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Abstract

Following severe population decline and local extinction due to massive habitat destruction and persecution, wildcats have recently
reappeared in several parts of Germany’s low mountain region. It remains unknown how this reemergence occurred, specifically if
local populations have been overlooked at low densities or if the species has successfully spread across the highly fragmented
anthropogenic landscape. In the central German Rhon Mountains, for instance, wildcats were believed to be extinct during most of
the twentieth century, however, the species was recently detected and subsequent genetic monitoring found the presence of a sizeable
population. In this study, we used microsatellite and SNP genotypes from 146 wildcat individuals from 2008 to 2017 across a ~ 15,000
km? area in the central German low mountain region to understand the population re-establishment of wildcats in the region. Bayesian
clustering and subsequent analyses revealed that animals in the Rhon Mountains appear to be a mix from the two adjacent populations
in the North and South of the area, suggesting a recent range expansion from two different directions. Both populations meet in the
Rhon Biosphere Reserve, leading to an admixture of the northern, autochthonous, and the southern reintroduced wildcat population.
While we cannot completely exclude the possibility of undetected population persistence, the high genetic homogeneity in the central
German wildcat population and the lack of any signatures of past population decline in the Rhon favor a scenario of natural expansion.
Our findings thus suggest that wildcats are well capable of rapid range expansion across richly structured landscape mosaics consisting
of open land, settlements, and forest patches and document the potential of massive non-invasive genetic sampling when aiming to
reconstruct the complex population and range dynamics of wildlife.
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Introduction populated and anthropogenically modified landscapes of cen-
tral Europe (Chapron et al. 2014). These altered landscapes
Many populations of large- and medium-sized carnivores are  exhibit high levels of habitat fragmentation, which is the dis-
currently re-expanding their ranges across the densely  ruption of continuous stretches of suitable habitat (Schadt
et al. 2002). Habitat fragmentation can negatively affect the
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supplementary material available at https://doi.org/10.1007/s10344-020- which species are affected varies significantly (Haddad et al.
01433-7. 2015). A species’ reaction to cultural landscapes depends
heavily on the size of suitable habitat, the distance between
habitat patches, and the individual species’ life history traits
(Caruso et al. 2016). Carnivores, for instance, are at a height-
ened risk of being negatively impacted in fragmented land-
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The European wildcat is a flagship species for nature con-
servation in Germany, as it primarily relies on highly struc-
tured natural deciduous and mixed forests (Driscoll and
Nowell 2010). This reliance on connected forests has made
it a pillar for the preservation of natural habitats. Recently, the
wildcat has made a reemergence across the central German
low mountain region (Steyer et al. 2016), providing a relevant
example to understand dispersal dynamics in a highly
fragmented landscape.

Historically, European wildcat populations were heavily
depleted due to human persecution until the early twentieth
century. In Germany, the species was restricted to few refugial
areas within the low mountain region, such as the Pfalzerwald,
Eifel, and the Harz Mountains (Eckert et al. 2010). A fter hunt-
ing pressure was reduced, distance between refugial areas,
habitat fragmentation, and increasing anthropogenic develop-
ment left local wildcat populations geographically isolated
(Hille et al. 2000; Pierpaoli et al. 2003). Considering the pos-
sible negative effects of isolated populations, including in-
breeding and genetic drift, efforts to connect these distinct
wildcat populations have become a conservation priority
(Klar et al. 2012; Mattucci et al. 2016). Given the concern
for wildcat population connectivity, genetic monitoring rely-
ing on hair trapping was established across known wildcat
territories (Klar et al. 2008; Simon and Hupe 2008; Steyer
et al. 2013). The results of increased monitoring showed
strong evidence for the recent recovery of wildcat populations
in various areas (Steyer et al. 2013; Steyer et al. 2016). Most
recently, the species had been documented in areas distant
from the known source regions, such as in the Bayerischer
Wald in the Southeast and the Liineburger Heide in
Northern Germany (unpublished data). These new detections
of the species in areas outside long-standing refugia and rein-
troduction sites suggest that the wildcat is capable of rapid
dispersal and establishment across anthropogenically modi-
fied landscapes (scenario 1). However, it remains unknown
if the species may have persisted in small, overlooked popu-
lations that are now increasing locally (scenario 2). Revealing
the origin of wildcat reemergence is of considerable impor-
tance, especially considering the first scenario, expansion
from refugia and reintroduction areas, which would imply that
effective dispersal and population establishment of mobile
mammals such as wildcats may be less obstructed by habitat
fragmentation and barriers within anthropogenic landscapes
than previously assumed (Klar et al. 2008; Jerosch et al.
2018; Balkenhol and Waits 2009).

