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Abstract
Introduction  Stem cell transplantation is one of the most promising strategies to improve healing in chronic wounds as 
systemic administration of endothelial progenitor cells (EPC) enhances healing by promoting neovascularization and hom-
ing though a high amount of cells is needed. In the following study, we analysed whether local application can reduce the 
number of EPC needed achieving the same beneficial effect on wound healing.
Material and Methods  Wound healing after local or systemic treatment with EPC was monitored in vivo by creating stand-
ardized wounds on the dorsum of hairless mice measuring wound closure every second day. Systemic group received 2 × 106 
EPC i.v. and locally treated group 2 × 105 EPC, locally injected. As control PBS injection was performed the same way. 
Expression of CD31, VEGF, CD90 and, SDF-1α was analysed immunohistochemically for evaluation of neovascularisation 
and amelioration of homing.
Results  Local (7.1 ± 0.45 SD) as well as systemic (6.1 ± 0.23 SD) EPC transplantation led to a significant acceleration of 
wound closure compared to controls (PBS local: 9.7 ± 0.5 SD, PBS systemic 10.9 ± 0.38 SD). Systemic application enhanced 
CD31 expression on day 6 after wounding and local EPC on 6 and 9 in comparison to control. VEGF expression was not 
significantly affected. Systemic and local EPC treatment resulted in a significantly enhanced SDF-1α and CD90 expression 
on all days investigated.
Conclusion  Local as well as systemic EPC treatment enhances wound healing. Moreover, beneficial effects are obtained 
with a tenfold decrease number of EPC when applied locally. Thus, local EPC treatment might be more convenient way to 
enhance wound healing as number of progenitor cells is limited.
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Introduction

Wound healing is a complex process that requires a well-
orchestrated interplay between different tissue structures and 
a large number of resident and infiltrating cell types. Espe-
cially, angiogenesis is an essential step in successful wound 
healing [1]. Progenitor cells take part in this orchestration, 
as they are able to regulate neovascularization and enhance 
healing by cytokine production [2]. Thus, it has already been 

shown that augmentation of local number of progenitor cells 
ameliorates impaired wound healing [3–5].

One fraction of progenitor cells are endothelial pro-
genitor cells (EPC). EPC arise from the bone marrow and 
circulate in the blood [6]. These cells can be identified by 
uptake of DiLDL after cultivation [7]. Peripheral injected 
DiLDL-labeled EPC have been shown to migrate into 
ischemic tissues [8, 9]. There, they can adopt endothelial 
characteristics thus, contributing to neovascularization [10]. 
This is at least partially facilitated by direct incorporation 
into newly formed capillaries [10, 11]. Furthermore, EPC 
stimulate endogenous angiogenesis by secreting a variety 
of angiogenic growth factors [7]. They also release factors 
that directly stimulate keratinocyte and fibroblast prolifera-
tion during wound healing [7]. Capillaries can be detected 
in granulation tissue by CD90 expression, that can be found 
on activated microvascular endothelial cells and CD31 
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expression, that is a linage marker for vascular endothelial 
cells and is also involved in angiogenesis [12].

Homing of EPC to injured tissues is triggered by VEGF 
and SDF-1α that is mainly released by platelets [13–15]. 
For this reason, EPC express vascular endothelial growth 
factor receptor 2 (VEGFR2) and stromal cell-derived factor 
1α (SDF-1α) receptor CXCR4 [13, 14]. It has been shown 
that under pathological conditions like diabetes, homing of 
EPC by SDF-1α expression is impaired [16].

Previous studies by us, and others demonstrated that 
delivering EPC to wounds, either by local injection or sys-
temically significantly accelerates healing and promotes 
neovascularization in granulation tissues as well as in bone 
defects [17–19]. Suh et al. could also show an improve-
ment in dermal wound healing after local transplantation 
of human blood derived early EPC into dermal wounds of 
immunodeficient nude mice [17].

