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Abstract: Because it is associated with central nervous changes, and olfactory dysfunction has
been reported with increased prevalence among persons with diabetes, this study addressed the
question of whether the risk of developing diabetes in the next 10 years is reflected in olfactory
symptoms. In a cross-sectional study, in 164 individuals seeking medical consulting for possible
diabetes, olfactory function was evaluated using a standardized clinical test assessing olfactory
threshold, odor discrimination, and odor identification. Metabolomics parameters were assessed
via blood concentrations. The individual diabetes risk was quantified according to the validated
German version of the “FINDRISK” diabetes risk score. Machine learning algorithms trained with
metabolomics patterns predicted low or high diabetes risk with a balanced accuracy of 63–75%.
Similarly, olfactory subtest results predicted the olfactory dysfunction category with a balanced
accuracy of 85–94%, occasionally reaching 100%. However, olfactory subtest results failed to improve
the prediction of diabetes risk based on metabolomics data, and metabolomics data did not improve
the prediction of the olfactory dysfunction category based on olfactory subtest results. Results of the
present study suggest that olfactory function is not a useful predictor of diabetes.

Keywords: human olfaction; diabetes mellitus; machine-learning; data science; patients

1. Introduction

Functional changes in the sense of smell have been described as accompanying symp-
toms of an increasing number of disorders [1]. These include otorhinolaryngologic disor-
ders such as chronic rhinosinusitis, exposure to various environmental or occupational
toxins [2], infectious diseases such as COVID19 [3], internal diseases like renal dysfunc-
tion [4], and neurological disorders such as Parkinson’s disease [5,6], Alzheimer’s dis-
ease [7], or multiple sclerosis [8]. For example, olfactory deficits are considered signs of
developing central nervous complications of HIV infection [9], early signs of Parkinson’s
disease [10–12], or signs of beginning cognitive dysfunction [13].

Olfactory dysfunction also occurs with higher prevalence in patients with diabetes [14–20].
It affects odor identification [14,21] as well as olfactory thresholds [22] and other olfactory
functions [15]. Microvascular disease, renal dysfunction, or neuropathy have been attributed
to it [19,23–25], among others. For example, the presence of macrovascular disease was found
to be associated with olfactory dysfunction [17]. Olfactory dysfunction has been suggested
to predict the development of dementia in elderly patients with type 2 diabetes [26]. Thus,
while diabetes and olfactory symptoms were often found together, it remains unclear whether
this is true for early stages before the manifestation of the disease, which would qualify
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olfactory tests as an early marker for the development of diabetes. In analogy to the increasing
recognition of olfactory symptoms as early signs of several diseases characterized by loss of
the sense of smell at later stages, including Parkinson’s disease [27] or multiple sclerosis [28],
olfactory symptoms have been contemplated as early signs of diabetes or its aggravation
toward cognitive decline [29].

Early diagnosis of diabetes is an active research topic [30,31] that has led to several
solutions summarized in Table 1. Several markers have been proposed related to genet-
ics, laboratory chemistry, physical activity, demographics, and others, which are used
individually or in combination in diabetes risk scores [32] or as machine-learning based
predictors [30].

Table 1. Summary of existing solutions for early diagnosis of diabetes mellitus type 2.

Early Sign Method of Detection Key
Reference

Genetic variation Genetic variation [33]
Family history Relatives with diabetes [34]

Age, family history, waist circumference, physical activity,
consumption of vegetables etc., antihypertensive
medication, blood sugar levels, body mass index

FINDRISK and similar scores [35]

Physical inactivity Time and intensity [36]
Waist circumference cm [37]

Obesity Body weight/body mass index [38,39]
Visceral obesity Fat mass/MRI [40]

Liver fat Fat mass/MRI [41]
Insulin resistance HOMA [42]

Fasting hyperglycemia glucose [39]
Postprandial hyperglycemia Oral glucose tolerance test, post meal glucose [39]

HbA1c HPLC [39,43]
Waist circumference, blood pressure, mercury level, plasma

triacylglycerol, blood glucose, HDL cholesterol, glucose
Support vector

machines [30]

Considering the utility of olfactory signs as early diagnostic markers for various
diseases and the olfactory symptoms reported from patients with diabetes, the present
study pursued the hypothesis that olfactory symptoms might already be present in the early
stages of the disease and therefore add to the list of predictive markers for diabetes [44].
In the positive case of the present evaluations, loss of smell could be added as an early
sign, either as a screening tool or, probably more realistically, as a signal detected during
diagnostic procedures performed for smell problems, or diabetes could be added as another
possible cause of such problems as a differential diagnosis. Indeed, early detection of
diabetes mellitus type 2 is still often accidental; hence, connecting a further clinical sign
with this potential diagnosis might increase the diabetes detection rate [30,31].

2. Materials and Methods
2.1. Study Design and Participants

The study was performed in accordance with the Declaration of Helsinki on Biomed-
ical Studies Involving Human Subjects. It was approved by the ethics committee at the
University Clinic of Dresden (approval number Ek328122008). All participants provided in-
formed written consent. This was a cross-sectional study. The cohort included patients who
reported to medical consulting at the diabetes outpatient clinic of the medical clinic III of
the University Clinic Dresden. Measurements took place between 2009-02-17 Coordinated
Universal Time (UTC) and 2010-03-24 UTC.

A total of 164 volunteers, i.e., 62 men and 102 women, aged 18–69 years (mean± standard
deviation: 52.8 ± 12.8 years) seeking medical consulting for possible diabetes participated.
Inclusion criteria were age 18 years and older, non-smoking, absence of pregnancy, absence
of neurodegenerative disorders such as Parkinson’s or Alzheimer’s disease, absence of other
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disorders that are strongly associated with olfactory loss, e.g., chronic rhinosinusitis. The
sample size was chosen to exceed that of n = 111 used in a study on associations of diabetes
with olfactory symptoms [17]. A formal case number calculation was not performed. The
study included a selected sample of patients consecutively admitted to a specialty internal
medicine unit for possible diabetes risk. This is certainly different from a random sample
from the general population. With respect to olfactory function, potential confounders of
olfactory function such as occupational exposure to toxic substances or the use of certain
medications [45,46] were recorded and used to check the obtained results for major biases.

2.2. Data Acquisition
2.2.1. Diabetes Risk Assessment

A diabetes risk score [32] was used, the validated German version of which is called
“FINDRISK” [47]. The score is obtained from the multiple-choice responses to eight ques-
tions about (i) age, (ii) a family member with diabetes, (iii) the waist circumference (iv) phys-
ical activity, (v) consumption of vegetables, fruits, berries or dark bread (vi), antihyperten-
sive medication, and (vii) knowledge about too high blood sugar levels and (viii) the body
mass index. A FINDRISK score ≥ 9 has been found to predict drug-treated diabetes at a
sensitivity of 0.78–0.81 and specificity of 0.76–0.77 in two different Scandinavian cohorts
assessed in 1987 and 1992 [32]. The FINDRISK score is converted into five categories
of diabetes risk in ascending order, i.e., “low risk” of 1% to develop diabetes in the next
10 years at scores < 7, “slightly increased” of 4% diabetes risk at scores [7, . . . , 11], “medium
risk” of 17% diabetes risk at scores [12, . . . , 14], “high risk” of 33% diabetes risk at scores
[15, . . . , 20] and “very high” risk of 50% to develop diabetes at scores > 20. The study
participants completed the FINDRISK questionnaire at the beginning of the examinations,
prior to olfactory testing.

2.2.2. Clinical Testing of Olfactory Function

All participants underwent a standardized diagnostic procedure that included a
detailed medical history and a detailed physical otorhinolaryngological examination [4,48].
In addition, olfactory function of all participants was assessed using an established clinical
test (“Sniffin’ Sticks”, Burghart Instruments, Wedel, Germany) [49,50], which evaluated
three sensory dimensions of odors comprising odor threshold (to phenylethylalcohol),
odor discrimination (16 pairs of odors) and odor identification (16 odors). The olfactory
functional category was obtained from the sum of scores for Threshold, Discrimination,
and Identification (TDI) subtests, with a range between 1 and 48 points and allows to
categorize subjects as normosmic (>30.5), hyposmic (16.5–30.5), and functionally anosmic
(<16.5), based on normative scores obtained in more than 9000 healthy subjects [51].