Here, we aim to disentangle the above-mentioned recoloniza-
tion scenarios by investigating the fine-scale genetic population
structure of wildcats in a region where the species was recently
detected, namely the Rhon Biosphere Reserve (RBR). The RBR
is located on the southeastern edge of published wildcat distribu-
tion in the central low mountain region (Fig. 1) (Klar et al. 2009).
The RBR is a biodiversity-rich landscape, dominated by
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meadows and open land, surrounded by multiple large highways
(A7, A71, A4) (Jedicke 2013). The RBR is home to a variety of
protected species, including the wildcat. Wildcats in the RBR
were thought to be extinct during most of the twentieth century
until first genetic detections of wildcats occurred between 2007
and 2009 (Birlenbach et al. 2009). Beginning in 2009, under the
frame of various monitoring projects (Table S1), the RBR and
surroundings were heavily searched for evidence of wildcat,
resulting in the detection of a substantial presence of wildcat in
this region (Reiners et al. 2014; Thein 2008). Scenario 1 would
imply wildcats expanded from adjacent populations into the
RBR. Given the regional history, there are two possible source
populations; (i) the refugial population in the north and (ii) the
reintroduced population in the adjacent Spessart Mountains (Fig.
1). The known wildcat distribution to the north of the RBR was
documented since before 2009 as a known source of a stable
wildcat population (Birlenbach et al. 2009). The wildcat reintro-
duction in the Spessart region was launched in 1984 under the
frame of a long-term reintroduction project. Approximately 600
wildcats were released until 2008 (Biittner and Worel 1990).
Additionally, in 2005, six wildcats were reintroduced in the
Neuwirthauser Forest, which is at the southernmost part of the
RBR. It remains unknown if this reintroduction was successful
and contributed to the reemergence in the RBR or if the current
population resembles dispersal of individuals from the north.
Scenario 2 would indicate a local increase from a small,
overlooked relict population within the Rhon Mountains, which
would likely result in population sub-structuring, due to the loss
of rare alleles in small isolated populations, indicating the pres-
ence that a relict population survived and is now expanding in the
low mountain region (Excoffier et al. 2009).

The present study aims to disentangle the two proposed
scenarios to shed light on the origin of wildcats in this low
mountain region. For this, data was obtained from a large-
scale genetic monitoring program conducted over the past
10 years in Germany. From this monitoring program, we ge-
notyped a subset of samples with SNP and microsatellite
markers to reveal the genetic makeup in the RBR. We com-
pared the genetic structure of wildcats in the RBR with both
adjacent source and reintroduced populations (Steyer et al.
2016) to test the two scenarios explaining the emergence of
the species in the RBR given above.

Materials and methods
Study site

The study area comprised the Rhén Mountains, including the
RBR and surroundings (Fig. 1). The reserve spans over 2433
km?, which was expanded in 2014 to include the southern
Rhon with the NF. The Rhon is a low mountain range ranging
from 250 to 950 m, with approximately 40% forested land.
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Fig. 1 Map of 146 wildcat
samples used for combined SNP
and microsatellite approach (blue)
and 439 wildcat samples analyzed
only with msats (orange) from
2004 to 2017 used for analysis
showing the known wildcat dis-
tribution (KWD), Rhon
Biosphere Reserve (RBR), and
Spessart reintroduction (SPR) as
well as the forested area based on
ATKIS (FOR). Map of the study
area is shown in the red box
within the inlet

Within the study area, the closest potential source populations
were included; mainly the region surrounding the National
Park Hainich in the north, and the Spessart Mountains, bor-
dering the Rhon Mountains to the southwest. The Hainich
Mountains range from 225 to 494 m and are the most expan-
sive broad-leaved forest, the primary habitat of the wildcat, in
Germany. The Spessart Mountains include one of Germany’s
most forested areas, peaking at 586 m. In total, our study
consisted of approximately 15,000 km?” of variable habitats.

Sample collection and laboratory methodologies
Multiple opportunistic and standardized monitoring projects

collected samples from 2004 to 2017. Opportunistic wildcat
roadkill samples were collected throughout the study period.

