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Abstract: Background: Persistent postsurgical neuropathic pain (PPSNP) can occur after intraop-
erative damage to somatosensory nerves, with a prevalence of 29–57% in breast cancer surgery.
Proteomics is an active research field in neuropathic pain and the first results support its utility for
establishing diagnoses or finding therapy strategies. Methods: 57 women (30 non-PPSNP/27 PPSNP)
who had experienced a surgeon-verified intercostobrachial nerve injury during breast cancer surgery,
were examined for patterns in 74 serum proteomic markers that allowed discrimination between
subgroups with or without PPSNP. Serum samples were obtained both before and after surgery. Re-
sults: Unsupervised data analyses, including principal component analysis and self-organizing maps
of artificial neurons, revealed patterns that supported a data structure consistent with pain-related
subgroup (non-PPSPN vs. PPSNP) separation. Subsequent supervised machine learning-based
analyses revealed 19 proteins (CD244, SIRT2, CCL28, CXCL9, CCL20, CCL3, IL.10RA, MCP.1, TRAIL,
CCL25, IL10, uPA, CCL4, DNER, STAMPB, CCL23, CST5, CCL11, FGF.23) that were informative
for subgroup separation. In cross-validated training and testing of six different machine-learned
algorithms, subgroup assignment was significantly better than chance, whereas this was not possible
when training the algorithms with randomly permuted data or with the protein markers not selected.
In particular, sirtuin 2 emerged as a key protein, presenting both before and after breast cancer treat-
ments in the PPSNP compared with the non-PPSNP subgroup. Conclusions: The identified proteins
play important roles in immune processes such as cell migration, chemotaxis, and cytokine-signaling.
They also have considerable overlap with currently known targets of approved or investigational
drugs. Taken together, several lines of unsupervised and supervised analyses pointed to structures
in serum proteomics data, obtained before and after breast cancer surgery, that relate to neuroin-
flammatory processes associated with the development of neuropathic pain after an intraoperative
nerve lesion.

Keywords: pain; neuropathic pain; postoperative pain; patients; human research; proteomics;
machine-learning; data science

1. Introduction

Persistent postsurgical neuropathic pain (PPSNP), defined as pain caused by a lesion
of the somatosensory system associated with the surgical procedure [1], poses clinical
challenges due to its intensity, relative resistance to current pharmacologic treatments, and
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sensory changes in the associated surgical area. Its estimated prevalence in women operated
for breast cancer is 29–57% [2]. The reasons why neuropathic pain develops in only some
patients after a similar nerve lesion are being investigated in several lines of research [3].
“Omics” is an emerging field in (neuropathic) pain research [4], and factors relevant to
neuropathic pain include genetics [5,6], epigenetics [7], immunologics [8], metabolomics [9],
and proteomics [10].

Proteomics is an active research field in neuropathic pain [11] and the first results
support its utility. A literature search of the PubMed database at https://pubmed.ncbi.
nlm.nih.gov for “proteomics and (neuropathic pain) NOT review(PT)” on 27 January 2022,
yielded 99 hits, with the earliest article being from 2003 [12]. Proteomics provides access
to neuroinflammation that is important for healing and regeneration after surgery, but
can also transition to maladaptive neuroinflammation and contribute to the development
and maintenance of pain [13]. An imbalance of pro- and anti-inflammatory cytokines in
blood, cerebrospinal fluid (CSF), or neural tissue can promote persistent pain by sensitizing
nociceptive signaling [13–15]. Most studies so far have compared neuropathic pain patients
with healthy controls. However, neuropathy as such can also associate with a different
cytokine profile when compared with healthy controls. One previous study showed that
blood cytokine profiles differed between patients having painful or painless peripheral
neuropathies and healthy controls. Proinflammatory cytokines, such as interleukin IL-2
and tumor necrosis factor-alpha (TNF-α), were found to be two-fold higher in painful neu-
ropathies than in both painless neuropathies and healthy controls. On the other hand, levels
of anti-inflammatory cytokine IL-10 were two-fold higher in painless neuropathies than in
both painful neuropathies and healthy controls. The levels of another anti-inflammatory
cytokine, IL-4, were 20-fold higher in patients with painless and 17-fold higher in patients
with painful neuropathy, compared with healthy controls, suggesting that neuropathy as
such may associate with increased production of anti-inflammatory cytokines, probably
as compensatory mechanism, which may be more effective in those who do not develop
painful neuropathies [16–18]. Similarly, CSF concentrations of CXCL6, CXCL10, CCL8,
CCL11, CCL23 and of LAPTGF-β1 were higher in patients with peripheral neuropathic
pain after surgery or trauma than in controls [15].

Using this complex knowledge of protein markers of pain, the present study aimed to
narrow the focus to those proteins that are regulated differently in patients in whom PPSNP
develops compared with those who do not develop neuropathic pain, despite similar
intraoperative nerve lesion. Although the above-mentioned proteins are inflammatory
markers, and immunological processes appear to be a common feature of persistent pain
across various conditions [19], the underlying pathologies may differ among the causes
of neuropathic pain. Thus, it is particularly important to compare the changes between
those who develop or do not develop painful neuropathies after similar insult, e.g., breast
cancer surgery, in whom the cancer and its treatment may alter protein patterns in different
ways and may suggest future targets for pharmacological therapy. Such a cohort was
available in a recent study [3,20], from which blood samples had been secured for “omics”
analysis before and 4–9 years after the surgery. For this purpose, the Proseek multiplex
inflammation panel [21] was selected as a collection of inflammation- and immune-related
proteins for which associations with pain or cancer had already been reported in other
clinical settings [22,23]. The present analysis of these new proteomics data pursued the
hypothesis that breast cancer surgery-related neuropathic pain is reflected in a specific
proteomics pattern. The aim of the present analysis, based on data science and machine
learning, was to identify proteins that are most informative in distinguishing patients
with and without PPSNP after breast cancer surgery and, therefore, most relevant for the
development of future therapeutic strategies.

https://pubmed.ncbi.nlm.nih.gov
https://pubmed.ncbi.nlm.nih.gov
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2. Results
2.1. Participants and Descriptive Data

In total, 251 patients with perioperative ICBN injury were assessed in the project [3].
According to generally accepted clinical criteria [24,25]. 31 patients fulfilled the criteria
for PPSNP (NRS, 0–10) ≥4 whereas 34 patients had the nerve injury with no PPSNP or
other chronic pain (non-PPSNP group, n = 34). Four patients were excluded from both
groups: in the PPSNP group, three patients had metastasized cancer and one was an
hs-CRP outlier; in the non-PPSNP group, two patients had metastasized cancer and two a
chronic neurological disease. Thus, two groups of patients were analyzed comprising (i)
“non-PPSNP” (n = 30), i.e., women who did not develop NP despite intraoperative nerve
injury, and (ii) “PPSNP” (n = 27), i.e., women with NP after intraoperative nerve injury
(Figure 1).

The final PPSNP subgroup included 27 and the non-PPSNP group 30 patients. Before
surgery, the patients in the non-PPSNP and PPSNP subgroups did not differ statistically
significantly (Table 1) in age or body mass index (BMI); however, patients with PPSNP
had slightly increased their BMI by the time when the second blood sample was collected.
The interval between blood sampling was similar in non-PPSNP (7.8 ± 8.6 y) and PPSNP
patients (5.2 ± 8.3 y; t-test: t = 1.1526, df = 54.721, p-value = 0.2541). A total of 8436 values
of d = 74 different proteins were available from these patients. Descriptive statistics of the
raw untransformed proteomics data and basic statistical assessments of group differences
are given in Table 1.
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Table 1. Baseline descriptive statistics of d = 74 proteomic markers recorded before or after surgery in patients who did not have persistent postsurgical pain
(nonPPSNP, n = 30) or who had PPSNP (n = 27) 4–9 years after intraoperative nerve injury. Raw, i.e., untransformed data, and p-values of exploratory group-wise
comparisons of proteomic markers are shown, separately for baseline or postoperative captures using Wilcoxon-Mann-Whitney U tests [26,27]. The proteins are
named as in the Proseek panel. In addition, the standard names are provided along with the entry numbers in the National Center for Biotechnology Information
(NCBI, Rockville Pike, Bethesda, MD, USA) [28] Entrez database at https://www.ncbi.nlm.nih.gov/Entrez/ (accessed on 14 March 2022), and the ID numbers
in the Universal Protein Resource (UniProt) database at https://www.uniprot.org. (accessed on 14 March 2022) [29], queried using the R packages “annotate”
(https://www.bioconductor.org/packages/annotate/ (accessed on 14 March 2022) [30]) and “org.Hs.eg.db”(https://bioconductor.org/packages/org.Hs.eg.db/
(accessed on 14 March 2022) [31]).

Protein Baseline Post-OP

Non-PPSNP PPSNP Non-PPSNP PPSNP
Mean and SD Range Mean and SD Range Wilcoxon P Mean and SD Range Mean and SD Range Wilcoxon P

Demographics
Age 57.43 ± 7.84 33–68 53.85 ± 6.06 42–65 0.01941 64.03 ± 7.49 41–74 60.33 ± 5.84 48–71 0.01461
BMI 23.82 ± 3.52 17.8–30.8 25.22 ± 4.34 18.6–34.9 0.24 23.58 ± 3.72 16.8–30.12 25.97 ± 4.2 19.72–37.34 0.05718

Proteins
Variable

name
Standard

names NCBI UNIPROT

ADA ADA 100 A0A0S2Z381 3.55 ± 0.41 3.09–5.1 3.64 ± 0.5 3.05–5.39 0.5307 3.71 ± 0.48 2.84–5.66 3.88 ± 0.65 3.14–6.03 0.5412
AXIN1 AXIN1 8312 A0A0S2Z4R0 2.86 ± 0.86 1.47–4.75 3.08 ± 0.57 1.62–4.05 0.1122 1.75 ± 0.99 0.55–4.29 1.84 ± 1.09 0.51–4.51 0.7936

