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Abstract 

We explore the potential of optically-pumped magnetometers (OPMs) to infer the laminar origins of neural activity 
non-invasively. OPM sensors can be positioned closer to the scalp than conventional cryogenic MEG sensors, 
opening an avenue to higher spatial resolution when combined with high-precision forward modelling. By simulating 
the forward model projection of single dipole sources onto OPM sensor arrays with varying sensor densities and 
measurement axes, and employing sparse source reconstruction approaches, we find that laminar inference with 
OPM arrays is possible at relatively low sensor counts at moderate to high signal-to-noise ratios (SNR). We observe 
improvements in laminar inference with increasing spatial sampling densities and number of measurement axes. 
Surprisingly, moving sensors closer to the scalp is less advantageous than anticipated - and even detrimental at 
high SNRs. Biases towards both the superficial and deep surfaces at very low SNRs and a notable bias towards the 
deep surface when combining empirical Bayesian beamformer (EBB) source reconstruction with a whole-brain 
analysis pose further challenges. Adequate SNR through appropriate trial numbers and shielding, as well as precise 
co-registration, is crucial for reliable laminar inference with OPMs. 

Introduction 

Magnetoencephalography (MEG) is a non-invasive technique that measures the tiny magnetic fields generated by 
the synchronous current flow through neuronal populations in the brain1,2. Conventional MEG operates with 
superconducting SQUID magnetometers that must be immersed in liquid helium for cooling and are therefore 
placed within a fixed dewar for thermal insulation. This results in a substantial (several centimetre) gap between 
the sensors and the scalp and, as the strength of the magnetic field decreases with distance from the source, 
weaker magnetic fields at the sensor locations. 

Optically-pumped magnetometers (OPMs) are highly sensitive magnetometers that operate without the need for 
cryogenic cooling. The sensors are small and lightweight and can therefore be flexibly arranged on, and placed 
close to, the scalp. OPMs contain helium gas3 or a vapour of alkali atoms4–6 whose atomic spins are aligned through 
optical pumping. Fluctuations in the local magnetic field affect the transmission of laser light through this spin-
polarised gas or vapour and can be measured as changes in the amount of light at a photodetector site7,8. This new 
technology has sparked immense interest in the MEG community, and the first whole-head systems are now 
commercially available.  

By placing the sensors directly on the scalp, the distance between the sensors and the cortical sources is decreased. 
Simulations show that bringing the sensors closer to the participant’s brain substantially improves the sensitivity 
to cortical sources and enables the sampling of higher spatial frequencies, i.e., this permits measurement of more 
focal field patterns, resulting in improved spatial resolution and better source separability compared to conventional 
MEG7,9,10. Experimental studies show that OPM-MEG systems exhibit comparable or even larger signal amplitudes 
and improved source reconstruction accuracy compared to conventional SQUID-MEG systems, even when they had 
fewer sensors with higher noise floors11–14. 

A significant challenge in reconstructing the brain sources from MEG measurements taken on the scalp is to 
distinguish between sources originating from different cortical layers. Non-invasive laminar electrophysiology in 
humans would be of high relevance for both basic and clinical research, in particular in neurodegenerative diseases 
like Huntington’s disease15 and multiple sclerosis16,17 where different layers are affected across disease stages, and 
in investigating cortical microcircuits and inter-laminar neural communication18. However, with a cortical thickness 
of 2-5 mm19,20, the typical spatial resolution achieved by conventional MEG21,22 is not sufficient for laminar 
inference.  

It is possible to distinguish between deep and superficial sources by using high-precision forward models23–26. 
Here, the main idea is to exploit the small variations in the so-called lead fields between deep and superficial 
sources to infer the more likely origin of the source activity, by comparing the model evidence of models that place 
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the source activity in either the deep or the superficial layers. High-precision MEG has been used to accurately 
infer the origin of cortical dipole sources in simulations, applied experimentally to a visuo-motor paradigm27, and 
has been successfully used to derive laminar contributions to beta bursts in a temporally resolved manner28.  

On-scalp OPM-MEG has been postulated to have the potential to further improve the discriminability of laminar 
sources26,28,29 as laminar inference was more successful for sources close to the sensors26. To investigate the 
conditions under which OPMs can improve the performance of laminar inference, we simulate cortical sources at 
deep and superficial layers and infer their laminar origin using high-precision forward models. We explore the 
impact of two main features of OPM sensor arrays: the number of sensors and the number of measurement axes. 
While a higher sensor density yields a higher spatial resolution in source reconstruction7,9,30,31, it raises questions 
of feasibility due to the potential for crosstalk and heating issues. OPM sensors with multiple measurement axes 
provide enhanced information capacity10 and have been shown to reduce external interference and motion artefacts 
substantially32,33. Additionally, the different sensitivity profiles of triaxial sensors allow for better and more uniform 
coverage, particularly for children33. We also investigate the effects of varying signal-to-noise ratios, sensor-scalp 
distances, co-registration errors, and interfering internal noise sources on the classification performance.  

Materials and Methods 

Simulations were conducted using the development version of SPM (SPM12, release 6, 
https://github.com/spm/spm, downloaded 07/29/2022).  

MRI acquisition and processing 

A structural MRI scan was used to reconstruct the laminar surfaces that define the source space of our simulations 
and to inform the source reconstruction forward model. We employed quantitative multi-parameter mapping 
data34,35 from a single participant (male, 23 years) from the MEG UK database (https://meguk.ac.uk/database).  
Acquisition was performed on a 3T Prisma scanner equipped with a 32-channel receive radio frequency (RF) head 
coil (Siemens Healthineers, Erlangen, Germany) and a body RF receive coil at the Wellcome Centre for Human 
Neuroimaging, UCL, London. The study was approved by the local ethics committee and the volunteer gave written 
informed consent before being scanned. The high resolution protocol was the same as in Bonaiuto et al. (2018)26, 
and consisted of three RF- and gradient-spoiled, multi-echo 3D FLASH scans with proton density-, relaxation time 
T1-, and magnetisation transfer-weighting (PDw, T1w, and MTw) at 800 μm isotropic resolution, plus a map of the 
RF transmit field B1 acquired using a 3D-EPI spin echo/stimulated echo method (SE/STE) corrected for geometric 
distortions due to spatial inhomogeneities in the static magnetic field B036. For details on the acquisition protocol 
see Edwards et al. (2022)37. 

Cortical surfaces were reconstructed using the recon-all pipeline from FreeSurfer (Fischl et al., 200438; 
https://surfer.nmr.mgh.harvard.edu). Because the contrast in the quantitative MRI maps deviates significantly from 
the T1w MPRAGE image contrast expected by the recon-all pipeline35, the following steps were taken to extract an 
image with MPRAGE-like contrast from the 3T quantitative MRI parameters (see McColgan et al., 202139). First, a 
small number of negative and very high values produced by estimation errors were set to zero in the longitudinal 
relaxation rate (R1) and PD maps, such that T1 (= 1/R1) was bounded between [0,8000] milliseconds (ms) and PD 
between [0,200] %. Then, the PD and T1 maps were used as input to the FreeSurfer mri_synthesize routine to create 
a synthetic FLASH volume with optimal white matter (WM)/grey matter (GM) contrast (repetition time 20 ms, flip 
angle 30°, echo time 2.5 ms). This synthetic image was given as input to the SPM segment function 
(https://www.fil.ion.ucl.ac.uk/spm) to create a combined GM/WM/cerebrospinal fluid (CSF) brain mask (threshold: 
tissue probability > 0), which was used for skull stripping. The skull-stripped synthetic image then served as input 
for the remaining steps of the recon-all pipeline which resulted in cortical surfaces for the GM/WM boundary (‘white’ 
surface), the pial surface and mid-cortical surface. 