2. Hainich

~2E -
. ® Combined

In addition, multiple monitoring projects began in 2008, most
notably Rhoen Natur ¢.V., BUND Wildkatzensprung, and
Biosphérenreservat Rhon projects, which resulted in intense
monitoring within the RBR during this time (for a complete
list, see supplementary Table S1). In this study, we combined
microsatellite and SNP genotyping methods. We took 119
wildcat microsatellite genotypes from 2004 to 2013 from a
German-wide study on wildcat population structure (Steyer
et al. 2016) and added 49 additional genotypes from 2014 to
2017 to be further analyzed using a wildcat specific
SNPtype™ marker panel (von Thaden et al. 2020).
Microsatellite genotypes were considered for SNP genotyping
if they had a minimum of 11 loci and showed amplification
success rates of 80%. Additionally, this selection excluded
potential hybrids as there are low rates of hybridization across
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the study area (Steyer et al. 2018). The samples were then
selected to create an even distribution in location, time, and
sample type. Of the selected genotypes, 64 samples originated
from tissue of dead found wildcats, and the remaining 104
samples are hair samples from various monitoring projects.

We used the primers LF4 (Eckert et al. 2010) and H16498
(Kocher et al. 1989) to sequence a 110 bp fragment of the
mitochondrial control region following the protocol in
Steyer et al. (2016). All samples were analyzed using 14 mi-
crosatellite markers and a zink finger sex marker (Hartmann
et al. 2013). For non-invasively collected samples, the multi-
ple tube approach using three replicates per sample was ap-
plied (Hartmann et al. 2013). Individualization was carried out
through a custom R script and duplicated individuals were
removed before further analysis (see Steyer et al. 2016 for
further details). The microsatellite genotypes utilized from
the Steyer et al. (2016) study were compared with the samples
collected between 2014 and 2017 to look for batch effects. As
none was found, the sample sets were combined.

The SNP genotyping of wildcat samples (n = 168) was
performed on a EP1 platform (Fluidigm Corp., USA) using
microfluidic 96.96 Dynamic Arrays™. Detailed methods and
wildcat-specific SNPtype™ Assays are presented in von
Thaden et al. (2017) and von Thaden et al. (2020). The
SNPtype™ marker panel encompasses 84 loci selected for
individual and population identification, 10 loci for hybrid
detection, and 2 SRY-linked loci. All SNP experiments in-
cluded four no template controls (NTC) per array and non-
invasively collected hair samples were triplicated to detect
potential errors. From 168 samples, seven samples did not
show sufficient (> 70%) amplification success to be scored
and used in downstream analysis. Subsequent individualiza-
tion resulted in 146 individuals to be analyzed using the com-
bined SNP and microsatellite data.

Data analyses

First, we tested the combined SNP and microsatellite data set
for isolation by distance (IBD) effects. We performed an IBD
analysis as implemented in GeneAlEx 6.5 (Peakall and
Smouse 2012) to account for genetic differentiation solely
based on geographical position of individuals. The program
STRUCTURE v2.3.4 (Pritchard et al. 2000) was used to eval-
uate population genetic structure. After 100,000 steps of burn-
in, 200,000 MCMC steps were performed with admixture
model and correlated allele frequencies using a range of K
1-10 with 10 iterations. We used Structure Harvester (Earl
and vonHoldt 2012) with the Evanno method (Evanno et al.
2005) to determine the most likely number of population clus-
ters. The replicates were consolidated with the software
CLUMPP (Jakobsson and Rosenberg 2007) using the
GREEDY algorithm.
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Further review of the spatial structure was carried out with
the ADEGENET package in R (v.3.4.2) using a spatial prin-
cipal component analysis (SPCA) (Jombart 2008). No require-
ments of the data to meet Hardy-Weinberg expectations or
linkage equilibrium are needed for this method. In addition
to the genetic data, SPCA also uses spatial information and is
particularly suitable for the analysis of weak genetic structures
(Storfer et al. 2007). sPCA relies on Moran’s / (Moran 1948,
1950) to identify spatial patterns within the genetic structure
ofthe sampled individuals. The method distinguishes between
global scores, which indicate gradients in allele frequencies,
and local scores, indicating differences in neighboring
samples.

Standard genetic diversity indices including expected and
observed heterozygosity, allelic richness, and population
pairwise Fst values were calculated for the combined SNP
and microsatellite genotypes using Arlequin version 3.5.2.2
(Excoffier and Lischer 2010).

