Supplementary Information for

Evolutionary Inspired Engineering of Megasynthetases

Kenan A. J. Bozhüyük ${ }^{1,2,3, \&, \star}$, Leonard Präve ${ }^{1,3, \&}$, Carsten Kegler ${ }^{1, \&}$, Sebastian Kaiser ${ }^{4}$, Yan-Ni Shi ${ }^{3}$, Wolfgang Kuttenlochner ${ }^{5}$, Leonie Schenk ${ }^{1,3}$, Michael Groll ${ }^{5}$, Georg K. A. Hochberg ${ }^{4,6,7}$, Helge B. Bode ${ }^{1,3,6,7,8, *}$
${ }^{1}$ Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany
${ }^{2}$ Myria Biosciences AG, Basel, Switzerland
${ }^{3}$ Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
${ }^{4}$ Evolutionary Biochemistry Group, Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany
${ }^{5}$ Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technical University Munich, 85748 Garching, Germany
${ }^{6}$ Center for Synthetic Microbiology (SYNMIKRO), Phillips University Marburg, 35043 Marburg, Germany
${ }^{7}$ Department of Chemistry, Phillips University Marburg, 35043 Marburg, Germany
${ }^{8}$ Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt, Germany
\&These authors contributed equally to this work
*Correspondence authors: Kenan.Bozhueyuek@mpi-marburg.mpg.de, helge.bode@mpi-marburg.mpg.de

1. Material and Methods

1.1. Cultivation of strains

All E. coli DH10B::mtaA cells were cultured either on liquid or solid low salt LB medium ((pH 7.5, $10 \mathrm{~g} / \mathrm{L}$ tryptone, $5 \mathrm{~g} / \mathrm{L}$ yeast extract and $5 \mathrm{~g} / \mathrm{L} \mathrm{NaCl})$. Either kanamycin ($50 \mu \mathrm{~g} / \mathrm{ml}$), chloramphenicol $(34 \mu \mathrm{~g} / \mathrm{ml})$ or spectinomycin ($50 \mu \mathrm{~g} / \mathrm{ml}$) were added as selection markers. Solid media contained $1 \%(\mathrm{w} / \mathrm{v})$ agar. Cells were cultivated at $37^{\circ} \mathrm{C}$ and at $22^{\circ} \mathrm{C}$ for peptide production cultures.

1.2. Cloning of biosynthetic gene clusters and NRPS modules

For use as template, genomic DNA (gDNA) was extracted from bacteria indicated in Table S1 by use of the Gentra Puregene Yeast/Bact. Kit (Qiagen) and the Monarch® Genomic DNA Purification Kit (NEB) which in turn was taken as template for the PCR amplification. The proofreading PCR polymerase Q5® High-Fidelity DNA Polymerase (NEB) and Phusion DNA Polymerase (NEB/Thermo Fisher Scientific) in their standard and hot start variations were employed. Oligonucleotides for the PCR and the correct product size are documented in Table S4. In specified cases (Table S4) already cloned NRPS parts were used as template for the PCR. PCR products were agarose gel purified taking the Monarch® DNA Gel Extraction Kit (NEB) to be used as substrate for the Gibson cloning procedure using the Gibson Assembly® Master Mix or the NEBuilder® HiFi DNA Assembly Cloning Kit (NEB). In cases indicated in Table S4 restriction enzyme digests with enzymes indicated were used as one part of the substrate for the Gibson cloning step.
The vector pCK_0407 was cloned in a classic fashion. To this end the plasmid pCK_0407 was linearised using the restriction enzymes Avrll/Xbal and the 1.750 bp fragment ligated to the 1.933 bp fragment of the Avrll/Xbal digest of pCDFDuet (Merck-Novagen).