2.2.3. Metabolomics Testing

Blood was withdrawn in all participants to assess the following parameters: triglyc-
erides, cholesterol, low-density lipoprotein [LDL], high-density lipoprotein [HDL], gly-
cohemoglobin [HbA1c], glucose, fatty acids, proinsulin, C-peptide, and insulin), and in
addition, for glucose, free fatty acids, proinsulin, C-peptide, and insulin, the differences
between the data measured 120 min after a glucose challenge to the respective individual
baseline values. Concentration analyses were proofed in the local clinical routine laboratory.
A diagnosis of diabetes was made using plasma glucose criteria, i.e., fasting plasma glucose
or 2 h plasma glucose before and after a standard oral glucose tolerance test [52].

2.3. Data Analysis

The programming work for this report was performed in the R language [53] using
the R software package [54] (version 4.0.5 for Linux), which is available free of charge in
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/. We
performed all analyses on 1–12 cores of an Intel Core i9-7940X® (Intel Corporation, Santa
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Clara, CA, USA) computer running Ubuntu Linux 20.04.2 LTS (Canonical, London, UK).
An overview of the data analysis workflow is shown in Figure 1.

Figure 1. Flowchart showing the number of patients, the main items of data acquisition, and the steps of data analysis.
The main steps of data analysis ranged from preprocessing to unsupervised and supervised analyses that assessed the
extent to which olfactory and metabolomics databased subgroup assignments were mutually identified from the respective
information. The figure has been created using Microsoft PowerPoint® (Redmond, WA, USA) on Microsoft Windows 11
running in a virtual machine powered by VirtualBox 6.1 (Oracle Corporation, Austin, TX, USA).

The dataset originally included n = 164 subjects and d = 38 variables, which included (i)
diabetes risk as to the FINDRISK score and (ii–v) olfactory performance measures consisting
of olfactory threshold, odor discrimination odor identification, and the TDI sum score.
Metabolic blood serum markers included (vi) triglycerides, (vii) cholesterol, (viii) LDL,
(ix) HDL, (x) Hba1c, and, measured before and after glucose challenge, (xi–xii) blood
glucose, (xiii–xiv) free fatty acids, (xv–xvi) proinsulin, (xvii–xviii) C-peptide, and (xix–
xx) insulin. Baseline demographic and medical parameters included (xxi–xxvi) subjects’
gender, age, body mass index (BMI), waist-to-hip ratio, and diastolic and systolic blood
pressure. Other medical parameters included (xxvii–xxix) whether the subject smoked,
had quit smoking and for how long, (xxx) alcohol consumption, and various possible risk
factors for olfactory problems, including (xxxi) occupational exposure to volatile toxins,
(xxxii–xxxvii) previous head trauma, craniofacial surgery, a history of sinusitis or nasal
allergies, and concomitant diseases and medications. Finally, (xxxviii) the date of the
examination was recorded.

The main data analysis was designed to detect associations between olfactory and
metabolomics data and the risk of diabetes at different analytical levels. This included the
identification of group structures in olfactory or metabolomics data and their mutual asso-
ciations using classical statistical as well as machine learning-based methods. The analyses
included unsupervised and supervised approaches. The idea behind the unsupervised
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analyses was that if the patterns found in the (i) metabolomics data match both the group
structures in (ii) the odor data and the group structures in (iii) the diabetes risk, then the
three lines of information are interdependent and relevance of the olfactory data to dia-
betes risk is supported by the data structure. This was implemented as Gaussian mixture
modeling or principal component analysis (PCA [55,56]) and subsequent crosstabulation
analyses. The idea behind the supervised analyses was that if a machine-learning algorithm
can be trained with metabolomics information such that it is able to assign a patient to the
correct diabetes risk group, and this can be improved if olfactory information is added or
is reproduced if the metabolomics information is replaced with olfactory information, then
it can be concluded that the olfactory information was relevant to the diabetes risk group
structure of the data set.

2.3.1. Data Prepossessing

To assess the need for data transformation, the distribution of continuous and ordi-
nally scaled variables was examined by applying Kolmogorov–Smirnov tests [57] to the
original data and after log, square root, or reciprocal data transformation. Necessary trans-
formations for further analyses were performed in cases where this test was statistically
significant. In the metabolomics data, outliers were detected following transformation by
applying Grubbs tests [58]. Specifically, each outlier was replaced with a missing value.
The procedure was iteratively repeated as long as significant results of Grubbs tests were
obtained. A total of 12 outliers was detected and replaced with missing values. These
calculations were performed using the R library “outliers” (https://cran.r-project.org/
package=outliers [59]). Subsequently, values either originally missing or removed during
outlier detection were imputed using k-nearest neighbors (kNN) with k = 3, calculated
with the R-library “DMwR” (https://cran.r-project.org/package=DMwR [60]).

2.3.2. Detection of Group Structures in Metabolomic and Olfactory Data
Assessment of Group Structures in One-Dimensional Olfactory and Diabetes Risk Data

Both the TDI olfactory score and the FINDRISK score of diabetic risk have predefined
categories. That is, the TDI score translates to olfactory dysfunction categories of anosmia,
hyposmia, and normosmia at the boundaries mentioned above with the description of
the olfactory testing and the FINDRISK score is converted into categories of diabetes
risk as described above with the description of the diabetic risk assessment. Both the
TDI olfactory score and the FINDRISK scores were additionally examined for databased
subgroups based on their probability density distributions described by Pareto density
estimation (PDE) as a kernel density estimator that is particularly useful for detecting
classes in one-dimensional data [61]. Modal structures were analyzed by fitting Gaussian
mixture models (GMM) to the PDE as p(x) = ∑M

i=0 wi N(x|mi, si), where N(x|mi,si) denotes
Gaussian probability densities with expectation values mi and standard deviations si.
The wi denotes the mixture weights indicating the relative contribution of each of the M
Gaussian components to the overall distribution. Models with M = [1, . . . , 5] Gaussian
modes were tested, and the final model was selected based on the Bayesian Information
Criterion (BIC [62]) and on likelihood ratio tests [63] comparing the goodness of fit between
the GMM with the lowest value of BIC versus the corresponding simpler model, i.e., GMM
with modes M versus GMM with modes M–1, on a Kolmogorov–Smirnov test comparing
the distribution of the data predicted by the final model with the observed distribution, and
on visual inspection of the quantile-quantile plots of the predicted versus observed data.
The assignment of subjects to the identified subgroups was determined using Bayesian
Theorem [62], which provides the decision limits for assigning a single observation to mode
Mi based on the calculation of posterior probabilities. An automated genetic algorithm
was used for this purpose as implemented in our R library “DistributionOptimization”
(https://cran.r-project.org/package=DistributionOptimization [64]).

https://cran.r-project.org/package=outliers
https://cran.r-project.org/package=outliers
https://cran.r-project.org/package=DMwR
https://cran.r-project.org/package=DistributionOptimization
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Assessment of Group Structures in High-Dimensional Metabolomics Data

For the high-dimensional metabolomics data, a group structure was explored fol-
lowing projection of the data onto a low-dimensional plane followed by cluster analysis.
Specifically, a data matrix was created containing the metabolic parameters measured at
baseline (triglycerides, cholesterol, low-density lipoprotein (LDL), high-density lipoprotein
(HDL), glycohemoglobin (HbA1c), glucose, fatty acids proinsulin, C-peptide, and insulin)
and in addition, for glucose, Fatty acids, proinsulin, C-peptide and insulin, the differences
between the data measured 120 min after a glucose challenge to the respective individual
baseline values.

This 15 × 163 sized data space (n = 163 because one subject was excluded; see results
section) was projected onto a two-dimensional space using PCA on scaled and centered
data as the default settings of the R-library “FactoMineR“ (https://cran.r-project.org/
package=FactoMineR [65]). Of the resulting main PCs, those with eigenvalues >1 were
retained for clustering [66,67].

