Deep learning based on hematoxylin–eosin staining outperforms immunohistochemistry in predicting molecular subtypes of gastric adenocarcinoma
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[bookmark: _Toc91142163][bookmark: _Toc91143113][bookmark: _Toc91603018][bookmark: _Toc91603140]Differential mRNA expression in the TCGA cohort of genes used to separate GS from CIN
We and others [7] have used the diffuse phenotype of Lauren as a feature to identify potential GS cases because both features are connected [3]. In addition, we used the loss of E-cadherin in IHC as an additional feature to strengthen our classification, as it is known that the diffuse Lauren phenotype is associated with altered E-cadherin [24]. However, as mentioned in the main text, we found that this procedure leads to misclassification.
Consistent with this observation, a deeper analysis of the TCGA mRNA expression data also showed that there was no significant difference (t-test: p = 0.54) between diffuse cases of the GS and CIN molecular subclasses with respect to their mRNA expression of E-cadherin (CDH1; supplementary material, Figure S2). The same is true for HER2 (ERBB2) mRNA (t-test: p = 0.22), another factor that we used to distinguish between GS and CIN. Thus, in a patient with a diffuse phenotype, testing for E-cadherin and/or ERBB2 has little added value, again confirming the observation that the staining approach fails for classifying GC patients.
In general, the GS subtype is also known to have increased expression of signaling pathways associated with cell adhesion and migration, including B1/B3 integrins [3]. However, even for, for example, ITGB1 mRNA, no significant differences (t-test: p = 0.53) were found between diffuse GS and CIN cases, so we could not easily refine our IHC strategy. 
To find potential proteins that could later be included in the staining approach, we searched for genes whose expression values were different for all four molecular subclasses. Genes were considered of potential interest if their mean expression values ± 1 standard deviation (for normally distributed data, 68% of all data are within this range) did not overlap with any of the other molecular subclasses.
As expected for MSI, we found MLH1 to have lower expression compared with the other three classes. However, the other proteins of the complex were not identified. However, this is consistent with the results of Bae et al showing that MSH2 alone is not capable of detecting MSI, as only 15/203 MSI-H positive cases are detected [12]. For EBV, we found 14 genes with lower expression (CLDN3, CRAT, HOXA10, HYLS1, SCNN1A, SLC6A8, TXNRD3, RCOR2, CISD1, C5ORF63, GGACT, TXNRD3NB, LINC00662, MFSD6L). However, for the staining approach, these were not of interest, as EBV can be easily identified using the established EBER-ISH method. Finally, we did not identify genes for either CIN or GS that had significantly higher or lower expression. Thus, we could not readily identify new candidates to distinguish CIN from GS based on TCGA data. Therefore, we next attempted to predict molecular subtypes directly from H&E-based morphology.