1.3. Heterologous expression of NRPS constructs and HPLC-MS analysis

After plasmid transformation into E. coli DH10B::mtaA, cells were grown overnight in LB medium containing all necessary antibiotics ($50 \mu \mathrm{~g} / \mathrm{ml}$ kanamycin, $34 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol, $100 \mu \mathrm{~g} / \mathrm{ml}$ spectinomycin). 10 ml LB medium containing antibiotics, $0.002 \mathrm{mg} / \mathrm{ml}$ L-arabinose and $2 \%(\mathrm{v} / \mathrm{v})$ XAD-16 were inoculated with 1% overnight grown culture. After incubation for 72 h at $22{ }^{\circ} \mathrm{C}$, XAD-16 beads were harvested and one culture volume methanol was added. Methanol extraction was conducted for 60 min at $22^{\circ} \mathrm{C}$. The organic phase was filtrated and diluted 1:10 in methanol. Cleared HPLC-UV-MS analysis was conducted on an UltiMate 3000 system (Thermo Fisher) coupled to an AmaZonX mass spectrometer (Bruker) with an ACQUITY UPLC BEH C18 column
($130 \AA, 2.1 \mathrm{~mm} \times 100 \mathrm{~mm}, 1.7-\mu \mathrm{m}$ particle size, Waters) at a flow rate of $0.4 \mathrm{ml} \mathrm{min}-1$ (5-95\% acetonitrile/water with 0.1% formic acid, vol/vol, 16 min , UV detection wavelength 190-800 nm). HPLC-UV-HRMS analysis was conducted on an UltiMate 3000 system (Thermo Fisher) coupled to an Impact II qTof mass spectrometer (Bruker) with an ACQUITY UPLC BEH C18 column (130 $\AA, 2.1 \mathrm{~mm} \times 100 \mathrm{~mm}, 1.7-\mu \mathrm{m}$ particle size, Waters) at a flow rate of 0.4 ml min-1 16 min , UV detection wavelength 190-800 nm). Evaluation was performed using DataAnalysis 5.3 software (Bruker).
For peptide quantification of NRPS-8- to -20 the production medium was, deviating from above, XPP medium ${ }^{1}$ without phenylalanine with $1 \mathrm{mM} \beta$-alanine added.

1.4. Peptide Purification

Compounds 4, 5, 7, 10, 26, 41 and 61 were produced in E. coli DH10B::mtaA expressing the respective NRPS variants. 4L XPP medium containing $34 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol, 0.002 \% Larabinose and 2% XAD 16 N beads was inoculated with 1% overnight grown culture as described in section S1.3. The culture was incubated at 180 rpm for 72 h at $22^{\circ} \mathrm{C}$. Subsequently, the XAD 16 N beads were extracted 3 times with 500 ml methanol for 30 minutes, stirring. Solvent was fully removed at reduced pressure and the crude extract was completely solved in DMSO in order to purify it by preparative HPLC-MS (LC-MS-System 1260 Infinity II Preparative LC/MSD from Agilent). A C3 column (Agilent ZORBAX 300XB-C3) utilizing a gradient of 40-55 \% ACN/H2O (+0.1 \% formic acid) was used. The compound was freeze-dried and the purity of the compound was determined by NMR and HPLC-HR-MS.

1.5. Peptide quantification

The absolute production titres were calculated as previously described ${ }^{2}$. Therefore, calibration curves based on pure 1 (for quantification of 1,2 and 3), $4(4,5,15,17,18,32$ and 33$), 10(6,7$, 8, 9, 10, 11 and 16), 26 ($26,27,28,29$), 34 (34 and 35), 36 (36 and 37), 38 (38 and 39), and 41 (40,41 and 42), were prepared. The pure compounds were prepared at different concentrations: 1 utilizing a standard curve with concentrations of $5000,500,50,5$ and $0.5 \mu \mathrm{~g} \mathrm{~L}^{-1} ; 4$ utilizing a standard curve with concentrations of $10,4,1,0.4,0.1,0.04$ and $0.01 \mathrm{mg} \mathrm{l}^{-1}, 10$ utilizing a standard curve with concentrations of $10,4,1,0.4,0.1$ and $0.04 \mathrm{mg} \mathrm{l}^{-1}, 26$ utilizing a standard curve with concentrations of $40,4,0.4,0.04$ and $0.004 \mathrm{mg} \mathrm{l}^{-1}, 34,36$ and 38 utilizing a standard curve with concentrations of $100,20,4,0.8$ and $0.16 \mathrm{mg} \mathrm{l}^{-1}, 41$ utilizing a standard curve with concentrations $10,5,2.5,1.25,0.625,0.3125$ and $0.1562 \mathrm{mg} \mathrm{l}^{-1}$ and measured by LC-MS using HPLC/MS measurements as described above. To ensure sample signals being within the range
of the standard curve they were diluted when necessary. The peak area for each compound at different concentrations was calculated using Compass Data Analysis and used for the calculation of a standard curve passing through the zero point. Triplicates of all in vivo experiments were measured. The pure peptide standards 1, 34, 36, 38 were synthesized in-house, 4, 10, 26 and 41 were purified from production cultures.

