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Natural scene responses in the primary visual cortex are mod-
ulated simultaneously by attention and by contextual signals
about scene statistics stored across the connectivity of the vi-
sual processing hierarchy. Here, we hypothesized that atten-
tional and contextual top-down signals interact in V1, in a man-
ner that primarily benefits the representation of natural visual
stimuli, rich in high-order statistical structure. Recording from
two macaques engaged in a spatial attention task, we found that
attention enhanced the decodability of stimulus identity from
population responses evoked by natural scenes but, critically,
not by synthetic stimuli in which higher-order statistical regu-
larities were eliminated. Population analysis revealed that neu-
ronal responses converged to a low dimensional subspace for
natural but not for synthetic images. Critically, we determined
that the attentional enhancement in stimulus decodability was
captured by the dominant low dimensional subspace, suggesting
an alignment between the attentional and natural stimulus vari-
ance. The alignment was pronounced for late evoked responses
but not for early transient responses of V1 neurons, support-
ing the notion that top-down feedback was required. We argue
that attention and perception share top-down pathways, which
mediate hierarchical interactions optimized for natural vision.

natural scenes | visual attention | primary visual cortex | neuronal
populations | stimulus encoding

Introduction

Neuronal circuits across the visual hierarchy make efficient
use of limited resources to encode complex natural scenes
by exploiting their structural regularities (1, 2). Growing
evidence suggests that during perceptual inference the vi-
sual system employs a hierarchical internal model of the
visual environment that integrates current sensory evidence
with previously acquired knowledge of natural scene statis-
tics (3, 4).

When visual attention is directed towards a specific spatial
location, it is thought to facilitate the perception of the tar-
geted sensory input by prioritizing its processing. The sig-
natures of this process can already be observed in primary
visual cortex (V1). In this area, spatial and object centered
attention modulate the firing rates of neurons responding to
the selected stimuli (5-9). Responses in V1 are also shaped
by context-dependent top-down signals that convey informa-
tion stored in the hierarchically organized internal model of

A cue change “ B | microdrive
B : 5 SRR chamber
; e 2 Hy ST 1 P skull

" cortex

Units

1
50Hz
0

A att. in A A
Moot WM AL g i A
1908

Monkey A Monkey |
5 5

3
1

Units

w‘“w‘\ﬂw‘/“‘k,n ok 2lpout

WMol
0 700 2082
change D A LFP Power
25 100 I illﬂ] ]
) \
n out z 1
g g v
""" o ..
0 0 = _|
Tc 200 700 1900 1700-1900
Cue RTs
r4 F 200
ok ** ®
La ® e ®
©
c -
: AT
E Y= " =
g e <
o 1
*
®
S T T 0 -200 T T T
0 700 1900 TC 1900ms TC 1900ms TC
Time (ms) Time bin

Fig. 1. Neuronal population recordings from primary visual cortex during an atten-
tion task with natural scene stimuli. (A) Multi-unit responses to the same stimulus
in two example trials, corresponding to the attention in and attention out conditions.
Colored lines represent timing of stimulus onset (yellow), attention cue (red) and
stimulus change (purple). (B) Top: Chronic implantation device with movable elec-
trodes (GrayMatter probe). Bottom: Receptive field locations of multiunits (dots) in
the two monkeys. Cross indicates the fixation point. (C) Grand average firing rates
in the attention-in and attention-out conditions (colored lines as in A). Spectrogram
of the change of LFP power between the attention-in and attention-out conditions.
A gradual shift in power from low to high frequencies starts ~300ms after the at-
tentional cue (marked by vertical line) (E) Effects of attention on stimulus discrim-
inability along the trial, quantified by population discriminability (d). (F) Effects of
attention on stimulus discriminability shown across sessions (reported in % change)
for the late stimulus responses (data aligned on stimulus onset in the 1700-1900
ms window) or stimulus change (200 ms window before change). Left panel: trials
are separated based on cue information. Right panel: trials from the attention-in
condition are sorted based on reaction time and separated in two halves. y-axis
shows percent increase in d’ for in vs out trials (Cue) or fast vs slow trials (RTs).

the world, required for the parsing of visual scenes (4). Thus,
attentional mechanisms must interact with other sources of
top-down influences raising the key question: how do these
two processes — one that reflects the current allocation of
attention and the other, the stored knowledge (priors) about
statistical regularities of natural environments — cooperate
in modulating responses in V1.

Here we performed parallel recordings of neuronal responses
in the primary visual cortex of two macaque monkeys en-
gaged in an attention task. In this paradigm, attention was di-
rected to one of two identical images by a spatial cue that was
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presented delayed from the stimulus onset. By measuring
multiunit activity of a population of neurons with receptive
fields overlapping with one of the images we tracked the con-
tribution of the top-down effect of attention on the distributed
stimulus representation. We found convincing enhancements
in natural scene encoding with attention and hypothesized
that these enhancements rely on refinements of the responses
to high-level features present in natural images, such as regu-
larities in spatial, contrast and frequency structures or texture
properties. To test this hypothesis, we independently manip-
ulated a second form of top-down modulation, arising from
the statistical structure of the input images. We constructed
synthetic stimuli that lacked the higher-level features char-
acteristic of natural scenes and found that, for these stimuli,
the attentional benefits in stimulus encoding vanished; how-
ever they could be recovered when the synthetic stimuli were
modified to contain structured contours. To understand how
attentional modulations might interact with the representa-
tion of stimuli, we investigated the geometry of population
responses using a combination of dimension reduction meth-
ods and decoding analysis. Our analysis revealed that the
evoked neuronal population responses to natural scenes con-
verged to a compact low dimensional representation, which
coincided with the subspace where the dominant attentional
signal could be identified.

Results

We obtained parallel multisite recordings of multi-unit ac-
tivity (MUA) (example trials in Figure 1A) and local field
potentials (LFP) (32 channels, chronically implanted micro-
drive, Figure 1B) from area V1 of two awake behaving
macaques (Macaca mulatta), while they performed a spatial
attention task. Trials were initiated by a lever press while
the monkey maintained fixation. After 500 ms two identical
stimuli were presented at symmetrical locations on either side
of the vertical meridian (distance from fixation spot 2.3-3.2°
of visual angle), one of which covered the receptive fields
(RFs) of the recorded units (example of RF centers in the two
monkeys in Figure 1C). The fixation spot changed color, 700
ms after stimulus onset, cueing the monkey towards the "tar-
get" stimulus. Monkeys were rewarded if they responded to
the rotation of the target stimulus. If they responded to the
rotation of the non-cued stimulus, the distractor, reward was
withheld and the trial was aborted. We performed analysis in
200 ms long sliding windows for the response interval from
stimulus onset to 1900 ms (stimulus-aligned data), and for
the 500 ms interval preceding the stimulus change (change-
aligned data, time of change (TC)), thus excluding any ac-
tivity evoked by the stimulus rotation or the motor response
(further details in Materials and Methods).