Still number and purity of EPC that can be harvested 
from bone marrow or blood is limited [20]. Considering 
this limitation, we wanted to investigate in the following 
study whether a lower number of EPC locally administered 
has the same effect on wound healing as a higher number 
of these cells systemically applied. For this reason, we used 
a standardized wound model in hairless mice and directly 
compared systemic versus local administration of cultivated 
EPC monitoring and epithelialization throughout the healing 
process as earlier described [21].

Materials and methods

Animals care and wound model

All procedures were performed in accordance with the 
guidelines set by German law for the care and use of labora-
tory animals. The experimental study was approved by the 
regulatory authorities (Regierungspräsidium Darmstadt) 
under the Ethic Approval Number v54-19c2015-F3/12.

Male homozygous hairless mice (SKH-1, 20–30  g, 
8–12 weeks, Charles River Laboratories, Sulzfeld, Germany) 
were housed in separate cages in room temperature (24 °C), 
light (12 h/day) and airflow regulated rooms. They were fed 
a balanced rodent diet and water ad libitum.

All procedures were performed with the animals anesthe-
tized with intraperitoneal injection (i.p.) of 100 µL solution 
containing 2.215 mg of ketamine and 0.175 mg of xyla-
zine hydrochloride. After desinfecting the ears, mice were 
placed on a plexiglas platform with their ears extended on 
a microscope slide by placing three permanent loops (9–0, 
nylon) at opposite poles of their ears. Standardized, circular 
wounds (2.25 mm in diameter, 125 µm in depth) were cre-
ated on the dorsum of the ears using a punch. Wounds were 
positioned between the ears’ anterior and middle principle 

neurovascular bundles. After the punch incision, a full thick-
ness layer of skin within the punch was dissected away down 
to the underlying cartilage [21–25]. The day of wounding 
was designated as day 0.

Immediately after surgery, in the groups receiving sys-
temic EPC, 2 × 106 EPC (in 250 µL PBS) or PBS (250 µL) 
were injected into the tail vein [18]. In the groups receiving 
local EPC, 2 × 105 EPC (in 30  µL PBS) or PBS (30 µL) 
alone was injected directly into the wound [17]. Wounds 
were covered with self-adhesive polyurethane foam dress-
ing (Allevyn thin; Smith and Nephew Medical Ltd., Hull 
UK) and the entire ear was then covered with a bio-adhesive 
dressing (Opsite; Smith and Nephew Medical Ltd.) to protect 
the wound from contamination and mechanical irritation.

EPC isolation and culture

EPC were isolated as in our previous work by density gradi-
ent centrifugation (20 min, 600 g) with Ficoll (1.077 g/mL, 
Biochrom, Berlin, Germany) from the spleen of homozygous 
hairless mice (SKH-1, 20–30 g, 8–12 weeks, Charles River 
Laboratories, Sulzfeld, Germany) after mechanically minc-
ing using syringe plungers [18].

After isolation, total EPC (4 × 106 cells, cell density 
2 × 106 cells/cm2) were cultured on fibronectin-coated 
(10 μg/mL; Sigma, Deisenhofen, Germany) 24-well plates 
maintained in 0.5 mL endothelial cell basal medium (EBM-
2) supplemented with endothelial growth medium Single-
Quots (EGM-2 MV; Clonetics, Cambrex, Walkersville, MD) 
at 37 °C, 5% CO2. Non-adherent cells were removed after 
4 days and adherent cells were incubated in medium for 
another 24 h prior to initiation of the experiments.

To detect EPC in vivo in healing wounds, they (after 
5 days of culture) were harvested by Accutase (PAA Labo-
ratories, Pasching, Austria) for 10 min at 37 °C, 5% CO2, 
and 2 × 106 and cells were re-suspended in 250 µL PBS. To 
detect EPC incorporation, EPC were pre-labeled with 2.5 µg/
mL DiLDL in EBM-2 supplemented with 20% FCS for 1 h 
at 37 °C, 5% CO2, followed by harvest and administration.