1.6. Chemical Synthesis

The linear peptide 1 was synthesized on preloaded resin (0.25 mmol H-Leu-2CITrt PS resin, Sigma Aldrich, Germany) by solid phase peptide synthesis using standard Fmoc/t-Bu chemistry. Fmoc protected amino acids or fatty acids were activated by mixture of 5 eq. Fmoc-AA-OH (or fatty acid), 12 eq. N,N-diisopropylethylamine (DIPEA, Iris Biotech, c = 2.4 M), 5 eq. O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU, Carbolution Chemicals) in 15 ml dimethylformamide (DMF, Carl Roth, Germany). The resin was incubated with the activated amino acid/fatty acid mixture for 2 h at room temperature. After each coupling, the resin was washed with NMP $(5 \times)$, DMF $(5 \times)$ and DCM $(5 \times)$. Finally, the peptide was cleaved by addition of 20 ml of a mixture of Hexafluoroisopropanol (HFIP) and DCM (1:4 v/v). Subsequently, the peptide was deprotected upon addition of 2 ml Trifluoroacetic acid (TFA) incubating for 2 h at room temperature. The linear peptide was dissolved in MeOH in order to purify it by semi-preparative HPLC-MS (Agilent LC-MS-System 1260 Infinity II Analytical-Scale LC/MSD) utilizing a C18 column (Eclipse XDB-C18 ($9.4 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$). The purity was determined by NMR and HPLC-HR-MS analysis.
Chemical synthesis of peptides $34,36,38$ was performed as described previously ${ }^{2}$. The linear sequences were synthesized on preloaded resins (H-AA-2CITrt PS resin, Sigma Aldrich, Germany) on a $25 \mu \mathrm{M}$ scale with a Syro Wave peptide synthesizer (Biotage, Sweden) by using standard Fmoc/t-Bu chemistry. Fmoc-amino acids were purchased from Carbolution Chemicals (Germany), Iris Biotech (Germany) or Bachem (Switzerland). Therefore, the resin was placed in a plastic reactor vessel with a Teflon frit and an amount of 6 eq. of amino acid derivative ($c=0.2$ M) was activated in situ at room temperature with 6 eq. of O-(6-chlorobenzotriazol-1-yl)- $N, N, N N^{\prime}, N^{\prime}-$ tetramethyluronium hexafluorophosphate (HCTU, Carl Roth, Germany, $c=0.6 \mathrm{M}$) in dimethylformamide (DMF, Carl Roth, Germany) in the presence of 12 eq. $\mathrm{N}, \mathrm{N}-$ diisopropylethylamine (DIPEA, Iris Biotech, c = 2.4 M) in N -methylpyrrolidone (NMP, Iris Biotech) for 50 min . Fmoc-protecting groups were removed with a solution of 40% piperidine (Iris Biotech) in NMP ($\mathrm{v} / \mathrm{v} \%$) for 5 min and followed by a second deprotection step with 20% piperidine in NMP ($\mathrm{v} / \mathrm{v} \%$) for 10 min . After each coupling and deprotection step, the resin was washed with NMP (4
\times). After addition of the final amino acid and deprotection step, the resin was washed with NMP ($5 \times$), DMF ($5 \times$) and DCM ($5 \times$).

For total deprotection or cleavage 0.5 mL 95 \% trifluoroacetic acid (TFA, Iris Biotech) and 2.5 \% triisopropylsilane (TIS, Sigma Aldrich) in water were added to peptidyl resin and the mixture was agitated for at least 1 h at room temperature. The resin was removed by filtration and washed twice with TFA. Then the cleavage cocktail was evaporated. Linear peptide was dissolved in MeOH in order to purify it by semi-preparative HPLC-MS (Agilent LC-MS-System 1260 Infinity II Analytical-Scale LC/MSD) utilizing a C18 column (Eclipse XDB-C18 (9.4 x $250 \mathrm{~mm}, 5 \mu \mathrm{~m}$). The purity was determined by HPLC-HR-MS and NMR.

1.7. Expression and purification of yeast 20 S proteasome

The yeast 20 S proteasome was prepared as previously described ${ }^{3,4}$.