Beta.NGF NGF 841 A0A024R3Z8 1.5 ± 0.19 1.22–2.12 1.58 ± 0.39 1.3–3.06 0.8803 1.62 ± 0.27 1.23–2.22 1.6 ± 0.3 1.24–2.88 0.7331
CASP.8 CASP8 6356 P51671 0.93 ± 0.41 0.32–2.24 1 ± 0.58 0.34–2.55 0.8553 0.8 ± 0.55 0.16–2.99 0.98 ± 0.81 0.2–3.57 0.5951
CCL11 CCL11 6357 Q99616 7.49 ± 0.48 6.46–8.56 7.58 ± 0.44 6.9–8.41 0.5951 7.7 ± 0.52 6.66–8.73 7.85 ± 0.42 6.93–8.52 0.3051
CCL19 CCL19 6363 Q6IBD6 8.72 ± 0.85 7.3–11.21 8.91 ± 1.01 7.72–11.23 0.7936 8.54 ± 0.71 7.02–9.7 8.93 ± 1.06 7.67–12.26 0.2621
CCL20 CCL20 6364 P78556 4.71 ± 0.91 3.31–7.57 4.44 ± 0.92 3.2–6.76 0.1584 5.13 ± 0.89 3.83–7.97 4.84 ± 1.3 3.58–9.29 0.04785
CCL23 CCL23 6368 P55773 9.52 ± 0.33 9.05–10.46 9.34 ± 0.41 8.53–10.29 0.1017 9.39 ± 0.38 8.64–10.41 9.36 ± 0.44 8.52–10.24 0.6859
CCL25 CCL25 6370 O15444 6.02 ± 0.54 4.98–7.22 5.74 ± 0.51 4.49–6.67 0.0646 6.33 ± 0.61 5.01–7.79 6.02 ± 0.57 4.97–6.99 0.0773
CCL28 CCL28 56,477 A0N0Q3 1.49 ± 0.48 0.75–2.92 1.44 ± 0.34 0.78–2.34 0.9179 1.55 ± 0.52 0.91–3.63 1.4 ± 0.31 0.64–1.99 0.6512
CCL3 CCL3 6348 A0N0R1 4.23 ± 0.44 3.39–5.19 4.24 ± 0.44 3.39–4.87 0.9053 4.35 ± 0.47 3.58–5.26 4.52 ± 0.58 3.55–6.11 0.3051
CCL4 CCL4 6351 P13236 6.11 ± 0.46 5.33–7.21 6.24 ± 0.68 5.18–8.47 0.6512 6.15 ± 0.55 5.13–7.31 6.38 ± 0.69 5.29–8.45 0.2369
CD244 CD244 6354 P80098 5.49 ± 0.24 4.94–5.9 5.4 ± 0.28 4.72–5.99 0.2056 5.58 ± 0.3 5.05–6.08 5.58 ± 0.3 4.92–6.19 0.7451
CD40 CD40 6355 P80075 9.33 ± 0.31 8.69–10.44 9.3 ± 0.35 8.79–10.14 0.6061 9.37 ± 0.33 8.86–10.4 9.42 ± 0.4 8.76–10.66 0.6285
CD5 CD5 51,744 Q9BZW8 4.54 ± 0.3 4.05–5.25 4.53 ± 0.32 3.84–5.12 0.981 4.73 ± 0.32 4.2–5.46 4.74 ± 0.31 4.07–5.29 0.8429
CD6 CD6 29,126 Q0GN75 4.4 ± 0.31 3.75–5.1 4.5 ± 0.41 3.34–5.13 0.269 4.73 ± 0.45 3.83–5.64 4.8 ± 0.4 4.03–5.7 0.8305

CDCP1 CDCP1 958 A0A0S2Z3C7 2.99 ± 0.6 1.95–4.39 2.79 ± 0.4 1.96–3.54 0.2422 3.33 ± 0.62 2.33–4.61 3.31 ± 0.63 2.58–5.6 0.6398
CSF.1 CSF1 921 P06127 7.85 ± 0.17 7.56–8.18 7.82 ± 0.23 7.39–8.35 0.4899 7.93 ± 0.23 7.43–8.44 8.01 ± 0.2 7.66–8.41 0.2173
CST5 CST5 923 P30203 5.93 ± 0.43 5.27–7.23 5.87 ± 0.53 5.04–7.37 0.4225 6.18 ± 0.38 5.5–7.22 6.1 ± 0.56 5.11–7.34 0.3693

CX3CL1 CX3CL1 64,866 Q9H5V8 5.16 ± 0.3 4.46–5.66 5.04 ± 0.29 4.52–5.61 0.1446 5.26 ± 0.43 4.4–6.05 5.25 ± 0.35 4.6–5.83 0.9431
CXCL1 CXCL1 1435 A0A024R0A1 7.4 ± 1.04 5.24–9.44 7.43 ± 1.1 4.52–9.86 0.9684 6.71 ± 1.27 3.72–9.28 6.74 ± 1.57 3.75–9.05 0.7212

CXCL10 CXCL10 1473 P28325 7.43 ± 0.72 6.33–9.07 7.66 ± 0.88 6.56–9.92 0.3954 8.05 ± 0.6 6.92–9.57 8.27 ± 0.84 7.05–9.81 0.3779
CXCL11 CXCL11 1473 P28325 6.98 ± 0.94 5.57–8.73 7.1 ± 0.88 5.29–9.32 0.5732 7.22 ± 0.78 5.66–8.45 7.48 ± 1.09 5.69–9.82 0.3363
CXCL5 CXCL5 6376 A0N0N7 10.26 ± 1.41 7.24–13.22 10.32 ± 1.17 7.39–12.56 0.8678 9.49 ± 1.91 4.65–13.04 9.67 ± 1.61 5.9–12.5 0.6627
CXCL6 CXCL6 2919 P09341 6.98 ± 0.77 5.65–9.22 6.97 ± 0.75 5.37–8.5 0.9305 6.64 ± 0.77 4.93–8.86 6.8 ± 1.05 5.08–9.17 0.4701
CXCL9 CXCL9 3627 A0A024RDA4 7.2 ± 0.69 5.86–8.89 7.04 ± 0.63 5.8–8.65 0.3693 7.59 ± 0.7 6.57–8.89 7.52 ± 0.6 6.41–8.86 0.7571
DNER DNER 6373 O14625 8.02 ± 0.22 7.46–8.44 7.98 ± 0.23 7.56–8.54 0.3779 8.1 ± 0.24 7.67–8.52 8.05 ± 0.23 7.58–8.46 0.4412

EN.RAGE S100A12 6374 P42830 1.13 ± 0.51 0.24–2.83 1.22 ± 0.52 0.34–2.47 0.4899 1.24 ± 0.71 0.12–3.08 1.03 ± 0.57 0.3–2.74 0.1632
FGF.19 FGF19 6372 P80162 7.5 ± 0.96 5.92–10.58 7.53 ± 1 5.68–9.46 0.8059 7.73 ± 0.97 6.36–10.34 7.94 ± 0.81 5.91–9.43 0.1359

https://www.ncbi.nlm.nih.gov/Entrez/
https://www.uniprot.org
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Table 1. Cont.

Protein Baseline Post-OP

FGF.21 FGF21 3576 A0A024RDA5 5.93 ± 1.26 3.6–9.72 5.78 ± 0.93 3.87–7.72 0.6742 6.16 ± 1.12 3.64–8.14 5.87 ± 1.06 4.13–7.74 0.3363
FGF.23 FGF23 4283 Q07325 2.17 ± 0.48 1.51–3.63 2.06 ± 0.48 1.37–3.47 0.3363 2.38 ± 0.57 1.42–4.21 2.39 ± 0.44 1.77–3.48 0.8305
FGF.5 FGF5 92,737 Q8NFT8 1.13 ± 0.22 0.86–1.79 1.12 ± 0.19 0.67–1.47 0.8803 1.19 ± 0.21 0.87–1.81 1.16 ± 0.15 0.92–1.5 0.6976
Flt3L FLT3LG 1978 Q13541 8.73 ± 0.3 8–9.29 8.71 ± 0.38 8.01–9.47 0.8553 9.25 ± 0.44 8.36–10.25 9.3 ± 0.48 8.41–10.67 0.6398

GDNF GDNF 9965 O95750 1.23 ± 0.34 0.47–2.15 1.21 ± 0.3 0.64–2.24 0.7212 1.31 ± 0.36 0.64–2.14 1.26 ± 0.32 0.7–1.88 0.8305
HGF HGF 26,291 Q9NSA1 8.89 ± 1.05 7.19–11.17 8.77 ± 1.02 7.26–10.52 0.7212 7.94 ± 0.46 7.2–9.01 7.98 ± 0.33 7.28–8.58 0.3779

IL.10RA IL10RA 8074 Q9GZV9 1.35 ± 1.37 0.63–6.65 1.48 ± 0.8 0.63–3.99 0.03419 1.44 ± 1.39 0.63–6.51 1.47 ± 0.8 0.63–3.57 0.2843
IL.10RB IL10RB 2250 Q8NBG6 6.43 ± 0.23 6.04–7 6.36 ± 0.26 5.87–6.91 0.3444 6.58 ± 0.29 5.77–7.31 6.62 ± 0.27 6.02–7.09 0.6061
IL.12B IL12B 2323 B7ZLY4 4.08 ± 0.53 2.54–4.69 4.01 ± 0.63 2.78–5.14 0.4603 4.18 ± 0.51 3.12–5.28 4.11 ± 0.64 3.08–5.34 0.4799

IL.15RA IL15RA 2668 A0A0S2Z3V2 0.03 ± 0.15 −0.23–0.31 −0.03 ± 0.17 −0.23–0.41 0.08132 0.1 ± 0.21 −0.23–0.56 0.1 ± 0.17 −0.23–0.59 0.8793
IL.17A IL17A 3082 P14210 0.06 ± 0.54 −0.45–1.76 −0.01 ± 0.36 −0.45–0.98 0.6834 0.14 ± 0.6 −0.45–1.37 0.01 ± 0.48 −0.45–1.29 0.7789
IL.17C IL17C 3586 P22301 0.65 ± 0.38 0.11–1.5 0.81 ± 0.57 0.11–2.6 0.3416 0.72 ± 0.41 0.11–1.54 0.65 ± 0.49 0.11–1.91 0.2878
IL.18R1 IL18R1 3587 Q13651 6.47 ± 0.32 5.77–7.04 6.44 ± 0.32 5.55–7.08 0.6512 6.55 ± 0.37 5.79–7.32 6.69 ± 0.41 6.01–7.74 0.3205

IL10 IL10 3588 Q08334 2.32 ± 0.44 1.35–3.54 2.16 ± 0.4 1.13–2.94 0.3205 2.53 ± 0.66 1.64–4.76 2.48 ± 0.5 1.75–4.08 1
IL18 IL18 3593 P29460 7.64 ± 1.01 6.64–12.33 7.37 ± 0.48 6.61–8.37 0.3526 7.53 ± 0.55 6.34–8.45 7.65 ± 0.47 6.78–8.62 0.4412
IL6 IL6 3601 Q13261 2.98 ± 1.14 1.54–6.45 2.67 ± 0.95 1.57–5.25 0.2295 3.09 ± 0.67 1.94–4.99 3.17 ± 1.04 1.72–6.94 0.7692
IL7 IL7 3605 Q16552 3.44 ± 0.76 2.44–5.49 3.2 ± 0.67 2.13–4.6 0.2903 2.9 ± 0.84 1.64–5.67 2.94 ± 0.64 1.79–4.02 0.6285
IL8 CXCL8 27,189 Q9P0M4 4.95 ± 0.63 4.09–6.43 4.9 ± 0.85 3.84–8.27 0.5732 4.83 ± 0.59 3.6–6.02 4.94 ± 0.71 3.62–6.22 0.6627