We found that attention increased the average firing rates only
modestly in V1, and the changes were significant only for
the change-aligned and not the stimulus aligned data (Fig-
ure 1C and S1, Wilcoxon signed-rank test; [1700-1900ms],
P = 0.1330 n.s.; [TC-200, TC], P = 0.0279; n = 18 sessions
in 2 monkeys). In spite of the small firing rate changes, we
observed a strong shift in LFP power from low to high fre-
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quency oscillations with attention, which started ~300ms af-
ter the cue and increased gradually with the expectancy of
the stimulus change (Figure 1D, individual animals in S4).
Across trials, reaction times in the attention-in condition were
positively correlated with the LFP power in the theta and
beta bands and negatively correlated with the LFP power
in the gamma band (Spearman correlation; theta r = 0.18,
p=1le—11; betar =0.08, p=0.002 ; gamma r = —0.12,
p = le —05), suggesting a strong task-related effect.

Our initial goal was to examine the impact of attention on the
stimulus specificity of the sustained population responses to
natural scenes. Few electrophysiology studies have focused
on the representation of natural stimuli in primary visual cor-
tex (10-12), and how attention affects the decodability of nat-
ural scenes in V1 is still unclear. We quantified the stimulus-
specificity of V1 neuronal population responses by measur-
ing the differences in spiking patterns evoked by different
stimuli compared to their variability across trials (population
d’, Materials and Methods). We found a significant increase
in population d’ with attention, i.e. responses evoked by dif-
ferent stimuli were more differentiable when the stimuli had
been cued (attention-in) than when they had not (attention-
out), particularly in the time windows preceding the stimulus
change (Figure 1C and D, Wilcoxon signed-rank test; [1700-
1900ms|, P = 0.0012; [TC-200, TC], P = 0.00023; n = 18
sessions in 2 monkeys). These attentional benefits in natural
scene discriminability were significant in individual animals
and occurred both in the presence (monkey A), and absence
(monkey I) of average firing rate changes (Figure S2). Im-
portantly, a significant difference in stimulus discriminabil-
ity, was not only elicited by the cue, but also by intrinsic
attention-related factors: when the trials from the attention-in
condition were sorted based on the monkeys’ reaction times
(RTs), we found that trials with faster RTs had higher d’ val-
ues compared to those with slower RTs (Figure 1F, Wilcoxon
signed-rank test; [1700-1900ms], P = 0.0043 ; [TC-200, TC],
P =0.0123; n = 18 sessions in 2 monkeys). The relationship
between d’ and RTs points to a graded improvement in stim-
ulus decodability proportionate to the intensity of the atten-
tional allocation, suggesting a link between the modulatory
signals identified in V1 and behavior.

Response properties of neurons at higher levels of the pro-
cessing hierarchy are known to capture the higher-order reg-
ularities of natural scenes (13). Indeed, when gauging V2
activity by using natural texture images, specific removal
of high-level statistics was shown to result in dampened re-
sponses of V2 neurons (14). Given the hierarchical and recip-
rocally connected structure of the visual cortex, information
extracted and encoded at higher levels of the processing hi-
erarchy can constrain the activity at lower levels of process-
ing through feedback. Consequently, such contextual feed-
back modulation is likely more effective when natural high-
level features are present in stimuli (4). We hypothesized that
if contextual modulation and attention share top-down path-
ways then the presence of high-level features constitutes a
prerequisite for attentional enhancements in stimulus encod-
ing across neuronal populations in V1.
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To test this hypothesis we matched the natural scene stimuli,
in every recording session, by an equal number of synthetic
control images. The synthetic images were constructed in
two ways. First, by filter-scrambling, to remove spatial cor-
relations between low-level features (Figure 2A, details in
Materials and Methods), which was previously shown to re-
duce top-down influences on V1 responses (4). Second, by
phase-scrambling, to remove high-level regularities from im-
ages while leaving the spectral content intact (Figure 2B),
which was previously shown to reduce both the intensity and
specificity of responses of V2 neurons (14). By construction,
the synthetic controls contained no high-level features, but re-
tained basic image properties: either the low-level structure
preferred by V1 cells or the spectral content of the original
natural scenes.

The synthetic controls matched the natural scenes in lumi-
nance contrast and evoked, on average, similar firing rate
responses across the recorded neuronal populations in V1
(Figure S3). In addition, the synthetic stimuli observed a
task-related shift in LFP power from low to high frequen-
cies with attention, of similar magnitude to that observed for
natural stimuli (Figure S4, compare dotted and continuous
lines in subplots B and F). Reaction times across trials in the
attention-in condition for synthetic stimuli were positively
correlated with the LFP power in the theta and beta bands
and negatively correlated with the LFP power in the gamma
band (Spearman correlation; theta r = 0.11, p = 3e — 5 ; beta
r=0.07, p=10.008 ; gamma r = —0.11, p = 3e — 04) and
were indistinguishable from reaction times to natural stimuli
(Wilcoxon signed-rank test; P> 0.3, n.s.; n = 18 sessions in 2
monkeys), suggesting a similar level of engagement. One no-
table difference was that the LFP power in the gamma band
was higher for natural scenes compared to synthetic images
(Figure S4), consistent with previous suggestions that visual
stimuli with higher structural predictability result in stronger
gamma oscillations (12). Nonetheless, attentional modula-
tion of LFP power in the gamma band showed a reduction in
one monkey and a slight increase in the other, and was there-
fore difficult to interpret (Figure S4).

In spite of the overall similarities between responses to natu-
ral and synthetic stimuli, in both overall firing amplitudes and
task-related LFP dynamics, the spike-count vectors evoked
by synthetic stimuli were considerably less discriminable
than those evoked by natural scenes in the time interval pre-
ceding the stimulus change (Figure 2A and B). Most impor-
tantly, in agreement with our hypothesis, the discriminability
of neither type of synthetic stimuli was enhanced by atten-
tion (Figure 2C and D, Wilcoxon signed-rank test; [TC-200,
TC]; natural images P = 0.0078, Gabors P = 0.25 n.s.; n =
8 sessions in 2 monkeys; natural images P = 0.0039, scram-
bled P = 0.375 n.s.; n = 10 sessions in 2 monkeys). More-
over, when responses of all recorded units were pulled to-
gether and sorted by amplitude of rate change with attention
and grouped into quartiles, we found that equally strong in-
creases in firing rates resulted in d’ enhancements for natural
but not for synthetic stimuli (Figure 2E, 256 units; and F,
315 units). Thus, while the grand average discharge rates
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Fig. 2. Attentional modulation depends on stimulus content. (A) Stimulus discrim-
inability d’ for natural scenes (green) and synthetic images composed of indepen-
dent Gabor filters (blue), shown along the trial, 200 ms spike-count vectors, 100
ms sliding resolution. (B) Stimulus discriminability d’ for natural scenes (green)
and phase-scrambled images (blue). (C,D) Attentional modulation of d’ for natu-
ral (green) and synthetic images (blue) in the time window preceding the stimulus
change (circles depict individual sessions). (E,F) Change in d’ as a function of
change in firing rate with attention. Analysis performed across all recorded units.
Responses were sorted by amplitude of rate change and grouped into quartiles
(marked on x-axis). Large increases in firing rate with attention result in larger pos-
itive changes in d’ for natural (green), compared to synthetic stimuli (blue). Error
bars indicate the standard error of the mean.