Simulated OPM-MEG sensor arrays and data 

We simulated single dipolar sources as measured by OPM-MEG sensor arrays of different configurations for all 
simulations. We simulated OPM datasets with 200 trials with a duration of 1000 ms and a sampling rate of 200 Hz 
using code adapted from https://github.com/tierneytim/OPM. Sensor locations were determined using a point 
packing algorithm that positions sensors on the scalp surface at increasing densities as described previously40. 
Each sensor was modelled with one to three measurement axes: single radial axis, radial axis and one transversal 
axis, radial axis and two orthogonal transverse axes. We considered array designs with sampling distances between 
25 and 55 mm in 10 mm increments, corresponding to 32, 42, 71, 138 sensors for the single axis array 
configurations.  
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The sensor-scalp offset was set to 6.5 mm, following Tierney et al., 202040. This corresponds to a typical distance 
between scalp and the centre of sensitivity of commercially available SERF OPM sensors (2nd generation QuSpin 
OPM sensors). We also simulated off-scalp MEG with increased scalp-sensor offsets of 20, 30 and 40 mm, using 
otherwise identical simulation parameters. Our aim was to compare laminar inference performance of OPM-MEG 
sensor arrays to conventional SQUID-based MEG, where sensors are placed further away from the scalp and scalp-
sensor offsets in the range of 15 to 40 mm are typical14,41–43. Varying the scalp-sensor offsets also allowed us to 
evaluate the impact of possible design compromises concerning sensor placement in the OPM-MEG array, e.g., due 
to the use of generic helmets44 or the necessity to accommodate cooling pads in high-density sensor packaging 
in the case of alkali-based OPMs.  

We simulated deep and superficial current dipole sources at vertices on the white matter/grey matter boundary 
surface and the pial surface meshes, respectively. The meshes were constructed using the cortical surfaces ('white' 
and 'pial') derived from the FreeSurfer surface reconstruction pipeline applied to an individual's structural MRI, as 
detailed in the "MRI Acquisition and Processing" section. The mesh resolution was determined by the pre-specified 
cortical meshes derived from the FreeSurfer surfaces, downsampled by a factor of 10. This resulted in 32,212 
vertices for each surface, with an average vertex spacing of 1.74 mm for the white surface and 1.92 mm for the pial 
surface.  Sources were positioned at mesh vertices, and the orientation of each cortical current source was defined 
by the surface normal of the cortical mesh at that location. The same meshes were later used for source-
reconstruction (See “Laminar source estimation” section). 

For each surface, we randomly selected 60 vertices as cortical source locations. At each source location, a 20 Hz 
sinusoidal dipolar source patch with a patch size of 5 mm at Full Width at Half Maximum (FWHM) was added for 
each of the 200 trials modelled per cortical source location. The dipolar sources were active for 400 ms. Synthetic 
datasets were generated across a range of realistic SNRs by adding Gaussian white noise to the simulated data, 
scaled to yield per-trial amplitude SNR levels (averaged over all sensors), of -50, -40, -30, -20, -10, -5 dB. The 
forward model linking the simulated dipole current source to the sensor level activity was based on the Nolte single 
shell approach with the inner skull surface and cortical surfaces derived from the structural MRI. Sensors were 
assumed to be point magnetometers.  

Laminar source estimation 

We next aimed to determine the laminar origin of the simulated sources from the sensor data alone. We used two 
main types of analyses: a whole-brain and an ROI-based analysis, equivalent to those described in Bonaiuto et al., 
201826. 

In the whole-brain analysis, we reconstruct the OPM-MEG sensor data once to the pial and once to the white matter 
cortical surface and then compare the fit of the two models using Bayesian model comparison as a metric23,26. For 
Bayesian model comparison, we compute the difference in free energy between the pial and white matter forward 
models, approximating the log ratio of the model likelihoods. This results in a metric that is positive or negative, if 
there is more evidence for the pial or white matter model, respectively. A difference in log model evidence greater 
than 3 indicates that one model is approximately 20 times more likely than the other. 

While this whole-brain analysis provides a global answer to the question of which cortical surface the sensor activity 
is more likely to originate from, it lacks spatial specificity regarding the location within the cortex where this laminar 
activity originates. To address this limitation, a region-of-interest (ROI) analysis that reconstructs the data onto 
both pial and white matter surfaces simultaneously can be employed26.  An ROI is calculated based on the change 
of activity on either surface from a baseline time window, and the reconstructed activity within the ROI is compared 
between the two surfaces. We functionally defined ROIs by comparing power in the 10–30 Hz frequency band during 
the time period containing the simulated activity ([100 500] ms) with a prior baseline period ([-500 100] ms) at 
each vertex using two-tailed paired t-tests. Vertices in either surface with a t-statistic in the 75th percentile of the 
t-statistics over all vertices in that surface, as well as the corresponding vertices in the other surface, were included 
in the ROI. For each trial, we computed ROI values for the pial and white matter surfaces by averaging the absolute 
value of the change in power compared to baseline in that surface within the ROI. Finally, we used a paired t-test 
with variance regularisation45 to compare the ROI values from the pial surface with those from the white matter 
surface over trials. The ROI analysis produced a t-statistic which was positive when the change in power was greater 
on the pial surface and negative when the change was greater on the white matter surface. 

In both analyses, we estimated sources using the empirical Bayes beamformer (EBB46,47) and multiple sparse priors 
(MSP48) source reconstruction approaches as implemented in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/). The 
corresponding functional priors assume a sparse distribution of current flow across the cortex, uncorrelated in time 
for the EBB and locally coherent and sparse for the MSP approach. As in Bonaiuto et al. (2018), for the whole brain 
analysis the source inversion was applied to a Hann windowed time window from 500 ms to -500 ms filtered from 
10–30 Hz, while no Hann window was used for the ROI analysis. These data were projected into 274 orthogonal 
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spatial (lead field) modes and 4 temporal modes. Cortical patches were modelled with a patch size of 5 mm FWHM. 
In this study, we used the development version of SPM as it calculates geodesic distances in the cortical mesh 
construction in an exact manner, while previous SPM implementations used the approximate Dijkstra algorithm. 

We did not investigate simulations with minimum norm2 and LORETA26 source localisation, as they have been 
shown in the past to be unable to allow laminar inferences for simulated sparse sources26. A replication of these 
findings can be seen in Fig. S2 in the Supplementary material. We note that we simulated sparse sources and that 
our inability to distinguish between different laminar sources using the IID or LORETA approaches can be at least 
partly attributed to the mismatch between data and functional prior assumptions23,26.  

The code for the current dipole sources simulations and the laminar inference was based on and adapted from the 
code at https://github.com/jbonaiuto/laminar_sim. 

Impact of co-registration errors 

Laminar MEG using conventional SQUID-MEG relies on subject-specific head-casts to reach the required accuracy 
in the high-precision forward models. To build the forward models, the accurate position and orientation of MEG 
sensors relative to the cortical surfaces derived from the MRI (i.e., co-registration of the two modalities) needs to 
be established. Head-casts enable highly accurate co-registration in the sub-millimetre range and reduce head 
movements during scanning to less than 1 mm. This results in better data quality and anatomically more precise 
MEG recordings24,25 than for conventional co-registration strategies based on fiducials and surface mapping which 
typically achieve an accuracy of 5–10 mm47,48 (but see Sonntag et al. 201849 who used an adaptive Metropolis 
algorithm to reach target registration errors between 1.3 and 2.3 mm at the head surface). 

Accurate co-registration is also essential to fully utilise the high spatial resolution of on-scalp MEG systems. The 
expected co-registration error for OPM systems differs between flexible and more rigid sensor arrays13, with rigid 
helmets being preferred for high-precision measurements due to their more accurate estimation of relative sensor 
locations and orientations14. Here, we investigate the effect of co-registration errors expected for rigid sensor arrays 
by introducing random displacement to the three fiducial locations, with standard deviations from 1 to 4 mm in 1 
mm increments. Note that the impact of potential movements of the participant’s head in relation to the rigid 
sensor array during the experiment was not investigated in our study and needs to be further investigated. 