Clustering was subsequently performed according to the workflow proposed in [68].
That is, cluster analysis was carried out on the PCs and implemented as hierarchical
clustering using Ward’s method [69] and the Euclidean distance. The clusters were sub-
sequently consolidated using k-means clustering [70] to improve the initial partition ob-
tained from hierarchical clustering [68]. These calculations were performed using the R
libraries “FactoMineR“ (https://cran.r-project.org/package=FactoMineR [65]) and “clus-
ter” (https://cran.r-project.org/package=cluster [71]). The cluster number was determined
by calculating a total of 26 different indices available for this purpose using the R library
“NbClust” (https://cran.r-project.org/package=NbClust [72]). The final number of clus-
ters was determined by following the majority rule, i.e., the cluster count proposed by
the largest number of indices. Cluster quality was evaluated by calculating the average
Silhouette width [73]. The calculations were performed using the R libraries “cluster” and
“fossil” (https://cran.r-project.org/package=fossil [74]).

2.3.3. Investigation of Interrelations between Different Group Structures
Statistical Analysis of the Association between Odor Information and Diabetes Risk

Differences in FINDRISK groups were assessed for differences in olfactory test results
using analysis of variance for repeated measures (rm-ANOVA), with the within-subject
factor “olfactory subtest” (three levels, i.e., olfactory threshold. Odor discrimination,
and odor identification) and the between-subjects factor “FINDRSIK score” (five levels
comprising the five risk groups defined for this score). The α-level was set to 0.05 and
corrected for multiple testing according to Bonferroni’s suggestion [75] when appropriate.

Furthermore, the groups of FINDRISK and olfactory scores, either predefined or found
via Gaussian mixture modeling, were tested for significant associations which each other
using χ2 tests [76]. Correlations between olfactory test results and metabolomic as well as
demographic parameters were quantified by calculating Pearson’s r [76]. The correlation
analyses were included as control items age since it is contributing to the FINDRISK score
and is known to be correlated with odor identification performance [77] and the body mass
index, which is also queried to calculate the FINDRISK score.

Evaluation of the Utility of Olfactory and Metabolomic Information in Predicting
Diabetes Risk

The usefulness of olfactory and metabolomics information in predicting diabetes risk
was further investigated using a supervised machine learning approach. First, machine-
learned classifiers were trained with metabolomic, olfactory, or both types of information to
assign an individual to the correct FINDRISK score-based diabetes risk group. Comparison
of classification performance with different information types allowed assessment of the
importance of olfactory information in predicting diabetes risk. Second, in addition to the
classification approach, a machine learning-assisted regression approach was used. Specifi-
cally, feature selection [78,79] was performed to identify variables among the metabolomics

https://cran.r-project.org/package=FactoMineR
https://cran.r-project.org/package=FactoMineR
https://cran.r-project.org/package=FactoMineR
https://cran.r-project.org/package=cluster
https://cran.r-project.org/package=NbClust
https://cran.r-project.org/package=fossil
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and odor information that were relevant to the regression of either the FINDRISK score or
the odor TDI score.

Training of the machine-learned of the classifiers was performed in 1000-fold repeated
random subsampling cross-validation experiments as advised, for example, in [80], using
Monte-Carlo [81] resampling to split the data set class-proportionally into two disjoint
subsets, of which two-thirds of the original data served as the training data subset, and
the remaining third served as the test data subset. This was done using the R library
“sampling” (https://cran.r-project.org/package=sampling [82]). A negative control con-
dition was implemented by repeating the training of the classifiers with permuted data,
with the expectation that the classification would then be no better than guessing; other-
wise, overfitting could not be ruled out. The classification was attempted for the original
five categories of diabetic risk as defined for the FINDRISK score, and using only two
classes of either lower or higher diabetic risk obtained by a combination of classes at
possible breakpoints along with the ascending FINDRISK classes (e.g., class 1 versus 2–5,
1–2, versus 3–5, 1–3 versus 4–5, or 1–4 versus 5), or obtained by splitting the data at the
breakpoint of FINDRISK = 9, as this was indicted in the 1992 report on the predictive
performance of this score [32]. In addition, the clusters found in the unsupervised analyses
were used as classification targets to account for any possible scenario of interactions be-
tween odor and metabolomics or diabetes data. The classification accuracy was primarily
assessed as balanced accuracy [83], which is the mean of the predictive sensitivity and
specificity for each olfactory dysfunction category and reflects the average of the proportion
of correct results for each class. Other secondary measures of average classification perfor-
mance across the olfactory dysfunction category included test sensitivity and specificity
and negative and positive predictive values calculated using standard equations [84,85].
In addition, classification performance was assessed by calculating the area under the
ROC curve (AUC-ROC) and the F1 measure [86,87]. These calculations were performed
with the R libraries “caret” (https://cran.r-project.org/package=caret [88]) and “pROC”
(https://cran.r-project.org/package=pROC [89]). The 95% confidence intervals (CI) of the
classification performance parameters were determined as the range between 2.5% and
97.5% of the respective values during the 1000 cross-validation runs.

The classifiers were chosen to cover a variety of types so that the results do not
depend on a single type of classifier. This included random forests [90,91] as a tree-based
ensemble learner, adaptive boosting [92] as a tree-based classifier, a C5.0 non-hierarchical
rule-based classifier [93], classical logistic regression [94] since this is often used in statistical
analyses of similar data sets, and support vector machines (SVM [95]). The R libraries used
for these calculations comprised “caret”, “xgboost” (https://cran.r-project.org/package=
xgboost [96]), “C50” (https://CRAN.R-project.org/package=C50 [97], and “nnet” (https:
//cran.r-project.org/package=nnet [98]). Hyperparameters were set according to grid
searches performed in preliminary assessments or during the training using the control
function implanted in the “caret” library. For example, in the boosting, maximum tree
depth = 5, eta = 0.25, and number of parallel trees = 5, or in random forests, 500 trees
with [0.5, 1, 1.5, 2]·√n f eatures and a maximum of seven nodes per tree were used. The large
tree count was considered unproblematic as it has been shown that many trees do not
confer a risk of increasing errors [99]. The C5.0 rule generating algorithm was used with
the default hyperparameter settings of the C5.0 R library. In the case of negative results
from the above analyses, similar machine learning analyses were used to assess whether
the assignment of subjects to olfactory-parameter-based classes, either clinical categories
or GMM-based subgroups, could be predicted with the metabolomics information. This
was done to comprehensively test the possibility of an association between the present
diabetes-related metabolomics and olfaction. The results are reported as a summary only,
without all the details reported for the main analyses above.

In a second machine learning-based approach, the classification problem was retrans-
ferred into a regression problem, and variables relevant for linear regression of the diabetes
risk or the olfactory performance were chosen using three different standard techniques

https://cran.r-project.org/package=sampling
https://cran.r-project.org/package=caret
https://cran.r-project.org/package=pROC
https://cran.r-project.org/package=xgboost
https://cran.r-project.org/package=xgboost
https://CRAN.R-project.org/package=C50
https://cran.r-project.org/package=nnet
https://cran.r-project.org/package=nnet
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of feature selection [78,79]. Feature selection was implemented using the “Boruta” ap-
proach, which is based on the random-forests algorithm. It provides a clear decision on
whether a variable is important or not, derived from an internal 100-fold cross-validation
approach and a statistical evaluation with p-values that are 0.01 by default [100]. These
calculations were performed using the R package “Boruta” (https://cran.r-project.org/
package=Boruta [100]) with default hyperparameter settings. In addition, Least Absolute
Shrinkage and Selection Operators (LASSO [101]) were used for feature selection as im-
plemented in the R library “glmnet” (https://cran.r-project.org/package=glmnet [102]),
and another feature selection method was the analysis of the relative importance of
variables for linear regression implemented in the corresponding R library “relaimpo”
(https://cran.r-project.org/package=relaimpo [103]).

All feature selection methods were repeated 1000 times, with two-thirds of the data
set being drawn from the original data set using Monte Carlo resampling. In each run,
the features selected by the algorithms were collected. At the end of the 1000 runs for
feature selection, the variables were categorized according to the frequency with which
they appeared among the selected features. This was achieved using an item categorization
technique implemented as computed ABC analysis [104] as a suitable method for feature
selection in machine learning [105]. The algorithm divides each set of positive numbers, i.e.,
the absolute values of the protein loadings on the relevant PC, into three non-overlapping
subsets named “A”, “B”, and “C” [106]. Subset “A” contains the “important few” which
were retained. These calculations were performed using our R package “ABCanalysis”
(http://cran.r-project.org/package=ABCanalysis [104]).