Limitation of the cNN training by the weakest subclass
Because the molecular subclasses are unevenly distributed and there are, for example, many more CIN cases than EBV cases, we explored the question of whether we should include more tissue sections of the more common molecular subclasses. To systematically answer this question, we varied the number of patients per subclass used to train our expert-annotated dataset, and as long as we added new patients to the training dataset, the error rate decreased. Next, we added AI annotations to the expert annotations, and apart from some stronger fluctuations, the result was the same: as long as the training dataset is balanced in the number of patients, the error rate decreases. Slight oversampling of the more frequent classes still improved the error rate (e.g. 20 patients versus 32 patients). However, when we began to heavily oversample several subclasses (e.g. 32 patients versus 72 patients) to include data from the more frequent subclasses, we did not see any further reduction in the error rate. To determine whether this stagnation is actually caused by patient imbalance and to rule out the possibility that more data simply did not further decrease error rates (e.g. because morphology only partially correlates with molecular features), we artificially limited the number of available EBV cases in the expert-annotated dataset to 10 and repeated the experiment. And again, we found that the error rate hardly decreased when more than 10 patients were added for CIN, GS, and MSI (supplementary material, Figure S3). This indicated that it is important to keep the datasets (nearly) balanced in terms of number of patients; including additional patients of overrepresented classes did not greatly reduce error rates and we expect that more balanced data will further decrease error rates for the separation of EBV, MSI, GS, and CIN. In summary, the deep learning approach was always limited by the weakest subset, making data collection in the medical setting even more challenging.
[bookmark: _Toc91142165][bookmark: _Toc91143115][bookmark: _Toc91603020][bookmark: _Toc91603142]
Parameter screening
To find a good network architecture and suitable hyper-parameters, we first performed a grid search (supplementary material, Figure S4). We included meshes with different building blocks and tried to cover parameters with different degrees of control to avoid over- or under-fitting. For each combination, the training was repeated four times with differently split datasets. For a classification problem with four classes, the guessing error rate is 75%. The mean test error rates that we observed were better and decreased slightly with increasing network complexity (52% ResNet18 > 51% Vgg19 > 49% DenseNet161; ANOVA pValue: 2.1e-20). Additionally, the higher learning rate (49% 1e-4 > 52% 1e-2; independent t-test pValue: 1.7e-37) and a cycle length of 7 were preferred (52% 3 cycles > 51% 5 cycles < 50% 7 cycles; ANOVA pValue: 2.5e-06). A batch size of 40 (20: 52.0% > 40: 49.9% < 60: 50.5%; ANOVA pValue: 8.3e-15) and 30 patches (15: 53.4% > 30: 49.4% 45: 49.6%; ANOVA pValue: 8.7e-57) per WSI led to better error rates. We did not detect any effect of different sizes (224 versus 299 pixels), dropout (0.4 versus 0.6) or weight loss (0.1 versus 0.01). Taken together, we decided to perform further experiments with the following parameter combination: DenseNet161, lr: 1e-2, 7 cycles, wd: 0.1 and dropout: 0.4, batch size: 40, 30 image patches of 224  224 pixels each. The error rates for this parameter combination are shown in supplementary material, Figure S4.

Three class experiments
As described in the main text, we trained additional cNNs with modified datasets, omitting patients from a molecular subclass. When we removed GS patients from the training, validation, and testing datasets (−GS), no significant difference was observed between the TCGA testing dataset and the independent UKC testing dataset (supplementary material, Figure S6).

[bookmark: _Toc91603023][bookmark: _Toc91603145]Tumor heterogeneity in the UKC and TCGA cohorts
Originally, our OncoScan CNV array experiments were performed to validate the predictions of the ensemble cNN, which failed to reproduce the GS labeling of the IHC approach for a single case. Together with the tests of the three-class models (supplementary material, Figure S6), we obtained the first indications that the GS subclass labels obtained by the in situ approach contained errors. Therefore, we decided to obtain molecular data for all GS cases from the UKC test dataset. And indeed, a high CIN ratio was observed in 5/8 of the cases designated as GS by the IHC approach (Figure 1, main text), clearly contradicting this designation and strengthening the results of our cNNs. In addition, we included some cases in which the cNN and IHC approaches reached the same conclusion to cover all molecular subtypes and thus the full range of possible CIN ratios. And we also included cases of particular interest (e.g. high predicted homogeneity for CIN).
Of note, agreement between OncoScan CNV array data and cNN labels was higher than for IHC labels (supplementary material, Table S4).
All analyses for tumor heterogeneity performed with the UKC test data (supplementary material, Figures S9 and S10) were also performed for the TCGA data (supplementary material, Figure S11). As mentioned in the main text, data for these analyses were collected only when the patient was in the test dataset to avoid biased or skewed results.

[bookmark: _Toc91142168][bookmark: _Toc91143118][bookmark: _Toc91603024][bookmark: _Toc91603146]Influence of noisy labels
As described in the main text, the observed heterogeneity within a tumor implies that some image patches contained incorrect labeling because only one global label was available for each WSI. Here, we attempted to remove these incorrect labels from the training dataset (supplementary material, Figure S12A). Note that the UKC test dataset still contains heterogeneities, of course, so some image patches are still mislabeled. The performance of the individual cNNs increased significantly with this strategy (independent t-test: p < 0.05), but the ensemble was more powerful when trained with the full data (independent t-test: p < 0.05; supplementary material, Figure S12B).