LAP.TGF.beta.1 TGFB1 3606 A0A024R3E0 6.82 ± 0.4 6.19–7.77 6.76 ± 0.35 6.06–7.65 0.6976 6.84 ± 0.43 5.79–7.99 6.9 ± 0.36 6.25–7.86 0.7094
LIF.R LIFR 8809 Q13478 2.65 ± 0.23 2.15–3.04 2.62 ± 0.22 2.19–3.29 0.3363 2.74 ± 0.31 2.14–3.22 2.79 ± 0.2 2.47–3.19 0.7571

MCP.1 CST5 3569 B4DVM1 9.42 ± 0.35 8.76–10.04 9.52 ± 0.44 8.84–10.63 0.5101 9.63 ± 0.51 8.35–10.57 9.75 ± 0.39 9.06–10.63 0.3609
MCP.2 CCL8 3574 A8K673 7.53 ± 0.63 5.57–8.67 7.52 ± 0.57 6.12–8.41 0.8928 7.62 ± 0.7 5.74–9.13 7.59 ± 0.7 6.05–8.81 0.981
MCP.3 CCL7 4254 A0A024RBC0 0.87 ± 0.51 0.17–2.45 1.02 ± 1.11 0.06–6.02 0.9053 0.97 ± 0.52 0.1–2.06 1.16 ± 0.58 0.25–2.37 0.2234
MCP.4 CCL13 3977 A8K1Z4 3.46 ± 0.83 2.14–5.95 3.46 ± 0.48 2.69–4.61 0.7814 3.44 ± 0.73 2.2–5.01 3.56 ± 0.75 1.74–4.93 0.4318
MMP.1 MMP1 4049 P01374 12.2 ± 1.55 9.13–14.97 12.18 ± 1.27 9.96–13.93 0.9053 12.32 ± 1.22 10.56–14.34 12.27 ± 1.38 10.16–14.73 0.7936

MMP.10 MMP10 4312 B4DN15 5.62 ± 0.82 4.59–7.86 5.59 ± 0.75 4.57–7.55 0.8429 5.73 ± 0.7 4.91–7.71 5.8 ± 0.69 4.65–7.32 0.4701
NT.3 NTF3 4319 P09238 1.08 ± 0.64 0.46–3.35 0.97 ± 0.25 0.33–1.5 0.9179 1.2 ± 0.6 0.25–3.77 1.11 ± 0.55 0.64–3.58 0.1236
OPG TNFRSF11B 4803 P01138 10.25 ± 0.4 9.39–11.01 10.12 ± 0.31 9.68–10.91 0.09834 10.37 ± 0.45 9.29–11.11 10.36 ± 0.3 9.93–11.22 0.6742
OSM OSM 4908 P20783 2.48 ± 0.79 1–4.52 2.64 ± 0.95 0.37–4.14 0.3127 1.96 ± 0.66 0.82–3.24 2.22 ± 0.73 0.44–3.73 0.1359
PD.L1 CD274 5008 B5MCX1 3.39 ± 0.3 2.9–4.07 3.32 ± 0.27 2.79–3.81 0.9431 3.5 ± 0.52 2.65–5.51 3.48 ± 0.33 2.8–4.13 0.8429
SCF KITLG 5328 P00749 9.49 ± 0.48 8.08–10.08 9.53 ± 0.44 8.14–9.98 0.9557 9.64 ± 0.31 8.94–10.25 9.68 ± 0.32 8.99–10.26 0.4507

SIRT2 SIRT2 6283 P80511 2.61 ± 1.18 1.11–6.12 3.12 ± 1.1 0.83–5.37 0.05166 1.89 ± 1.27 0.71–5.38 2.58 ± 1.9 0.54–8.22 0.1782
SLAMF1 SLAMF1 22,933 A0A0A0MRF5 1.2 ± 0.56 0.32–3.31 1.21 ± 0.89 0.49–5.24 0.3609 1.41 ± 0.67 0.2–3.97 1.48 ± 0.74 0.34–4.32 0.8305
ST1A1 SULT1A1 6504 Q13291 1.21 ± 0.82 −0.03–3.21 1.21 ± 0.59 0–2.1 0.6398 0.39 ± 0.64 −0.13–2.72 0.38 ± 0.69 −0.13–2.31 0.5136

STAMPB STAMBP 10,617 A0A140VK54 4.22 ± 0.79 3.22–6.65 4.55 ± 0.73 2.93–6.17 0.1051 3.84 ± 0.98 2.83–7.12 4.2 ± 1.36 3–8.56 0.3693
TGF.alpha TGFA 6817 P50225 2.72 ± 0.37 2.17–3.94 2.74 ± 0.4 1.88–3.66 0.7692 2.57 ± 0.46 1.82–4.45 2.47 ± 0.28 1.81–2.91 0.6742

TNFB LTA 7039 P01135 3.65 ± 0.93 2.49–7.66 3.47 ± 0.41 2.64–4.27 0.7692 3.65 ± 0.44 2.59–4.65 3.68 ± 0.37 2.91–4.35 0.6859
TNFRSF9 TNFRSF9 7040 P01137 5.74 ± 0.37 5.26–6.74 5.62 ± 0.38 5–6.49 0.2114 5.96 ± 0.42 5.18–7.07 5.95 ± 0.38 5.22–6.56 0.9557
TNFSF14 TNFSF14 4982 O00300 3.9 ± 0.46 2.99–4.99 4.02 ± 0.49 2.93–4.93 0.2621 3.86 ± 0.51 2.94–4.77 3.99 ± 0.56 3.06–5.22 0.4225

TRAIL TNFSF10 3604 Q07011 8.19 ± 0.54 7.39–10.41 7.95 ± 0.23 7.45–8.42 0.02957 8.35 ± 0.53 7.68–10.64 8.25 ± 0.18 7.95–8.61 0.8429
TRANCE TNFSF11 8743 P50591 3.9 ± 0.62 2.77–5 3.97 ± 0.68 2.28–5.31 0.7212 4.19 ± 0.74 3.02–6.08 4.05 ± 0.53 3.1–5.46 0.4799
TWEAK TNFSF12 8600 O14788 9.48 ± 0.49 8.62–10.38 9.41 ± 0.59 8.52–10.66 0.4999 9.1 ± 0.34 8.05–9.69 9.1 ± 0.3 8.4–9.71 0.9053

uPA PLAU 8742 O43508 9.95 ± 0.33 8.97–10.46 9.79 ± 0.26 9.23–10.28 0.0168 10.26 ± 0.38 9.41–10.97 10.14 ± 0.31 9.43–10.62 0.276
VEGFA VEGFA 8740 O43557 9.15 ± 0.47 8.27–10.01 9.01 ± 0.33 8.32–9.87 0.3205 9.24 ± 0.42 8.47–10.33 9.24 ± 0.41 8.5–10.32 0.8182
X4E.BP1 EIF4EBP1 7422 A0A087WUD8 7.66 ± 1.14 5.5–11.07 8.09 ± 1.4 6.41–10.94 0.3526 7.73 ± 1.32 6.15–11.62 8.05 ± 1.66 6.08–11.69 0.6285
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Figure 1. Results of a centered principal component analysis (PCA)-based projection of probe-level
quantile normalized proteomics data normalization [32] acquired before (sample 1) and after the
surgery (sample 2). (A): PCA-based projection of data set instances consisting of a sample in which
d = 74 proteomic markers had been analyzed, with separations for acquisition time and patient
subgroup (in blue color: no neuropathic pain, in green color: non-PPSNP, or neuropathic pain,
PPSNP, despite intraoperative nerve injury). The marginal distribution plots show the segregation
of predefined pain phenotype groups (non-PPSNP versus PPSNP) along the respective principal
component. The p-values are the results from a Mann Whitney U-test [26,27], performed during
“PC-corr” analysis [33] while attempting group segregation based on the respective PC. (B): Bar chart
of the loadings of protein markers on PC1, sorted in descending order of magnitude. The proteins are
named as in the Proseek panel for consistency. Please refer to Table 1 for standard protein names.
(C): Distribution of the patients’ individual scores on PC1, described by the Pareto density estimation
(PDE) [34], to which a Gaussian mixture model (GMM) with M = 3 modes was fitted. The Bayesian
boundaries between the modes are indicated as dashed magenta perpendicular lines. The first
boundary at x-position 0.18 provided a suitable GMM based grouping criterion of data set instances
as shown in Panel E. (D): Quantile–quantile (QQ) plot of the theoretical and observed quantiles of
the data, with line of identity. (E): Heatmap with the original subgroup structure (non-PPSNP versus
“PPSNP”) and a subgroup structure that resulted from the GMM analysis of the coordinates of the
projected samples on PC1 (see panel C). The color scheme green/blue of column 1 repeats that used
in panel A for non-PPSNP versus “PPSNP “. The darker red color in columns 2 and 3 indicate data
set instances belong to data set instances in Gaussian #1 of panel C, whereas the lighter orange color
denotes data belonging to the second and third Gaussians combined in panel C. The GMM-based
grouping significantly overlapped with the prior non-PPSNP versus PPSNP group structure (Fisher’s
exact test [35]: p = 0.00468). The figure has been created using the R software package (version 4.0.2
for Linux; https://CRAN.R-project.org/ (accessed on 14 March 2022) [36]) and the library “ggplot2”
(https://cran.r-project.org/package=ggplot2 (accessed on 14 March 2022) [37]).

2.2. Data Projection-Based Protein Marker Patterns Relevant to Pain-Related Subgroup Separation

The results of PC-Corr analyses indicated that the non-PPSNP versus PPSNP sub-
groups were best separated when the entire data set recorded before and after surgery was
projected onto a lower dimensional plane after probe-level quantile normalization [32] and

https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
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centering of the data. Significant segregation of the two neuropathic-pain related subgroups
was already observed along the first dimension of the PCA projection of the whole data set
as mentioned above (PC1; Wilcoxon-Man-Whitney U test p-value < 0.05, AUC-ROC = 0.63,
AUC-PR = 0.58), which explained 19.6% of the total variance in the proteomics data
(Figure 1A). The protein with the largest contribution to PC1 was SIRT2 (Figure 1B). The
distribution of the coordinates of the projection of the observations on PC1 was best de-
scribed by a trimodal Gaussian mixture (Figure 1C), which showed no significant difference
between the fitted and observed distributions (Kolmogorov-Smirnov test: p = 0.895) and
an almost linear placement of the quantiles in the QQ plot (Figure 1D). Using the first
Bayesian decision limit at x-position 0.18, the resulting two groups of n = 60 and n = 54
samples significantly overlapped with the predefined subgroup structure of non-PPSNP
versus PPSNP (Figure 1E; Fisher’s exact test: odds ratio 4.28, 95% confidence interval,
CI: 1.384–7.367, p = 0.00468). Consideration of the second Bayesian decision boundary did
not yield further significant results and was therefore abandoned.