Intravitally, EPC were visualized under a fluorescent 
microscope and pictures were merged with light microscope 
image.

Measuring wound reepithelialization and closure

Epithelialization and EPC recruitment were directly visual-
ized and measured using intra-vital microscopy and com-
puterized planimetry. Microscopic area measurements were 
performed immediately after wounding and every second 
day thereafter up to complete wound closure. When epithe-
lialization was near completion, the wounds were observed 
daily to determine the exact day each process was completed. 
Measurements were performed by placing anesthetized mice 
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with the Plexiglas platform on the stage of an intra-vital 
microscope (Carl Zeiss, Oberkochen, Germany). The micro-
scope images were captured with a low light camera (DXC-
390P, 3CCD color video camera; Sony, Tokyo, Japan) and 
transmitted through a digital converter (ADVC-100; Cano-
pus, Ruppach-Goldhausen, Germany) to a monitor. Photo-
graphic images were analysed by tracing the wound margin 
and calculating the area using ImageJ software (http://​rsb.​
info.​nih.​gow/​ij/​downl​oad.​html). The rate of wound closure 
was expressed as the ratio of the wounded area at each time 
point divided by the area of the original wound at day 0. 
The analysis was performed off-line in a blinded fashion 
by a different investigator not knowing the treatment each 
animal received.

Measuring wound neovascularization and SDF‑1α 
expression

Tissue samples were taken from the wound area at days 3, 
6, 9 and 12 after wounding. The tissues were dehydrated 
by isopentane, embedded in TissueTek (Sakura Finetaek 
Europe, Zoeterwoude, Netherlands) and stored at − 80 °C 
for subsequent examination.

As capillaries can be detected in granulation tissue by 
CD90 expression and CD31 expression, wounds were 
stained for these markers as well as for SDF-1α [12].

For analysis, 6 µm thick wound sections, prepared as 
described above, were treated with acetone (−  20  °C, 
10 min) and 0.1% hydrogen peroxidase to quench the endog-
enous peroxidase activity. Sections were stained with pri-
mary antibodies (Abcam, Cambridge, UK) directed against 
CD31 (1:100; ab7388), CD90 (1:150; ab3105), VEGF 
(1:100; ab1316) and SDF1α (1:100; ab25117) for 1 h at RT. 
Primary antibodies were detected by HRP-AEC (Abcam) 
staining according to the guidelines of the manufacturer. 
All sections were counterstained with hematoxylin and 
viewed at 100× magnification (Axio Observer; Carl Zeiss, 
Oberkochen, Germany). The microscope image was cap-
tured with a low light camera (AxioCam; Carl Zeiss) and 
digitized. Photographic images were analyzed by tracing the 
stained areas and calculating the area, using ImageJ soft-
ware. The staining of each section was randomized to the 
mean value of the granulation tissues’ area from all groups. 
The analysis was performed off-line in a blinded fashion 
by a different investigator not knowing the treatment each 
animal had received.

Experimental groups

Animals were randomly allocated into four treatment groups 
(n = 10 per group):

PBS sys (control systemic) = Animals receiving systemic 
PBS (250 μL) alone.

PBS loc (control local) = Animals receiving local PBS 
(30 µL) alone.

EPC sys = Animals receiving systemic EPC and PBS 
(2 × 106 cells in 250 μL PBS).

EPC loc = Animals receiving local EPC and PBS (2 × 105 
cells in 30 µL PBS).

For immunohistochemical analysis of the wounds were 
performed on day 3, 6, 9 and 12 after wound creation (n = 8 
per group). They were treated in the same manner as the 
in vivo groups.

Statistical analysis

Data are presented as the mean ± standard deviation (SD). 
Statistical evaluation was performed with Kruskal–Wal-
lis test followed by a Dunn post hoc test using a Bonfer-
roni–Holm adjustment with Bias 10.0. Values of p < 0.05 
were considered statistically significant. The number of 
samples examined is indicated by n.