2.3.4. Exploration of the Associations of Potential Confounders with Diabetes Risk

Associations of demographic factors, medications, concomitant diseases, or further
risk factors for olfactory loss, such as sinonasal disease, nasal surgery, or professional expo-
sition to toxins that could cause reduced olfactory function, with the FINDRISK score-based
groups of diabetic risk were examined using standard statistical methods. For example,
in view of reports that the loss of the sense of smell in patients with uncomplicated dia-
betes was modulated by hyperthyroidism or hypothyroidism [107,108], the distribution
of these diseases and of additional factors across FINDRISK score-based groups of dia-
betic risk was analyzed by means of χ2 tests. The results of the crosstabulations were
further examined in the case of significant χ2 tests by calculating the Pearson residuals
to determine in which particular group the expected number of cases was significantly
different from the observed number of cases. These calculations were done using the R
library “vcd” (https://cran.r-project.org/package=vcd [109]). In addition, the effects of
unequally distributed factors on the results of the olfactory subtests (threshold, discrimi-
nation, or identification; see above) were assessed by t-tests [110]. The α level was again
set at 0.05 and corrected for multiple testing as described above. Finally, medications
were screened by a pharmacological expert for known olfactory effects based on reported
evidence [46,111].

3. Results

A 32-year-old woman of Asian background was excluded from the analysis because
the FINDRISK diabetes risk score has so far only been validated for Caucasians. The
analyzed n = 163 individuals were between 18 and 69 years old (mean value ± standard
deviation: 52.9 ± 12.7 years). The olfactory test results and diabetes risk score data were
complete. Olfactory functional categories in the cohort included one patient with anosmia,
39 subjects with hyposmia, and 123 subjects who were normosmic. The categories of the
FINDRISK score predicting the risk of diabetes as low, slightly increased, medium, high, or
very high were presented by 19, 68, 36, 33, and 7 subjects, respectively. By plasma glucose
criteria, 94 participants were healthy, 64 were prediabetic, and 6 had manifest diabetes.

An overview of the distributions of TDI odor scores, FINDRISK score, and subject
age is shown in Figure 2. Additional demographic and medical details of the cohort are

https://cran.r-project.org/package=Boruta
https://cran.r-project.org/package=Boruta
https://cran.r-project.org/package=glmnet
https://cran.r-project.org/package=relaimpo
http://cran.r-project.org/package=ABCanalysis
https://cran.r-project.org/package=vcd
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summarized in Table 2. The metabolomics data (Figure 3) contained six missing values in
which the values after the glucose challenge had not been measured. These data, and the
12 removed outliers detected based on significant Grubbs tests, were imputed.

Figure 2. Distribution and group structures of one-dimensional main data: TDI olfactory score and FINDRISK score of
diabetic risk. The dotplots show the individual values arranged in bins along with the range of values. The dots are
colored according to predefined groups. Group boundaries are shown as vertical dashed black lines. The distribution of
the data is shown as probability density function (PDF) estimated by means of the Pareto density estimation (PDE [61];
blue line) and overlaid on the histogram-like dotplots. For the olfactory TDI score, a GMM fit is shown as a red line, and
the M = 2 single mixes are indicated as different colored lines. The Bayesian boundary between the Gaussians is indicated
as a perpendicular magenta dashed line. The figure has been created using the R software package (version 4.0.5 for
Linux; https://CRAN.R-project.org/ [54]) and the library “ggplot2” (https://cran.r-project.org/package=ggplot2 [112]).
The colors were selected from the “colorblind_pal” and “stata_pal” palettes provided with the R library “ggthemes”
(https://cran.r-project.org/package=ggthemes [113]).

Table 2. Basic descriptive statistics of sociodemographic, disease-related, and metabolomics parameters of the participants.

Parameter Unit n Range
Counts/Positive Responses Mean ± SD

Demographics
Age Years 163 18–69 52.93 ± 12.7

Sex - 163 6 men
101 women -

BMI—body mass index kg/m2 163 19.7–43.7 28.25 ± 5.04
Waist-hip ratio - 163 0.6–1.1 0.92 ± 0.08

Systolic blood pressure mm Hg 163 102–191 135.81 ± 16.91
Diastolic blood pressure mm Hg 163 52–120 79.57 ± 11.99

Prior or Concomitant Symptoms and Diseases
Head trauma - 163 16 (9.8%) -

Headache - 163 37 (22.7%) -
Postnasal drip - 163 16 (9.8%) -

Neurological disorder - 163 6 (3.7%) -
Renal dysfunction - 163 6 (3.7%) -

Nasal symptoms - 163

0 = 101 (62%)
1 = 38 (23.3%)
2 = 15 (9.2%)
3 = 6 (3.7%)
4 = 2 (1.2%)
5 = 1 (0.6%)

-

https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggthemes
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Table 2. Cont.

Parameter Unit n Range
Counts/Positive Responses Mean ± SD

Snoring - 163 58 (35.6%) -
Hepatitis - 163 13 (8%) -

Hypothyroidism - 163 15 (9.2%) -
Hyperthyroidism - 163 8 (4.9%) -

Surgery: palatine tonsils - 163 20 (12.3%) -
Surgery: pharyngeal tonsils - 163 11 (6.7%) -

Surgery: middle ear - 163 4 (2.5%) -
Surgery: teeth - 163 25 (15.3%) -

Surgery: nasal sinuses - 163 4 (2.5%) -
Surgery: nasal septum - 163 8 (4.9%) -

Surgery: nasal turbinates - 163 1 (0.6%) -
Frequent nasal infections - 163 20 (12.3%) -

Nasal polyposis - 163 8 (4.9%) -
Nasal obstruction - 163 13 (8%) -

Increased nasal secretion - 163 12 (7.4%) -
Chronic sinusitis - 163 15 (9.2%) -
Allergic rhinitis - 163 23 (14.1%) -

Exposure to Toxic Substances

Alcohol use - 163
0 = 23 (14.1%)

1 = 122 (74.8%)
2 = 18 (11%)

-

Smoking behavior - 163
0 = 103 (63.2%)
1 = 37 (22.7%)
2 = 23 (14.1%)

-

Professional exposure to chemicals - 163 23 (14.1%) -
Metabolomics Data

Triglycerides in serum mmol/L 163 0.49–7.9 1.57 ± 1.08
Total cholesterol mmol/L 163 2.8–8.85 5.53 ± 1

LDL—low density lipoprotein mmol/L 163 0.87–6.46 3.33 ± 0.83
HDL—high density lipoprotein mmol/L 163 0.67–2.84 1.51 ± 0.43
Hba1c—glycated hemoglobin mmol/L 163 4.7–6.8 5.6 ± 0.4

Glucose, baseline mmol/L 163 3.88–7.45 5.33 ± 0.69
Glucose, after 120 min mmol/L 162 2.65–16.48 6.8 ± 2.31

Glucose, change mmol/L 162 −3.68–9.56 1.46 ± 1.99
Fatty acids, baseline mmol/L 163 0.12–93 1.03 ± 7.25

Fatty acids, after 120 min mmol/L 162 0.01–0.25 0.06 ± 0.04
Fatty acids change mmol/L 162 −92.97–0.07 −0.97 ± 7.28

Proinsulin, baseline mmol/L 163 0.6–57.2 11.31 ± 10.72
Proinsulin, after 120 min pmol/L 162 0.6–261 46.02 ± 50.07

Proinsulin, change pmol/L 162 −0.3–213.7 34.66 ± 43.79
C-Peptide, baseline pmol/L 163 296–3510 878.02 ± 390.38

C-Peptide after 120 min pmol/L 162 500–8165 3034.72 ± 1365.23
C-Peptide, change pmol/L 162 −318–6987 2155.36 ± 1180.24
Insulin, baseline pmol/L 163 9–1157 79.24 ± 105.04

Insulin, after 120 min pmol/L 161 26–2455 500.27 ± 452.14
Insulin, change pmol/L 161 −293–2271 420.97 ± 421.16
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Figure 3. Raw metabolomics data. The data are plotted separately for the five diabetes risk groups according to the
FINDRISK score (1 = “low risk”, 2 = “slightly increased risk”, 3 = “medium risk”, 4 = “high risk”, and 5 = “very high risk”).
Individual data are shown as dots; six outliers removed from the further analysis are not shown to ensure discernibility of
the projection of data points onto the ordinate. The original data are overlaid with boxplots, constructed using the minimum,
quartiles, median (solid line within the box), and maximum. The whiskers add 1.5 times the interquartile range (IQR)
to the seventy-fifth percentile or subtract 1.5 times the IQR from the twenty-fifth percentile. The figure has been created
using the R software package (version 4.0.5 for Linux; https://CRAN.R-project.org/ [54]) and the R package “ggplot2”
(https://cran.r-project.org/package=ggplot2 [112]). The colors were selected from the “colorblind_pal” palette provided
with the R library “ggthemes” (https://cran.r-project.org/package=ggthemes [113]).