A subgroup structure as observed in the PCA-based projection of the proteomics data
was further supported by an alternative projection on a trained emergent self-organizing
feature map (ESOM). Large U-heights (Figure 2A) forming a “mountain ridge” sepa-
rated a small region of 13 data points from the larger region of 101 samples, which
indicated the emergence of two main clusters in the data. This agreed with the prior
“non-PPSNP” and “PPSNP” group structure (Fisher’s exact test: odds ratio 4.26 (95% CI
1.017–25.55, p = 0.03649; Figure 2B). The separated subgroup was smaller than in the analo-
gous PCA-based result; however, all contained data instances also in the smaller subgroups
were separated from the majority on the PCA projection (Figure 2C).
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Figure 2. Results of projection of the data, after probe-level quantile normalization and pooled first
and second samples, onto an emergent self-organizing map (ESOM; for further details of this artificial
neuronal network-based data projection method, see [38,39]). (A): Three-dimensional U-matrix
visualization of distance-based structures of the serum concentration of d = 74 proteomic markers
following projection of the data points onto a toroid grid of 4000 artificial neurons where opposite
edges are connected. The dots represent the so-called “best matching units” (BMU), i.e., neurons on
the grid that, after ESOM learning, carried a data vector that was most similar to a subjects’ data vector.
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Please note that one BMU can carry vectors of several cases, i.e., the number of BMUs is not necessarily
equal to the number of cases. The U-matrix visualization was colored as a top view of a topographic
map with brown (up to snow-covered) heights and green valleys with blue lakes. Watersheds
indicate borderlines between different clusters. Two clusters emerged in this way, separated by
the white “mountain ridge” at the left of the U-matrix. BMUs belonging to clusters #1 or #2 are
colored in green or bluish, respectively. (B): Mosaic plot, visualizing the contingency table between
the original group structure and the cluster identified on the U-matrix. The p value of 0.03649
denotes the results of a Fisher’s exact test [35]. (C): Heatmap with the original subgroup structure
(non-PPSNP versus “PPSNP”) and a subgroup structure that resulted from the U-matrix shown in in
Panel A. The clusters based on the U-matrix (Panel A) are shown in the 2nd and 3rd column. For
comparison, the PCA-based clusters (Figure 1D) are displayed in the last two columns The figure has
been created using the R software package (version 4.0.2 for Linux; https://CRAN.R-project.org/
(accessed on 14 March 2022) [36]) and the libraries “ggplot2” (https://cran.r-project.org/package=
ggplot2 (accessed on 14 March 2022) [37]), “ggmosaic” (https://cran.r-project.org/package=ggmosaic
(accessed on 14 March 2022) [40]) and “Umatrix” (https://cran.r-project.org/package=Umatrix
(accessed on 14 March 2022) [41]).

2.3. Supervised Machine Learning-Based Identification and Evaluation of Proteomic Markers
Informative for Pain-Related Subgroup Segregation

Training the classifiers with all d = 74 proteins included in this analysis was successful
in logistic regression, support vector machine, k-nearest neighbors, and random forests,
which were able to identify whether an instance of the dataset was acquired from a patient
in the non-PPSNP or PPSNP subgroup (Figure 3A and Table 2). After feature selection
using the Boruta method (Figure 4), d = 19 proteomic markers remained (Table 3). Training
the classifiers with these d = 19 markers resulted in better classification performance than
with all 74 markers, which is a typical observation in machine learning, where eliminating
noise is often rewarded with better results. Now, all classifiers appeared to perform better
than change in assigning a sample to the correct neuropathic pain subgroup. In contrast,
when using permuted features or the d = 45 proteomic markers of ABC set “C,” i.e., the
least important items, all classifiers resorted to random class assignment, indicating that
(i) the successful classification results were unlikely to be due to overfitting and (ii) the item
categorization captured the relevant items (Figure 3A).
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Figure 3. Results of supervised analyses of the possibility to train machine-learning algorithms with
the information of selected proteomic markers to enable them to correctly assign a patient to the
subgroup with nerve injury but without neuropathic pain (non-PPSNP) or to the subgroup with
nerve injury and neuropathic pain (“PPSNP”). (A): Boxplots of the obtained balanced classification
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accuracy by different types of machine learning algorithms in assigning sub-jects to the subgroups
when training was done with all protein markers or with the markers identified as the most informa-
tive in four consecutive item categorization techniques implemented as computed ABC analyses (for
the protein markers identified as important, see Table 3). In case the selected proteins carried relevant
information for patient subgroup assignment, the classification accuracy should be better than guess-
ing. For comparison, the balanced classification accuracy achieved with permuted characteristics
is shown, as well as the balanced classification (balanced) accuracy obtained when using the items
placed by the first ABC analysis in subset “C”, which captures the least relevant items of a set. The
expectations here were that without overfitting the classification (balanced) accuracy should not be
better than guessing. The boxes have been constructed using the minimum, quartiles, median (solid
line within the box), and maximum. The whiskers add 1.5 times the interquartile range (IQR) to the
75th percentile or subtract 1.5 times the IQR from the 25th percentile. (B): Results of the consecutive
ABC analysis of the importance of protein markers. In the first ABC analysis, the counts were entered
at which each maker occurred among the selected features in 1000 Boruta feature selection analyses on
randomly drawn 2/3 of the data sets. In the subsequent ABC analyses, only the counts of occurrence
of markers placed in ABC subset A by the previous ABC analysis were entered. The figure has been
created using the R software package (version 4.0.2 for Linux; https://CRAN.R-project.org/ (accessed
on 14 March 2022) [36]) and the R packages “ggplot2” (https://cran.r-project.org/package=ggplot2
(accessed on 14 March 2022)) and (https://cran.r-project.org/package=ABCanalysis (accessed on
14 March 2022) [42]).
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tient subgroups (“non-PPSNP” versus “PPSNP”) according to an analysis based on random forests
(“Boruta” [43]). The proteins are named as in the Proseek panel for consistency. Please refer to Table 1
for standard protein names. The importance measure of a feature (here: of the protein markers) results
from the decrease in classification accuracy due to the random permutation of feature values. It is
calculated separately for all trees in the forest that use the respective feature for classification. Then
the mean value and the standard deviation of the loss of accuracy are calculated. The z-score is used in
comparison to an external reference, the so-called “shadow” features, which is obtained by permuting
the values of the original feature. The boxes were constructed using the minimum, quartiles, median
(solid line inside the box) and maximum of these values. The whiskers add 1.5 times the interquartile
range (IQR) to the 75th percentile or subtract 1.5 times the IQR from the 25th percentile. The black
circles indicate outliers from this interval. The green and orange boxes represent “confirmed” or
tentatively significant features, respectively, i.e., features that contribute to the classification success.
The red boxes are confirmed as non-informative in order to be excluded from further analysis. The
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empty boxes are the above-mentioned “shadow” features. The figure has been cre-
ated using the R software package (version 4.0.2 for Linux; https://CRAN.R-project.org/
(accessed on 14 March 2022) [36]) and the R library “Boruta” (https://cran.r-project.org/package=
Boruta (accessed on 14 March 2022) [43]).

Finally, to further narrow the focus on the most relevant proteomic markers, ABC
analysis was performed in three further nested steps, whereby the feature set was succes-
sively reduced to d = 9, 4, and finally d = 2 protein markers (Table 3). This procedure can
be repeated until the ABC curve (Figure 3B) touches the curve of uniform distribution of
feature importance, since this curve marks the condition in which all features had the same
chance to contribute to the subgroup separation, from which no particularly important
feature can be separated any more. This procedure gradually reduced the classification
power, but even with only CD244 and SIRT classification was still better than random
assignment for logistic regression, support vector machine and random forests (Figure 3A).
Of note, the observation of SIRT2 as the most prominent marker was consistent with its
importance in the PCA projection on the most relevant PC1.

https://CRAN.R-project.org/
https://cran.r-project.org/package=Boruta
https://cran.r-project.org/package=Boruta
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Table 2. Performance measures for the correct assignment of patients to the subgroup with nerve injury but without neuropathic pain (non-PPSNP) or to the
subgroup with nerve injury and neuropathic pain (“PPSNP”). The performance of machine learning-based random forests classifiers is given; for further algorithms
the key data (balanced accuracies) are shown in Figure 3. Classification performance was calculated (i) when training the algorithm with all protein markers or (ii–v)
with the markers identified as the most informative in four consecutive item categorization techniques implemented as computed ABC analyses (“reduced data set
#2–4; for the protein markers identified as important, see Table 3). For comparison, (vi) the balanced classification accuracy achieved with (permuted characteristics
is shown, as well as the balanced classification accuracy obtained when using the items placed by the first ABC analysis in subset “C”, which captures the least
relevant items of a set. For the protein markers identified as important, see Table 3). For comparison, the balanced classification accuracy achieved with permuted
characteristics is shown, as well as the balanced classification accuracy obtained when using the items placed by the first ABC analysis in subset “C”, which captures
the least relevant items of a set.