Impact of source patch sizes  

In the simulations described so far, we assumed cortical source patches with a width of 5 mm and used smoothed 
MSP and beamforming priors based on an equivalent smoothing kernel (as implemented in 
spm_eeg_invert_classic.m), i.e., the estimated patch extent in our source reconstructions fitted the true simulated 
source patch extent. Previous simulation studies23,26 have demonstrated that the under- or overestimation of patch 
extent can introduce biases in model evidence. Additionally, in experimental work27, it was observed that smaller 
source prior patch sizes introduced a superficial bias, while larger patch sizes introduced a deep laminar bias. We 
thus performed a set of simulations with congruent and incongruent patch sizes, using patch sizes of 5 and 10 mm, 
to investigate the impact of incongruent patch sizes on laminar inference performance for on-scalp OPM sensor 
arrays. 

Adding internal interference sources 

While simulations of single current dipoles can be illustrative, they do not reflect real experimental situations where 
laminar inference is performed on a source of interest in the presence of other interfering brain sources. To 
investigate the impact of such internal interfering sources, we simulated additional noise sources on the mid 
cortical surface. The source time courses of the source of interest and of five internal noise sources were modelled 
as Gaussian random data within a frequency range of 10 to 30 Hz and the source amplitudes of the internal noise 
sources were defined in proportion to the source of interest with a relative source strength of 0.4. 
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Statistics 

We first compared the classification accuracy and bias of each analysis and source inversion algorithm by 
computing the percentage of sources that were classified correctly and the percentage of sources classified as 
coming from the pial surface and subjected these percentages to two-sided binomial tests with chance levels of 
50% to evaluate their significance. To investigate whether these effects were also significant at the single 
simulation level, we additionally employed a threshold of ±3 for the free energy difference (meaning that one model 
is approximately twenty times more likely than the other) and a threshold of the critical t-value with degrees of 
freedom (df) = 199 and α = 0.05 for the ROI t-statistic. By doing so we examined whether the classification approach 
not only found a difference in the correct direction, but also whether this metric was significant. 

We used logistic regression to evaluate changes in classification accuracy and bias across sampling densities, 
number of axes, co-registration errors, and sensor-scalp offsets. Differences in laminar inference performance for 
free energy and the ROI-t-statistic analysis and for congruent and incongruent patch sizes were evaluated using 
exact McNemar's tests49. 

Results 

At which signal-to-noise ratios can we draw laminar inferences? 

We first evaluate the classification accuracy and bias across SNRs for an OPM-MEG array with a 35 mm inter-
sensor distance to examine at which SNRs laminar inferences can be made using non-invasive OPM-MEG. We also 
report differences in laminar inference performance between the whole-brain free energy and the ROI-t-statistic 
analysis. Results for the OPM sensor array with a 35 mm inter-sensor distance are summarised in Figure 1. 
 
Classification accuracy improved with increasing SNR for both source reconstruction approaches and laminar 
inference analyses (EBB/free energy: beta = -1.168, p <.001; EBB/ROI-t-statistic: beta = -2.038; p <.001; MSP/free 
energy: beta = -2.941 p <.001; MSP/ROI-t-statistic: beta = -3.341, p <.001), while the percentage of sources 
classified as coming from the pial surface decreased with increasing SNR (EBB/free energy: beta = 1.292, p = 
<.0.001; EBB/ROI-t-statistic: beta = 1.855; p <.001; MSP/free energy: beta = 0.456, p <.001; MSP/ROI-t-statistic: 
beta = 0.350, p <.01. We note that for the EBB source reconstruction approach at high SNRs, classification was 
biased towards the deep surface when using the whole-brain analysis. 
 
For the EBB source reconstruction approach, laminar source inference was statistically significant at SNRs of -20 
dB or higher; we observed however a bias towards the deep surface for the free energy metric. At these relatively 
high SNRs, the ROI-based analysis performed better than the whole-brain analysis: performance accuracy was 
higher (two-sided exact McNemar’s tests: p <.001 at SNRs of -5, -10 and -20 dB) and classification less biased 
(two-sided exact McNemar’s tests:  p <.01 at SNRs of -5 and -10 dB). At an SNR of -30 dB, the ROI approach failed 
to yield significant results at the single simulation level, i.e., the absolute t-statistic values did not exceed the 
significance threshold. Additionally, laminar inference was biased towards the pial surface. While the free energy 
metric yielded a larger ratio of simulations with statistically significant classifications, classification accuracy was 
low. No laminar inference was possible at a very low SNRs of -40 and -50 dB for both analyses, and classification 
accuracy was at chance level and classification strongly biased towards the pial surface.  
 
The MSP approach yielded high classification performances and no significant biases at SNRs of -30 dB or higher. 
Note that, there was a high accordance between the simulated data and the prior assumptions of the MSP approach, 
rendering this approach somewhat idealised. Classification performance did not differ significantly between the 
ROI-based and the whole-brain analysis as shown by two-sided exact McNemar’s tests for classification accuracy 
and bias. At an SNR of -30 dB, however, the ROI approach failed to yield significant results reliably at the single 
simulation level. At very low SNRs of -40 and -50 dB, classification accuracies and biases were not statistically 
significant at the single simulation level for both, whole-brain and ROI-based, analyses. 
 
In summary, we find that for an OPM-MEG sensor array with an inter-sensor distance of 35 mm using the MSP 
approach (with patch priors that included the source locations) allowed us to achieve highly accurate laminar 
inferences at SNRs of -30 dB or higher. For the EBB approach an SNR of at least -20 dB was required to reliably 
infer the correct laminar origin of simulated sources. Additionally, the ROI-based analysis is recommended over 
the whole-brain free energy analysis due to its superior classification accuracy and reduced bias. 
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Fig. 1 Laminar classification accuracy and bias across signal-to-noise ratios. We applied the A EBB and B MSP source reconstruction 
approaches to simulated data for an OPM-MEG sensor array with an inter-sensor distance of 35 mm. Solid lines denote laminar inference based on 
the whole-brain free energy analysis; dashed lines denote laminar inference based on the ROI-t-statistic analysis. Left columns within each subpanel 
show the percentage of correct laminar inferences, the right columns show the percentage of simulations where laminar inference favoured the pial 
source model. The percentage of simulations with free energy differences or t-statistics exceeding the significance threshold is represented by the 
intensity of the line colour. The error bars represent the standard error. Asterisks show where the percentage is significantly above or below chance 
levels. A For the EBB approach, we found significant increases in classification accuracy with increasing SNR. B For the MSP approach, we observed 
an excellent classification performance with accuracy at ceiling and no biases for SNRs of -30 dB or higher for both, free energy and ROI-t-statistic, 
analyses.  

Results across OPM sensor arrays with varying inter-sensor distances can be found in the Supplementary section 
in Figure S1. We replicate previous results26 that we cannot successfully distinguish between superficial and deep 
sources using minimum norm and LORETA source localisation approaches (see Supplementary Fig. S2).  

Increasing sensor sampling density 

We next investigated the impact of the sensor sampling density, here parameterised by the inter-sensor distance, 
on classification performance. Results are summarised in Figure 2. For the EBB approach combined with the whole-
brain free energy analysis, classification accuracy significantly decreased with increasing inter-sensor distances at 
SNRs of -5 dB (beta = -0.710, p <.01), -10 dB, (beta = -0.781, p <.001) and -20 dB (beta = -0.558, p = 0.001), but 
not at lower SNRs where laminar inference was challenging or not feasible at all. Sampling density had no 
discernible impact on classification bias, except at very low SNRs, where classification bias towards the white 
surface increased with increasing inter-sensor distances (-40 dB, beta = -1.398, p <.001). However, single 
simulations were typically not significant and classification accuracy was at chance level. 
 
For the EBB approach combined with the ROI-t-statistics analysis, classification accuracy was at ceiling across 
sensor sampling densities at a high SNR of -5 dB and decreased significantly with increasing inter-sensor distances 
at SNRs of -10 dB (beta = -1.692, p <.01), -20 dB, (beta = -1.178, p <.001) and -30 dB (beta = -0.522, p <.01). 
Increasing inter-sensor distance led to a significant increase in bias towards the pial surface at -20 dB (beta = 
0.356, p <.05) and -30 dB (beta = 2.080, p <.001). As described earlier, classification at the single simulation level 
was reliably significant only for sensor array configurations with dense spatial samplings at -20 dB and not feasible 
at any spatial sampling densities at an SNR of -30 dB. At an SNR of -40 dB, the ROI-based t-statistic classification 
was extremely biased towards the pial surface across all sensor sampling densities. While the free energy metric 
was biased towards the pial surface as well, this bias decreased with decreasing sensor counts, i.e., it was less 
pronounced at lower sampling densities. 