1.8. $\quad \mathrm{IC}_{50}$ value determination with purified $y C P$

Concentration of purified yeast 20 S proteasome (yCP) was determined spectrophotometrically at 280 nm . yCP (final concentration: $0.05 \mathrm{mg} / \mathrm{mL}$ in 100 mM Tris-HCl, pH 7.5) was mixed with DMSO as a control or serial dilutions of fellutamide derivatives in DMSO, thereby not surpassing a final concentration of $10 \%(\mathrm{v} / \mathrm{v})$ DMSO. After an incubation time of 45 min at RT, fluorogenic substrates Boc-Leu-Arg-Arg-AMC, Z-Leu-Leu-Glu-AMC and Suc-Leu-Leu-Val-Tyr-AMC (final concentration of $200 \mu \mathrm{M}$) were added to measure the residual activity of caspase-like (C-L, $\beta 1$ subunit), trypsin-like (T-L, $\beta 2$ subunit) and chymotrypsin-like (ChT-L, $\beta 5$ subunit), respectively. The assay mixture was incubated for another 60 min at RT and afterwards diluted 1:10 in 20 mM Tris-HCI, pH 7.5. The AMC-molecules released by hydrolysis were measured in triplicate with a Varian Cary Eclipse Fluorescence Spectrophotometer (Agilent Technologies) at $\lambda_{\mathrm{exc}}=360 \mathrm{~nm}$ and $\lambda_{\mathrm{em}}=460 \mathrm{~nm}$. Relative fluorescence units were normalized to the DMSO treated control. The calculated residual activities were plotted against the logarithm of the applied inhibitor concentration and fitted with GraphPad Prism 5. Half maximum inhibitory concentration (IC C_{50}) values were deduced from the fitted data. They depend on enzyme concentration and are comparable within the same experimental settings.

1.9. Crystallisation and structure determination of the yeast $20 S$ proteasome core particle ($y C P$) in complex with 41.

Crystals of yCP were grown in hanging drops at $20^{\circ} \mathrm{C}$ as previously described ${ }^{3,4}$. The protein concentration used for crystallization was $40 \mathrm{mg} / \mathrm{mL}$ in Tris / $\mathrm{HCl}(20 \mathrm{mM}, \mathrm{pH} 7.5)$ and EDTA (1
mM). The drops contained $1 \mu \mathrm{~L}$ of protein and $1 \mu \mathrm{~L}$ of the reservoir solution [30 mM magnesium acetate, 100 mM 2 -(N-morpholino)ethanesulfonic acid (pH 6.8) and 10\% (wt/vol) 2-methyl-2,4pentanediol]. Crystals appeared after two days and were incubated with a fellutamide derivative at final concentrations of 10 mM for at least 24 h . Droplets were then complemented with a cryoprotecting buffer [30\% (wt/vol) 2-methyl-2,4-pentanediol, 15 mM magnesium acetate, 100 mM 2-(N-morpholino)ethanesulfonic acid, pH 6.9] and vitrified in liquid nitrogen. The dataset from the yCP: 41 complex was collected using synchrotron radiation ($\lambda=1.0 \AA$) at the X06SA-beamline (Swiss Light Source, Villingen, Switzerland). X-ray intensities and data reduction were evaluated using the XDS program package (Table Sx) ${ }^{5}$. Conventional crystallographic rigid body, positional, and temperature factor refinements were carried out with REFMAC5 ${ }^{6}$ using coordinates of the yCP structure as starting model (PDB ID 5CZ4) ${ }^{7}$. For model building, the programs SYBYL and COOT^{8} were used. The final coordinates yielded excellent R factors, as well as geometric bond and angle values. Coordinates were confirmed to fulfill the Ramachandran plot and have been deposited in the RCSB (PDB ID xxxx)

1.10 Evolutionary analysis of ATC tridomains (XUs) from NRPS using PhyML_Multi

The amino acid sequence of NRPS were collected from our Photorhabdus and Xenorhabdus genome collection. We also included a few NRPS representatives from actinomycetes, cyanobacteria and other proteobacteria in our analysis (sup. x). XUs from NRPS protein sequences were extracted from our NRPS dataset using local BLAST with the second XU from GxpS of Photorhabdus laumondii TT01 as query. XUs were aligned using MUSCLE v3.8.31 ${ }^{9}$ and trimed with trimAl v1.2 2^{10}. This alignment was used for the evolutionary analysis using the software PhyML_Multi. We specified that PhyML_multi search for two trees under a hidden markov model that together best fit the alignment. Since PhyML_Multi does not have a model finder, the model finder of IQ-tree ${ }^{10}$ with the selection of '-msub nuclear' was used. IQ-tree chose JTT as the best fit model which was also used for the analysis with PhyML_Multi with a 4-category gamma distribution of among site rate-variation. Afterwards, the log likelihood of tree 1 was deducted from the log likelihood of tree 2 and plotted.

1.11 Evolutionary analysis of the T domain from NRPS using PhyML_Multi

The T domain dataset covered the amino acid sequence of the A-T-Linker and the T domain. This area was extracted from our NRPS dataset using local BLAST with the third T domain from GxpS of Photorhabdus laumondii TT01 as query. The T domains were aligned using MUSCLE and
carefully trimmed manually to reduce gaps. Afterwards, the software PhyML_Multi was used to detect recombination breakpoints and phylogenetic histories within the T domain.