were similarly modulated for natural and synthetic stimuli,
the attentional enhancement in stimulus discriminability was
specific to natural scenes, suggesting a dissociation between
the attentional modulation of firing responses and the result-
ing gains in stimulus specificity (Figure S3).

These findings raise the question why responses to natu-
ral scenes profit more from attentional refinement than re-
sponses to manipulated stimuli or, in other words, what is
special about natural scenes? Previous research has shown
that natural images are statistically redundant, since light-
intensities at neighboring locations are likely to be corre-
lated and consequently, they can be efficiently compressed
(15, 16). Structured compressible visual stimuli are well cap-
tured by neuronal population dynamics in low-dimensional
manifolds (12, 17-19), but see (20). How could such low-
dimensional collective representations of natural images in
V1 be further optimized by the allocation of top-down atten-
tion?

Given that, in the current task, the stimuli precede the atten-
tional cue, we could directly enquire whether the variance
added by attention was orthogonal to, or belonged to the
same dimensions as the variance produced by the stimulus.
Specifically, in each recording session, we projected the ac-
tivity from the time window preceding the stimulus change
(1700-1900 ms) into the principal component space defined
by activity recorded after the stimulus onset but before the
presentation of the attentional cue (500-700 ms). We rea-
soned that if the attentional variance was largely aligned to
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Fig. 3. Effects of attention on stimulus encoding in principal component space. (A) Example session depicting population responses to two natural scene stimuli (red and
blue) for the two attentional conditions in the space described by the first 2 principal components (200 ms spike-count vectors, 1700-1900 ms from stimulus onset; each point
represents a trial). (B) Stimulus decoding performance in principal component space for natural scenes (green) was higher than for synthetic stimuli (blue) and was modulated
by attention (based on 1700-1900 ms spike count vectors; PCA was performed on pre-cue activity 500-700 ms window). The shaded areas indicate the standard error of the
mean. Attentional differences in stimulus decoding are apparent from a low number of PCs, suggesting an alignment between attentional and stimulus variance. (C) Impact of
attention on performance scores in low-dimensional projections (first 3 PCs) depends on stimulus type. Scatterplot shows performance scores for natural scenes (green) and
synthetic controls (Gabors, blue squares; scrambled, blue circles; markers represent stimulus pairs n = 71; 18 recording sessions, 2 monkeys). Differences in performance
with attention are significant for natural stimuli (top histogram, ** p-val < 0.01) but not controls (bottom histogram, n.s. p-val > 0.05). (D) Contour stimuli are compared to
synthetic controls (n = 30 stimulus pairs from 5 recording sessions in 1 monkey). Differences in performance with attention are significant for contour stimuli not controls.

the stimulus variance, the attentional differences in stimulus
decodability would become apparent in the low-dimensional
space described by the first components. This is indeed what
we found (examples in Figures 3A and S5).

We quantified the attentional differences on natural-scene
representations in principal component space by applying a
decoding technique. Specifically, a cross-validated Bayesian
decoder was trained to predict stimulus identity based on data
projections (spike-count vectors over the 1700-1900 ms in-
terval) into the pre-cue PCA space described by the first k
principal components, and test performance was estimated
in this same space based on unseen trials (Figure 3B, 5-
fold validation, details in Materials and Methods). We found
that a small number of components captured the majority of
variance produced by natural stimuli before the onset of the
cue, allowing natural scenes to be well distinguished in prin-
cipal component space (Figure 3B, decoding performance
range 61.8 — 75.13% for k >=2). Importantly, the same com-
ponents captured a large fraction of the attentional effects,
as reflected by the significant modulation of population re-
sponses in low-dimensional subspaces (Figure 3B, Wilcoxon
signed-rank test; P < 0.015 for £ >=2; Holm-Bonferroni cor-
rection showed significance for all k >=2; n = 71 stimulus
pairs, 18 sessions, 2 monkeys; scatterplot and histogram of
attentional effects for k = 3 are shown in Figure 3C). In com-
parison, the synthetic images performed more poorly (Figure
3B, decoding performance range 51.7 — 63.3% for k >=2)
and showed no attentional modulation (Figure 3B and C,
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Wilcoxon signed-rank test P > 0.05 for all k; n = 71 stimulus
pairs, 18 sessions, 2 monkeys), in spite of residing in princi-
pal component spaces with similar levels of overall variance
(Figure S6B).

In a final set of experiments, we generated synthetic im-
ages that combined Gabor functions into simple contour-like
patterns, thus introducing the kind of higher-level structure
expected to elicit differential responses at higher process-
ing stages. In these additional datasets, both main effects
described previously were reproduced: the structured con-
tour stimuli were well distinguished in principal component
space, while the unstructured controls were not (decoding
performance range contour stimuli 66.4 — 74.7% and syn-
thetic Gabors 54.9 — 60.4% for k >=2, Figure S6) and the
attentional effects were specific to the contour stimuli and
captured already by a low number of components (contour
stimuli Wilcoxon signed-rank test; P < 0.05 for all kK >=2; n
= 30 stimulus pairs, in 1 monkey; control images P>0.05 for
all k, Figure S6; scatterplot and histogram of attentional ef-
fects for k = 3 Figure 3C). Interestingly, trial-shuffling within
stimulus condition reduced the attentional differences in de-
coding performance for the contour stimuli and the original
natural scenes, suggesting that in these low-dimensional pro-
jections decoders benefitted from the intact correlation struc-
ture present in the data (Figure S6). Overall, by construct-
ing synthetic images with controlled statistical structure, we
confirmed that the attentional benefits in stimulus encoding
across collective neuronal responses in V1 were specific to
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images containing higher level structural regularities. Such
images are more likely to engage structured feedback from
higher-levels of processing.

