations ( Bosman et al., 2012; Ferro et al., 2021 ). These studies did

owever observe a shift in the peak frequency of V1 gamma oscillations.

osman et al. (2012) and Fries (2015) postulated that these frequency

ifferences may in fact be the mechanism that facilitates inter-areal com-

unication, and increases inter-areal coherence. 

In this study, we investigated whether the Source Mixing model

ould also explain changes in inter-areal coherence with shifts in the

ender frequency. As previously noted, the only assumption of the

ource Mixing Model is that the intrinsic activity of the sender is su-

erimposed on the receiver. This means coherence can be described in
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Fig. 5. The Explained Power metric for quantifying inter-areal interactions. These simulations were identical to those shown in Figs. 1 and 2 except without 1∕ 𝑓
background fluctuations. (a–c) Coherence, (d–f) Explained Power, (g–i) Proportion of Explained Power (PEP), and (j–l) estimate Input Transfer Function for 3 different 

input transfer functions (flat, integrator, and resonator in rows top, middle, and bottom, respectively). The flat transfer function was an all-pass filter (i.e., 𝐻 𝑖𝑛𝑝𝑢𝑡 = 1 
for all frequencies). The integrator receiver was modeled as an exponential moving average low-pass filter (cutoff: 100 Hz), and the resonant receiver was modeled 

with an AR(2) model (peak frequency at 60 Hz). The dashed black line in each plot indicates the analytical result for a white-noise process with power at all 

frequencies equal to the max in the senders. 
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erms of the ratio of the observed power spectral densities of the sender

nd receiver, and thus does not strictly depend on the particular model

hat generated the spectra. 

To that end, we modeled the intrinsic activity of each area using

seudo-periodic AR(2) models, which are linear time-invariant filters

LTI). We chose pseudo-periodic AR(2) models because they have been

hown to reproduce the statistical properties of stationary gamma os-

illations in primary visual cortex ( Burns et al., 2011 ), and provide

ean-field approximations of E-I circuits driven by stochastic input

 Spyropoulos et al., 2022 ). Furthermore, we have previously shown that

oth AR(2) models and the (non-linear) stochastic Wilson-Cowan model

 Wallace et al., 2011 ) predict similar changes in coherence as a result

f a power change in either the sender or receiver ( Schneider et al.,

021 ). Another advantage of using LTI models is that there are no cross-

requency interactions that can occur in non-linear systems, and these

odels provided a means to easily explore the influence of difference

eceiver input transfer functions on coherence. 

We simulated two classes of receivers: an integrator and a resonator

eceiver (also modeled as LTI filters). We found that the magnitude of co-

erence systematically varied with the sender frequency for both types

f receivers, however, the effect was in the opposite direction. 

Our simulations show the integrator receiver predicts an increase in

oherence with an increasing frequency mismatch between the sender

nd receiver, whereas a resonant receiver predicts a decrease. Therefore,

he empirically observed changes in coherence with V1 gamma peak

requency shifts can be explained by the Source Mixing model with an

ntegrator receiver ( Bosman et al., 2012; Ferro et al., 2021 ). 

Furthermore, our simulations show that coherence is not a veridi-

al measure of inter-areal communication. The magnitude of inter-areal
10 
oherence is highly dependent on the shape of the receiver’s power spec-

rum, background 1∕ 𝑓 fluctuations, and the receiver’s input transfer

unction. our results underscore the difficulty in interpreting the magni-

ude of coherence differences when there are frequency differences. We

ere motivated to develop a new measure of inter-areal interactions,

hich we refer to as Explained Power. We show that Explained Power

aps directly to the signal transmitted by the sender filtered by the re-

eiver. In addition, Explained Power provides a means to determine the

eceiver’s transfer function. 

.2. Resonance vs. integration 

We compared the Source Mixing model with an integrator and res-

nant receiver. Both integration and resonance have been observed

xperimentally and are emergent properties of biophysical models of

eurons ( Hodgkin and Huxley, 1952; Hutcheon and Yarom, 2000;

zhikevich, 2001 ). Importantly, they represent distinct forms of neu-

onal excitability according to the temporal structure of synaptic in-

ut. Broadly speaking, integrators are more effectively driven by high-

requency input, and the higher the frequency the more effective the in-

ut ( Izhikevich, 2001 ). Whereas, resonators are more effectively driven

y inputs that match the receiver’s resonant frequency. 