3.1. One- and High-Dimensional Group Structures in Metabolomic and Olfactory Data

The one-dimensional FINDRISK diabetic risk scores were unimodally normally dis-
tributed (Figure 2). Unimodality was supported by the lowest BIC obtained with a Gaussian
model with M = 1 modes as compared to models with M = [2, . . . , 5] modes, and by a
non-significant Kolmogorov–Smirnov test at p = 0.282 obtained with for a single Gaussian
in untransformed data. In the distribution of the olfactory TDI scores, bimodality was sup-
ported by the lowest BIC for M = 2 modes (BIC = 994.5056, 991.8270, 1014.8427, 1027.3479,

https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggthemes
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and 1044.3476 for M = 1 to 5 modes, respectively) and a non-significant Kolmogorov-
Smirnov test of p = 0.992 for the data predicted by a Gaussian mixture with M = 2 modes
versus the observed data. Thus, two modes were supported with means = (24.9, 34.32),
standard deviations = (3.42, 3.2) and weights (0.167, 0.83). The Bayesian decision bound-
ary between the resulting groups of patients with different olfactory performances was
calculated as TDI = 27.85 (Figure 2).

PCA projection of the high-dimensional metabolomics data (Figure 4) retained six PCs
with eigenvalues > 1. Together, they explained 77.86% of the total variance. The variable’s
contribution to these PCs was fairly similar, with a gradual decrease from total cholesterol to
C-peptide (Figure 4). The metabolomics data contained a two-cluster structure (Figure 4).
That is, a number of k = 2 clusters was the majority vote of the 26 different indices to
determine the number of clusters. Hierarchical Ward clustering followed by consolidation
using k-means clustering resulted in a two-cluster solution with n = 80 and 83 cases,
respectively. Cluster quality was moderate with an average silhouette width of 0.17; only
positive silhouette values were seen.

3.2. Interrelationships between Different Group Structures
3.2.1. Results of Statistical Analyses of the Association between Olfactory Information and
Diabetes Risk

For the FINDRISK score, the predefined clinical risk groups were examined for asso-
ciation with TDI-based groups of subjects with different olfactory performances. Cross-
tabulation and subsequent χ2 statistics were negative for both variants of TDI-based groups,
i.e., olfactory subgroups were not unequally represented among the five FINDRISK score-
based diabetic risk groups (diabetic risk groups versus olfactory dysfunction categories:
χ2 = 7.794, df = 8, p = 0.4538; diabetic risk groups versus GMM based groups found in
the distribution of the TDI values: χ2 = 6.3792, df = 4, p = 0.1726). Negative results were
also observed for the crosstabulations of olfactory parameter-based groups versus the
two metabolomics-based clusters (olfactory dysfunction categories: χ2 = 2.2751, df = 2,
p = 0.3206; SDI based groups: χ2 = 2.1043·10−30, df = 1, p = 1). In contrast, the five FIND-
RISK score-based groups were unequally represented among the two clusters found in the
metabolomics data, in decreasing order of risk between clusters #1 and #2 (Figure 4). This
was highly statistically significant with χ2 = 26.606, df = 4, p = 2.388 × 10−5.

Furthermore, the five groups of subjects with different diabetic risks did not differ in
their performance in the olfactory tests of olfactory threshold, odor discrimination, and odor
identification (rm-ANOVA: main effect of “FINDRISK score”: df = 4.158, F = 1.106, p = 0.356,
interaction “FINDRSIK score” by “olfactory subtest”: df = 8.316, F = 0.728, p = 0.667). Only
the expected result that the olfactory subtests differed statistically significantly among each
other was obtained (main effect “olfactory subtest”: df = 2.316, F = 136.35, p < 2 × 10−16).
Non-significant effects on olfactory subtest scores were also seen when the five FINDISK
score-based groups were replaced by the two metabolomics-based clusters or by the two-
class variant used in machine learning (see below), in which groups were combined at
FINDRISK scores ≤ 11 versus FINDRISK score > 11 (i.e., combined FINDRISK classes 1
and 2 versus FINDRISK classes 3–5, ANOVA details not shown).

Correlation analyses underscored this lack of association of olfactory performance
test scores with diabetes-related variables. Specifically, the correlation matrix (Figure 5)
indicated significant correlations for the control items, i.e., age and body weight were corre-
lated with the FINDRISK score, as they are both components of it, and age was correlated
with the odor identification performance, which is a long-established relationship [77].
As expected, the FINDRISK score was also significantly positively correlated with most
metabolomic parameters, except for a negative correlation with plasma HDL and some
non-significant observations (Figure 5). However, none of the olfactory subtest scores was
significantly correlated with any other element of the matrix except age.
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Figure 4. Results of principal component analysis (PCA) and Ward/k-means based clustering of
the metabolomics data. (A): Scree-plot of the amount of variation of the data captured by each
PC. The dashed horizontal reference dashed denotes the limit for PC selection for clustering set
at an eigenvalue > 1 [66,67]. (B): Barplot of the contribution of each metabolomics parameter to
PCs #1–#6 as the PCs with eigenvalues > 1. (C): Factorial plot of the individual data points on the
principal component map, obtained following Ward clustering followed by k-means based cluster
consolidation [68]. The colored areas visualize the cluster separation. (D): Cluster dendrogram
obtained with the Ward algorithm. The two-cluster solution was the majority vote of 26 different
indices [72] calculated to determine the number of clusters. (E): Silhouette plot [73] for the two-
cluster solution. Positive values indicate that the sample is away from the neighboring cluster,
while negative values would indicate that samples might have been assigned to the wrong cluster
because they are closer to neighboring clusters than to their own cluster (not found). (F): Mosaic
plot, visualizing the contingency table between the original group structure with respect to the
diabetes risk (1 = “low risk”, 2 = “slightly increased risk”, 3 = “medium risk”, 4 = “high risk”, and
5 = “very high risk”) and the cluster identified on the PCA projection of the metabolomics data.
The results of χ2 testing are indicated on the panel. The figure has been created using the R software
package (version 4.0.5 for Linux; https://CRAN.R-project.org/ [54]) and the R packages “ggplot2”

https://CRAN.R-project.org/
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and “FactoMineR“ (https://cran.r-project.org/package=FactoMineR [65]). The colors were selected
from the “colorblind_pal” palette provided with the R library “ggthemes” (https://cran.r-project.
org/package=ggthemes [113]).

Figure 5. Correlations of metabolomics and olfactory data. Age and BMI are additionally included as control variables. In
the lower-left part, the correlations are color-coded for both correlation strength and direction (bars in the upper right corner).
The color-coding of the correlation ranges from the blue for a high negative correlation, to gray/white for no correlation, to
green for a strong positive correlation. The more intense the color, the higher the correlation. The correlation strength is
additionally coded by the size of the square symbolizing the correlation. Cell labels indicate Pearson’s r [114] values, crossed
out if not statically significant. Correlations with the FINDRISK score as the main target of this analysis are marked with a red
frame. The figure has been created using the R software package (version 4.0.5 for Linux; https://CRAN.R-project.org/ [54])
and the library “corrplot” (https://cran.r-project.org/package=corrplot [115]).

3.2.2. Utility of Olfactory and Metabolomic Information in Predicting Diabetes Risk
Machine-Learned Classification Approach

Machine-learned classifiers could be trained with the complete metabolomics informa-
tion to better predict a subject’s assignment to the correct FINDRISK diabetes risk class than
by guessing when creating a two-class problem with either low risk (combined FINDRISK

https://cran.r-project.org/package=FactoMineR
https://cran.r-project.org/package=ggthemes
https://cran.r-project.org/package=ggthemes
https://CRAN.R-project.org/
https://cran.r-project.org/package=corrplot
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classes 1 and 2) or higher risk (FINDRISK classes 3–5), i.e., FINDRISK scores ≤ 11 or
FINDRISK score > 11, respectively. Using only the metabolomics information, the balanced
classification accuracy and its 95% confidence interval obtained in the 1000 cross-validation
runs were consistently above the 50% guess level for all included classifiers (Table 3). That
this was not due to overfitting is evident from the results of training the algorithms with
permuted metabolomics data, where the balanced classification accuracy was close to 50%,
and its 95% CI always included the value of 50%. From these observations, it could be
concluded that metabolomics data contained information relevant to the diabetes risk
according to the FINDRISK score. For brevity, results with permuted data are shown only
if the classifiers were successful with the original data (Tables 3 and 4).