[bookmark: _Toc91142169][bookmark: _Toc91143119][bookmark: _Toc91603025][bookmark: _Toc91603147]TCGA decision tree versus TCGA molecular data clustering
Upon re-examination of the originally published TCGA data [3], we found that there was further uncertainty in the definitions of the molecular subclasses for GC. To create the final decision tree, multiple clusterings of all collected molecular data were performed. The combined platform-specific clustering of TCGA resulted in four clusters, with each cluster enriched in patients of a molecular subtype of the final decision tree: C1 MSI-enriched (45/54 cases); C2 GS-enriched (27/56 cases); C3 CIN-enriched (67/74 cases); C4 EBV-enriched (19/30 cases). But according to this clustering, more than a quarter of all patients (26.2%; 56/214 patients) would belong to a different class if the data-rich molecular subtype clustering were used instead of the simple decision tree. The situation is similar if the integrative clustering approach from combined molecular data (iCluster) is considered: Here, 22.3% of patients would receive a different class designation: iC1 GS-enriched (39/48 cases); iC2 EBV-enriched (20/29 cases); iC3 + iC4 CIN-enriched (72/77 cases); iC5 MSI-enriched (33/57 cases). This indicates that the decision tree does not represent reality satisfactorily and that perfect classification is not possible at all.
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Figure S1. Copy number variation profiles. Gains and losses were calculated using ASCAT. Major/minor (y-axis) represent the alleles with higher/lower copy number changes. Grey – unchanged regions, red – loss, light green – moderate amplification (n = 2), dark green – strong amplification (n > 2).
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Figure S2. mRNA expression for ERBB2, CDH1, ITGB1, and TP53 in the TCGA gastric adenocarcinoma cohort. mRNA expression values were downloaded from cBioPortal. The y-axis for ERBB2 was cropped for visualization purposes so that individual outliers are not visible. 
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Figure S3. Training datasets should be balanced in terms of the number of patients. The four-class model was trained with different datasets. Once there were not enough patients in the TCGA data to balance the dataset in terms of number of patients, the training dataset was kept balanced in terms of number of images by oversampling the tiles with less frequent patients. Supplementary material, Table S1 shows when a subclass starts oversampling. Red, data annotated by experts, no oversampling required. Black, expert and AI annotated data, oversampling starts at 24 patients for EBV. Yellow, expert annotated data, where the number of incoming EBV cases is limited to 10, therefore oversampling starts at 12 patients for EBV.
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Figure S4. Parameter screening. A grid search for the following parameters was performed: patch size (224  224 pixels, 299  299 pixels), No. of image patches (15, 30, 45), batch size (20, 40, 60), network architecture (ResNet18, Vgg19, DenseNet161), dropout (0.4, 0.6), weight decay (0.1, 0.01), learning rate (0.01, 0.0001), and epochs (3, 5, 7). Every parameter combination was repeated four times and results were aggregated and are shown as a boxplot. All given error rates are calculated for a hold-out test dataset.
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Figure S5. Mean error rates on patch level. For the TCGA validation, hold-out TCGA test and independent, full UKC test datasets. Error bars indicate standard deviations; significant differences were obtained using t-tests. 
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[bookmark: _GoBack]Figure S6. Test error rates for three-class models. DenseNet161 was trained with TCGA data to discriminate between three molecular subclasses (three-class model), each time deleting one class from all datasets. Error rates are given for the hold-out test datasets. A t-test was used to test for significant differences. Error bars labeled ‘all’ are part of the four-class model and are shown for comparison. For example, −MSI indicates that all MSI cases were removed from the datasets. * indicates significant difference.
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Figure S7. Relation of error rate and the number of patients with a valid consensus prediction under different thresholds. The upper plot shows the relation between error rate and the fraction of the ensemble cNN which agrees and predicts the same label (threshold; overlap of ensemble cNN). The lower plot shows the number of patients where the ensemble (under the respective threshold) agrees. The more individual cNNs are to have the same prediction, the fewer patients can be predicted. For Figure 2D, both plots are combined into one, based on the used threshold.
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Figure S8. Securely predicted image patches. Randomly drawn image patches, where all individual cNNs of the ensemble correctly predict the molecular subtype as postulated by the staining approach. The first row shows examples for MSI, the second row for EBV, the third row for GS, and the last row for CIN.
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Figure S9. Heterogeneity in the UKC dataset. Full version of Figure 3A including GS cases. The ‘x’ under the case numbers represents usable OncoScan CNV array results; the ‘o’ represents samples for which we started DNA extraction but did not isolate enough material (c < 5 ng/μl); and the ‘q’ represents samples with low OncoScan CNV array quality. For the remaining cases, we either had no tissue left or had not started testing. Red, CIN; green, EBV; blue, GS; yellow, MSI.
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Figure S10. Randomly selected tiles from Figure 3D. The upper row contains image tiles that were predicted as EBV; the lower row is predicted as MSI for patient #53 of the UKC cohort. The label of that patient according to the staining approach is MSI.
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Figure S11. Heterogeneity in the TCGA dataset. (A) Four-class models were trained with TCGA data and the predictions for TCGA test datasets are plotted and summarized in the figure. The ground truth (GT) is given in the top row. Ensemble prediction is given in the second row. (B) The histogram for the frequencies of the class with the consensus prediction (whether correct or not) is shown for the TCGA hold-out test datasets (light gray). Dark gray indicates the number of patients in whom the different molecular subclasses are found in different locations. (C–E) WSIs for patients in whom different subclasses are located at different sites. Red, CIN; green, EBV; blue, GS; yellow, MSI.
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Figure S12. Noisy labels in cNN training. (A) Schematic diagram of the experiment. We performed two rounds of training. After the first round, we removed all image patches from the TCGA dataset that were not correctly predicted (and may have an incorrect label). We then trained the cNNs using the remaining core dataset. (B) Error rates for the UKC(−GS) dataset obtained with models trained with the full (complete, gray) or the core (white) dataset. Using images for training cNNs that were correctly classified in an initial round of training lowered the error rates for predicting individual images and patients, but for ensemble cNNs, using the full dataset was beneficial.