1.12 Topological comparison of different phylogenetic trees

The four different trees generated by PhyML_Multi were pruned using the software mesquite ${ }^{11}$ to reduce the number branches on the trees for visual clarity. Trees were compared using the R package phytools ${ }^{12}$.

Table S1. Strains used in this work.

Strain	Genotype/NRPS	Reference
E. coli DH10B	F_mcrA (mrr-hsdRMS-mcrBC), 80lacZ Δ, M15, $\Delta / a c X 74$ recA1 endA1 araD 139 (ara, leu)7697 galU galK λ rpsL (Strr) nupG / -	13
E. coli DH10B::mtaA	DH10B with mtaA from pCK_mtaA Δ entD / -	14
Bacillus subtilis subsp. subtilis str. 168 DSM 402	WT (srfAB, ppsA)	DSMZ
M. xanthus DK1622	WT (MchABC)	15, 16
Pseudomonas lurida sp. MYb11	WT (viscA)	17
Serratia sp. SCBI	WT (swrA)	18
S. marcescens DSM 12481	WT (swrW)	DSMZ
P. luminescens subsp. laumondii TT01	WT (gxpS, kolS)	DSMZ
P. temperata KT122	WT (4325)	19
X. bovienii SS-2004	WT (txIA)	${ }^{20}$
X. doucetiae DSM 17909	WT (xabA, prtA)	DMSZ
X. indica DSM17382	WT (xldS, xtvB, xeyS, XINDV2_09420)	DSMZ
X. innexi DSM 16336	WT (fitAB*1)	DSMZ
X. mauleonii DSM 17908	WT (ftrAB*2)	DSMZ
X. miraniensis DSM 17902	WT (ambS)	DMSZ
X. nematophila ATCC19061	WT (xtpS, PAX)	ATCC
X. stockiae DSM 17904	WT (xabA)	DMSZ
X. szentirmaii DSM 16338	WT (xabA)	DMSZ
Xenorhabdus sp. KK7.4	WT (XEKKV2_12060)	20,2
Chondromyces crocatus Cm c5 DSM 14714	WT (cpnD)	DMSZ

Table S2. Protein and nucleic acid references to data bank used for NRPS-constructs.

NRPS- construct	GenPept locus/protein ID	GenBank	locus tag	gene
NRPS-8	PHM30481.1 PHM29999	NIBU01000054.1 NIBU01000077.1	Xinn_03284 Xinn_03635	fitAB
NRPS-9	YP_003466710.1	FN667741	XBJ1_0775	txIA
NRPS-10	WP_1488886166.1	NZ_VNHN01000062.1	LY16_RS14705	prtA
NRPS-11	WP_099121989.1	NZ_NJAH01000014.1	Xekk_RS12280	XEKKV2_ 12060
NRPS-12	MBC8943736.1	NKHP01000001.1	Xind_00118	XINDV2_0
NRPS-13	AIM23801.1	CP003424.1	SERRSCBI_21215	swrA
NRPS-14	WP_187681863	NZ_JACSZU010000009.1	IAI52_RS13305	viscA
NRPS-15	WP_012987679	NC_013892.1	XBJ1_1126	xfpS
NRPS-16	CAB13717.2	ALO09126.3	BSU18340	ppsA
NRPS-19	PHM39367.1 PHM39368	NITY01000011.1	Xmau_02974 Xmau_02975	ftrAB
NRPS-20	BAD60917.1	AB193098.2	AB193098.2	swrW
NRPS-17	ABF89060.1 ABF8945.1	CP000113.1	MXAN_4007 MXAN_4078	MchAB
NRPS-18	PHM40846.1	NIUA01000001.1	Xszus_00521	xabA

Table S3. Plasmids and corresponding NRPSs used in this work.