Indeed, it has been proposed that the resonant behavior of neurons

ay facilitate selective communication ( “selective communication via

esonance ”) ( Izhikevich et al., 2003 ), (see also Niebur et al., 1993 ). How-

ver, our simulations indicate that the increase in V1–V4 coherence with

ttention is not explained by selective communication via resonance

 Bosman et al., 2012; Ferro et al., 2021 ). Rather, our results suggest

4 acts more like an integrator receiver, and this explains why coher-



J.R. Dowdall, M. Schneider and M. Vinck NeuroImage 277 (2023) 120256 

e  

g

 

s  

F  

P  

2  

2  

t  

s  

a  

d  

fi  

2  

w  

e  

t  

e  

i

4

 

a

 

l  

s  

m  

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

s  

-  

i  

e  

f  

k

 

v  

t  

s  

a  

t  

f

4

 

q  

W  

q  

a

 

t  

t  

b  

p  

A  

c  

p  

t  

c  

q  

T  

o  

d  

t  

q  

o  

t  

e  

f  

t  

 

l  

o  

t  

i  

w  

T  

l  

B  

i  

m  

i  

g  

V  

a  

s  

g

4

 

h  

f  

t  

t  

s  

t  

s  

e  

b  
nce increases with a greater frequency mismatch between V1 and V4

amma oscillations. 

The peak frequency of gamma oscillations in V1 is also low-level

timulus features such as size, contrast, and color ( Das and Ray, 2018;

riedman-Hill et al., 2000; Gieselmann and Thiele, 2008; Gray and

risco, 1997; Henrie and Shapley, 2005; Jia et al., 2013; Murty et al.,

018; Peter et al., 2019; Ray and Maunsell, 2010; Shirhatti and Ray,

018 ). It is tempting to speculate that shifting the peak frequency of

he sender may be a common mechanism by which both attended and

alient stimuli (top-down vs. bottom-up attention) gain a competitive

dvantage at the receiver. However, changes in frequency are not in-

ependent of changes in firing rate. Several studies have reported V1

ring rates increase with attention ( Ferro et al., 2021; Kerkoerle et al.,

014; Motter, 1993; Roelfsema et al., 1998 ). This raises the question of

hether the effectiveness of the higher frequency sender is not simply

xplained by a relative increase in the number of spikes. Taken together,

he results presented here suggest the higher frequency sender is more

ffective at the receiver, because of an increase in firing rate or because

ntegrators are more effectively driven by higher frequency input. 

.3. Coherence and its utility for investigating inter-areal interactions 

We have shown that changes in inter-areal coherence can result from

 shift in the frequency of the sender. 

This result implies coherence differences do not necessitate oscil-

atory coupling, nor a change in the connectivity weight between the

ender and receiver. Our results show that coherence is, in general, a

isleading measure of inter-areal interactions, and there are numerous

imitations and caveats to usefulness therein: 

(1) Coherence is a strictly linear measure that captures the correla-

tion between two signals per frequency (i.e., coherence is blind

to cross-frequency interactions), thus we can expect that coher-

ence will be most sensitive, and useful, for quantifying the linear

component of inter-areal interactions. However, the conversion

of sub-threshold synaptic inputs to supra-threshold output (i.e.,

membrane potential fluctuations to spiking) is necessarily non-

linear. Thus, coherence is expected to be dominated by Source

Mixing: sub-threshold membrane potential fluctuations, which

do not necessarily map to, nor require, feedforward entrainment

of the receiver’s spiking activity (see also Schneider et al., 2021 ).

(2) The usefulness of a measure for understanding a biophysical phe-

nomenon follows from the physiological relevance of its quantifi-

cation. Magnitude-squared coherence reflects the proportion of

variance in the receiver explained by the sender per frequency.

However, coherence is unitless, and as a result, its physiological

relevance is not entirely straightforward. In fact, there is no con-

sensus on what level of coherence is physiologically meaningful

or not. 

(3) Our simulations comparing an integrator and resonator receiver

demonstrate that changes in coherence not only depend on the

power spectrum of the receiver but also on how the receiver fil-

ters its inputs (i.e., the input transfer function). Our simulations

here suggest an integrator input transfer function with a rela-

tively weak low-pass filter (first-order, cutoff around 100 Hz) ex-

plains the results of empirical studies ( Bosman et al., 2012; Ferro

et al., 2021 ). 

However, it is worth noting that an input transfer function with a

uch lower cutoff frequency (i.e., an integrator with a longer time con-

tant), would show a pattern of coherence changes similar to a resonator

 at least for senders at higher frequencies. This also means that changes

n power that co-occur with shifts in the sender’s peak frequency may

xploit, or compensate, for the effect of the receiver’s input transfer

unction. Thus, interpreting coherence changes necessarily depends on

nowing, or assuming, the receiver’s input transfer function. 
11 
Recognizing these limitations of coherence we were motivated to de-

elop a new measure to characterize inter-areal interactions. We argue

hat the physiological significance of coherence is more easily under-

tood in context Explained Power, or the Proportion of Explained Power

t each frequency relative to the total power of the signal (PEP). Fur-

hermore, we present a method by which the receiver’s input transfer

unction can be characterized. 