[bookmark: here]Table S1. Required oversampling for different subclasses and experiments

	
	4
	8
	12
	16
	20
	24
	32
	40
	56
	72

	CIN
	
	
	
	
	
	
	
	
	
	

	EBV
	
	
	x
	x
	x
	x/x
	x/x
	x/x
	x/x
	x/x

	GS
	
	
	
	
	
	
	
	
	x
	x

	MSI
	
	
	
	
	
	
	
	x
	x
	x



The colors refer to the colors in supplementary material, Figure S3. The columns indicate the number of patients, and ‘x’ symbolizes a necessary oversampling because there were not enough patients in the dataset. In short: as in total we have 27 EBV patients (validation: 3; testing: 3; remaining for training: 21), we do not need oversampling for 4–20 patients, but for 24, 32, 40, 56, and 72 patients an oversampling is necessary (marked with a black ‘x’). When we artificially limit the number of available EBV patients, oversampling is needed for 12, 16, 20, 24, 32, 40, 56, and 72 patients (marked with a yellow ‘x’). For CIN, no oversampling is necessary; for GS and MSI, oversampling starts with 56 and 40 patients. 



Table S2. Evaluation criteria for the individual cNNs

	
	Individual pictures
	Patient consensus

	
	TCGA
	TCGA (−GS)
	UKC
	UKC (−GS)
	TCGA
	TCGA (−GS)
	UKC
	UKC (−GS)

	Error 
	0.49 ±
0.08
	0.51 ±
0.09
	0.62±
0.06
	0.53±
0.08
	0.42±
0.11
	0.45±
0.13
	0.59±
0.08
	0.47±
0.12

	Precision
	0.52±
0.08
	0.46±
0.08
	0.37±
0.06
	0.41±
0.06
	0.63±
0.13
	0.54±
0.13
	0.39±
0.07
	0.51±
0.14

	Recall
	0.51±
0.08
	0.37±
0.07
	0.38±
0.06
	0.35±
0.06
	0.58±
0.11
	0.43±
0.12
	0.41±
0.08
	0.44±
0.13

	f1
	0.5±
0.08
	0.4±
0.07
	0.35±
0.06
	0.36±
0.07
	0.57±
0.11
	0.45±
0.12
	0.36±
0.08
	0.44±
0.13