Contrasting observations were made with the odor data. That is, when the scores
obtained in the subtests of olfactory threshold, odor discrimination, and odor identification
were added to the list of features, the classification accuracy obtained with the metabolomics
information alone did not improve. Furthermore, the olfactory information obtained in the
three subtests did not provide a sufficient basis to train a classifier to assign a subject to
the correct diabetes risk class better than by guessing, i.e., all 95% CIs of the classification
accuracy included the value of 50% (Table 3).

Furthermore, when the classification target was changed from FINDRSIK-based
classes to clinical olfactory categories (two classes consisting of either normosmia or re-
duced function, because the one anosmic patient had to be included in the same group as
the hyposmic subjects), the metabolomics information did not provide enough information
to allow correct group assignment of subjects, which was possible, as expected, when the
olfactory subtest results were added to the list of features used to train the algorithms
or when only the olfactory subtest results were used (Table 4). Again, using permuted
features for training led to the failure of the classifiers to assign subjects to the correct
olfactory category, which indicated that the successful classification was not an artifact of
overfitting. These results further confirm that the current metabolomic parameters have no
relation to olfaction. Finally, analogous assessments with slightly different classes such as
the metabolomics clusters of the GMM based TDI olfactory classes provided similar results
in terms of the mutual roles of metabolomics and olfactory information for the respective
diabetes of olfactory classes (details not shown).

Machine-Learned Regression Approach

Feature selection for regression of either diabetes risk quantified by the FINDRISK
score or olfactory acuity quantified by the TDI score indicated similar features observed to
be important in the classification tasks (Figure 6). Specifically, all feature selection methods
used, including Boruta, LASSO, and the relative importance of variables for the linear
regression method, revealed that metabolomic variables were relevant for the FINDRISK
regression and olfactory variables were relevant for the TDI regression, with no crossover
between variable groups. Age and BMI were important for the FINDRISK score, consistent
with their contribution to that score, while age was also selected as a variable relevant to
the regression analysis of the TDI score, but much less frequently than its components
olfactory threshold, odor discrimination, and identification, but well consistent with the
long-established age dependence of olfactory function [77].
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Table 3. Classification performance measures for correctly assigning subjects to two diabetes risk classes, either lower (FINDRISK scores ≤ 11) or higher (FINDRISK score > 11) risk,
obtained when training five different classifiers (random forests (RF), boosted classification and regression trees (ADA), C5.0 non-hierarchical decision rules, logistic regression (regression),
and support vector machines (SVM)) with the metabolomics or olfactory information. The results represent the medians and 95% confidence intervals of the performance measures
obtained during 1000 runs using class-proportional random divisions of the data set into disjoint training (two-thirds of the data set) and testing (one third) data subsets. The classifiers
were trained on the metabolomics information, comprising d = 15 markers, on the olfactory information, comprising d = 3 olfactory subtest results, and on both types of information. With
the metabolomics information for which the classifiers were successfully trained, training was repeated with randomly permuted data, which served as a negative control to detect possible
overfitting. Results obtained when training was performed with permuted data are only shown when the training with original data had been successful.

Parameter Classifier
Performance

Data Metabolomics Data Only

Original Permuted

Algorithm RF ADA C5.0 Regression SVM RF ADA C5.0 Regression SVM

Sensitivity, recall 69 (48.3–86.2) 65.5
(44.8–82.8)

65.5
(37.9–86.3)

72.4
(55.2–89.7)

72.4
(55.2–86.2)

58.6
(34.5–79.3)

51.7
(31–72.4)

75.9
(13.8–100)

55.2
(34.4–79.3)

58.6
(34.5–82.8)

Specificity 64 (44–80) 60 (40–80) 64 (28–92) 64 (44–84) 64 (44–84) 40 (16–64) 48 (24–72) 24 (0–88) 42 (16–68) 40 (16–72)

Parameter Classifier
Performance

Positive predictive value,
precision

67.7
(57.6–79.2)

65.8
(53.8–80)

66.7
(53.8–83.3)

70
(59.4–82.8) 70 (59–83.3) 53.1

(40–68.2)
53.6

(37.9–69)
53.7

(33.3–73.3)
53.3

(36–71.1)
53.1

(36.4–70.8)

Negative predictive value 62.5 (50–76.9) 60 (46.4–75) 60
(46.7–76.2)

66.7
(54.2–81.3)

65.5
(53.6–80) 45.5 (25–68) 46.2

(28–63.6)
45.8

(9.5–93.5)
45.8

(21.7–69.6)
45.5

(22.2–69.2)

F1 67.8 (54.9–78) 65.5
(52–77.2)

65.5
(47.3–76.9)

71.4
(60–81.4)

70.4
(59.3–80)

56.7
(38.1–71.4)

53.6
(35.3–68.9) 64.1 (19–72) 55.2

(35.1–72.7)
55.6

(35.1–72.1)

Balanced Accuracy 65 (54.4–75.7) 63
(50.1–74.5)

63.3
(50.2–73.9)

68.2
(56.8–79.4)

67.9
(56.5–77.9)

49.3
(34.1–66.2)

49.9
(33.2–66.5)

50
(34.1–64.1)

49.6
(30.7–68.8)

49.3
(30.7–69)

ROC-AUC 73.3
(62.1–83.2)

68.8
(53.8–81.7)

65.2
(51.7–76.7)

76.4
(64.4–86.8)

67.9
(56.5–77.9)

49.2
(28.3–71)

55.6
(45.5–71.7)

50
(33.5–65.1)

60.1
(47–76.8)

55.3
(37.9–71.1)

Data Metabolomics and Olfactory Data Olfactory Data Only

Original Original

Sensitivity, recall 69 (48.3–82.8) 65.5
(44.8–79.3)

65.5
(37.9–86.2)

69
(51.7–86.2)

69
(51.7–86.2)

58.6
(41.4–75.9)

55.2
(37.9–72.4)

100
(17.2–100)

69
(44.8–93.1)

82.8
(41.4–100)
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Table 3. Cont.

Specificity 64 (44–80) 64 (40–80) 60 (36–88) 64 (44–84) 64 (44–84) 44 (24–64) 48 (28–68) 0 (0–76) 28 (8–48) 16 (0–48)

Positive predictive value,
precision 68 (58.1–80) 66.7

(54.3–78.6)
65.7

(53.8–81.5) 69 (59–82.1) 69
(58.1–81.8)

55.6
(45.8–65.4)

55.9
(45–66.7)

53.7
(41.7–59.1)

52.6
(44.1–58.5)

53.5
(44.8–56.3)

Negative predictive value 62.5
(51.5–76.9)

60
(47.4–73.9)

60
(46.4–73.9)

64.3
(52–78.9)

64
(52.2–78.9)

50
(35.3–61.5)

48.3
(35–61.5)

45.8
(30.8–50) 43.8 (25–65) 41.7

(16–62.5)

F1 67.8
(54.9–78.1)

65.5
(51.7–76.7)

65.4
(47.6–75.9)

69.1
(57.1–80)

69
(56.6–79.3)

57.1
(43.6–67.7)

55.7
(42.3–66.7)

69.9
(24.4–69.9)

59.7
(45.2–69.9)

64.9
(44–69.9)

Balanced Accuracy 65 (54.8–75.1) 63
(50.8–74.5)

62.8
(50.1–73.7)

66.8
(55.6–77.7)

66.5
(54.8–76.8)

52.2
(41.3–62.5)

52.1
(40.4–63.6)

50
(41.6–54.4)

48.5
(37.6–57.1)

49.7
(38.8–53.9)

ROC-AUC 74 (62.8–83.7) 68.8
(55–81.5)

65
(52.1–76.1)

74.5
(63.3–85.5)

66.5
(54.8–76.8)

55
(43.3–65.5)

54.8
(45.4–65.2)

50
(41.5–54.4)

54.2
(45.2–64.3)

50
(40.5–57.3)

Table 4. Classification performance measures for correctly assigning subjects to olfactory dysfunction categories, either reduced anosmia function (n = 1) or hyposmia, or normal olfactory function,
obtained when training five different classifiers (random forests (RF), boosted classification and regression trees (ADA), C5.0 non-hierarchical decision rules, logistic regression (regression), and
support vector machines (SVM)) with the metabolomics or olfactory information. The results represent the medians and 95% confidence intervals of the performance measures obtained during 1000
runs using class-proportional random divisions of the data set into disjoint training (two-thirds of the data set) and testing (one-third) data subsets. The classifiers were trained on the metabolomics
information, comprising d = 15 markers, on the olfactory information, comprising d = 3 olfactory subtest results, and on both types of information. With the olfactory information for which the
classifiers were successfully trained, training was repeated with randomly permuted data, which served as a negative control to detect possible overfitting. Results obtained when training was
performed with permuted data are only shown when the training with original data had been successful.