For the MSP approach, at SNRs of -30 dB or higher, classification performance was at ceiling and showed no 
significant biases. Classification performance and bias did not vary significantly across sampling densities. At these 
moderate to high SNRs, the whole-brain and ROI-based analyses yielded similar results as indicated by non-
significant exact McNemar’s tests. At -30 dB, we observed a trend towards decreased classification accuracy with 
increasing inter-sensor distances for the free energy analysis (logistic regression: beta = -1.547, p = 0.082), while 
laminar inference tended to be non-significant at the single source level for the ROI analysis. 

At -40 dB, we observed a steep decline in performance accuracy with decreasing sensor counts (beta = -1.455, p 
<.001). However, as mentioned earlier, the corresponding classifications were not reliably significant at the level of 
single simulations, i.e., sources. 

Overall, in our simulations, we observed significant decreases in classification accuracy as the inter-sensor 
distances increased for the EBB source reconstruction approach. In contrast, the MSP approach demonstrated a 
consistent classification performance close to ceiling across varying inter-sensor distances at SNRs of -30 dB and 
higher. 
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Fig. 2. Laminar classification accuracy and bias across OPM array inter-sensor distances. Solid lines denote laminar inference based on the 
whole-brain free energy analysis; dashed lines denote laminar inference based on the ROI-t-statistic analysis. Left columns within each subpanel 
show the percentage of correct laminar inferences, the right columns show the percentage of simulations where laminar inference favoured the pial 
source model. SNR decreases across rows. The percentage of simulations with free energy differences or t-statistics exceeding the significance 
threshold is represented by the intensity of the line colour. The error bars represent the standard error. Asterisks show where the percentage is 
significantly above or below chance levels. A For the EBB approach, we found significant decreases in classification accuracy with increases in inter-
sensor distances at SNRs of -20 dB or higher. B For the MSP approach, we observed no significant changes in laminar classification performance 
across sampling densities at SNRs of -30 dB or higher. 

Increasing the number of measurement axes 

To investigate the impact of the number of measurement axes on laminar inference performance, we kept the 
sampling density fixed and varied the number of measurement axes. In Figure 3 we report results for a simulated 
OPM-MEG array with 55 mm inter-sensor distance, which corresponds to 29, 58 and 87 channels for single axis, 
dual axis and triaxial sensors, respectively. Note that the channel counts for dual and triaxial sensors deviate from 
being multiples of the sensor counts of the single axes due to a random factor in the point packing algorithm. The 
point packing algorithm was re-initialized for each array configuration, leading to the observed deviations in 
channel counts. 

We found that classification accuracy increased significantly with the number of measurement axes at SNRs of -20 
dB or higher when using the EBB approach combined with the free energy analysis (SNR -5 dB: beta = -0.578, p 
<.05; SNR -10 dB: beta = -0.709, p < .01, SNR -20 dB: beta = -0.500, p < .05). At these SNRs, we observed a bias 
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towards the deep surface for the whole-brain analysis. This bias did not systematically increase or decrease with 
an increasing number of measurement axes. We found no advantage of increasing the number of measurement 
axes at SNRs of -30 dB and -40 dB. At -40 dB, we observed a bias towards the pial surface, which increased 
significantly with the number of measurement axes (beta = -1.767, p < .001). Note that while this bias was strong, 
the underlying differences in free energy were not significant at the single source level, i.e., the absolute log free 
energy differences did not exceed the significance threshold of 3. For the ROI-based analysis, classification 
accuracy was close to ceiling for an SNR of -5 dB and increased with the number of measurement axes at -10, -20 
and -30 dB (-10 dB: beta = -2.579, p <.05; -20 dB: beta = -1.233, p < .001; -30 dB: beta = -0.409, p<.05). At an SNR 
of -30 dB, we observed a bias towards the pial surface which decreased significantly with added measurement axes 
(beta = 1.792, p < .001). However, laminar inference was not statistically significant at the single simulation level. 
At a very low SNR of -40 dB, classification accuracy was at chance level with an extreme bias towards the pial 
surface. Note that again these laminar inferences were not significant at the single source level. 

For the MSP approach, both whole-brain and ROI-based analyses performed near-ceiling for SNRs of -30 dB or 
higher, irrespectively of the number of measurement axes. At an SNR of -40 dB, classification accuracy increased 
strongly with the number of measurement axes for the ROI analysis (ROI: beta = -1.148, p < .001); however, these 
laminar inferences did not exceed the significance threshold at the single simulation level.  

We anticipated that the advantage of a more homogenous spatial coverage provided by sensors with multiple axes 
would be particularly evident for sparse OPM sensor arrays. Results indicating comparable yet less pronounced 
effects for a more densely arranged OPM sensor array can be found in Fig. S3. 

In summary, our findings showed significant improvements in classification accuracy with an increasing number of 
measurement axes for the EBB source reconstruction approach. Conversely, the MSP approach exhibited 
classification performance close to ceiling levels for SNRs of -30 dB or higher, regardless of the number of 
measurement axes used. 

Impact of increasing scalp-sensor offsets 

To test for the impact of sensor-scalp offsets, we simulated an OPM sensor array with 35 mm inter-sensor distances 
and single radial axis configuration and increased the scalp-sensor offsets from 6.5 to 20, 30 and 40 mm. We 
expected a higher classification accuracy at sensors closer to the scalp, as being closer to the cortical surface (1) 
renders the ratio of the distances of the sensors to the deep and superficial surfaces larger and (2) results in larger 
lead fields, which have been linked to improved laminar inference performance26.  
 
For the EBB approach (Fig. 4A) combined with the free energy analysis, increasing the scalp-sensor offset at a high 
SNR of -5 dB yielded a higher classification accuracy and a weaker bias towards the deep surface. While these 
effects were not statistically significant (accuracy: beta = -0.423, p = 0.130; bias: beta = -0.190, p = 0.249), this 
was a surprising finding given the expected benefit of moving the sensors closer to the scalp and thus the cortical 
sources. At an SNR of -10 dB, using the same approach, classification accuracy did not change markedly across 
offsets (beta = 0.534, p = 0.472), while at -20 and -30 dB classification accuracy decreased with increasing scalp-
sensor offsets. Again, these decreases were not statistically significant (SNR -20 dB: beta = 0.171, p = 0.320.; SNR 
-30 dB: beta = 0.165, p = 0.320).  
 
For the ROI-based classification metric, classification accuracy was at ceiling at high SNRs of -5 and -10 dB and 
decreased significantly with increasing scalp-sensor offset at -20 dB (beta = 0.467, p = .032). At an SNR of -30 dB, 
classification accuracy was generally poor, ranging from 56.67 to 62.50%, and did not vary significantly across 
scalp-sensor offsets, while the bias towards the pial surface decreased significantly with scalp-sensor offset 
distance (beta = 0.613, p < .001). However, laminar inference was not significant at this low SNR, i.e., single source 
classifications did typically not exceed the significance threshold. At an SNR of -40 dB, classification was at chance 
level with a strong bias towards the pial surface for both analyses, irrespective of the scalp-sensor offsets. Again, 
laminar inferences were not significant at the single simulation level. 
 
For the MSP source reconstruction approach (Fig. 4B), classification accuracy performed at ceiling for SNRs of -30 
dB or higher for both, the whole-brain and the ROI-based analyses, and thus did not vary significantly across scalp-
sensor offsets. At an SNR of -40 dB, we observed a significant increase towards a bias to the pial surface with 
increasing scalp-sensor offsets (whole-brain: beta = -0.490, p <.01; ROI: beta = -0.346, p = 0.038). However, 
laminar inferences at -40 dB were not significant at the level of single simulations irrespective of the classification 
metric or the scalp-sensor offset.  
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Fig. 3. Laminar classification accuracy and bias across number of measurement axes for an OPM-MEG array with a sensor spacing of 55 
mm. Solid lines denote laminar inference based on the whole-brain free energy analysis, dashed lines laminar inference based on the ROI-t-statistic 
analysis. Left columns within each subpanel show the percentage of correct laminar inferences, right columns show the percentage of simulations 
where laminar inference favoured the pial source model. A For the EBB approach, we found significant increases in classification accuracy with 
increases in the number of measurement axes at SNRs of -30 dB or higher. B For the MSP approach, both free energy and ROI-based analyses 
performed at ceiling for SNRs of -30 dB or higher, irrespectively of the number of measurement axes.  