NRPS	Plasmids	Genotype	Reference
	${\underset{\text { tacl }}{\text { pCOLA/ }}}^{\text {para/ }}$	ori ColA, kanR, araC- $P_{\text {BAD }}$, and tacl	22
	pCK_0401	ori p15A, cmR, araC- $P_{B A D}$, and tacl	23
	pCK_0407	ori ColDF13, specR, araC- $P_{B A D}$, and tacl; mtaA	This work
-1	pLP23	ori CoIA, kan^{R}, araC- $P_{B A D}, x a b A B C _C 1 A 1-$ gxpS_T3C/E4A4T4C/E5A5T5TE and tacl	This work
-2	pLP24	ori ColA, kan R, araC- $P_{B A D}, x a b A B C _C 1 A 11_{1 / 2}-$ gxpS_T3 $1_{12} \mathrm{C} / E 4 A 4 T 4 C / E 5 A 5 T 5 T E$ and tacl	This work
-3	pFP7	ori ColA, kan R, araC- $P_{B A D}, x a b A B C _C 1 A 11_{1 / 2-}$ gxpS_T31/2C/E4A4T4C/E5A5T5TE and tacl	This work
-4	pFP8	ori ColA, kan R, araC- $P_{B A D}, x a b A B C _C 1 A 1 T 1_{1 / 2}-$ gxpS_T31/2C/E4A4T4C/E5A5T5TE and tacl	This work
-5	pFP9	ori ColA, $k a n^{R}$, araC- $P_{B A D}, x a b A B C-C 1 A 1 T 1_{1 / 2^{-}}$ gxpS_T3 $1_{12} \mathrm{C} / E 4 \mathrm{~A} 4 \mathrm{~T} 4 \mathrm{C} / \mathrm{E} 5 \mathrm{~A} 5 \mathrm{~T} 5 \mathrm{TE}$ and $\mathrm{tac} /$	This work
-6	pFP11	ori ColA, kan R, araC- $P_{B A D}, x a b A B C _C 1 A 1 T 1_{1 / 2-}$ gxpS_T31/2C/E4A4T4C/E5A5T5TE and tacl	This work
-7	pLP31	ori ColA, kan^{R}, araC- $\mathrm{P}_{B A D}$, xabABC_C1A1T1gxpS_C/E4A4T4C/E5A5T5TE and tacl	This work
-8	pCK_0683	ori p15A, cmR, araC- P PAD , fitAB 6 modular NRPS X. mauleonii	This work
-9a	pCK_0760	ori p15A, cmR, araC- $\begin{array}{c}P_{B A D,}, \text { txIA C1A1 - T1 modules } \\ 2-6 \text { fitAB }\end{array}$	This work
-9b	pCK_0761	ori p15A, cmR, araC- $P_{B A D}$, txIA C1A1 T11/2 modules 2-6 fit $A B$	This work
-10a	pCK_0762	ori p15A, cmR, araC- $P_{B A D}$, prtA C1A1 - T1 modules 2-6 fitAB	This work
-10b	pCK_0762	ori p15A, cmR, araC- $P_{B A D}$, prtA C1A1 T1 $1 / 2-$ modules 2-6 fitAB	This work
-11a	pCK_0768	ori p15A, cmR, araC- $P_{B A D}, x^{\prime} A^{*} A^{*} 1 \mathrm{A1} 1^{\mathrm{val}}-\mathrm{T} 1$ modules 2-6 fitAB	This work
-11b	pCK_0768	ori p15A, cmR, araC- $P_{B A D}, x u c A^{*}$ C1A1 ${ }^{\text {Val }} \mathrm{T1}_{1 / 2}-$ modules 2-6 fitAB	This work
-12a	pCK_0820	ori p15A, cmR, araC- $P_{B A D}, x^{\prime} A^{*} \mathrm{C}_{1} \mathrm{A1}^{\text {Ser }}-\mathrm{T} 1$ modules 2-6 fitAB	This work
-13a	pCK_0822	ori p15A, cmR, araC- $P_{B A D}, x u c A^{*} C 1 A 1^{\text {Leu }}-\mathrm{T} 1$ modules 2-6 fitAB	This work
-13b	pCK_0823	ori p15A, cmR, araC- $P_{B A D}$, viscA C1A11 ${ }^{\text {Leu }} \mathrm{T}_{1 / 2}-$ modules 2-6 fitAB	This work
-14a	pCK_0824	ori p15A, cmR, araC- $P_{B A D}, x^{\prime} A^{*} A^{*}$ C1A1 $1^{\text {Leu }}-\mathrm{T} 1$ modules 2-6 fitAB	This work
-14b	pCK_0825	ori p15A, cmR, araC- $P_{B A D}, x u c A^{*}$ C1A1 $1^{\text {Leu }} \mathrm{T}_{1 / 2}-$ modules 2-6 fitAB	This work
-15a	pCK_0826	ori p15A, cmR, araC- $P_{B A D}, x t p S ~ C 1 A 11^{\text {Leu }}-\mathrm{T} 1$ modules 2-6 fitAB	This work
-15b	pCK_0827	ori p15A, cmR, araC- $P_{B A D}, x t p S ~ C 1 A 11^{\text {Leu }}$ T1 $1 / 2-$ modules 2-6 fitAB	This work
-16a	pCK_0828	ori p15A, cmR, araC- $P_{B A D}, x t p S ~ C 1 A 11^{\text {LeuT11 }} 1 / 2-$ modules 2-6 fitAB	This work
-19	pCK_0680	ori p15A, cmR, araC- $P_{B A D}$, ftrAB 6 modular WT NRPS	This work
-17a	pCK_0868	ori CloDF13, specR, araC-P ${ }_{\text {bad }} m c h A-P K S$ and tacl	This work