Parameter Full
Feature Set Un-Selected Features Reduced

Set #1
Reduced

Set #2
Reduced

Set #3
Reduced

Set #4

Protein # 74 45 19 9 4 2

Data Original Permuted Original Permuted Original Permuted Original Permuted Original Permuted Original Permuted

Sensitivity 65 (60–75) 65 (58.75–75) 57.5 (50–65) 60 (53.75–70) 70 (65–80) 60 (50–65) 70 (65–75) 55 (50–65) 65 (60–75) 65 (58.75–75) 70 (60–75) 55 (50–65)

Specificity 50
(44.44–61.11)

38.89
(27.78–44.44) 33.33 (27.78–38.89) 38.89

(27.78–44.44)
66.67

(55.56–72.22)
44.44

(33.33–50)
66.67

(55.56–72.22)
44.44

(33.33–55.56)
50

(44.44–61.11)
38.89

(27.78–44.44)
47.22

(38.89–61.11)
44.44

(33.33–55.56)

Pos Pred Value 60
(56.52–64.78)

54.01
(48.28–58.33) 48.15 (45.83–52.29) 52.51

(49.57–56.52)
68.83

(63.52–73.91)
53.39

(46.07–59.09)
68.42

(63.64–72.22)
52.63

(47.96–59.32)
60

(56.52–64.78)
54.01

(48.28–58.33) 60 (56–64) 53.85
(48.11–57.89)

Neg Pred Value 58.11
(52.86–65.42)

50
(40.88–58.33) 40 (35.71–46.84) 47.21

(41.18–53.33)
66.67

(62.35–71.63)
48.81

(38.37–55.73)
64.85

(61.05–70.15)
47.37

(40.88–55)
58.11

(52.86–65.42)
50

(40.88–58.33)
58.11

(53.24–63.8)
49

(40.91–53.33)

Precision 60
(56.52–64.78)

54.01
(48.28–58.33) 48.15 (45.83–52.29) 52.51

(49.57–56.52)
68.83

(63.52–73.91)
53.39

(46.07–59.09)
68.42

(63.64–72.22)
52.63

(47.96–59.32)
60

(56.52–64.78)
54.01

(48.28–58.33) 60 (56–64) 53.85
(48.11–57.89)

Recall 65 (60–75) 65 (58.75–75) 57.5 (50–65) 60 (53.75–70) 70 (65–80) 60 (50–65) 70 (65–75) 55 (50–65) 65 (60–75) 65 (58.75–75) 70 (60–75) 55 (50–65)

F1 63.29
(59.09–68.66)

59.09
(54.04–65.22) 53.2 (48.86–57.14) 56.52

(51.16–60.57)
69.77

(65.12–74.32)
56.47

(47.77–61.3)
68.36

(65.09–72.73)
55.16

(50–61.22)
63.29

(59.09–68.66)
59.09

(54.04–65.22)
63.53

(57.87–68.11)
55.68

(49.72–60)

Prevalence 52.63
(52.63–52.63)

52.63
(52.63–52.63) 52.63 (52.63–52.63) 52.63

(52.63–52.63)
52.63

(52.63–52.63)
52.63

(52.63–52.63)
52.63

(52.63–52.63)
52.63

(52.63–52.63)
52.63

(52.63–52.63)
52.63

(52.63–52.63)
52.63

(52.63–52.63)
52.63

(52.63–52.63)

Detection Rate 34.21
(31.58–39.47)

34.21
(30.92–39.47) 30.26 (26.32–34.21) 31.58

(28.29–36.84)
36.84

(34.21–42.11)
31.58

(26.32–34.21)
36.84

(34.21–39.47)
28.95

(26.32–34.21)
34.21

(31.58–39.47)
34.21

(30.92–39.47)
36.84

(31.58–39.47)
28.95

(26.32–34.21)

Detection Prevalence 60.53
(52.63–65.79)

65.79
(57.89–71.71) 61.84 (57.24–65.79) 60.53

(55.26–68.42)
55.26

(50–60.53)
57.89

(52.63–63.16)
52.63

(47.37–60.53)
57.89

(50–63.16)
60.53

(52.63–65.79)
65.79

(57.89–71.71)
60.53

(52.63–65.79)
55.26

(50–63.82)

Balanced Accuracy 57.92
(54.72–64.24)

51.81
(44.44–57.01) 44.44 (41.39–49.58) 49.86

(45.56–54.72)
68.33

(62.5–71.67)
50.97

(43.33–57.5)
66.25

(61.94–70.56)
50

(44.38–57.57)
57.92

(54.72–64.24)
51.81

(44.44–57.01)
59.17

(54.44–62.57)
51.25

(44.1–55.35)

ROC-AUC 57.92
(54.72–64.24)

54.44
(49.17–59.44) 49.72 (44.17–56.04) 52.5

(46.94–57.29)
68.33

(62.5–71.67)
55.56

(51.94–62.57)
66.25

(61.94–70.56)
54.72

(49.17–60.35)
57.92

(54.72–64.24)
54.44

(49.17–59.44)
59.17

(54.44–62.57)
54.86

(50–58.06)
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Table 3. Details of the d = 19 proteins selected in a first computed ABC analysis that evaluated
the counts at which each protein was among the selected features in 1000 Boruta feature selection
analyses (Figure 4) on randomly drawn 2/3 of the data sets, aimed to identify the most relevant
proteomic markers for assigning a patient to the subgroup with nerve injury but no neuropathic
pain (non-PPSNP) or to the subgroup with nerve injury and neuropathic pain (“PPSNP”). The
frequency occurrence in the set of selected features in the Boruta analysis is given in descending
order. The p-values of group differences, calculated in the raw untransformed data, are the result
of Mann-Whitney U tests [26,27], whereas the effect sizes of the group differences, quantified as
Cohen’s d [44]. P-values in bold letters indicate significant effects for better visibility. Positive
values indicate that the protein marker was observed at higher concentrations in the patients with
neuropathic pain “(PPSNP”). The four consecutive ABC analyses reduced the feature set from the
initial d = 19 proteins (all table) to finally d = 2 proteins (top two proteomic markers). The proteins
are named as in the Proseek panel for consistency. Please refer to Table 1 for standard protein names.

ABC
Subsets “A” Proteomic Marker Name Gene Symbol Frequency

of Selection
Group

Difference p-Value
Group

Difference Cohen’s d

A
B

C
su

bs
et

A
”

#1

A
BC

su
bs

et
A

”
#2

A
BC

su
bs

et
A

”
#3

A
BC

su
bs

et
A

”
#4 CD244 CD244 molecule CD244 477 0.124 0.288

SIRT2 Sirtuin 2 SIRT2 424 0.0119 0.49

CCL28 C-C motif chemokine
ligand 28 CCL28 409 0.203 −0.399

CXCL9 C-X-C motif chemokine
ligand 9 CXCL9 389 0.0229 −0.383

CCL20 C-C motif chemokine
ligand 20 CCL20 339 0.0115 −0.312

CCL3 C-C motif chemokine
ligand 3 CCL3 297 0.194 0.323

IL.10RA Interleukin 10 receptor
subunit alpha IL10RA 243 0.0647 0.037

MCP.1 C-C motif chemokine
ligand 2 CCL2 241 0.0371 0.452

TRAIL TNF superfamily
member 10 TNFSF10 241 0.0131 −0.532

CCL25 C-C motif chemokine
ligand 25 CCL25 237 0.027 −0.469

IL10 Interleukin 10 IL10 200 0.0814 −0.39

uPA Plasminogen activator,
urokinase PLAU 181 0.0474 −0.42

CCL4 C-C motif chemokine
ligand 4 CCL4 176 0.036 0.439

DNER Delta/notch like EGF
repeat containing DNER 146 0.0205 −0.392

STAMPB STAM binding protein STAMBP 137 0.0803 0.394

CCL23 C-C motif chemokine
ligand 23 CCL23 113 0.0929 −0.339

CST5 Cystatin D CST5 111 0.788 0.123

CCL11 C-C motif chemokine
ligand 11 CCL11 108 0.275 0.252

FGF.23 Fibroblast growth
factor 23 FGF23 108 0.0676 −0.304

3. Discussion

The PPSNP and non-PPSNP subgroups showed different proteomics patterns when
classical and machine learning-based feature selection techniques were used to identify
the most informative proteins distinguishing these groups. The protein patterns already
differed between the groups before nerve injury, whereas there was no clear difference
when the proteins were compared before and after nerve injury. Thus, these distinct pre-
injury protein patterns could reflect protective or predisposing factors associating with
the development of PPSNP. The results of these analyses included 19 different serum
protein makers from a candidate panel of 74 markers that could eventually be narrowed
down to only two proteins with sitruin2 (SIRT2) as a possible predisposing protein for
PPSNP. The present analyses were performed in the context of a concerted AI interpretation
between data science and biomedical experts, as recently described [45], and conceptually
similar to a conversational machine learning approach also recently presented [46], i.e., the
results are facilitated by collaboration between different disciplines. Possible biomedical
interpretations of the results are outlined below.
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The NAD-dependent deacetylase sirtuin 2 (SIRT2) was identified as the most infor-
mative protein marker to train machine-learning algorithms to identify samples with
neuropathic pain. SIRT2 is a class III histone deacetylase expressed ubiquitously, but
more abundantly in the central nervous system than in other tissues [47]. It plays a role
in microtubule acetylation and myelination [48], and it is involved in the suppression of
NFkB-related inflammatory processes [49–52]. It is also involved in the regulation of neu-
roinflammatory processes via activation of microglia [53], which plays an important role in
the response to peripheral nerve injury [54] and synaptic plasticity in persistent pain [55].
Another link to persistent pain arises from the role of SIRT2 in learning and memory,
which are biological processes in terms of the Gene Ontology (GO) knowledgebase [56] and
have emerged as key features of persistent pain in a computational functional genomics
analysis [57]. SIRT2 is also involved in cancer where it has been proposed as both a tumor
suppressor and tumor promoter [58]. However, its role as a tumor suppressor seems to be
more frequently highlighted [59,60], and also in breast cancer [61]. It is also considered as a
target for drugs against age-related and/or neurodegenerative disorders [62] and also for
cancer [63].

A role of SIRT2 in neuropathic pain has been highlighted in a mouse model of cisplatin-
induced peripheral neuropathy (CIPN) [64]. In humans, CSF-levels of SIRT2 were also
among the protein markers relevant to persistent pain. Painful knee osteoarthritis has been
patho-physiologically associated with neuroinflammatory processes and neuroimmune
cross-links between the periphery and CNS. The CSF levels of SIRT2 were almost two-fold
higher in the knee osteoarthritis patients than in healthy controls (See Table 3 in [65]).
In the serum SIRT2 levels, however, there was no difference between the groups. In the
present proteomics samples, the serum SIRT2 levels were higher in patients who developed
neuropathic pain compared with those who had neuropathy without pain (Table 1). A brief
review of what is known about SIRT2 in pain did not provide a clear direction of change.
The cited results [65] in humans might be related to a pathology other than nerve lesion
after surgery, whereas inflammation in arthritis and neuroinflammation in persistent pain
represent a common mechanism. On the other hand, the rodent results are closer to the
nerve lesion but were obtained in a laboratory model and in a different species, in contrast
to the human origin and the real clinical setting in which both the arthritis study and the
present study were performed.