Parameter Classifier
Performance

Data Metabolomics Data Only Metabolomics and Olfactory Data

Original Original

Algorithm RF ADA C5.0 Regression SVM RF ADA C5.0 Regression SVM

Sensitivity, recall 0 (0–7.7) 23.1 (0–46.2) 0 (0–31) 0 (0–15.4) 0 (0–0) 76.9
(53.8–100)

76.9
(46.2–92.3)

76.9
(46.2–100)

84.6
(53.8–100)

84.6
(53.8–100)

Specificity 97.6 (90.2–100) 73.2
(56.1–85.4)

100
(65.9–100)

90.2
(75.6–100)

100
(100–100)

95.1
(87.8–100)

92.7
(82.9–100)

92.7
(80.5–100)

92.7
(80.5–100)

95.1
(87.8–100)

Positive predictive value,
precision 0 (0–100) 20 (0–38.5) 20 (0–40.1) 8.3 (0–50) 0 (0–0) 84.6

(69.2–100)
78.6

(57.1–100)
76.9

(55.6–100)
78.6

(57.1–100)
85.7

(66.7–100)
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Table 4. Cont.

Parameter Classifier
Performance

Negative predictive value 75.9
(74.5–77.4)

74.4
(68.4–80.5)

75.9
(72.1–78)

75
(71.4–77.8)

75.9
(75.9–75.9) 93 (86.9–100) 92.7

(85.4–97.6)
92.5

(84.1–100)
94.9

(86.7–100) 95 (86.7–100)

F1 13.3
(11.1–14.3)

21.4
(7.4–38.7) 19 (8.3–37.4) 11.8 (8.3–25) #WERT! 81.5

(63.6–92.9)
76.6

(58.3–88.9)
76

(52.6–88.9)
80

(60.8–92.9)
83.3

(63.6–96.3)

Balanced Accuracy 50 (46.3–53.8) 46.9
(35.4–58.6)

50
(41.7–54.4)

47.6
(40.2–54.2) 50 (50–50) 87.2

(74.7–96.3)
84.3

(71.9–93.7)
83.6

(68.4–93.7)
87.4

(73.3–97.6)
88.6

(74.5–98.8)

ROC-AUC 42.1
(28.1–55.9)

57
(45.6–72.1)

50
(40.2–53.4)

57.6
(45.2–71.1) 50 (50–50) 97

(91.7–99.8)
94.4

(83.3–98.9)
85.5

(70.6–95.1)
90.9

(74.9–98.9)
88.6

(74.5–98.8)

Data Olfactory Data Only

Original Permuted

Sensitivity, recall 84.6 (53.8–100) 76.9
(46.2–100)

76.9
(46.2–100)

92.3
(69.2–100)

92.3
(61.5–100) 7.7 (0–38.5) 23.1 (0–61.5) 0 (0–30.8) 0 (0–15.6) 0 (0–0)

Specificity 97.6 (90.2–100) 95.1
(85.4–100)

95.1
(82.9–100)

97.6
(92.6–100)

97.6
(92.7–100) 92.7 (78–100) 73.2

(56.1–87.8)
100

(87.7–100)
100

(95.1–100)
100

(100–100)

Positive predictive value,
precision 90 (70.6–100) 81.8

(63.6–100) 80 (58.8–100) 91.7 (75–100) 92.3
(78.6–100) 22.2 (0–100) 25 (0–50) 50 (0–100) 50 (0–100) #WERT!

Negative predictive value 95.1 (87–100) 92.9
(85.4–100)

92.9
(84.8–100)

97.5
(90.5–100)

97.4
(89.1–100)

75.9
(71.7–82.5)

76.2
(67.6–85.7)

75.9
(74.5–80.9)

75.9
(75.5–78.9)

75.9
(75.9–75.9)

F1 84.6
(66.7–96.3)

78.4
(60–92.3)

78.6
(55.6–92.3)

88.9
(74.1–100)

91.7
(76.2–100) 20 (9.1–50) 26.1

(7.1–51.9) 36.4 (8.3–80) 14.3
(13.2–63.2) #WERT!

Balanced Accuracy 89.9
(75.7–98.8) 85 (72–95.1) 86

(69.8–96.2) 93.7 (81–100) 92.5
(80.8–100)

50
(40.2–65.4)

50.6
(34.1–68.6)

50
(46.3–61.8)

50
(48.8–57.7) 50 (50–50)

ROC-AUC 97.8 (93.4–100) 96.1
(86.1–99.4)

87
(70.6–96.2)

98.4
(94.6–100)

92.5
(80.8–100)

54.2
(20.3–83.1)

58.5
(44.5–76.5)

50
(46.3–64.2)

81
(48.4–99.4) 50 (50–50)
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Figure 6. Relevant regressors of either diabetes risk or olfactory test score. Feature selection results for regression analyses
using three different methods, including (i) the random forest-based “Boruta” method [100] (panels (A,D)), (ii) the least
absolute shrinkage and selection operator (LASSO [101]) (panels (B,E)), and (iii) the analysis of the relative importance
of variables for linear regression [103] (panels (C,F)), followed by the selection of the most relevant variables using the
calculated ABC analysis [104,105]. The bar charts show the variables that were identified as important by the feature
selection algorithms in 1000 runs on two-thirds of the instances selected by random Monte Carlo selection from the original
dataset. The final feature set (green bars) indicates the members of the ABC set “A” that results from subjecting the number
of selections as relevant variables in the 1000 replicates to item categorization via computerized ABC analysis. The size of
the final feature set is the most common size of the set of selected features during the 1000 runs. Variable name abbreviations:
T: olfactory threshold, D: odor discrimination, I: odor identification, BMI: body mass index, HDL: high-density lipoprotein
(HDL cholesterol), LDL: low density lipoprotein. The figure has been created using the R software package (version 4.0.5 for
Linux; https://CRAN.R-project.org/ [54]) and the R package “ggplot2” (https://cran.r-project.org/package=ggplot2 [112]).

3.3. Associations of Medical or Other Factors or Potential Confounders with Diabetes Risk

The diagnoses of prediabetes or diabetes had a significant effect on the assignment of
subjects to the five FINDRISK-based diabetes risk groups (χ2 = 29.659, df = 8, p = 0.0002428),
which was subsequently attributed to the overrepresentation, compared to a random
group distribution, of subjects with manifest diabetes in the “high” diabetes risk group.
However, prediabetes or manifest diabetes had no effect on subjects’ performance in
the three olfactory diagnosis groups (analyses of variance: p-value always >0.7), and
the representation of these subjects in the olfactory dysfunction category was random
(χ2 5.1975, df = 4, p = 0.2676).

https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
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The distribution of hypothyroidism was unequal across the FINDRISK-based groups
(χ2 = 13.14, df = 4, p = 0.01061), owing to overrepresentation in the small group of very
high risk of diabetes. However, none of the olfactory subtests were significantly affected
by hypothyroidism or hyperthyroidism (unpaired t-tests of olfactory threshold, odor
discrimination, odor identification versus presence or absence of comorbidity: uncorrected
p-values always >0.05). All other comorbidities or prior surgeries were evenly distributed
among the five diabetes risk groups, with the exception of postnasal drip (χ2 = 18.996,
df = 4, p = 0.0007873), which was disproportionately more frequent in the medium diabetes
risk group. Negative results were also seen in similar analyses of smoking behavior or
professional exposure to substances that potentially affect the sense of smell. Gender was
also equally distributed among the FINDRISK-based groups (χ2 = 1.791, df = 4, p = 0.7741).