Results

Wound reepithelialization and closure

After EPC transplantation, we evaluated wound epitheliali-
zation and closure in animals treated with EPC locally and 
systemically.

Wounds receiving EPC systemically and locally closed 
significantly (p < 0.05) faster than PBS treated controls (PBS 
systemic day 10.75 ± 1.25 SD; PBS local day 9.90 ± 1.48; 
EPC systemic day 6.20 ± 1.15 SD; EPC local day 7.90 ± 1.83 
SD; Fig. 2a). There also was a significant difference in clo-
sure rate between wounds treated with EPC locally versus 
those treated systemically (p < 0.05; Fig. 1a). No significant 
difference in day of wound closure was observed comparing 
the two different PBS treatment groups (Fig. 1a).

These findings are supported by rate of reepithelializa-
tion. Systemic and local EPC treatment displayed signifi-
cantly faster coverage of wound area, for systemic treatment 
from day 2 to day 10 compared to both PBS controls and for 
local treatment from day 2 to day 10 compared to PBS sys-
temic as well as from day 4 to day 8 compared to PBS local 
(Fig. 2c, d). The two PBS treatment groups showed a similar 
reepithelialization rate (Fig. 2a). Whereas systemic trans-
plantation of EPC seemed to have a slight beneficial effect 
on wound closure, compared to local treatment, though this 
finding was not significant (Fig. 2b).

Wound neovascularization

To investigate the effect of local and systemic transplanted 
EPC on neovascularization at the site of injury, capillary 
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density of wound sections was measured by immunostaining 
for CD31. CD31 was significantly higher in animals whose 
wounds received local EPC than in both PBS controls on 
days 6 (Fig. 3). There also seemed to be an elevation in 
CD31 after systemic EPC transplantation on day 6, though 
this change was not significant (Fig. 3). Comparing the 
data of local versus systemic effect of EPC transplantation 

on CD31 expression no significant difference was noticed 
(Fig. 3).

CD90 expression tended to be raised by local as well 
as systemic transplantation of EPC though this finding 
was only significant on day 6 for systemic transplanta-
tion compared to PBS systemic (Fig. 4). Systemic EPC 
application also elevated CD90 expression compared to 

Fig. 1   Day of wound closure. a Comparison between local and sys-
temic PBS as well as systemic and local EPC application (data is 
shown as mean ± SD; n = 10; *p < 0.05, ***p < 0.001); b representa-

tive pictures of wounds throughout the wound healing process after 
systemic and local PBS treatment as well as systemic and local EPC 
application
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local treatment on day 6, 9 and 12 though this also was 
not significant.

Regarding VEGF expression in wounds, surprisingly, 
there was no significant difference observed comparing 
all treatment groups (Fig. 5).

EPC migration and homing

EPC accumulation at wound margins (measured 
by intra‑vital microscopy)

EPC were pre-labeled with red fluorescent DiLDL prior 
to local or systemic administration to assess EPC hom-
ing to, and survival in the wound. In animals receiving 
local and systemic EPC, fluorescent-labeled EPC were 
observed around the wound margins at 3 and 6 days after 
wounding using intra-vital microscopy (Fig. 6).

As an important homing factor for EPC, SDF-1α 
expression was significantly upregulated in the wound 
on all days investigated receiving local and systemic EPC 

when compared to PBS systemic application (Fig. 7). 
There was also a significant elevation of SDF-1α on day 
6 and 12 comparing systemic EPC application to PBS 
local as well as on day 3, 6 and 12 comparing local EPC 
application to PBS local (Fig. 7). No significant differ-
ence was noticed between the two EPC treatment groups.

Discussion

The aim of this study was to determine the effect of local 
versus systemic EPC treatment on dermal wound epitheli-
alization, neovascularization and closure. With the unique 
model used, we are able to directly monitor reepithelializa-
tion as there is no significant wound contraction as the der-
mis is connected to the underlying cartilage, thus mimicking 
the process more accurately to wound healing in humans 
[21, 26].