SIRT2 is involved in the dynamics of the microtubule network in peripheral neurons,
which forms the basis for axonal transport of proteins, RNA, vesicles, and organelles
between the cell body and the axon tip [66]. It has been proposed that the dynamics of this
network are maintained at an optimal level by the controlled action of tubulin-acetylating
and -deacetylating enzymes [66]. SIRT2 belongs to the latter [67]. Lower tubulin acetylation
is associated with lower microtubule stability [68] and lower recruitment of motor proteins
to microtubules [69]. Therefore, high levels of SIRT2 in plasma could be a biomarker for
lower microtubule acetylation associated with impaired axonal transport in peripheral
neurons, and thus be causally involved in neuropathic pain. However, the enzymatic
system that maintains the balance may overshoot, as has been shown in Charcot-Marie-
Tooth neuropathy [66].

During the present analyses, SIRT2 was accompanied by a second marker, CD244,
which remained among the selected features until the selection step (Table 3). CD244 is
a cell surface receptor expressed on natural killer cells that activates cytotoxicity [70]. It
has also been involved in cancer [71]; however, any direct involvement in pain has not
yet been reported, although this is entirely conceivable via its immune modulation. In
the present cohort, CD244 was higher in patients with neuropathic pain, which would be
consistent with activated immune and inflammatory responses. The patients with painful
knee arthrosis also had significantly higher CD244 levels compared with healthy controls
in CSF, but not in serum (99).

Because the present analysis focused on reducing the Proseek multiplex inflammation
panel [21] to the most relevant proteins associated with PPSNP after breast cancer surgery,
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it was important to define whether the selection represents, in functional terms, the entire
panel or only proteins with specific molecular functions within the whole panel. To this
end, an enrichment analysis was implemented as an overrepresentation analysis (ORA [72])
of the annotations to the genes encoding the selected proteins in the Gene Ontology (GO)
knowledge base [56], where the current knowledge about genes is formulated using a con-
trolled vocabulary of GO terms (categories) to which the genes [73] are annotated [74]. GO
terms are related by “is-a”, “part-of”, and “regulates” relationships and form a poly-hierarchy
represented as a directed acyclic (DAG [75]). The GO database can be searched by three
main categories, namely biological processes, cellular components, and molecular functions.
The GO category of molecular function, defined as molecular-level activities performed by
gene products, such as “catalysis” or “transport” [56], was used as the functional selection
of proteins was the main interest in this assessment. Hence, the 19 proteins identified as
informative for the presence or absence of neuropathic pain after nerve injury in breast
cancer surgery, were submitted to ORA with the whole Proseek multiplex inflammation
panel as reference gene set. The analyses were carried out as described previously [76], us-
ing our R library “dbtORA” (https://github.com/IME-TMP-FFM/dbtORA (accessed on
14 March 2022) [77]), which in turn uses the data provided with the R packages “org.Hs.eg.db”
(https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html (ac-
cessed on 14 March 2022) [31]) and “GO.db” (https://bioconductor.org/packages/release/
data/annotation/html/GO.db.html (accessed on 14 March 2022) [78]) with the GO base
version of 17 March 2021. For comparison, the full Proseek was analyzed against all human
genes, using a p-value threshold of 0.05 and false discovery rate correction [79] for multiple
testing performed by means of Fisher’s exact tests [35]. There, as a basis for selecting the
most appropriate terms to describe the functional genomics roles of the genes of interest,
so-called “headline terms” were used that to capture the main content of the poly-hierarchy
resulting from ORA [80]. This analysis identified the terms GO:0098772 = molecular function
regulator, GO:0005515 = protein binding, GO:0005488 = binding, GO:0060089 = molecular
transducer activity, GO:0004175 = endopeptidase activity, GO:0008233 = peptidase activity
and GO:0008236 = serine-type peptidase activity as the main molecular functions covered by
the Proseek panel. Functionally contrasting the 19 genes coding for the 19 selected proteins
with the genes coding the proteins of the whole panel was successful only when leaving
out a correction; however, then a shift toward chemokines was observed with headline GO
terms GO:0048020 = CCR chemokine receptor binding, GO:0001664 = G protein-coupled
receptor binding, GO:0008009 = chemokine activity and GO:0042379 = chemokine receptor
binding (Figure 5).

In addition, the signaling pathways involving the currently analyzed proteins were as-
sessed in a reactome pathway-based analysis using the R library “ReactomePA”
(http://bioconductor.org/packages/release/bioc/html/ReactomePA.html (accessed on
14 March 2022) [81]) with its default parameter settings. This again pointed at chemokine
signaling as also observed in the results of the above ORA, with the pathways involving
the finally selected proteins including chemokine receptors bind chemokines, peptide
ligand-binding receptors, interleukin-10 signaling, class A/1 (rhodopsin-like receptors),
GPCR ligand binding, and G alpha (i) signaling events (Figure 6).

Further interpretation of the obtained results addressed the therapeutic potential of the
present results, and known drugs were screened for an interaction with the d = 19 proteins of
particular interest. This was done using the DrugBank database [82] at https://go.drugbank.
com (version 5.1.8 dated 3 January 2021, accessed on 16 December 2021). The database
was downloaded as an XML file (https://go.drugbank.com/releases/5-1-8/downloads/all-
full-database, accessed on 14 March 2022) and processed using the R package “dbparser”
(https://cran.r-project.org/package=dbparser (accessed on 14 March 2022) [83]). Cambinol is
an experimental inhibitor of SIRT2 and is being investigated for use in cancer treatment.
Any of the 19 proteins were listed as human targets for a total of 41 drugs, of which three
were classified in the DrugBank as approved (amiloride, danazol, and chondroitin sulfate)
and six were investigational drugs (fibrinolysin, ROX-888, CAT-213, CRx-139, LLL-3348,

https://github.com/IME-TMP-FFM/dbtORA
https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
https://bioconductor.org/packages/release/data/annotation/html/GO.db.html
https://bioconductor.org/packages/release/data/annotation/html/GO.db.html
http://bioconductor.org/packages/release/bioc/html/ReactomePA.html
https://go.drugbank.com
https://go.drugbank.com
https://go.drugbank.com/releases/5-1-8/downloads/all-full-database
https://go.drugbank.com/releases/5-1-8/downloads/all-full-database
https://cran.r-project.org/package=dbparser
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and again chondroitin sulfate), with the latter classified twice in the DrugBank. According
to the DrugBank database, danazol is a steroid used to treat endometriosis and severe
pain and tenderness associated with benign fibrocystic breasts, and chondroitin sulfate
is used for osteoarthritis, which is also consistent with the overlap currently noted in the
proteomics of both types of painful conditions. ROX-888 is being developed for severe
acute pain and postoperative pain, CAT-213 is an antiallergic agent, and CRx-139 is being
developed for the treatment of immune-inflammatory diseases, while LLL-3348 is intended
for the treatment of psoriasis. Thus, the identified proteins point to very plausible drugs
that clearly have a link to immunity, and the mention of pain among their possible clinical
indications is also noteworthy.
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Figure 5. Computational functional genomics with respect to specific molecular functions in which
the genes encoding the targets of the 19 proteins identified as informative for the presence or absence
of neuropathic pain after nerve injury in breast cancer surgery are particularly involved among the
genes encoding the entire Proseek multiplex inflammatory panel. The figure displays the results of
an overrepresentation analysis (ORA; p-value threshold, tp = 0.05) of the n = 19 genes, contrasted
with the genes encoding for the full Proseek panel, which served as reference gene set in the over-
representation analysis. The graph shows the top-down representation of the annotations (GO terms)
representing a systems biology perspective of the molecular functions modulated by the gene set. Each
ellipse represents a GO term. The graphical representation follows the standard of the polyhierarchical
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organization of the GO knowledge base as a directed acyclic graph (DAG [62]). The color coding is as
follows: No color: GO terms that are important for the DAG’s structure but do not have a significant
p-value in Fisher’s exact tests. Red: Significantly overrepresented nodes. Green: Significantly
underrepresented nodes. Blue: Terms at the end (detail) of a branch of the DAG. In addition, the
node’s text will be colored in blue to indicate that this node is a detail. Yellow: Significant nodes with
highest remarkableness in each path from a detail to the root, i.e., the so-called “headlines”. The figure
has been created using the R software package (version 4.0.2 for Linux; https://CRAN.R-project.org/
(accessed on 14 March 2022) [36]) and the R library “dbtORA” (https://github.com/IME-TMP-FFM/
dbtORA (accessed on 14 March 2022) [64]) with the DAG creation done with the GraphViz software
package (https://graphviz.org (accessed on 14 March 2022) [77]).
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(showing the biological complexities in which the genes belong to multiple annotation categories.
The figure has been created using the R software package (version 4.0.2 for Linux; https://CRAN.R-
project.org/ accessed on 14 March 2022) [36]) and the R library “ReactomePA” (http://bioconductor.
org/packages/release/bioc/html/ReactomePA.html (accessed on 14 March 2022) [81]).

The observed patterns in proteomics appeared to be present in both samples, i.e., those
taken before surgery and chemotherapy and those at 4 to 9 years follow-up, although in
the second sample the patterns associated with neuropathic pain appeared to be more
pronounced. This could indicate protective or risk factors that the patients had already
before surgery. It strengthens the association of the observed informative proteins with
neuropathic pain and not with changes associated with time, different treatments, or cancer
progression, which could have, though not specifically, accompanied the development of
postoperative neuropathic pain between the two serum samples. However, the difficulties
in observing clear differences between the preoperative and postoperative samples may also
be related to the ultimately small sample size of the cohort. However, this is outweighed
by the plausibility of the results, their partial replication of findings with persistent pain
in independent cohorts, and their reflection in contemporary drug development activities.
An independent verification of the present set of proteins most relevant to the development
of neuropathic pain after intraoperative nerve injury in breast cancer will probably require
a similar study, possibly with a narrower hypothesis that can be based on the present
results, increasing the power of the study and possibly also enrolling a larger sample for
this purpose. The present results are plausible in light of preclinical research, so return to
preclinical models in rodents may not seem warranted. On the other hand, potential drugs
resulting from the present findings may also need to be tested in patients, giving preference
to experimental pain models in healthy subjects. That is, although systematic analyses have
shown that experimental human pain models predict the clinical analgesic effects of drug
candidates quite well when the right model for the clinical target is selected from a wide
range of human experimental pain models [84–86], including models that appear to be
predictive even for neuropathic pain drugs such as pregabalin [87], the complexity of the
current clinical setting, including nerve injury and cancer treatment, may limit the utility of
studies in healthy volunteers. However, depending on the particular characteristics and
effects of a future new drug, it is difficult to predict the exact steps of drug development.