Critically, we found that the dimensions that captured the ma-
jority of variance produced by natural stimuli also captured
a large fraction of the attentional effects. To control for the
specificity of this alignment, we constructed three alternative
projections of the same spike-count vectors preceding stim-
ulus change (1700-1900ms) and assessed how these spaces
captured both the natural stimulus and the attention signal.
We considered a random orthogonal basis (Figure 4A, yel-
low), a PC space constructed based on pre-stimulus sponta-
neous activity (Figure 4A, orange) and a PC space based
on early evoked activity (Figure 4A, purple). The minimum
number of principal components required to reach 90% of
peak performance accuracy for the attention in condition was
significantly higher for the three projections compared to the
original pre-cue projection (Figure 4B, compare yellow, or-
ange, purple to green; Wilcoxon signed-rank test, P<0.001).
In addition, all three alternative projections yielded weaker
attentional differences for both the first three and five com-
ponents (Figure 4C; Wilcoxon signed-rank test, P<0.01).
Most interesting was the difference between the projections
constructed from the early and late evoked responses, which
were compared directly in Figure 4D. Session-by-session
comparison of attention-in and attention-out decodability,
in these two projection spaces, revealed a dual effect: 1,
Decoding of stimulus was more efficient in the basis con-
structed based on late responses (green) than that based on
early responses (purple), irrespective of the attentional state
(Wilcoxon signed-rank test, P <0.001 attention-in; P <0.001
attention-out); 2, Attention made a significant contribution to
decoding in the basis constructed using late responses (Fig-
ure 4D, green histogram; Wilcoxon signed-rank test, P =
0.000014). Note that neither of these two projections had in-
formation about which stimulus to attend, since both are pre-
cue, therefore it is striking that a precise alignment developed
later in the trial. This result indicates that during stimulus
presentation the population response is transformed into the
space in which attention can also be effectively deployed.

Discussion

In this study, we found that attention improves the represen-
tation of natural scenes across neuronal population vectors in
area V1. By constructing synthetic stimuli with controlled
statistical structure, we could link the attentional benefits in
stimulus encoding to the presence of higher-order regular-
ities that are known to be abundant in natural images and
are primarily represented at higher-level areas of the ven-
tral stream. Population analysis revealed that the attentional
signal was aligned with the compact subspace carrying in-
formation about stimulus identity. Temporal evolution of
the stimulus-representing subspace revealed that alignment
was not present in early responses to natural stimuli, but it
emerged later, still preceding the delivery of the attentional
modulation. Taken together, attentional enhancement of V1
representation of natural stimuli harnesses high-level statis-
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Fig. 4. Geometry of population activity in response to natural scenes. (A) Spike-
count vectors from the post-cue interval (1700-1900 ms) are projected in four dif-
ferent bases: a random projection space (yellow), a PC-space based on sponta-
neous activity (orange, interval -200-0 ms), a PC-space based on early evoked ac-
tivity (purple, 100-300 ms window), and a PC-space based on late evoked activity
(green, pre-cue, 500-700 ms window, same as Figure 3B). When using PC decom-
positions, the dimensions correspond to the first PCs of the PCA basis. Average
performance of the stimulus decoder, across all stimulus pairs, from all recording
sessions, shown as a function of the number of dimensions used to reconstruct
population activity. Attention-in (solid line) and attention-out trials (dashed line) are
decoded separately. (B) Number of dimensions necessary to reach 90% of peak
decoding accuracy, shown across recording sessions. The late evoked projection
space (green), requires fewer than five components. Interestingly, the early evoked
projection space (purple) requires up to 15 components to reach the same decod-
ing accuracy, suggesting a higher dimensional encoding space. (C) Attentional
difference in decoding accuracy (attention in - attention out), using a three or five-
dimensional decoding space, shown across sessions. Differences are significant in
the projection space defined based on late evoked activity, but not the alternative
projection spaces. (D) Direct comparison of post-cue activity in the early (purple)
and late evoked (green) projection spaces. A projection of the post-cue activity is
used to decode stimulus identity from attention-in and attention-out trials. Dots indi-
cate individual sessions, data pulled for the first 5 components. Marginals of decod-
ing performances along the axes (solid lines) show overall decoding performance
differences for early vs late responses, indicating differences in the dimensionality
of the population responses. Difference of attention-in and attention-out decoding
performance (histogram perpendicular to the identity line) indicates differences in
the alignment of the attentional modulation with the dominant activities in early and
late responses. Both stimulus decoding and the attentional benefits are stronger in
the PC space constructed on late evoked activity.

tical structure represented in higher visual cortical areas and
is carefully and specifically aligned with the activity carrying
information about natural structure.

In our experiments, animals were trained to respond swiftly
to the rotation of the cued stimulus, not to recognize particu-
lar features in the image. Thus our task was a classical spatial
attention task. In agreement with previous studies allocating
spatial attention caused moderate increases in discharge rate,
reduced power of low frequency oscillations and enhanced
power in the high frequency bands of local field potentials.
As expected, these effects did not depend on stimulus struc-
ture. In agreement with psychophysical and previous electro-
physiological investigations this indicates that spatial atten-
tion enhances the salience of responses (21). However, allo-
cating spatial attention had the additional effect of enhancing
selectively the decodability of population responses of V1 to
the attended stimulus, provided that the stimulus contained
higher order statistical regularities characteristic of natural
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scenes. These effects on decodability could not be attributed
to a global increase of excitability because they occurred also
in the absence of rate changes. Extensive evidence supports
the notion that the structural features characteristic of natural
scenes are processed at higher levels of the hierarchy. More
recently, it has been shown that receptive fields of V1 neu-
rons can be more complex than earlier described (22). It is
possible that the receptive fields of the recorded neurons are
actually matching the natural scenes better than the synthetic
stimuli, which could also explain the higher discriminability
of natural scenes. Our experimental design relied on a limited
number of images, which prevented us from a full character-
ization of the response properties of the recorded neurons.
However, we designed synthetic stimuli based on evidence
that the statistics we manipulated are characteristic to the sec-
ondary visual cortex (13, 14, 23), and therefore such manipu-
lations are expected to affect the information that is fed back
to V1, even when the targeted responses are complex. Fur-
ther, the observed enhanced discriminability was not present
when using a PCA based on early evoked responses, in con-
trast with the expectation that a feed-forward pass of infor-
mation is sufficient to account for the better discrimination of
natural-like stimuli. Taken together, these imply that alloca-
tion of spatial attention must have interfered with feature sen-
sitive top-down mechanisms, raising the question how these
two processes interact.