EPC are already known to enhance tissue regeneration 
and wound healing [5, 18, 27]. In response to ischemia or 

Fig. 2   Percentage of closed wound area from ay 0–12. a comparison 
between systemic and local PBS treatment; b comparison between 
systemic and local EPC treatment; c comparison between both PBS 
treatment groups and systemic EPC; d comparison between systemic 

and local PBS to local EPC (data is shown as mean ± SD; n = 10). 
*p < 0.05, **p < 0.01, ***p < 0.001 comparison EPC systemic or 
local with PBS systemic; +p < 0.05, ++p < 0.01, +++p < 0.001 compar-
ison EPC systemic or local with PBS local
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vascular injury, they are released into peripheral circulation. 
They migrate to damaged tissues and promote endothelial 
healing and angiogenesis.

We could confirm the ability of EPC to enhance wound 
healing in this study as it has already been shown by several 
groups before [17, 18, 28]. Furthermore, we could demon-
strate that local injection of EPC in wounds had almost the 
same effect as systemic i.v. treatment on wound closure and 
epithelialization (Figs. 1 and 2). This finding is remarkable, 

since locally treated wounds received a tenfold lower amount 
of EPC then their systemically treated counterparts.

Although it is known that delivering cells directly into 
damaged tissue causes cell loss compared to systemic appli-
cation, Bonaros et al. and Reinecke et al. also reported that 
local delivery of cardiomyocytes directly into the heart 
resulted in a significantly greater number of cells in the 
infarcted regions [29, 30]. Regarding this, the effect of local 
EPC transplantation is even more remarkable as we only 
applied the cells around the wound margin and not in the 

Fig. 3   Percentage of CD31 
positive wound area on day 3, 
6, 9, and 12 after wounding of 
PBS- and EPC-treated wounds. 
Below representative pictures 
of immunohistological staining 
(data is shown as mean ± SD; 
n = 6). *p < 0.05
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local vessels for treatment. Nevertheless, wound healing was 
ameliorated by local as well as systemic delivery. Thus, our 
findings show that the cellular effects seem not only to be 
connected to EPC delivery in local vessels or through blood 
flow.

Furthermore, it has already been shown that systemic 
transplantation requires a higher amount of cells due to a 
poor distribution and low cell survival [31]. 90% of sys-
temic transplanted EPC are entrapped in undesired organs 
including the liver, spleen and kidney when cells were intra-
venously injected [31]. The positive effects of local EPC 

transplantation and our conclusions are supported by the 
findings of Kim et al. They demonstrated that delivering of 
EPC directly into diabetic wounds not only enhanced neo-
vascularization but also activated the proliferation of local 
keratinocytes and fibroblasts [32].

In cardiovascular disease models, circulating EPC 
have been shown to preferentially home to ischemic tissue 
where they are directly incorporated into vessel walls [8]. 
We could demonstrate the presence of the systemically as 
well as locally transplanted pre-labeled EPC at the wound 
area in our model by intra-vital microscopy. Incorporated 

Fig. 4   Percentage of CD90-
positive wound area on day 3, 
6, 9, and 12 after wounding of 
PBS-and EPC-treated wounds. 
Below representative pictures 
of immunohistological staining 
(data are shown as mean ± SD; 
n = 6). *p < 0.05
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endothelial progenitor cells are able to promote neovascu-
larization and cardiac regeneration by releasing growth fac-
tors, which act in a paracrine manner to support local angio-
genesis and mobilize progenitor cells residing in the local 
tissue [33]. They also promote recruitment of monocytes and 
macrophages which furthermore support neovascularization 
[17, 34].