The present analyses were performed in serum, consistent with the increasing popu-
larity of blood-derived biomarkers over CSF-derived markers as a more convenient and
noninvasive approach for biomarker-based individualized prognosis and treatment of
pain [88]. However, with the current analytical methods, the CSF samples are still more
sensitive to detect differences in proteomics analyses when assessing pain associated with
neuropathy (99). Since the present cohort consisted of women treated for breast cancer
with drugs that promote peripheral nerve damage [89], the results need to be confirmed
with larger cohorts of patients who do not have cancer.

4. Methods
4.1. Patients and Study Design

The Coordinating Ethics Committee of the Helsinki and Uusimaa Hospital District
had approved the study, which was also registered at ClinicalTrials.gov (NCT02487524). All
patients gave informed written consent. The study cohort consisted of a subset of patients
from the NeuroPain study [3], which is a follow-up study of the original BrePainGen cohort
in which perioperative pain and related psychological and genetic factors were examined
in 1000 women undergoing surgery for breast cancer for unilateral, non-metastatic breast
cancer at the Helsinki University Hospital between 2006 and 2010 [20]. Breast surgery
consisted of either mastectomy or breast-conserving surgery with sentinel lymph node
biopsy or axillary lymph node dissection. None of the patients had received neoadjuvant
treatment. Postsurgical treatment consisted of chemotherapy, hormonal therapy and
radiotherapy, according to the clinical guidelines.

https://CRAN.R-project.org/
https://CRAN.R-project.org/
http://bioconductor.org/packages/release/bioc/html/ReactomePA.html
http://bioconductor.org/packages/release/bioc/html/ReactomePA.html
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Details of the clinical conditions and patient characteristics have already been de-
scribed [3]. The NeuroPain cohort was recruited 4–9 years later in 2014–2016 from the
BrePainGen cohort to study factors that associate with the development of neuropathic
pain in patients who had a surgeon-verified complete or partial resection of the inter-
costobrachial nerve (ICBN) during surgery. The main inclusion criterion for the current
sub-cohort was a surgeon-verified ICBN injury without persistent postsurgical neuropathic
pain (non-PPSNP group) or with definite PPSNP and clinically meaningful pain intensity
on a numerical rating scale (NRS, 0–10) ≥4, and no active cancer.

4.2. Acquisition of Pain-Related Information

At the preoperative visit, patients rated their pain during the past week in the area to be
operated on and elsewhere, separately, on an 11-point numerical scale (NRS) (0 = no pain,
10 = worst pain imaginable). At the follow-up visit, sensory examination was performed
to establish a diagnosis for PPSNP according to the latest NP grading criteria [1]. Other
pain-related information collected from the patients included rating pain intensity on an
11-point numeric scale (0 = no pain, 10 = worst pain imaginable) by completing the Brief
Pain Inventory (BPI) [90] for the worst pain experienced in the surgical area and elsewhere
during the past week.

4.3. Blood Samples and Quantification of Serum Concentrations of Inflammatory Proteins

At the follow up visit, blood samples were collected for standard laboratory analysis
of high-sensitivity C-reactive protein (hs-CRP) and oroso-mucoid (ORM), lipids (total
cholesterol, high-density lipoproteins, low-density lipoproteins, and triglycerides), and
25-hydroxyvitamin-D). The results of these assessments have been reported previously [3].

For the proteomics analyses (Olink Analysis Service Uppsala, Uppsala, Sweden), blood
samples were collected both before surgery in the BrePainGen study and at the follow
up visit in ethylenediaminetetraacetic acid (EDTA) tubes and centrifuged at 3000 min−1

for 10 min. Serum was then transferred to cryotubes and the samples were immediately
frozen and stored at −80 ◦C. The samples were collected and prepared by the same
research nurse both preoperatively and at follow-up. The frozen samples were shipped
on dry ice to Olink Proteomics, Uppsala, Sweden, for assay. The details of the assay
have been described in detail by Wiberg et al. [91]. In brief, 92 proteins from the Proseek
multiplex inflammation panel (https://bio-protocol.org/bio101/r9741259 (accessed on
14 March 2022) [21]) were quantified using a proximity extension assay (PEA) that involves
two separate antibodies that bind to the same protein in a sample. Each antibody is
coupled to a cDNA strand that is ligated on approach, extended by a polymerase, and
finally detected using a Biomark HD 96 real-time dynamic PCR array (Fluidigm, South
San Francisco, CA). Two incubation controls comprising green fluorescent protein and
phycoerythrin were included in the assay to determine the lower limit of detection and to
normalize the measurements. A normalized protein expression value (NPX) was calculated
for each protein in the sample by normalizing the Ct values by subtracting the values for
the extension control and an inter-plate control. The scale was shifted by a correction factor
(normal background noise) [91]. Further details about initial laboratory data processing
can be obtained at https://www.olink.com (accessed on 16 December 2021).

4.4. Data Analysis
4.4.1. Summary of the Concept of Data Analysis

The goal of the study was to identify proteins from the Proseek multiplex inflammation
panel that are most informative in discriminating patients with and without PPSNP after
similar nerve injury during breast cancer surgery. The goal was translated into the task
of “feature selection”, i.e., reducing data dimensionality by filtering out uninformative or
redundant variables to simplify models for easier interpretation by field researchers [92].
Feature selection prior to training computational algorithms is a standard practice for
improving classifier performance and reducing the computational burden of training and

https://bio-protocol.org/bio101/r9741259
https://www.olink.com
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applying the algorithms. However, in addition to its main application of automatically
assigning cases to classes or subgroups, supervised machine learning can also be used to
discover structures in the data in order to obtain a description that provides better insights
about the dataset. This knowledge discovery approach assumes that, if a classifier can
be trained to identify whether a patient belongs to the PPSNP or non-PPSNP subgroup
better than by guessing, then the features, i.e., the proteins in the dataset needed by the
classifier to accomplish this task, contain relevant information about the addressed patient
subgroup structure. In this way, the most informative proteins can be identified. In this use
of feature selection, creating a powerful classifier is not the final goal, but feature selection
takes precedence over classifier performance. This means that the analysis is considered
as successful when the class assignment is just better than guessing and the variables
needed for this assignment have been identified, and not necessarily that the classifier is
further tuned.

Examples of feature selection methods [92] established in biomedical research [93] include
classical approaches such as principal component analysis (PCA [94,95]), regression-based
methods such as Least Absolute Shrinkage and Selection Operators (LASSO [96]), and meth-
ods based on generally well-performing machine learning methods such as the “Boruta”
method [43] or an item categorization-based selection of the most important features for
a classifier’s performance [97], both of which use the commonly used random forests
machine learning classification algorithm as their basis [98,99]. For the present analysis,
PCA and the “Boruta” method were used as a representation of a classical statistical ap-
proach and an established supervised machine learning approach. To evaluate whether
the selected features actually contain information relevant to the subgroup structure in the
present patient cohort, the identified features were then used to train a set of classifiers of
different types, so as not to rely on the specifics of a single method, but to use a range of
methods to internally validate the obtained results. The task here was to achieve better
classification than random assignment to PPSNP or non-PPSNP subgroups, and this should
not be similarly possible with the other proteins that were not selected as informative for
this subgroup structure, nor should it be achieved when the classifiers were trained with
permuted proteomics information, i.e., when the internal relationships of the protein levels
to the pain-related subgroups were intentionally broken.

In its main components, the data analysis follows the previously proposed workflow
for omics data from chronic patients [100] and is shown in a schematic drawing in Figure 7.
The necessary programming work was performed in the R language [101] using the R
software package [36], version 4.0.2 for Linux, which is available free of charge in the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/ (accessed on
14 March 2022). Analyses were performed on an Intel Core i7-10510U (Intel Corporation,
Santa Clara, CA, USA) notebook computer running Ubuntu Linux 20.04.1 LTS 64-bit
(Canonical, London, UK)). The detailed descriptions of the data analysis are provided in
the following sections.

4.4.2. Quantitative Information Analyzed

Pain-related information consisted of the presence or absence of PPSNP, scaled as
[0, 1]. The proteomic panel included initially d = 92 different proteins [91]; however,
d = 74 variables could be included in the analyses as the remaining proteins were below the
detection level. The proteomic variables consisted of normalized serum protein expression
value (NPX) [91], acquired before and 6.6 ± 1.2 (mean ± standard deviation) years after
surgery. Thus the proteomic information provided a 74 × 114 (d × 2n) sized data space
D =

{
(xi, yi)

∣∣xi ∈ RX , yi ∈ Y{1, 2}, i = 1 . . . n
}

, which contained the information, xi on
d = 74 proteomic markers acquired at two time points from n = 57 patients, and an output
data space, yi, that included the criteria for the grouping into two classes, i.e., the two
patient groups comprising “nerve injury and no NP” (non-PPSNP)” and “nerve injury and
NP” (PPSNP). The proteomics data set was complete and did not require imputations. Raw
data, separated by subgroups and time of sampling, are shown in Figure 8.

https://CRAN.R-project.org/


Int. J. Mol. Sci. 2022, 23, 3488 20 of 29Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW  21  of  30 
 

 

 

Figure 7. Flowchart showing the number of patients included in the different phases of the original 

study up to the present focused proteomics analysis. The figure has been created using Microsoft 

PowerPoint® 365  (Redmond, WA, USA) on Microsoft Windows 11 running  in a virtual machine 

powered by VirtualBox 6.1 for Linux (Oracle Corporation, Austin, TX, USA). 

4.4.2. Quantitative Information Analyzed 

Pain‐related  information consisted of  the presence or absence of PPSNP, scaled as 

[0,1]. The proteomic panel included initially d = 92 different proteins [91]; however, d = 74 

variables could be included in the analyses as the remaining proteins were below the de‐

tection level. The proteomic variables consisted of normalized serum protein expression 

value (NPX) [91], acquired before and 6.6 ± 1.2 (mean ± standard deviation) years after 

surgery. Thus the proteomic  information provided a 74 × 114 (d × 2n) sized data space 

𝐷 ൌ ሼሺ𝑥௜ , 𝑦௜ሻ|𝑥௜ ∈  ℝ௑,𝑦௜ ∈ Yሼ1,2ሽ, 𝑖 ൌ 1 …𝑛ሽ, which contained the information, xi on d = 74 

proteomic markers acquired at two time points from n = 57 patients, and an output data 

space, yi, that included the criteria for the grouping into two classes, i.e., the two patient 

Figure 7. Flowchart showing the number of patients included in the different phases of the original
study up to the present focused proteomics analysis. The figure has been created using Microsoft
PowerPoint® 365 (Redmond, WA, USA) on Microsoft Windows 11 running in a virtual machine
powered by VirtualBox 6.1 for Linux (Oracle Corporation, Austin, TX, USA).