Results

Of the 146 genotyped individuals, mtDNA haplotypes were
successfully determined in 134 individuals and corresponded
to SNG-HP-FS03/-04/-06/-22/-23 (Steyer et al. 2016).
Haplotype SNG-HP-FS23 was found in eight individuals
solely in the southern part of the study region (Fig. 2b). The
other four haplotypes appeared in all parts of the study area.

Analysis of genetic structure based on combined SNP and
microsatellite genotypes revealed no evidence of isolation by
distance (IBD; Mantel test: » = 0.011, p = 0.48). Bayesian
clustering implemented in STRUCTURE indicated K = 2 as
the most likely number of clusters within the study area.
Separation of these clusters could not be attributed to a geo-
graphical pattern, with individuals clearly showing represen-
tation from both clusters (Fig. 3).

Clustering with sPCA resulted in a significant global struc-
ture, indicating correlation between the genetic and geograph-
ic distances (p = 0.01). However, no significant local structure
was found (p = 0.14). A plot of lagged scores from the first
principal component suggested the global structure is linked
to a north-south genetic border, with a transitional area within
the RBR (Fig. 2a). Subsequent principal components show
weaker genetic structure although the eigenvalues suggest
the first principal component explains most of the genetic
variance found in wildcat individuals from the study area
(Fig. S1).

Standard measures of genetic diversity were carried out
based on the two clusters defined by the sPCA (Table 1).
When looking at two clusters, observed (0.41, 0.43) and ex-
pected (0.42, 0.43) heterozygosity values from the north and
south, respectively, were highly similar. Allelic richness was
also identical (2.45, 2.45) along with a comparable fixation
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Fig. 2 Map showing the spatial
genetic structure as assessed by
sPCA analysis and haplotype
map. a Individual scores from the
first principal component: large
blue squares indicated a highly
positive score, large red squares
indicated highly negative scores.
b Map of individuals within the
study area with the haplotype 23
(red) and all other haplotypes (3,
4,6,22)
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index (0.047, 0.011). The RBR, which comprised much of the
south cluster, showed no local genetic signature such as higher
allelic richness or specific clustering in the region. We also
carried out pairwise Fgr analysis based on the two clusters,
which were not significantly differentiated from each other
(Table 2). We also compared our dataset with a larger,
microsatellite-only sample set of 439 individuals originating
from a previous study (Steyer et al. 2016), which revealed
some sub-structuring in the south, specifically between the
reintroduced region and the RBR (Fig. S2).

Discussion

In recent decades, wildcat populations across low mountain
regions in Germany showed signs of expansion, despite a
considerably fragmented landscape (Hartmann et al. 2013;
Wiirstlin et al. 2016). While the recolonization process has
been well documented (Canters et al. 2005; Nussberger et al.
2018; Streif et al. 2017), few attempts have been made to
distinguish between active range expansion and locally

1=
0354

0.5

growing populations. We assessed regional population struc-
ture of wildcat based on available samples from various mon-
itoring projects in the region (Table S1). We investigated pop-
ulation sub-structuring and fine-scale genetic diversity to shed
light on two possible scenarios for the rapid appearance of
wildcats within this low mountain region.

The number of wildcat individuals found within the study
region between 2009 and 2014 (Fig. 1) indicates the presence
of a viable wildcat population within the RBR. In part, this
high number of wildcat detections can be attributed to the
intense monitoring activities by multiple concurrent projects
(Table S1). However, it appears unlikely that the marked in-
crease of wildcat evidence since 2009 can be explained solely
by increased monitoring activities. To our knowledge, local
experts have continuously looked for wildcat presence in the
region, making it unlikely that a population remained unde-
tected for decades in the Rhon (Franz Miiller, pers. comm.).
Roadkill monitoring has occurred since 2004 rather opportu-
nistically, involving local authorities, conservationists, and
hunters. In addition, the overall observed trend of recent wild-
cat expansion across various regions within Germany (Steyer

north

south

Fig. 3 STRUCTURE results from K = 2, which was suggested by Structure Harvester as the most likely value from K 1 to 10. Each bar represents a
single individual. The coloration corresponds to the estimated proportions of posterior probability assignments of each sample to each cluster
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Table 1 Genetic diversity of the wildcats sampled in the study region
divided based on sPCA groups. Number of individuals (n), allelic
richness (AR), observed heterozygosity (H,), expected heterozygosity
(H,), fixation index (F), number of individuals carrying the haplotype
23 within the population (Hap 23)

Pop n AR H, H, F Hap 23
North 88 2.45 0.41 0.42 0.047 0
South 58 2.45 0.43 0.43 0.011 8

etal. 2016; Streif et al. 2017; Wiirstlin et al. 2016) supports the
observed pattern of population increase within the study area.