 
Our finding, although not statistically significant, that classification accuracy improved with increasing sensor-scalp 
offsets at a high SNR of -5 dB when using the EBB approach, was surprising, given the expected advantage of 
moving the sensors closer to the scalp. We speculate that the increase in classification accuracy with greater scalp-
sensor distances at high SNRs might be due to the reduced aliasing of higher spatial frequency information when 
sensors are positioned farther away from the brain sources. Since sparser sensor arrays are more susceptible to 
aliasing, we expect this effect to be more pronounced in sparse arrays and less pronounced in dense sensor arrays. 
Simulations involving OPM-MEG arrays with inter-sensor distances of 55 mm and 25 mm partially support this 
hypothesis (Fig. S4). 
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Fig. 4. Laminar classification accuracy and bias across scalp-sensor offsets for an OPM-MEG array with a sensor spacing of 35 mm. Solid 
lines denote laminar inference based on the whole-brain free energy analysis; dashed lines laminar inference based on the ROI-t-statistic analysis. 
Left columns within each subpanel show the percentage of correct laminar inferences, right columns show the percentage of simulations where 
laminar inference favoured the pial source model. A For the EBB approach, we observed a tendency of increases in scalp-sensor distances leading 
to an increasing laminar classification accuracy at high SNRs and a decreasing one at a lower SNR of -20 dB.  B For the MSP approach, classification 
accuracy performed at ceiling for SNRs of -30 dB or higher for the whole-brain and the ROI-based analyses and did not vary significantly across 
scalp-sensor offsets. 

Co-registration errors 

To investigate the impact of co-registration errors on our ability to perform non-invasive laminar inference, we ran 
simulations with a single-axis array at an inter-sensor distance of 35 mm and an SNR of -10 dB and added small 
random displacements to the three fiducial locations (Fig. 5). We observed a steep decrease in classification 
accuracy with increasing co-registration errors for the EBB approach (whole-brain: beta = 0.838, p <.001; ROI: beta 
= 1.189, p <.001), where laminar inference was not feasible anymore at a co-registration error of 4 mm. Classification 
bias remained relatively stable across co-registration errors, with a trend towards an increased bias towards the 
deep surface with increasing co-registration errors for the ROI-based t-statistics analysis (beta = 0.268, p = .065). 
For the free energy analysis, the previously observed bias towards the deep surface was sustained across co-
registration errors. 
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For the MSP approach, classification accuracy remained high (above 90%) across co-registration errors but 
decreased significantly with increasing co-registration errors (whole-brain: beta = 2.497, p <.001; ROI: beta = 1.908, 
p <.01). No classification biases were observed for either the whole-brain or the ROI-based analysis. 
 

 

Fig. 5. Laminar classification accuracy and bias across co-registration errors at an SNR of -10 dB. We used an OPM-MEG array with a sensor 
spacing of 35 mm and applied the EBB and MSP source reconstruction approaches to the simulated data. Solid lines denote laminar inference 
based on the whole-brain free energy analysis; dashed lines laminar inference based on the ROI-t-statistic analysis. Left columns show the 
percentage of correct laminar inferences, right columns show the percentage of simulations where laminar inference favoured the pial source model. 
For the EBB approach, we observed a decrease in classification accuracy with increasing co-registration errors. We did not observe any significant 
changes in classification bias with varying co-registration errors for either the whole-brain or the ROI-based analysis. For the MSP approach, 
classification accuracy decreased significantly with increasing co-registration errors. No classification biases were observed for either the whole-
brain or ROI-based analyses. 

Incongruent patch sizes 

To test for the impact of incongruencies between the true and the assumed source extent, we simulated congruent 
and incongruent source and reconstruction patch sizes of 5 and 10 mm for a single-axis OPM-sensor array with an 
inter-sensor distance of 35 mm and performed laminar inference using the whole-brain free energy analysis.  
 
For the EBB source reconstruction approach, we found a significant drop in laminar classification accuracy for over- 
(at SNRs of -5, -10 and -20 dB: p < .01, p < .01 and p < .05, respectively) and underestimated (at SNRs of -5 and -
10 dB: both p < .00001) patch sizes (Fig. 6). At SNRs of -5 dB and -10 dB, simulations with congruent patch sizes 
(shown in purple) were biased towards deep layers as observed in our previous simulations (Fig. 1-4). Compared to 
congruent patch sizes, overestimation of patch sizes yielded a shift towards pial classification (rendering the 
classification bias non-significant), while underestimation of patch sizes led to an even stronger bias towards the 
deep cortical surface. However, two-sided exact McNemar’s tests indicated that these shifts were not statistically 
significant at any of the SNRs tested.  
 
For the MSP approach, we found smaller but significant decreases in classification accuracy for incongruent patch 
sizes (over-estimated patch sizes at SNRs -10, -20 and -30 dB: p <.05, p <.01 and p <.05; under-estimated patch 
sizes at SNRs of -20 and -30 dB: p < .05 and p < .001, respectively) and no classification bias for neither congruent 
or incongruent patch sizes at all SNRs that enable statistically significant laminar inference (-30 dB or higher).  
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Fig. 6. Whole-brain free energy analysis laminar inference with congruent and incongruent patch sizes for an OPM-MEG array with a 
sensor spacing of 35 mm. Purple lines denote simulations where the reconstructed patch size matches the simulated patch size (solid = 5 mm, 
dashed = 10 mm), red lines are where patch size is either over- (solid) or underestimated (dashed). The percentage of simulations with free energy 
differences or t-statistics exceeding the significance threshold is represented by the intensity of the line colour. Asterisks show where the percentage 
is significantly above or below chance levels. The left column shows the percentage of sources classified correctly for each level of SNR tested. The 
error bars represent the standard error. As SNR increased, classification accuracy was reduced for both source reconstruction approaches when the 
patch size was under- or overestimated. The right column shows the percentage of sources classified as coming from the pial surface for each level 
of SNR tested. As SNR increased, congruent patch sizes resulted in a bias towards the deep surface for the EBB approach. Overestimation of patch 
sizes reduced this bias, while underestimation of patch sizes led to an even stronger bias towards the deep surface. The MSP approach showed no 
bias as SNR increased, irrespective of whether congruent or incongruent patch sizes were used. 

Interfering brain noise sources 

Next, we investigated the impact of internal noise (nuisance) sources on our ability to accurately infer the laminar 
origin of the simulated sources. To this end, we modelled sensor activity from a laminar cortical source of interest 
at an SNR of -5 dB and added concurrent weaker noise sources on the mid cortical surface. We simulated the 
sensor activity for a dense OPM-MEG array with an inter-sensor distance of 25 mm and single axis sensors and 
again applied the whole-brain and ROI-based laminar inference analyses for EBB and MSP source reconstruction 
approaches. Results are summarised in Fig. 7. 

For the EBB source reconstruction approach and the whole-brain analysis, we were not able to infer the laminar 
origin of the simulated sources (correct = 54.17%, p = ns.) and observed a strong bias to the deep surface (white 
matter = 87.50%, p <.00001). This contrasts with our results for the ROI analysis, which showed a high classification 
accuracy (EBB: correct = 91.67%, p <.00001) and no bias (pial = 50.00%, ns.). For the MSP source reconstruction 
approach, the whole-brain analysis similarly showed a low classification accuracy, which however was still above 
chance level (correct = 60.83%, p <.05), and laminar inference was biased towards the deep surface (white matter 
= 76.67%, p <.0001). For the ROI analysis, the MSP approach yielded a high classification accuracy (correct = 
93.33%, p <.00001) and showed no classification bias (pial = 51.67%, ns.). 
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Fig. 7. Laminar source discrimination in the presence of interfering brain noise sources. We used a dense OPM-MEG array with an inter-
sensor distance of 25 mm and simulated sensor activity at a relatively high SNR of -5 dB to mimic a best-case scenario. Left column: The difference 
in free energy between the pial and white matter generative models in each simulation. Right column: t-values for the difference between pial and 
white matter ROI values for each simulation. Each panel shows simulations with pial surface sources on the top row, and simulations with white 
matter surface sources on the bottom row. For the A EBB and B MSP source reconstruction approach, the whole-brain analysis similarly showed a 
low classification accuracy and a bias towards the deep surface (white matter = 76.67%, p < .0001), while the ROI-based analyses yielded high 
classification accuracies and showed no classification bias. 