4.4.3. Data Projection-Based Assessment of Proteomics Data Structures Relevant to
Pain-Related Subgroup Separation

PCA was performed using the recently proposed “PC-corr” approach [33]. This is
an algorithm that facilitates PCA to find a data transformation that optimizes subgroup
segregation by retrieving the correlations of the features that produce the segregation of
the subgroups along a principal component (PC). It calculates different quality measures
for each combination of PC, normalization and centering, and uses different transforma-
tions of the data. If its results consist of non-significant separations that are evaluated by
quantitative analyses (expressed as p-value, AUC and AUPR) using any type of normaliza-
tion and dimension, then a nonlinear dimensional reduction is required, since the data is
difficult to linearize by different types of normalization. If it turns out that the significant
separations, assessed by means of a Mann-Whitney U test [26,27], correspond to certain
types of normalization and in dimensions that are not within the first three dimensions of
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the embedding, then the data has nonlinearities that can be treated by normalizing the data.
Therefore, significant group separations in PC1-3 were sought in the PC-corr results as a ba-
sis for deciding on the most appropriate data transformation. This analysis was performed
using an R script provided with the description of the PC-corr analysis (pccorrv2.R, https:
//github.com/biomedical-cybernetics/PC-corr_net (accessed on 14 March 2022) [33]). The
results of this analysis indicated that the data set should be probe-level quantile normal-
ized [32] for further analysis. This was performed using the R library “preprocessCore”
(https://www.bioconductor.org/packages/release/bioc/html/preprocessCore.html (ac-
cessed on 14 March 2022) [102]).
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Figure 8. Plasma concentrations of protein markers. The proteins are named as in the Proseek panel
for consistency. Please refer to Table 1 for standard protein names. The box plots show the raw values
of proteomic marker levels in the plasma of the patients, separately for the first (before surgery)
and second (at follow-up 4–9 years later) plasma sample and for the patients with nerve injury
but no neuropathic pain (“non-PPSNP”) and patients with nerve injury in whom neuropathic pain
developed “PPSNP”. The boxes were constructed using minimum, quartiles, median (solid line
inside the box) and maximum. The whiskers add 1.5 times the interquartile range (IQR) to the 75th
percentile or subtract 1.5 times the IQR from the 25th percentile. The presentation of the data has
been arbitrarily split into two panels to enhance visibility. SIRT2 as a major result of the analysis is
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highlighted in red; for statistical details, see Table 1) The figure has been created using the R software
package (version 4.0.2 for Linux; http://CRAN.R-project.org/ (accessed on 14 March 2022) [36]) and the
R library “ggplot2” (https://cran.r-project.org/package=ggplot2 (accessed on 14 March 2022) [37]).

In the relevant PCs resulting from the PCA described above, subgroup structures con-
sistent with the prior classification (before versus after surgery, PPSNP versus non-PPSNP)
were sought by means of Gaussian mixture modeling. Specifically, the distribution of
the coordinates of the data set instances (observations) on the principal component space
was described by the Pareto density estimation (PDE), which is a kernel estimator of the
probability density function (PDF) that has been designed for group discovery [34]. Modal
structures were analyzed by fitting Gaussian mixture models (GMM) to the PDE, using
our interactive R tool “AdaptGauss” (https://cran.r-project.org/package=AdaptGauss
(accessed on 14 March 2022) [103]). The quality of the fit was monitored using the root mean
squares, and finally assessed using a Kolmogorov-Smirnov test [104] of the distribution of
fitted versus observed data and visual inspection of the quantile-quantile plots of quantiles
of the observed data versus the theoretical quantiles according to the fitted model. The
assignment of subjects to the identified subgroups was determined using the Bayesian
Theorem [105], which provides the decision limits for assigning a single observation to
mode Mi based on the calculation of posterior probabilities. The correspondence of the
group assignment based on the Gaussian modes in the relevant PCs with the a priori
subgroup distribution was statistically evaluated using Fisher’s exact tests [35].

As an alternative data projection method, self-organizing maps of artificial neurons
were used [106] in a modification where the network consisted of a two-dimensional toroid
grid with 50 rows and 80 columns [107] that has been shown to be well suited to subgroup
detection in biomedical data [38]). Each neuron holds, in addition to a position vector on
the two-dimensional grid, a further vector carrying “weights” of the same dimensions as
the input dimensions. The weights were initially drawn randomly from the sets of data
variables and subsequently adapted to the data during the learning phase with 20 epochs.
Following training of the neural network, an ESOM was obtained that represented the
subjects on a two-dimensional toroid map as the localizations of their respective “best
matching units” (BMU). On the top of the obtained grid of trained neurons, the distances
between the data points were calculated using the so-called U-matrix [39,108]. Each
value (height) in the U-Matrix represents the average high-dimensional distance of one
prototype in relation to all immediately adjacent prototypes in terms of grid position. The
corresponding visualization technique uses a topographic map including the coloring,
which facilitates the recognition of distance- and density-based structures. Large “heights”
in brown and white colors represent large distances between the data. These calculations
were performed using the R package “Umatrix” (https://cran.r-project.org/package=
Umatrix (accessed on 14 March 2022) [41]).

4.4.4. Supervised Machine-Learning Based Assessment of Proteomics Data Structures
Relevant to Pain-Related Subgroup Separation

As an established method of feature selection in machine learning that precedes train-
ing of various different types of classifiers in different research environments, the random
forest-based Boruta approach [43] was used to identify the most informative protein mak-
ers for partitioning the patient cohort into PPSNP and non-PPSNP subgroups. “Boruta”
provides a decision on whether a variable is important or not for the classification task,
which is derived from a 100-fold cross-validation approach followed by statistical evalua-
tion of the variables importance with p-values defaulting to 0.01 [43]. These calculations
were performed with the R package “Boruta” (https://cran.r-project.org/package=Boruta
(accessed on 14 March 2022) [43]) with the default hyperparameter settings.

To further enhance the validity of the feature selection, the Boruta approach was
nested into a 1000 cross-validation scenario using each time 2/3 of the data set randomly
drawn class-proportionally from the original data set by means of using Monte Carlo
resampling [109] implemented in the R library “sampling” (https://cran.r-project.org/
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package=sampling (accessed on 14 March 2022) [42]). The features selected by the Boruta
algorithm during each run were collected, and the final set of proteins was assembled in
descending order of the frequency with which they were among the selected features in
the 1000 cross-validation Boruta runs. The cutoff value for the selection was set using the
computed ABC analysis [110]. This item categorization method divides each set of positive
numbers into three non-overlapping subsets “A”, “B”, and “C” [111], of which category
“A” contains the “important few” that have been retained in the present analyses. The exact
computations of the set limits “A/B” and “B/C” have been described elsewhere [110]; the
calculations were performed using our R package “ABCanalysis” (https://cran.r-project.
org/package=ABCanalysis (accessed on 14 March 2022) [110]).

4.4.5. Supervised Machine Learning-Based Evaluation of Identified Proteomic Markers to
Distinguish Pain-Related Patient Subgroups

The final step of the data analysis consisted in an evaluation of the identified proteomic
markers to provide, in a variety of classification algorithms, suitable information about the
segregation of the patient cohort into PPSNP or non-PPSNP subgroups. Classifier training
and testing was performed in a 100-fold cross-validation design using disjoint training
(2/3 of the data) and test (1/3 of the data) data subsets obtained by means of Monte-Carlo
random resampling. Classification performance was evaluated primarily on the basis
of balanced accuracy [112]. Further performance criteria included the area under the
receiver operator curve (AUC-ROC [113]), sensitivity, specificity, precision, recall, positive
and negative predictive value [114,115] and the F1 measure [116,117]. These calculations
were performed with the R libraries “caret” (https://cran.r-project.org/package=caret
(accessed on 14 March 2022) [118]) and “pROC” (https://cran.r-project.org/package=
pROC (accessed on 14 March 2022) [119]).

The classifiers were trained with the selected proteomic markers, as these were of
most interest in this evaluation of the results obtained in the previous steps of data analysis.
If these markers enabled the algorithms to assign patients to pain subgroups better than by
guessing, the selected proteins could be considered informative for this clinical subgrouping.
To control for possible overfitting, all machine learning algorithms were additionally trained
with randomly permuted proteomic markers, with the expectation that a classifier trained
with these data should not perform better than guessing, i.e., give a balanced accuracy or
an AUC-ROC around 50 %. Furthermore, classifiers were trained with all protein markers,
and again with the protein markers that were not selected during feature selection, in order
to ensure that the selection had indeed identified the most informative markers.

Supervised classification algorithms were chosen in order to cover a variety of ma-
chine learning classifiers, including (i) random forests [98,99], (ii) support vector machines
(SVM [120]), (iii) adaptive boosting [121], (iv) k-nearest neighbors (kNN [122,123]), (v) C5.0
non-hierarchical rule-based classifier [124], and (vi) classical logistic regression [125]. The
latter was preferred to classical alternatives consisting for example of linear discriminant
analysis [126], following published advice on the choice between the two methods [127].
Moreover, in a direct comparison both methods have been shown to provide basically simi-
lar results on biomedical data [128]. For a review of machine learning methods that have
been successfully applied to pain-related data, see e.g., [129]). The classifiers were available
in the R libraries, “randomForest” (https://cran.r-project.org/package=randomForest (ac-
cessed on 14 March 2022) [130]), “xgboost” (https://cran.r-project.org/package=xgboost
(accessed on 14 March 2022) [131]), “e1071” (https://cran.r-project.org/package=e1071
(accessed on 14 March 2022) [132]), “caret”, “C50” (\protect\unhbox\voidb@x\hbox{https:
//CRAN.R-project.org/package=C50} (accessed on 14 March 2022) [133], and “nnet”
(https://cran.r-project.org/package=nnet (accessed on 14 March 2022) [134]). Hyper-
parameters were tuned during grid searches. For example, random forests were built with
500 trees and sqrt(d) features per tree, SVM was executed with a linear kernel, while the
k-nearest neighbors were used with centered and scaled prepossessed data, the Euclidean
distance and the number of k = 3 for 10 or less features and k = 5 for >10 features.
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5. Conclusions

Present analyses pointed in particular to sirtuin 2, with its role in neuroinflammatory
processes and in learning and memory, as a key marker in the development of PPSNP.
Results extended to 18 other proteins that were informative in distinguishing between
samples from patients with neuropathic pain and those without neuropathic pain, without
a clear distinction between samples before or after surgery. This suggests that the proteomic
patterns were not simply a consequence of the development of neuropathic pain or other
influences after surgery but reflected risk or protective factors that were already present
before surgery. The identified informative proteins had a remarkable number of target
proteins for approved or investigational drugs that have pain, including postoperative pain
or chest pain, as a clinical target, providing remarkable support for the relevance of the
present results.
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