Visual scenes are evaluated by comparing sensory evidence
with previously acquired priors about the statistical structure
of natural environments (1). These internal priors are stored
in the functional architecture of cortical circuits at all lev-
els of the visual processing hierarchy and some of these cir-
cuits get refined by experience to capture characteristic prop-
erties of the visual environment (2, 3, 24). Recombination
of feedforward connections renders neurons selective for in-
creasingly complex constellations of features (25-27), and
the abundant horizontal intra-areal and feed-back connec-
tions between processing levels allow for contextual modula-
tion of these feature selective responses (28, 29). These mod-
ulations impact stimulus saliency (30) and perceived bright-
ness (31, 32), support perceptual grouping (33), and figure-
ground segregation (34-37). The electrophysiological corre-
lates of these interactions consist of changes in discharge rate
and/or synchrony and these effects tend to have longer laten-
cies than the initial phasic responses. Therefore it has been
concluded that the context sensitive processes are mediated
by recurrent interactions within cortical areas and top down
signaling across processing stages. In the following we dis-
cuss how allocation of spatial attention that is also supposed
to be mediated by top-down connections interacts with these
feature sensitive mechanisms.

Attentional influences on visual processing have traditionally
been divided into spatial (38-40) and object/feature-based
attention (41, 42) and it has been proposed that both con-
tribute in complementary ways to the parsing of image con-
tent (43, 44). Our results support this notion and provide
some indications as to the mechanisms underlying these com-
plex interactions, in the context of natural stimulation. In the
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present task, the allocation of spatial attention contributed
additional variance in the first principal components of re-
sponses to natural but not to manipulated images and thereby
enhanced decodability of the former. The finding that spatial
attention had no effect on decodability of manipulated stimuli
indicates that spatial attention has per se no refining effect on
distributed stimulus representations in V1, but selectively im-
proves representations of stimuli characterized by the higher
order regularities of natural scenes. Abundant evidence indi-
cates (45) that these higher order regularities are evaluated by
downstream areas of the visual processing hierarchy. There-
fore, the enhanced decodabilty of responses to natural images
is likely to have been mediated by top-down signals from
these areas. This raises the question, why these high-level
processes were more involved when spatial attention was al-
located to the stimulus. One possibility is that higher level
processes do not engage by default even when stimuli match
high-order priors but get involved only for stimuli to which
spatial attention is allocated. In this case spatial attention
would be a prerequisite for the engagement of mechanisms
that provide top-down signals commonly attributed to fea-
ture or object specific attention, suggesting some hierarchy
in the interactions between spatial and object centered or fea-
ture specific attention. An alternative possibility is that higher
level processes engage by default when stimuli match high-
order priors and work cooperatively alongside spatial atten-
tion. In this case, the visual system performs a search that
attempts to infer task-relevant features of an image based on
both the spatial aspects of the visual scene and the low-level
and high-level structural regularities. Thus spatial and object-
based attention act in unison and share an internal represen-
tation of features, with the inference slowly unfolding over
reciprocal interactions across multiple hierarchical levels of
processing.

The latter interpretation is supported by the observation that
the natural scenes could be discriminated surprisingly well,
given the relatively low number of units and their location
in area V1 (Figures 2 and 3), regardless of the attentional
cue. The fact that the discriminability of natural stimuli was
high also when attention was directed away from the stimu-
lus implies that the natural scenes were efficiently encoded,
irrespective of the attentional state. Previous studies found
that an efficient encoding of global scene statistics remained
possible in situations associated with reduced visual attention
(46). In such cases, the visual cortex is thought to extract a
compressed "summary" code that does not capture the full
distribution of local details, yet provides a good representa-
tion of group features. Since natural scenes are structured,
redundant, low-dimensional images, they are compressible.
In comparison, the low-level synthetic images are difficult
to compress and must be represented exhaustively, without
the help of internally generated or previously acquired pri-
ors on summary statistics. Thus the resulting neuronal activ-
ity vectors to synthetic stimuli are likely to inhabit higher-
dimensional or more variable substates, potentially account-
ing for the overall poorer performance of the classifier.

Principal component analysis was used to capture the ef-
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ficient encoding of natural scenes across neuronal popula-
tions in V1. In principal component space, the response
vectors to natural stimuli reflected their low-dimensionality
and could be well described by few principal components.
The higher-order stimulus structure, characteristic of natu-
ral scenes, was thus well-separated by low-dimensional sub-
spaces. In a sense, these subspaces reflect some of the higher-
order selectivity normally associated with responses of indi-
vidual neurons at higher levels of processing (47, 48). The
finding that spatial attention enhanced the encoding of nat-
ural scenes along the dominant representational dimensions,
suggests refined, cooperative interactions across multiple lev-
els of the visual hierarchy. Earlier, behavioral studies hinted
at interactions between attentional effects and regularities be-
yond the simple features represented in lower visual areas
(49). Here, the match between representational and atten-
tional signals in V1 shows a remarkable alignment, likely
advantageous for efficient processing. This match appears
compatible with previous results highlighting similarities be-
tween the effects of representational learning and attention in
downstream area V4 (50).

Spatial attention modulated the dynamics of responses as
reflected by changes in the frequency distribution of LFP
power. A shift in LFP power from low to high frequencies
built up gradually from the onset of the cue to the temporal
window preceding the stimulus change, for both natural and
synthetic stimuli (Figures 1 and S4). This kinetics resem-
bled a hazard function reflecting the increasing probability
of having to execute a response, suggesting that the reduced
power of the low frequency oscillations was probably related
to the increased readiness to act. In agreement with this in-
terpretation the oscillatory power in the theta and beta bands
of responses to the target stimulus was positively correlated
with reaction times in the attention-in condition. These re-
sults are consistent with previous reports. Beta oscillations
have been shown to decrease during the preparation of a mo-
tor response (51) and theta band power has been shown to
decrease with attention (52). The strength of gamma band
oscillations was negatively correlated with reaction times in
trials corresponding to the attention-in condition, in agree-
ment with previous findings from area V4 (57) and also with
our observation that the gradual shift in power from low to
high frequency oscillations is related to the readiness to act
(see above). In agreement with previous work is also the find-
ing that attention enhances the power of the broad band high
frequency activity that likely reflects increases spiking and
synaptic activity (58). In addition to these attention depen-
dent effects on dynamics, we observed a build up of gamma
oscillations for natural, but not for synthetic stimuli, over
the course of the trial (Figure S4). Gamma oscillations re-
sult from a feedback loop between pyramidal cells and fast-
spiking interneurons (53, 54) and are thought to act as an
internal resonance filter of stimulus content (12, 55). Syn-
chronisation of discharges in the gamma frequency range in-
creases for responses to features that are well predicted by
the embedding context. This is the case for regular gratings,
but also for homogeneous colour stimuli (56) and redundant,
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compressible natural scenes (12). Here, natural scenes in-
duced more gamma oscillations than the synthetic stimuli,
likely because they contain more compressible features and
better match the priors resident in the synaptic weight distri-
bution of cortical networks. However, previous studies on the
attentional modulation of gamma oscillations in V1 have re-
ported mixed results (59) and this heterogeneity was reflected
also here, across the two monkeys.