-20b	pCK_0870	ori p15A, cmR, araC- $P_{B A D}, s w r W C 1 A 1$ Ser modules 2-6 ftrAB	This work
-19a	pCK_0873	ori p15A, cmR, araC- $P_{B A D}$, (mchA-PKS mchB C1A1MT ${ }^{\text {Thr }}$ - modules 2-6 fitAB	This work
-20b	pSB002	ori p15A, cmR, araC- $P_{\text {BAD }}$, xabA C1A1 ${ }^{\text {ProT1_C2A }}{ }^{\text {Gly }}{ }^{\text {T1 }} 1_{1 / 2}$ - modules $2-6$ fitAB	This work
-21a	pLS_019	ori p15A, cm^{R}, araC-Pbad I-Ceul, I-Scel gxps_ $\mathrm{A}_{1} \mathrm{~T}_{1} \mathrm{C} / \mathrm{E}_{2} \mathrm{~A}_{2}$ _xabA_ $\mathrm{T}_{3} \mathrm{C}_{4} \mathrm{~A}_{4}$ g $g \times p s_{-} \mathrm{T}_{4} \mathrm{C} / \mathrm{E}_{5} \mathrm{~A}_{5} \mathrm{~T}_{5} \mathrm{TE}$ and tacl-araE	This work
-21b	pLS_191	ori p15A, cm^{R}, araC-P Bad I-Ceul, I-Scel gxps_ $\mathrm{A}_{1} \mathrm{~T}_{1} \mathrm{C} / \mathrm{E}_{2} \mathrm{~A}_{2} \mathrm{~T}_{2}^{1 / 2}-x a b A_{-} \mathrm{T}^{1 / 2} \mathrm{C}_{4} \mathrm{~A}_{4} \mathrm{~T}_{4}^{1 / 2} _g \times p s_{-} \mathrm{T}^{1 / 2}$ $\mathrm{C} / \mathrm{E}_{5} \mathrm{~A}_{5} \mathrm{~T}_{5}$ TE and tacl-araE	This work
-22a	pLS_018	ori p15A, cm $^{\mathrm{R}}$, araC-P ${ }_{\text {bad }}$ I-Ceul, I-Scel gxps_A $\mathrm{T}_{1} \mathrm{~T}_{1} / \mathrm{E}_{2} \mathrm{~A}_{2}$ xlds_ $\mathrm{T}_{2} \mathrm{C}_{3} \mathrm{~A}_{3}$ _gxps_ $\mathrm{T}_{4} \mathrm{C} / \mathrm{E}_{5} \mathrm{~A}_{5} \mathrm{~T}_{5} \mathrm{TE}$ and tacl-araE	This work
-22b	pLS_017		This work
-23a	pLS_009	ori p15A, cm $^{\mathrm{R}}$, araC-Pbad I-Ceul, I-Scel gxps_A $\mathrm{A}_{1} \mathrm{~T}_{1} \mathrm{C} / \mathrm{E}_{2} \mathrm{~A}_{2}$ _cpnd_ $\mathrm{T}_{2} \mathrm{C}_{3} \mathrm{~A}_{3}$ _gxps_ $\mathrm{T}_{4} \mathrm{C} / \mathrm{E}_{5} \mathrm{~A}_{5} \mathrm{~T}_{5} \mathrm{TE}$ and tacl-araE	This work
-23b	pLS_008		This work
-24a	pLS_003	ori p15A, cm ${ }^{\text {R }}$, araC-Pbad I-Ceul, l-Scel gxps_ $\mathrm{A}_{1} \mathrm{~T}_{1} \mathrm{C} / \mathrm{E}_{2} \mathrm{~A}_{2} _m c h \mathrm{C}_{A_{-}} \mathrm{T}_{2} \mathrm{C}_{3} \mathrm{~A}_{3} _g x p s_{-} \mathrm{T}_{4} \mathrm{C} / \mathrm{E}_{5} \mathrm{~A}_{5} \mathrm{~T}_{5} \mathrm{TE}$ and tacl-araE	This work
-24b	pLS_002		This work
-25	pPI16_XUT	ori p15A, cm^{R}, araC-P PAAD xldS_C1A1T1 $1_{12^{-}}$ xabA_T1 ${ }_{1 / 2} \mathrm{C} 1-k o / S _A 2 T 2 C 3-g x p S _A 2 T 2_{1 / 2}-$ $x t v A B _T 2_{1 / 2}$ Red tacl and araE	This work
-26	pPI16	ori p15A, $\mathrm{cm}^{\bar{R}}$, araC- PBAD xIdS C1A1T1 $1_{12}-$ xabA_T1 ${ }_{1 / 2} \mathrm{C} 1-\mathrm{kol} \mathrm{S}_{2} \mathrm{~A} 2 T 2 \mathrm{C} 3-g \times p S _A 2 T 2_{1 / 2^{-}}$ $x t v A B \quad$ T2 $1_{1 / 2}$ Red tacl and araE	This work
-27	pPI16_typell	ori p15A, cm^{R}, araC-P PAD xIdS_C1A1T1 $1_{1 / 2}-$ xabA_T1 ${ }_{1 / 2} \mathrm{C} 1-k o / S _A 2 T 2 C 3-g x p S _A 2 T 2_{1 / 2}-$ $x t v A B-T 2_{1 / 2}$ Red tacl and araE	This work
-28	pPI16_end	ori p15A, $\mathrm{cm}^{\bar{R}}$, araC-P PBAD xIdS_C1A1T1 $1_{1 / 2-}$ xabA_T1 ${ }_{1 / 2} \mathrm{C} 1-k o l S _A 2 T 2 C 3-g x p S _A 2 T 21 / 2^{-}$ 	This work