The past reintroduction of wildcats in the Spessart allows
for tracking possible wildcat expansion in this region through
a unique mtDNA haplotype (Steyer et al. 2016). While hap-
lotypes SNG-HP-FS03/-04/-06/-22 are the most common
haplotypes in German wildcat populations (Steyer et al.
2016), SNG-HP-FS23 is restricted to the Spessart Mountains
(Fig. 2b). While this gives clear indication that reintroduced
wildcats have successfully established in the Spessart region,
the distribution of this haplotype also documents a lack of
substantial spread into the RBR. Our findings of the haplotype
SNG-HP-FS23 being largely restricted to the Spessart reintro-
duction area suggests that the expansion into the Rhon area is
mainly driven by male dispersal from the Southern reintroduc-
tion area and confirms the general observation of male-
dominated dispersal in carnivores (Steen et al. 2005).

Our results from population structure analysis indicate a
highly admixed population that comprises the northern
refugial and the reintroduced populations. The sPCA results
indicate that wildcats in the northern area of the RBR are
genetically indistinguishable from northern refugia, which
derive from the central German wildcat population described
in Steyer et al. (2016) (Fig. 2a). In addition, the data suggests
that wildcats from the reintroduction are moving into the
RBR. Interestingly, STRUCTURE results show a highly
admixed population with no clear geographic boundaries
(Fig. 3). This may be explained by overall weak sub-
structuring (Fgt < 0.05) (Hubisz et al. 2009; Stift et al.
2019). The Fst measures also showed no significant deviation
between the northern and southern clusters defined by the
sPCA. This hints at a highly admixed population throughout
the study region.

Table 2 Pairwise Fgr values based sPCA groups identified in Table 1.
Fgt values are represented below the diagonal and corresponding
p values above the diagonal, where ns is not significant

North South

North - ns
South 0.00193 -
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We found no evidence of an overlooked population within
the RBR, as no private alleles were discovered in the area and
we did not find any genetic sub-structure separating the Rhon
from adjacent regions. Thus, the most probable explanation
for the observed genetic pattern is a recolonization from both
(northern and southern) directions. In case of overall low sub-
structure within the central German wildcat population, which
has been found previously (Steyer et al. 2016) and is con-
firmed in this study, a scenario of local population size in-
crease together with significant dispersal from adjacent areas
appears feasible. Still, the lack of evidence for wildcat appear-
ance prior to 2008 makes the first option more likely and both
scenarios ultimately require substantial dispersal from adja-
cent regions, suggesting a significant permeability of the land-
scape for wildcats.

Our results imply that wildcats can disperse through
human-dominated landscapes. Land use within the newly
recolonized RBR comprises 41% forested land (Jedicke
2013), with the remaining being settlement, open meadows,
or arable land. Our study suggests that wildcats can, within a
few years or few generations, recolonize a region with a sub-
stantial proportion of open land. This reemergence implies the
wildcat is not significantly isolated due to road infrastructure,
and can establish home ranges in primarily agricultural habi-
tats, which has been supported by recent studies showing sim-
ilar results (Jerosch et al. 2017; Jerosch et al. 2018; Klar et al.
2009; Wiirstlin et al. 2016). The presence of green bridges,
built in 2011, potentially facilitates the exchange between in-
dividuals on either side of the A7 highway, as has been shown
in other regions (Pir et al. 2011). The main factor determining
habitat choice in wildcats is thought to be distance to forest
(Sarmento et al. 2006). Jerosch et al. (2018) highlight struc-
tural heterogeneity in open landscapes as a determining factor
allowing wildcats to persist in human-dominated landscapes.
Therefore, the presence of rich-structured mosaics of open
land and forest patches might have provided suitable condi-
tions for successful recolonization in the RBR.

Our findings confirm a recolonization process of the wild-
cat in the Rhén Mountains, which has important implications
for current wildcat conservation strategies. The results mainly
suggest that connecting suitable habitat through stepping
stones of rich-structured patches, rather than continuous for-
est, may be sufficient for wildcat dispersal. Therefore, it is
important to conserve landscapes of rich-structured mosaics
of open land and forest patches, similar to the Rhon, as habitat
fragmentation continues to occur. As a flagship species, ef-
forts to create heterogeneous landscapes will help other forest-
dwelling species to migrate between patches.
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