One puzzling aspect of our findings is the confinement of the
attentional benefits on stimulus encoding to the temporal in-
terval preceding a change in the cued stimulus. Since the
task requires only a suppression of reflexive responses to dis-
tractor change, no enhancements in encoding for the natural
scenes are necessary or even expected. Yet these enhance-
ments in stimulus discriminability occurred close to the an-
ticipated stimulus change and were more pronounced in trials
with short reaction times (Figure S1B). It is conceivable that
these states are particularly favorable to permit refinement of
stimulus representations by structured top-down signals, sug-
gesting that in a different task context they may carry behav-
ioral relevance.

In summary, we showed that the spatial allocation of atten-
tion towards a natural stimulus can engage mechanisms that
exploit the higher order statistical regularities of natural im-
ages, resulting in enhanced decodability of neuronal popu-
lation responses in area V1. The alignment between the at-
tentional and natural stimulus variance in low-dimensional
projections of V1 activity vectors, which was absent for syn-
thetic low-level stimuli, suggests that attention can involve
mechanisms optimized for the processing of natural images
in order to refine stimulus representation in V1. These re-
sults highlight the importance of using natural stimuli when
studying sensory processing and provide important insights
into how such factors as natural image statistics and the ani-
mals’ internal models of the visual world are central to visual
processing even at early levels.

Materials and Methods

Electrophysiological Recordings. The data was obtained from
two adult rhesus macaque monkeys, one male (monkey A) and
one female (monkey I), aged 8 and 12 years, respectively, during
the time of the study. All experimental procedures were approved
by the local authorities (Regierungsprisidium, Hessen, Darmstadt,
Germany) and were in accordance with the animal welfare guide-
lines of the European Union’s Directive 2010/63/EU. Animals were
housed in rooms with outdoor access to a play area and had regular
veterinary care and balanced nutrition. The recording chamber was
implanted under general anesthesia over the primary visual cortex,
the exact location was determined based on stereotactic coordinates
derived from MRI and CT scans.

Signals were recorded using a chronically implanted microdrive
containing 32 independently movable glass-coated tungsten elec-
trodes with impedance between 0.7 and 1.5 M2 and 1.5 mm inter-
electrode distance (SC32; Gray Matter Research (60)), amplified
(TDT, PZ2 pre-amplifier) and digitized at a rate of 24.4 kHz. The
signals were filtered between 300 and 4,000 Hz and a threshold was
set at 4SD above noise level to extract multi-unit activity. LFP sig-
nals were obtained by low-pass filtering at 300 Hz and downsam-
pling to 1.5 kHz.
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Behavioral Paradigm. Animals were seated in a custom primate
chair at a distance of 64 cm in front of a 477 x 298 mm moni-
tor (Samsung SyncMaster 2233RZ; 120 Hz refresh rate; gamma-
corrected). Stimulation protocols were written using MATLAB
(MathWorks) and Psychophysics Toolbox. At the start of each
recording week, the receptive fields and orientation preferences of
the recorded units were mapped with a moving light bar drifting in
arandomized sequence in eight different directions.

The two monkeys performed an attention-modulated change detec-
tion task. During the task, eye tracking was performed using an
infrared-camera eye-control system (ET-49; Thomas Recording).
To initiate a trial, the monkey maintained fixation on a white spot
(0.1° visual angle) presented in the center of a black screen and
pressed a lever. After 500 ms, two identical visual stimuli appeared
in an aperture of 2.8-5.1° at a distance of 2.3-3.2° from the fixation
point. One of the stimuli covered the receptive fields of the recorded
units, which were situated in the right hemifield, the other stimulus
was placed at the mirror symmetric site in the left hemifield. After
an additional 700 ms, the fixation spot changed color from white to
either red or blue, cuing the monkey to covertly direct its attention
to one of the two stimuli (red, right hemifield; blue, left hemifield).
When the cued image was rotated (20°), the monkey released a lever
in a fixed time window (600 ms for monkey A; 900 ms for monkey
I) to receive a reward. A break in fixation (fixation window, 1.5° di-
ameter) or an early lever release resulted in the abortion of the trial,
which was announced by a tone signal. Data analysis was based
on completed correct trials (mean number per session 967 trials for
monkey A; 720 trials for monkey I).

Eye movements. The percentage of saccadic eye movements over
the course of the trial is shown in Figure S8A. Breaks in fixation
occurred less frequently in the time interval preceding a stimulus
change (1700-1900ms, marked in gray) compared to the baseline
(-200-0Oms, marked in gray). This difference was highly significant
(Figure S8B, Wilcoxon signed-rank test, P = 0.00018, n = 18 ses-
sions in 2 monkeys), suggesting that the eyes were very stable in the
time interval of interest. Additionally, we found no differences in
the frequency of saccadic eye movements between natural and syn-
thetic stimuli (Figure S8C). Finally, we found no differences in the
frequency of saccadic eye movements with attention for neither nat-
ural scenes (Figure S8D) nor synthetic stimuli (Figure S8E) . Taken
together, these results suggest that eye movements are unlikely to be
strong contributors to the differences observed in our data.

Visual Stimulus Design. Stimuli were static, black and white im-
ages, presented in a square or circular aperture. Within each record-
ing session, all natural scenes and control images had equal lumi-
nance and contrast.

Control images were generated in two ways.

(1) Filter-scrambling: synthetic stimuli generated from an image
model. Filter scrambling was realized by permuting Gabor filter
activations elicited by a natural image across the elements of the
complete filter bank. The filter bank was composed of a large set of
Gabor functions, fitted to the receptive field (RF) characteristics of
the recorded neurons. The positions and orientations of the Gabor
functions covered the image uniformly, while their size was matched
to the RFs of visual cortical neurons recorded at the same eccentric-
ity. An activation variable determined the level of contribution of
each particular Gabor function to the image. The synthetic images
were generated by linearly combining the activation-scaled Gabor
functions. For each synthetic image, the activations of 500-3,000
Gabor functions were sampled from the empirical distribution of
Gabor filter responses to a particular natural image. The resulting
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control images lacked the higher-order structure of natural scenes
but matched their low-level statistical properties.

(2) Phase-scrambled images. The 2D fast Fourier transform (FFT)
of each natural image was computed to obtain a complex magnitude-
phase map. The phase values were scrambled by assigning a random
value to each element taken from a uniform distribution across the
range (—7, 7 ). An inverse FFT was then applied to the resulting
magnitude-phase maps to produce scrambled versions of the orig-
inal natural images. These control images lacked the higher-order
structure of natural scenes but matched their frequency spectrum.
In a second experiment, recorded in one monkey (monkey I), we
contrasted synthetic stimuli with and without higher-order structure.
These synthetic images were generated similarly to the control im-
ages described in (1) and matched the low-level statistical properties
of natural scenes. To add higher-order structure, a subset of Gabor
functions were arranged in a manner that produced simple contour-
like patterns (example of contour synthetic image in Figure 3D).