	AUC
	0.75±
0.07
	0.74±
0.09
	0.64±
0.05
	0.7±
0.07
	0.81±
0.08*
	0.8±
0.1*
	0.68±
0.07*
	0.76±
0.09*

	TP CIN
	0.53±
0.13
	0.53±
0.13
	0.4±
0.19
	0.4±
0.19
	0.62±
0.19
	0.62±
0.19
	0.45±
0.26
	0.45±
0.26

	TP EBV
	0.52±
0.23
	0.52±
0.23
	0.58±
0.18
	0.58±
0.18
	0.56±
0.28
	0.56±
0.28
	0.69±
0.25
	0.69±
0.25

	TP GS
	0.55±
0.16
	–
	0.11±
0.07
	–
	0.68±
0.2
	–
	0.07±
0.09
	–

	TP MSI
	0.43±
0.16
	0.43±
0.16
	0.41±
0.13
	0.41±
0.13
	0.47±
0.22
	0.47±
0.22
	0.45±
0.17
	0.45±
0.17



Error, precision, recall, F1 score, and AUC are macro averages. All values are given in a range from 0 to 1.


Table S3. Comparison of vanilla and bagging ensembles

	
	UKC
	UKC(−GS)

	Ensemble type
	Size
	Error rate
	Precision
	Recall
	F1
	Error rate
	Precision
	Recall
	F1

	Vanilla
	pic

	5
	58.5
	0.42
	0.415
	0.376
	54.7
	0.419
	0.453
	0.396

	Bagging
	
	5
	56.3
	0.434
	0.437
	0.394
	50.8
	0.487
	0.492
	0.428

	Vanilla
	pat

	5
	47.6
	0.436
	0.393
	0.396
	41.6
	0.573
	0.513
	0.507

	Bagging
	
	5
	44.0
	0.454
	0.42 
	0.421
	35.6
	0.647
	0.599
	0.589

	Vanilla
	pic
	20
	59.1
	0.404
	0.409
	0.373
	54.2
	0.433
	0.458
	0.404

	Bagging
	
	20
	55.2
	0.436
	0.448
	0.407
	49.0
	0.446
	0.51
	0.44

	Vanilla
	pat
	20
	49.2
	0.437
	0.381
	0.386
	41.7
	0.556
	0.493
	0.487

	Bagging
	
	20
	43.0
	0.467
	0.428
	0.433
	32.9
	0.674
	0.641
	0.635



pic = prediction for individual tiles; pat = consensus prediction over all tiles of one patient.


Table S4. CIN ratios in comparison to in situ and cNN results for 22 patients from the UKC cohort

	UKC No.
	0
	1
	2
	15
	16
	17
	18
	20
	33
	34
	37
	38
	39
	40
	41
	42
	43
	46
	61
	62
	63
	64

	Staining
	CIN
	CIN
	CIN
	CIN
	CIN
	CIN
	CIN
	EBV
	EBV
	EBV
	EBV
	GS
	GS
	GS
	GS
	GS
	GS
	GS
	MSI
	MSI
	MSI
	MSI

	CIN ratio
	0.94
	0.33
	0.00
	0.31
	0.78
	0.67
	0.00
	0.92
	0.00
	0.00
	0.14
	0.97
	0.61
	0.31
	0.94
	0.00
	0.50
	0.53
	0.53
	0.39
	0.06
	0.25

	cNN
	EBV
	MSI
	CIN
	CIN
	CIN
	CIN
	CIN
	CIN
	EBV
	EBV
	EBV
	CIN
	CIN
	EBV
	EBV
	CIN
	CIN
	MSI
	MSI
	MSI
	MSI
	MSI

	staining. CIN-H
	o
	
	
	o
	o
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	cNN. CIN-L
	
	
	
	
	x
	x
	
	x
	
	
	
	x
	x
	
	
	
	x
	
	
	
	
	



CIN ratios were derived from OncoScan CNV array experiments. The labels from the staining and cNN approaches are also indicated. Cases classified as CIN-H (CIN ratio  0.5 or molecular subclass CIN) are highlighted in gray. Agreement between OncoScan CNV array data and cNN labels (indicated with an ‘x’) was higher than for IHC labels (indicated with an ‘o’).
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