Discussion 

We evaluated the efficacy of high-accuracy forward models in achieving laminar discrimination using on-scalp OPM 
sensors. Remarkably, we found that adequate laminar inference can be achieved with relatively few sensors at 
coarse spatial samplings (> 50 mm) and moderate to high SNRs. For the EBB approach, classification accuracy 
improved with increasing spatial sampling densities and measurement axes. For the MSP approach, classification 
performance was near ceiling for SNRs of -30dB or higher and unattainable at lower SNRs, regardless of the spatial 
sampling employed. We note that the excellent performance of the MSP approach at SNRs above -30dB can be 
partially attributed to the distinct advantage of its source space priors, which include the patches where sources 
were simulated.  

As expected, we observed that laminar inference was vulnerable to over- and underestimation of source patch sizes, 
co-registration errors and interfering brain sources. Interestingly, contrary to our expectations, moving the sensors 
closer to the scalp, which is arguably the game-changing feature of room-temperature OPM sensors, did not provide 
as much benefit for successful laminar inference as expected and even had a harmful effect at high SNRs. The 
biases observed in laminar inference also warrant caution. We found strong biases towards both the superficial and 
deep surfaces, particularly at very low SNRs, although these biases did not typically reach statistical significance. 
Furthermore, the EBB approach, when combined with whole-head free energy analysis, exhibited a notable bias 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.20.554011doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.20.554011
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

towards the deep surface, particularly at high SNRs.  Since at high SNRs, beamformer images tend to be more 
focal50, we propose that the denser sampling of the deep surface could be advantageous in such scenarios. 

Based on our findings, we recommend using either the MSP approach or adopting the ROI-based analysis for the 
EBB approach, as it demonstrated higher classification accuracy than the whole brain analysis without exhibiting a 
bias towards the white surface. Regardless of the chosen approach, ensuring adequate SNR through an appropriate 
number of trials and shielding, as well as maintaining precise co-registration accuracy is crucial. Bayesian model 
comparison across various patch sizes can assist in the decision-making process of selecting a suitable patch 
size27. In the following section, we will discuss the results in more detail. 

Number of sensors 

As expected, increasing spatial sampling density led to increased classification accuracy, in line with previous 
studies that have shown increased spatial resolution for source-reconstructed activity with increasing sensor counts 
for SQUID-MEG30 and OPM-MEG7,9,31. However, our finding that laminar inference is possible at a low sensor count 
of 32 sensors was somewhat surprising given that previous studies have suggested that approximately 300 sensors 
are needed to achieve a spatial discrimination of 2 to 2.5 mm9,40. While even this spatial resolution is below what 
is assumed to be required to distinguish between deep and superficial current dipoles, we argue that employing 
high-accuracy laminar forward models helped to boost the effective spatial resolution. 

Unlike the whole-brain analysis, the ROI-based analysis could still recover the simulated signal at -30dB, however 
with decreasing accuracy and increasing bias towards the pial surface as the inter-sensor density increased. As we 
used uncorrelated sensor noise in our simulations, the noise that is projected onto the OPM sensors has a high 
spatial frequency. It is thus more easily fitted using the pial surface as this surface tends to be closer to the sensors 
and pial sources are expected to yield more focal sensor patterns. On the other hand, the decrease in bias towards 
the pial surface observed in the less sensitive whole-brain analysis may be due to undersampling effects in sparse 
sensor arrays. As the high spatial frequency noise patterns are not adequately captured by a sparse sensor array 
there is also no need to fit these noise patterns. It is important to note that while these biases were pronounced, 
classification at the single simulation level did in general not reach significance at such low SNRs. 

Number of measurement axes 

Classification accuracy increased with the number of measurement axes, consistent with findings that increasing 
the number of axes results in increased information content10 and better spatial coverage32,33. As expected, the 
benefit of multiple axes was more pronounced at lower inter-sensor distances, where undersampling of high spatial 
frequency features leads to unexplained noise due to signal aliasing. Note that our simulations did not include 
external noise sources, and the advantage of dual-axis and triaxial sensors is likely to be even greater in the 
presence of such interference32. 

Impact of sensor-scalp offset distance 

One of the fundamental assumptions behind the postulated potential of OPMs for non-invasive electrophysiology 
is that sensors closer to the scalp will increase the sensitivity to cortical sources, resulting in higher information 
capacities and spatial resolution as well as better source separability compared to conventional MEG10,40,51. 
However, our simulations indicate that at high SNRs increasing the scalp-sensor offset increases classification 
accuracy when using the EBB approach combined with the free energy analysis.  

We set out to test the hypothesis that this increase in laminar inference accuracy at larger scalp-sensor offsets 
could be attributed to stronger aliasing effects for on-scalp sensor arrays. Aliasing due to undersampling limits the 
effective SNR of on-scalp sensors40. For a lower number of sensors, where aliasing of higher spatial frequencies is 
more pronounced, it may thus be beneficial to increase the distance from the scalp to achieve better spatial 
coverage. We thus predicted an even stronger advantage of large scalp-sensor offsets for sparser arrays and no 
advantage for denser arrays. While our predictions were confirmed for the sparser array, the benefit of larger scalp-
sensor offsets remained present for the denser array (See Fig. S4 in “Supplementary material”). Therefore, aliasing 
effects are unlikely to fully account for our findings.  

What explains the better laminar inference at larger offsets at high SNRs and how do we account for the reversal 
of scalp-sensor offset effects with decreasing SNRs? While a high SNR corresponds to low noise interference, for 
sparse on-scalp sensor arrays the actual signal may not be adequately sampled and we may thus benefit from 
moving the sensors further away from the scalp. This reduces aliasing, which increases the effective SNR and hence 
classification accuracy. At lower SNRs, we must deal with stronger sensor noise, which is less likely interpreted as 
a true signal when sampling at larger scalp-sensor offsets (as the sensor noise in our simulations is more focal 
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than the expected scalp topographies of cortical current sources). However, we may struggle to pick up the signal 
at all if we move the sensors too far away from the scalp. This complex interplay between SNR, sampling sensor 
densities, and scalp-sensor offsets requires further investigation. However, we emphasise that OPM sensor arrays, 
unlike SQUID sensor arrays, at least allow for the adjustment of scalp-sensor distances.  

Impact of co-registration errors 

Both source reconstruction approaches showed declines in classification accuracy with increasing co-registration 
errors. However, laminar inference remained possible for co-registration errors of up to 4 mm, depending on SNR, 
sensor density, as well as the source reconstruction approach and laminar inference analysis used.  

Here we modelled co-registration errors for a rigid sensor array, i.e., we assume systematic shifts due to fiducial 
localisation errors like in SQUID-MEG, rather than random sensor localisation or orientation errors. The latter can 
have a more detrimental effect on source reconstruction accuracy14. Zetter et al. (2018)41, using random 
displacement errors, proposed a cut-off of 4 mm sensor position and 10° sensor orientation RMS errors for 
acceptable mis-co-registration, noting that at larger co-registration errors, the advantage of on-scalp MEG may be 
lost. Troebinger et al. (2014)23, in a simulation study based on a SQUID-MEG rigid helmet, added rotation or pure 
translation to fiducial locations and suggested a cut-off of less than 2 mm/2° of co-registration error for accurate 
laminar inferences. Localising sensors with this degree of accuracy is challenging but feasible, as shown for co-
registration between on-scalp MEG and MRI images42,52. Even higher accuracy, with errors below 0.5 mm, may be 
necessary for localising multiple, dependent sources with added noise sources7. For experimental setups, the use 
of rigid measurement helmets in conjunction with co-registration devices with an excellent accuracy, such as 
structured-light or laser scanners, will be critical to reach the necessary co-registration accuracies. 