Data analysis. Data analysis was performed using custom code in
MATLAB (MathWorks) and the Fieldtrip toolbox (61).

We applied non-parametric statistical tests to avoid assumptions
about the distributions of the empirical data. Information about sam-
ple variables and size is reported in the results section. Critical re-
sults and statistics are reported separately for individual animals in
the supplementary materials.

Discriminability index. The unit d’, also known as Cohen’s effect
size (62), for a pair of stimuli, was calculated as:

d; = (m1—ms)/o @

where m1 and mg are the mean spike-counts across trials of unit ¢ to
the two stimuli and o = (01 +02)/2 is the mean standard deviation.
This measure was used in Figures 2E, F and S3C and D.

The population d’ was calculated similarly, except in this case my,
mg and o are n-dimensional vectors of spike-counts, where n is
the number of simultaneously recorded units in a session. Distances
in vector space were calculated using the Euclidean distance. The
population d’ was used in Figures 1,2, S1 and S2.

Principal component analysis and stimulus classification.
PCA was applied on population spike-count vectors calculated over
a 200 ms time window in the trial, 500-700 ms after stimulus onset
(pre-cue) and included trials from both attentional conditions. The
control stimuli and contour stimuli were analyzed separately, in a
similar manner. Thus, the projection space obtained via PCA was
different for natural scenes and control stimuli. A comparison of the
percentage of variance explained by an increasing number of prin-
cipal components, for natural scenes and controls recorded in the
same sessions, can be found in Figure S6.

To test alignement between the stimulus and the attentional variance
(Figure 3), spike-counts over the 1700-1900 ms interval (post-cue)
were projected into the PCA space constructed pre-cue. Stimulus
classification was performed based on projected data, separately,
for trials belonging to the attention in/out conditions. For each at-
tentional condition, Naive Bayes classifiers were trained to decode
the stimulus identity based on data points mapped in the space de-
scribed by the first n principal components, with n = 1 to 16. Cross-
validation was performed by randomly subsampling the data (k — 1
data partitions used for training, 1 used for test, k repetitions; k = 5).
This meant that, for each pair of stimuli and each n, we ran classi-
fiers k = 5 times, on each iteration randomly sampling the popula-
tion response to the two stimuli. The unseen trials were then used to
assess test performance. The performance values reported in Figure
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3B are mean validation scores pulled across all stimulus pairs and
all recording sessions, with shaded areas representing the standard
error of the mean. Chance level was 50 %.

To enquire whether stimulus decoders benefit from knowledge on
correlated variability across trials, stimulus classification for vari-
able numbers of PCs was compared for shuffled and unshuffled data
in Figure S6. In this case, shuffling was performed across trials,
within each stimulus condition (i.e. signal correlations were not af-
fected), after the construction of the PCA projection space, but be-
fore the training of the Bayesian classifier. Test data was unshuffled,
so that the distribution of original spike-counts was not affected.
Three additional projection spaces were considered for the analysis
presented in Figure 4. First, a random orthogonal basis space was
generated with the same number of dimensions as the original pop-
ulation space. Second, PCA was computed either on spontaneous
activity (spike-count vectors over the -200-0 ms window) or early
evoked activity (spike-count vectors over the 100-300 ms window).
These projections were performed in individual sessions and aver-
aged over sessions.

LFP analysis. Power spectra were computed using a frequency-
dependent window length (5 cycles per time window). This ap-
proach decreases the temporal smoothing at higher frequencies and
increases the sensitivity to brief effects. The time-windows were
moved in steps of 10 ms and Hann-tapered to avoid spectral leak-
age.

LFP power differences between trials in the attention-in and
attention-out conditions are captured in Figure 1D (18 sessions,
precue baseline substracted). A more extensive analysis of atten-
tional differences and stimulus-type differences was performed in
individual animals (Figure S4).

Stimulus classification (Naive Bayes) based on LFP power in vari-
ous frequency bands, was applied in individual animals, following
a similar cross-validation procedure as the one described above for
the PCA projections (Figure S7).
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Fig. S1. Attentional changes in neuronal population responses. A) Population discriminability index d” (left) and population firing rates (right) shown as percentage increase
between the attention-in and attention-out conditions. Circles represent independent recording sessions. The box-plots correspond to two time windows in the trial (1700-
1900 ms and the 200 ms window before the stimulus change). Changes in population d’ with attention were strongly significant in both windows (Wilcoxon signed-rank test;
1700-1900 ms: P = 0.0012; change-aligned: P = 0.00023; n = 18 sessions). Firing rates increased significantly for the change-aligned data (Wilcoxon signed-rank test;
1700-1900 ms: P = 0.1330 n.s.; change-aligned: P = 0.0279; n = 18 sessions). B) Comparison of population d” and population firing rates as a function of reaction time (RT)
to the stimulus change. Trials corresponding to the attention-in condition, were sorted based on RT, separately for each stimulus condition, and split in two halves referred
to as fast-RT and slow-RT. We found that the population discriminability index was higher for fast RT compared to slow RT (Wilcoxon signed-rank test; 1700-1900 ms: P =
0.0043 ; change-aligned: P = 0.0123; n = 18 sessions). Population firing rates were significantly lower for the change-aligned data (Wilcoxon signed-rank test; 1700-1900 ms:
P = 0.6791 n.s.. ; change-aligned: P = 0.0347; n = 18 sessions). Note that the results from the subplots in B were based on approximately half the number of trials from the
subplots in A.
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Fig. S2. Firing rate responses and discriminability index 4’ in individual animals. Responses are shown over the course of the trial: spike-counts were calculated over 200
ms windows with 100 ms sliding resolution. Population firing rates (blue) increased significantly with attention, before the stimulus change, in one monkey (right panels, blue;
Wilcoxon signed-rank test; 1700-1900 ms: P = 0.46 n.s.; change-aligned: P = 0.64 n.s.; n = 8 sessions Monkey |; 1700-1900 ms: P = 0.009; change-aligned: P = 0.0039; n =
10 sessions Monkey A). Population d’ (green) increased significantly with attention, before the stimulus change in both monkeys (right panels, green; Wilcoxon signed-rank
test; 1700-1900 ms: P = 0.0078; change-aligned: P = 0.0156; n = 8 sessions Monkey |; 1700-1900 ms: P = 0.04; change-aligned: P = 0.002; n = 10 sessions Monkey A).
Shading marks standard error of the mean. Right panels show changes with attention in all individual recording sessions for data aligned on both time of stimulus-onset and
stimulus-change.
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Fig. S3. Firing rate resp are modulated by attention similarly for natural scenes and synthetic controls (A) Firing rate responses for both natural scenes and synthetic