Classes of medications taken by participants included antiarrhythmics, antiparkin-
sonian agents, cytostatics, antidiabetics, statins, fibrates, antihypertensives, analgesics,
antiasthmatics, and antidepressants. Only the ingestion of antihypertensives was un-
equally represented among FINDRISK risk groups (χ2 = 29.271, df = 4, p = 6.885 × 10−6.
However, the disparity did not correspond to increased risk, as would be expected from
querying this mediation within the FINDRISK score, but was due to the underrepresenta-
tion of antihypertensives in FINDRISK class #2 and overrepresentation in class #3. None
of the medications were unequally distributed among subjects with different olfactory
dysfunction categories (χ2 tests: p always >0.45). Finally, manual screening identified no
single drug with available reported evidence for effects on olfactory performance.

4. Discussion

The present analyses provided no support that functional information about a subject’s
sense of smell captured in a standard clinical odor test that assesses three dimensions of
the sense of smell, namely odor threshold, odor discrimination performance, and odor
identification performance, is related in any way to metabolomics data commonly collected
as part of diabetes diagnosis or to a validated score that quantifies an individual’s risk of
developing diabetes within the next decade. While several lines of data analysis consistently
succeeded in establishing an association of metabolomics data with the degree of diabetes
risk, the same analyses failed to identify an analogous association for olfactory function.
This was observed in a setting to predict diabetes risk, and most participants did not have
diagnosed diabetes at the time of data collection. The results, therefore, discourage claims
that the sense of smell could be used as a simple, non-invasive screening test for the early
detection of diabetes.

The comprehensive data analysis was performed to corroborate the negative result
regarding the usefulness of olfactory information obtained in a standard clinical test for
the early prediction of diabetes against a random failure of the analysis. Therefore, the
dataset was assessed using predefined clinical olfactory dysfunction categories or diabetes
risk groups, and additional unsupervised subgroup detection was performed at multiple
levels of analysis. All results showed that the analyses were consistently negative with
respect to the above hypothesis, whereas they were consistently positive for the several
included control studies whose results were known from the current state of olfactory
or metabolomics science. Negative results of associations of olfactory information with
metabolomics or diabetes risk were obtained using standard statistics implemented as
analyses of variance or correlation analyses—association analyses of olfactory-based subject
groups with metabolomics-based subject groups after data projection by PCA were also
negative. Finally, five different supervised machine learning methods showed no utility of
olfactory information to assign subjects to subgroups defined by metabolomics parameters
or by the diabetic risk. Moreover, the reverse task of using metabolomic information to
assign subjects to olfactory-defined subgroups after training machine learning algorithms
also consistently failed. In contrast, the groups identified in the metabolomics data by
the unsupervised analysis matched well with the given groups of diabetes risk, and
the machine-learning algorithms were ell able to assign subjects to diabetic risk groups
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using the metabolomics information or to assign subjects to olfactory subgroups using the
olfactory subtest information, but not vice versa.

The hypothesis of a benefit of olfactory information as an early sign of the development
of diabetes, as the FINDRISK score is designed, was derived from suggestions in olfactory
research, where more and more diseases have been associated with olfactory disorders
in recent decades, and olfactory testing has been proposed as screening in some of these
cases. Specifically, olfactory tests have been shown to predict neurological disorders
such as Parkinson’s disease [10,11], Alzheimer’s disease [7,116], multiple sclerosis [8],
dementia [117], or 5-year mortality in older adults [118]. For example, olfactory deficits are
considered signs of developing central nervous complications of HIV infection [9], early
signs of Parkinson’s disease [10], or signs of beginning cognitive dysfunction [13].

In diabetes, the relationship between the presence or progression of the disease and
loss of olfaction is less clear. Proposed pathomechanisms include ideas about the prominent
role of insulin in the olfactory system [23], with the olfactory bulb being the brain area
with the highest rate of insulin transport, the highest level of insulin, and the highest level
of insulin receptors [119–121], at least in rodents while a transcriptomics analysis of the
human olfactory bulb did not identify insulin receptors but only insulin-like growth factor
binding proteins 5 and 7 genes IGFBP5 and IGFBP7 [122]. Furthermore, in light of manifest
diabetes, it has been hypothesized that polyneuropathic changes contribute to the loss of
olfaction [19]. Olfactory dysfunction has been shown to be an early marker/predictor of
cognitive dysfunction in type 2 diabetes. Based on this association, it may also be that the
observed decline in olfactory function in diabetes is related to the onset of cognitive decline.
The present findings also argue against the notion that changes in olfactory processing
observed in early diabetes are related to diabetes itself. Rather, they suggest that changes
in olfactory brain networks are indicative of changes in cognitive processing associated
with diabetes [29]. In this regard, the present findings are consistent with the occasionally
observed lack of olfactory involvement in the symptoms of diabetes [123], as well as a lack
of correlation between olfactory function and duration of diabetes [124].

The present analyses targeted the FINDRISK score of diabetes risk and not diabetes.
That is, except for six subjects, it is not known whether participants developed diabetes after
the present analyses. The conclusions of a lack of association of olfactory dysfunction with
later diabetes rely on the accuracy with which the FINDRISK score can detect later diabetes.
However, the score was a useful tool for this cross-sectional study; a definitive association
of early olfactory symptoms with later diabetes would have required a longitudinal study
design. On the other hand, the present results are clearly and consistently negative, with
no sign of at least a tendency for odor symptoms to be associated with diabetic risk or
metabolomic changes. The prediction of the FINDRISK score also makes the present
results not comparable to a recent proposal of a combined score based on support vector
machines that performed best among a variety of algorithms, with a reported accuracy
of 96% for diabetes detection [30]. The present lower balanced accuracies of the trained
classifiers refer to the FINDRISK-related groups created using Gaussian mixture modeling.
However, to definitively reject the usefulness of olfactory symptoms as an early sign of
diabetes, this should be studied prospectively, with participants followed up long enough
to detect diabetes or, if diabetes is diagnosed, so many years have passed that no reasonable
association can be made anymore with the earlier recorded olfactory symptoms.

Cross-validation based on Monte Carlo resampling of two-thirds of the cases as the
training dataset and applying the trained classifiers to the remaining one-third of the cases
that formed the test dataset was performed to assess whether the metabolism information
was useful to determine (i) diabetes risk and (ii) olfactory diagnosis. Conversely, a similar
approach was used to assess if the olfactory information was useful to determine (i) olfac-
tory diagnosis and (ii) diabetes risk. The machine learning-based classifiers were used here
for knowledge discovery, not to create a clinical diagnostic tool as a common use of such
algorithms. The latter might have required more complex cross-validation techniques, such
as nested cross-validation [125] or separating a validation sample from the dataset exactly
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once at the beginning of the data analysis and using it only when the final classifiers are to
be validated, or an independent sample could have been obtained in another study. All of
these techniques are even more conservative than the training/testing splits used currently,
and thus it is unlikely that the main conclusions, namely that metabolomics information is
not useful for predicting olfactory diagnoses and olfactory information is not useful for
predicting diabetes risk, would have been different with these approaches. This would
imply the expectation that the more difficult the task was for the classifier, the better the
classification accuracy, which is unlikely.

5. Conclusions

The results of the present study suggest that olfactory function is not a useful predictor
of diabetes. The negative results clearly indicate that the classic diagnostic tools based
on metabolic blood parameters are sufficient and that the sense of smell does not provide
relevant additional information about early signs of diabetes. In addition, the lack of an
association with impending diabetes suggests a reevaluation of the association with the
consequences of diabetes [26], i.e., whether, for example, olfactory dysfunction predicts
dementia in diabetics because there is a close association between the two, or whether
olfactory dysfunction may be an early sign of the development of dementia but without
a specific association with diabetes. Nevertheless, a definitive rejection of the sense of
smell as a symptom for diabetes risk may require a prospective study directly involving
later diabetes rather than the present FINDRISK score; however, the present results do not
suggest to expect substantial positive results from such a study.
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