Co-registration errors are not the only errors that will affect forward model accuracy and, consequently, localisation 
accuracy. It is worth noting, that we did not evaluate the impact of crosstalk and gain errors (Duque-Munoz et al., 
201953), orientation errors, or cross-axis projection errors13,54,55. 

Patch size incongruencies 

We have replicated previous findings that over- or under-estimation of patch sizes can decrease classification 
accuracy and bias laminar results23,25. Compared to congruent patch sizes, overestimation of patch sizes resulted 
in a shift towards pial classification, rendering the classification bias non-significant, while underestimation of 
patch sizes led to an even stronger bias towards the deep surface. We note that these shifts in bias with incongruent 
patch sizes were not statistically significant at any SNR as evaluated with the exact McNemar’s test. However, these 
results are consistent with earlier findings, and we interpret them as follows: larger patch sizes and deeper sources 
both lead to spatially more spread-out sensor signals, and underestimation of patch sizes and the resulting 
unexpected lower spatial frequencies at the sensor level can be explained by assigning a source to the deep cortical 
surface. Similarly, a sensor topography more focal than expected from overestimated patch sizes can be explained 
by assigning a source to the superficial surface23. Even when the ground truth on the source extent is unknown for 
experimental data, the optimal patch size for the laminar inference procedure can be determined by comparing the 
model evidence of combined pial/white matter source inversions across varying reconstruction patch sizes27. 

Interfering brain noise sources 

We next investigated laminar classification performance in the presence of five interfering noise sources on the 
mid cortical surface. We observed that, despite employing a favourable setup with high SNR and dense sensor 
sampling, the whole-brain analysis was unable to successfully recover the laminar origin of the source of interest. 
Performance accuracy of the ROI-based approach remained high and did not show any bias in the presence of 
noise sources. We note that the laminar source of interest had a larger SNR than the interfering noise sources, and 
the activity-based ROI was thus mostly defined by the source of interest, effectively masking the noise sources. We 
further highlight that while we modelled the interfering brain noise sources at the mid cortical layer, no surface for 
the mid cortical layer was incorporated into the high-precision forward model. Such forward models with a more 
fine-grained laminar resolution offer an exciting perspective for future studies. 

Alternative approaches to infer laminar MEG activity 

We were able to successfully infer the laminar origin of simulated current dipoles using OPM-MEG sensor arrays at 
comparatively low spatial sampling densities. Nevertheless, in the light of our complex results regarding the impact 
of varying scalp-sensor offsets, and the observed classification biases, the potential of OPM-MEG to improve the 
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accuracy of laminar inferences may be less striking than initially presumed. This is at least the case for the laminar 
forward model approach investigated in the current study. 

Alternative approaches to laminar inferences have been discussed previously. Pinotsis et al. (2017)56 and Pinotsis 
& Miller (2020)57 employed dynamical causal modelling (DCM), with modelling parameters set based on estimates 
from intracranial data, and statistical decision theory to infer the laminar sources of non-invasive 
electrophysiological signals. However, the authors note that applying laminar DCM to non-invasive data is 
challenging due to the high collinearity of these parameters, and their results could not be replicated across data 
sets57. In a proof-of-principle study, Ihle et al. (2020)29 combined DCM and high-precision forward models to 
recover the laminar origin of a cortical current source. Yet, their approach was restricted to a single dipole pair at 
a known spatial location, limiting their applicability to more realistic scenarios.  

A promising path towards non-invasive laminar inference could be to combine classical dipole fitting or 
beamformer source reconstruction with high-density OPM arrays. Recent simulation work7 estimated that a densely 
packed magnetocorticography array of 56 OPM sensors would be able to localise multiple electrophysiological 
brain responses at a millimetre resolution.  

Conclusion 

We conducted simulations to investigate the potential of on-scalp OPM sensors combined with high-precision 
forward modelling for inferring the laminar origins of neural activity. Our findings provide guidance on the 
requirements for OPM-MEG systems in terms of sensor numbers and measurement axes to achieve robust laminar 
inference. 
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Supplementary 

Laminar inference across SNRs at varying inter-sensor distances 

 

 

Fig. S1. Laminar classification accuracy and bias across signal-to-noise ratios across OPM-MEG sensor arrays with varying inter-sensor 
distances. Solid lines denote laminar inference based on the whole-brain free energy analysis; dashed lines denote laminar inference based on the 
ROI-t-statistic analysis. Left columns within each subpanel show the percentage of correct laminar inferences, the right columns show the 
percentage of simulations where laminar inference favoured the pial source model. Inter-sensor distance decreases across rows. The percentage 
of simulations with free energy differences or t-statistics exceeding the significance threshold is represented by the intensity of the line colour. The 
error bars represent the standard error. Asterisks show where the percentage is significantly above or below chance levels. A For the EBB approach, 
we found significant increases in classification accuracy with increase in SNR for all spatial sampling distances. B For the MSP approach, we 
observed an excellent classification performance with accuracy at ceiling and no biases for SNRs of -30 dB or higher for both, free energy and ROI-
t-statistic analyses.  

Laminar inference with Minimum Norm Estimates and LORETA source reconstruction 
approaches 

We replicate previous findings that source reconstruction approaches without sparsity constraints, like Minimum 
Norm Estimates and Loreta, were not able to recover the laminar origin of the simulated sensor data (Fig. S2).  Even 
under highly advantageous conditions, for a dense OPM-MEG array with an inter-sensor distance of 25 mm and 
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simulated sensor activity at a high SNR of -5 dB, the minimum norm and LORETA source reconstruction algorithms 
were not able to correctly infer the laminar origin of simulated source activity using neither the whole-brain analysis 
(IID: correct = 54.17%, p = ns.; COH: correct  = 54.17%, p = ns.) nor the ROI analysis (IID: correct = 50.00%, p = 
ns.; COH: correct  = 50.00%, p = ns.). The whole-brain analysis was biased towards the deep surface (IID: white 
matter = 79.17%, p = 0.0001; COH: white = 80.83%, p = 0.0001), and the ROI-based analysis strongly towards the 
superficial surface (IID: pial = 100%, p < .0001; COH: pial = 100%, p <.0001). The directions of these biases 
replicate the findings in Bonaiuto et al., 2018.  
 
 

 

Fig. S2. The source reconstruction approaches without sparsity constraints, i.e., MNE (IID) and Loreta (COH), were not able to perform 
laminar source discrimination. We used a dense OPM-MEG array with an inter-sensor distance of 25 mm and simulated sensor activity at a 
relatively high SNR of -5 dB. Left column: The difference in free energy between the pial and white matter generative models in each simulation 
(SNR = -5 dB). Right column: T-statistics from the ROI analysis comparing pial and white matter ROIs for each simulation (SNR = -5 dB). Each panel 
shows simulations with pial surface sources on the top row, and simulations with white matter surface sources on the bottom row. The minimum 
norm (A; IID) and LORETA (B; COH) source reconstruction algorithms were not able to correctly classify simulated source activity as originating 
from either the deep or superficial surface for the whole-brain or the ROI analysis. The whole-brain analysis was biased towards the deep and the 
ROI analysis strongly towards the superficial surface. 

Increasing the number of measurement axes for OPM-MEG arrays with denser 
spatial sampling 

 
While we observed significant increases in classification accuracy with increasing number of measurement axes 
for an OPM-MEG sensor array with an inter-sensor distance of 55 mm, we acknowledge that such an effect may 
have been particularly strong at low sensor sampling densities where the advantage of a more homogenous spatial 
coverage afforded by sensors with multiple axes is expected be more pronounced. We thus re-analysed the impact 
of the number of measurement axes on our ability to perform laminar inference with a denser OPM-MEG array with 
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a 35 mm inter-sensor distance and report results for 69-, 134- and 207-channel configurations for single-axis, dual-
axis and triaxial sensor arrays, respectively.  
 