gabor-images increase modestly with attention, however the increase is not significant (Wilcoxon signed-rank test; change-aligned; natural-scenes P = 0.1484; gabors P =
0.0781; n = 8 sessions, 2 monkeys). (B) Firing rate responses for natural scenes and scrambled images increase modestly with attention. The increase is only significant for
the scrambled images (Wilcoxon signed-rank test; change-aligned; natural-scenes P = 0.084 n.s.; scrambled P = 0.0039; n = 10 sessions, 2 monkeys). C) Firing rate changes
with attention for natural scenes and synthetic gabor-images are positively correlated across units (values are z-scored per session); changes in d’ are not (Spearman’s rank
correlation; firing rate r= 0.58, p = 2.4e-24; d’ r=-0.16, p = 0.009). D) As in C, firing rate changes with attention for natural scenes and scrambled scenes are positively
correlated across units; changes in d’ are not (Spearman’s rank correlation; firing rate r= 0.35, p = 1.1e-10; d’ r= 0.009, p = 0.87).
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Fig. S4. Trial dynamics of LFP power spectra in two monkeys (upper and lower panels) (A) Attentional differences in time-frequency log-transformed LFP power in monkey
| (8 recording sessions, 500 ms pre-cue baseline was substracted). The arrival of the attentional cue at 700 ms is marked by vertical line. Right-side projection shows
attentional modulation of LFP power for the 1700-1900 ms time window. (B) Attentional differences in LFP power in 4 frequency bands for natural stimuli (continuous lines)
and synthetic stimuli (dotted lines). In this monkey, the LFP power at frequencies >38Hz increased with attention, while the LFP power at frequencies <38Hz decreased with
attention. (C) Differences in LFP power between natural scenes and synthetic images for the attention-in condition. 500 ms pre-cue baseline was substracted to emphasize
post-cue effects. (D) Stimulus differences in LFP power in the gamma (38-50Hz) and theta (3-6Hz) ranges were stronger for natural stimuli compared to their synthetic
counterparts. (E) Attentional differences in time-frequency log-transformed LFP power for monkey A (8 recording sessions). In this monkey, the LFP power at frequencies
>50Hz increased with attention, while the LFP power at frequencies <50Hz decreased with attention. (F) Attentional differences in LFP power in 4 bands for monkey A.
(F) Differences in LFP power between natural scenes and synthetic images for the attention-in condition for monkey A (8 recording sessions). (G) Stimulus differences in 4
bands. Similarly to the plots in (D), natural stimuli produced more gamma and more theta compared to the synthetic controls.
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Fig. S5. Effects of attention on stimulus encoding in principal component space Three example sessions (A, B and C), contrasting pairs of natural stimuli and contour stimuli
(upper panels), to synthetic controls (bottom panels). Individual points represent trials, each point is a spike-count vector over the 1700-1900 ms interval projected in PCA
space. As in Figure 3, the PCA space was constructed based on pre-cue activity (500-700 ms). Ellipses were fit to encompass responses within one standard deviation from
the mean. Gray lines show boundaries of Bayesian decoders. For natural scenes and contour stimuli, overlap between the population responses is lower in the attention-in
condition. Thus the attentional effects can be observed already from a low number of principal components, suggesting an alignment between attentional and stimulus

variance.
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Fig. S6. Effect of trial-shuffling on stimulus decoding in PCA space (A) Decoding performance of natural scenes (green) and control stimuli (blue) based on spike-count
vectors over the 1700-1900 ms interval in principal component space, for a variable number of PCs (z-axis). As in Figure 3, the PCA space was constructed separately
for natural scenes and controls, based on pre-cue activity (500-700 ms, see more details in Methods). Original data (left; n = 71 stimulus pairs; 18 recording sessions) is
contrasted to trial-shuffled data (right). Shuffling removes correlations across trials, i.e. the so called noise correlations or spike-count correlations. Shuffling affected the fit
of the Bayesian classifier, not the construction of the PCA space, and was performed only on training data, not on test data. Shaded areas indicate standard error of the
mean. (B) Variance explained by an increasing number of principal components is similar for PCA spaces constructed separately for natural scenes and controls. These PCA
spaces are identical for shuffled data, since shuffling was only applied before training the classifier. (C) Similar to A for contour stimuli and gabor controls (example stimuli in
Figure 3) (D) similar to B for contour stimuli and gabor controls (n = 30 stimulus pairs; 5 recording sessions). In A and C, attentional effects can be observed already from a
low number of principal components, for natural scenes (green) and contour stimuli (red), but are absent for the synthetic controls (blue) and are reduced by shuffling (right
panels). In B and D, variance explained is almost identical for PCA spaces constructed for natural stimuli/contour stimuli and their respective control counterparts
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Fig. S7. Decoding of stimulus identity based on LFP responses in individual animals. Bayesian classifiers were used to decode the identity of a stimulus based on single trial
LFP data (monkey | left, n = 8 sessions, monkey A right, n = 10 sessions; 1700-1900ms time-window). In each recording session the LFP power of all channels (maximum
32) for 4 consecutive frequencies (1-4Hz, 5-8Hz.. 96-100Hz) were concatenated, resulting in data vectors of length < 4x32. Performance is shown separately for natural
scenes (green) and control images (blue), for all 25 frequency intervals (x-axis). In both monkeys, classification of natural scenes was significantly above chance level and
above the classification performance of control images, for frequencies higher than 40Hz (10-fold validation, chance level 50%). There was no attentional effect on stimulus
decoding based on LFP power, except at the highest frequencies in monkey | (88-91Hz ,92-95Hz, 96-100Hz, significant intervals marked by green bar).
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Fig. S8. Eye movements during the task (A) Frequency of saccadic eye movements along the trial. The time window preceding the stimulus change (1700-1900ms, marked
in gray), in which the effects of visual attention were strong, corresponds to a period with reduced eye movements compared to the baseline (-200,0ms, marked in gray). (B)
Percentage of saccadic eye movements before the stimulus change is shown compared to the baseline across sessions (Wilcoxon signed-rank test, , P = 0.00018, n = 18
sessions in 2 monkeys). (C) Saccades towards natural and synthetic stimuli occurred with similar frequency (left panel; Wilcoxon signed-rank test, post-cue time interval 700-
1900ms, P = 0.17 n.s.). (D) Saccades towards attended and unattended natural stimuli occurred with similar frequency (right panel; Wilcoxon signed-rank test; 700-1900ms;
P = 0.49 n.s.). (E) Saccades towards attended and unattended synthetic stimuli occurred with similar frequency (right panel; Wilcoxon signed-rank test; 700-1900ms; P =
0.50 n.s.).
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