.4. Limitations of this study 

This study was designed to investigate how shifts in the peak fre-

uency of the sender may lead to changes in inter-areal coherence.

e did not investigate the mechanism behind changes in the peak fre-

uency, and therefore, our model cannot speak to the underlying mech-

nism of changes in peak frequency. 

Our model explains an empirical observation that has been influen-

ial in the field, namely an increase in inter-areal coherence with at-

ention ( Bosman et al., 2012 ). It has been previously demonstrated that

oth coherence and Granger-causality are sensitive to changes in the

ower-ratio between the sender and receiver ( Schneider et al., 2021 ).

s noted however, Bosman et al. (2012) reported a change in inter-areal

oherence in the absence of a change in power. The central point of the

resent study is that a shift in the peak frequency of either the sender or

he receiver, such that the difference between their peak frequencies has

hanged, will influence coherence because this implies that the per fre-

uency power-ratio between the sender and receiver has also changed.

hus, an increase in coherence and Granger-causality can occur because

f a shift in the peak frequency, and in the absence of a change in the un-

erlying inter-areal interaction. Nevertheless, our model cannot speak

o the true mechanism behind changes in peak frequency nor how fre-

uency shifts may influence inter-areal communication. Indeed, the role

f frequency shifts in inter-areal communication remains an open ques-

ion. Rather, our results speak to the measures that have been commonly

mployed in the field, namely coherence and Granger causality. There-

ore, our findings show yet another important caveat to the interpreta-

ion of LFP-LFP coherence and Granger-causality ( Pesaran et al., 2018 ).

Although we based our model on empirical studies and known bio-

ogical phenomena, our model, like all models, is an oversimplification

f a complex biological system. Thus, further experiments are necessary

o test the extent to which frequency shifts can account for the increase

n coherence with attention. For instance, one possible experiment

ould be to causally control the frequency of V1 gamma oscillations.

his could be achieved by changing the stimulus properties (e.g., stimu-

us contrast) or by optogenetic manipulation. It is also worth noting that

osman et al. (2012) only recorded the LFP, but future studies should

nclude single-unit analyses because what matters for inter-areal com-

unication is not coherence per se, but how neurons respond to their

nputs. For example, a recent study by Spyropoulos et al. (2023) sug-

ests that excitatory neurons in area V4 are not driven by the afferent

1 gamma oscillations, which was the case whether the monkey was

ttending to the stimulus or not. Even though our model may be over-

implified, it makes testable predictions and therefore may be useful to

uide and interpret future experiments. 

.5. Outlook 

Looking forward, future studies can utilize the methods presented

ere to more fully characterize inter-areal interactions through trans-

er functions and Explained Power. For instance, it may be possible

o characterize input transfer functions by presenting stimuli that sys-

ematically shift the peak frequency of stimulus-driven oscillations in a

ender area (e.g., V1). In practice, however, it may be difficult to simul-

aneously control the power of the stimulus-driven oscillations while

ystematically varying the frequency ( Gieselmann and Thiele, 2008; Jia

t al., 2013; Ray and Maunsell, 2010 ). An alternative approach would

e to use causal techniques. This can be done at the level of sensory
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nputs, e.g., by stimulating the auditory or visual system with different

requencies ( Arnal et al., 2019; Assaneo and Poeppel, 2018; Doelling

t al., 2019; Duecker et al., 2021 ). The results from these studies in

he visual system are in principle compatible with our source mixing

odel with an integrator receiver, as externally imposed gamma flicker

oes not interact with locally induced gamma oscillations in area V1

 Duecker et al., 2021 ). Another approach is optogenetics, which allows

he experimenter to directly control the power and frequency of oscil-

ations as well as the spiking activity in the sender ( Cardin et al., 2009;

ewis et al., 2021 ). This alternative approach offers the added possibility

o selectively manipulate both sub-classes of neurons (e.g., excitatory,

nhibitory, or a sub-population thereof), as well as specifically target

eedforward projecting neurons ( Siu et al., 2021 ). Such experiments will

e crucial to further our understanding of inter-areal communication

nd test the conclusions reached here, namely that increases in coher-

nce with frequency shifts are consistent with an integrator receiver. 

xternal toolboxes 

Granger–Geweke Causality (GGC) analysis was run using code

ublished by Dhamala et al. (2018) and is available here: https://

cholarworks.gsu.edu/phy_astr_facupub/13/ . Figures were generated in

atlab and exported using custom code, and the following external tool-

oxes: arrow.m available here: www.mathworks.com/matlabcentral/

leexchange/278-arrow , CMasher available here: github.com/1313e/

Masher , and export_fig available here github.com/altmany/export_fig .
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