For the EBB approach combined with the free energy analysis, classification performance increased with the 
number of measurement axes at SNRs of -20 dB or higher. However, these increases were not significant, and only 
trends of increasing classification accuracy were observed at -5 dB (beta = -0.603, p = 0.078) and -20 dB (beta = 
-0.389, p = 0.080). We again found a bias towards the deep surface, as described previously for the single-axis 
configuration. This bias did not systematically increase or decrease with an increase in the number of measurement 
axes. We found no advantage of increasing the number of measurement axes at -30 dB SNR and no significant 
changes in classification bias across measurement axes. At a very low SNR of -40 dB, laminar inference was not 
feasible, regardless of the number of measurement axes.  
 
For the ROI-based analysis, classification performed at ceiling for SNRs of -5 and -10 dB and increased significantly 
with the number of measurement axes at -20 dB (beta = -1.086, p <.05). At an SNR of -30 dB, we observed a trend 
of increased classification accuracy with an increase in the number of axes (beta = -0.409, p = 0.051), while the 
bias towards the pial surface reduced with an increase in the number of measurement axes (beta = 0.641, p < .01). 
However, laminar inference was not statistically significant at the single simulation level. At a very low SNR of -40 
dB, classification accuracy was at chance level with a bias towards the pial surface, which increased with the number 
of measurement axes (beta = -1.462, p < .01). Note that laminar inferences were not significant at the single source 
level.   
 
For the MSP approach, both free energy and ROI-based analysis performed at ceiling for SNRs of -30 dB or higher, 
irrespective of the number of measurement axes. In contrast, at an SNR of -40 dB, classification accuracy increased 
strongly with the number of measurement axes (whole-brain: beta = -0.644, p < .01, ROI:  beta = -2.186, p < .001); 
however, these laminar inferences did not exceed the significance threshold at the single source level.  

Impact of increasing scalp-sensor offsets for varying inter-sensor distances 

 
We first repeated our simulations for a sparser OPM-MEG array with an inter-sensor distance of 55 mm. We 
expected that the improvement in classification accuracy, observed with increasing scalp-sensor distances at an 
SNR of -5 dB for an array with an inter-sensor distance of 35 mm, would be more pronounced. Additionally, we 
expected the benefit of on-scalp sensors at an SNR of -20 dB to be reduced when employing a sparser array due 
to the projected increase in aliasing at lower sampling densities. 
 
Results are summarised in Figure S4A. The increase in classification accuracy with increasing offsets at -5 dB when 
using the EBB source reconstruction approach combined with the whole brain analysis was not more pronounced 
than that observed for the OPM-MEG array with an inter-sensor distance of 35 mm (inter-sensor distance of 35 
mm: beta = -0.423, p = 0.130; inter-sensor distance of 55 mm: beta = -0.295; p = 0.173). However, we found that 
accuracy increased with increasing scalp-sensor distance at -10 and -20 dB. Note that these increases were not 
statistically significant.  
 
We tentatively propose that the observed advantage of moving the sensors farther away from the scalp being 
present also at lower SNRs when using a sparser array, may reflect a more pronounced aliasing effect at reduced 
sampling densities. Regarding the ROI approach, at -20 dB, we observed no decrease in classification accuracy 
with increasing scalp-sensor offsets at inter-sensor distances of 55 mm. Conversely, logistic regression indicated 
a significant decrease for sensor arrays with inter-sensor distances of 35 mm. This observation is in line with the 
assumption that the expected increase in aliasing at lower inter-sensor distances could provide larger scalp-sensor 
offsets an advantage, potentially offsetting the expected gain from placing sensors closer to cortical sources during 
non-invasive laminar inference.  
 
We next repeated our simulations across scalp-sensor offsets using an OPM-MEG array with a 25 mm inter-sensor 
distance to examine whether the putative advantage for larger scalp-sensor offsets due to an aliasing effect 
diminishes with increased spatial samplings (Fig. S4B). However, we did not observe any marked changes compared 
to the simulations performed for an array with an inter-sensor distance of 35 mm. No significant increases or 
decreases were observed across scalp-sensor offsets for either classification accuracy or bias at the tested SNRs. 
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Fig. S3. Laminar classification accuracy and bias across number of measurement axes for an OPM-MEG array with a sensor spacing of 
35 mm. Solid lines denote laminar inference based on the whole-brain free energy analysis, dashed lines laminar inference based on the ROI-t-
statistic analysis. Left columns within each subpanel show the percentage of correct laminar inferences, right columns show the percentage of 
simulations where laminar inference favoured the pial source model. SNR decreases across rows. The percentage of simulations with free energy 
differences or t-statistics exceeding the significance threshold is represented by the intensity of the line colour. The error bars represent the standard 
error. Asterisks show where the percentage is significantly above or below chance levels. A For the EBB approach, we found increases in classification 
accuracy with increasing numbers of measurement axes at SNRs of -20 dB or higher. However, these changes did not reach statistical significance. 
B For the MSP approach, classification performance was at ceiling and did not vary significantly with the number of measurement axes at all SNRs 
at which laminar inference was possible. 
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Fig. S4. Laminar classification accuracy and bias across scalp-sensor offsets for an OPM-MEG array with a sensor spacing of 55 mm and 
25 mm. Laminar inference results are shown for the EBB source reconstruction approach. Solid lines denote laminar inference based on the whole-
brain free energy analysis; dashed lines laminar inference based on the ROI-t-statistic analysis. Left columns within each subpanel show the 
percentage of correct laminar inferences, right columns show the percentage of simulations where laminar inference favoured the pial source model. 
A For a sparser sensor spacing of 55 mm, we observed a tendency of increasing scalp-sensor distances leading to increasing laminar classification 
accuracy at SNRs of -5, -10 and -20 dB (all ns.). Classification bias did not vary significantly across scalp-sensor offsets. B For a denser sensor 
spacing of 25 mm, no significant changes were observed across scalp-sensor offsets for either classification accuracy or bias at the SNRs tested. 

The impact of co-registration errors at an SNR of -20 dB 

We repeated our analysis on the impact of varying co-registration errors with the same simulated OPM-MEG array 
(inter-sensor distance = 35 mm; single axis) at a lower SNR of -20 dB (Fig. S5). For the EBB approach, we found a 
decrease in classification accuracy across increasing co-registration errors, which was significant for the ROI-
based analysis (beta = 0.786, p <.001). For the whole-brain free energy analysis, classification accuracy was already 
comparatively low at zero co-registration error and the further decline in accuracy did not reach significance (beta 
= 0.209, ns.). Laminar inference was feasible across all co-registration errors tested, irrespectively of the analysis 
type employed. Classification bias remained stable across co-registration errors for the whole-brain analysis and 
increased with increasing co-registration errors for the ROI analysis (beta = -0.285, p = 0.050). For the MSP 
approach, classification accuracy was high across co-registration errors (above 90%) but decreased significantly 
across increasing co-registration errors for the ROI analysis (beta = 2.190, p <.01). No classification biases were 
observed at any co-registration error for either type of analysis. Overall, the impact of co-registration error at -20 
dB resembled our observation at the higher SNR of -10 dB. 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.20.554011doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.20.554011
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 
 
 
 
 

 

Fig. S5. Laminar classification accuracy and bias across co-registration errors at an SNR of -20 dB. We used an OPM-MEG array with a 
sensor spacing of 35 mm and applied the EBB and MSP source reconstruction approaches to the simulated data. Solid lines denote laminar 
inference based on the whole-brain free energy analysis; dashed lines laminar inference based on the ROI-t-statistic analysis. Left columns show 
the percentage of correct laminar inferences, right columns show the percentage of simulations where laminar inference favoured the pial source 
model. For the EBB approach, we observed a decrease in classification accuracy with increasing co-registration errors. We did not observe any 
significant changes in classification bias with varying co-registration errors for either the whole-brain or the ROI-based analysis (B). For the MSP 
approach, classification accuracy decreased significantly with increasing co-registration errors. No classification biases were observed for either 
the whole-brain or ROI-based analyses. 
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