In our hands, local application of EPC enhanced the 
expression of CD31 at the wound margin on day 6 after 
wounding comparing the control groups (Fig. 3). Systemic 

treatment also seemed to enhance CD31 expression on day 
6 though this finding was not significant. CD31 expression 
is used to evaluate angiogenesis that in turn leads to a faster 
wound closure [35].

Furthermore, we demonstrated in our study an increase 
in CD90 expression from day 3 to day 12 after local and 
systemic EPC transplantation, though this finding was only 
significant for systemic treatment compared to systemic PBS 
injection on day 6 after wounding. CD90 is known as a ver-
satile modulator of signalling affecting cellular adhesion, 

Fig. 5   Percentage of VEGF-
positive wound area on day 3, 
6, 9, and 12 after wounding of 
PBS- and EPC-treated wounds. 
Below representative pictures 
of immunohistological staining 
(data are shown as mean ± SD; 
n = 6)
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proliferation, survival and cytokine/growth factor responses 
[36]. CD90 is used to monitor vascular density in granu-
lation tissue [18]. Thus, elevated expression of CD31 and 
CD90 by local as well as systemic EPC transplantation 
marks enhancement of local vascularization.

In contrast to enhanced expression of CD31 and CD90, 
there was no significant difference in VEGF expression in 
wounds after systemic or local EPC transplantation com-
pared to control groups. VEGF is a potent angiogenic growth 
factor, which induces increased vascular permeability, pro-
liferation, migration and recruitment of EPC from the bone 
marrow [33]. EPC attracted to wound site are known to 
incorporate directly into neovasculature and also augment 
angiogenesis through the secretion of VEGF [17]. There-
fore, enhanced vascularization after local and systemic EPC 
application seemed to be independent of VEGF signalling 
as we found enhanced vascularization by CD31 and CD90 
expression. This might be mainly explained by the fact that 
EPC can be directly incorporated into the neovasculature 
during the repair [17]. Furthermore, they promote endog-
enous angiogenesis by secreting angiogenic growth factors 
at EPC-incorporated foci which in turn contributes to the 
development of host-derived neovessels [17]. Another VGF-
independent way of enhancing neovascularization by EPC is 

the paracrine modulation of endothelial cells by exosomes 
[37]. Therefore, we propose that the positive effects of local 
EPC transplantation on wound healing is partly due to parac-
rine effects of the EPC and an improved cell–cell interaction 
between EPC and local endothelial cells.

We also found a significant upregulation of SDF-1α at 
wound margins on all days investigated after local and sys-
temic EPC transplantation (Fig. 7). SDF-1α is produced by 
tissue ischemia or in response to vessel damage [2]. SDF-1α 
promotes trans-endothelial migration of progenitor cells 
toward vascular lesions and in the endothelial damage site, 
which in turn exposes specific adhesion molecules [38]. Fur-
thermore, it can also enhance keratinocyte proliferation and 
migration in vitro helping the process of reepithelialization 
[39]. Thus, upregulation of SDF-1α contributes to ameliora-
tion of wound healing by local and systemic EPC treatment.

Also under pathological conditions as ischemia or diabe-
tes, transplantation of EPC has been found to be a promising 
treatment strategy [28, 40]. Therefore, it will be interesting 
to investigate whether local treatment can reduce the number 
of EPC needed in disease models as well to pave the way 
for clinical trials.

Fig. 6   Representative intra-vital 
pictures of pre-labeled DiLDL 
EPC at the wound margin on 
day 3 and 6 after wounding
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Conclusion

Our data suggest that local delivery of EPC is an attractive 
therapeutic approach for treating acute and chronic dermal 
wounds. Moreover, local treatment significantly reduces the 
amount of autologous EPC needed in comparison to sys-
temic application.
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Fig. 7   Percentage of SDF-1α-
positive wound area on day 3, 
6, 9, and 12 after wounding of 
PBS- and EPC-treated wounds. 
Below representative pictures 
of immunohistological staining 
(data are shown as mean ± SD; 
n = 6). *p < 0.05; **p < 0.01
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