Table S4. Primer and templates used in this work to generate indicated plasmids. Sizes of the PCR products are depicted below the template.

Plasmids	Oligonucleotides	Sequence (5' to 3'), alternatively restriction enzymes	Template Product size in bp
pLP23	LP134	TGGGCTAACAGGAGGAATTCCATGCCTATGTCG TGCAATCG	X. stockiae gDNA 3.062
	LP135	GCTTGGTACTCATGCGTGACTACCGC	
	LP132	CAATCTGCGGTAGTCACGCATGAGTACCAAGC GCCACAAGGGGAAATTG	$\begin{gathered} \text { pJW76 } \\ 5.347 \end{gathered}$
	LP133	GAACATTCGGATCAAGTACCGTTAACGCGG	
	LP136	AACGGTACTTGATCCGAATGTTC	$\begin{gathered} \hline \text { pJW76 } \\ 5.545 \end{gathered}$
	LP137	GGAATTCCTCCTGTTAGCCC	
pLP24	LP134	TGGGCTAACAGGAGGAATTCCATGCCTATGTCG TGCAATCG	X. stockiae gDNA 3.148
	LP139	AGAAACTGTCATGTCGGCCAACCTGTTCTAATC CTAATAAACTTTGC	
	LP138	GTTGGCCGACATGACAGTTTCTTTGCC	$\begin{gathered} \text { pJW76 } \\ 5.251 \end{gathered}$
	LP133	GAACATTCGGATCAAGTACCGTTAACGCGG	
	LP136	AACGGTACTTGATCCGAATGTTC	$\begin{gathered} \hline \text { pJW76 } \\ 5.545 \end{gathered}$
	LP137	GGAATTCCTCCTGTTAGCCC	
pFP7	LP55	GAGGAATTCCATGCCTATGTCGTGCAATCG	X. stockiae gDNA 3.149
	LP60	CGCCCAAGGCAAAGAAATGGTCACGGCGACCA ACCTG	
	LP59	CCATTTCTTTGCCTTGGGCGGTCAC	$\begin{gathered} \hline \text { pJW76 } \\ 5.308 \end{gathered}$
	LP44	GTAAATCACATACGCCAGATGTCGTGAGGTC	
	LP43	CGACATCTGGCGTATGTGATTTACACTTCTG	$\begin{gathered} \hline \text { pJW76 } \\ 5.487 \end{gathered}$
	LP56	CGACATAGGCATGGAATTCCTCCTGTTAGC	
pFP8	LP55	GAGGAATTCCATGCCTATGTCGTGCAATCG	$\begin{gathered} \text { X. stockiae gDNA } \\ 3.157 \end{gathered}$
	LP62	CGAGTGACCGCCCAATTCAAAGAAATGGTCAC	
	LP61	TTGAATTGGGCGGTCACTCGCTGTTGGC	$\begin{gathered} \hline \text { pJW76 } \\ 5.300 \end{gathered}$
	LP44	GTAAATCACATACGCCAGATGTCGTGAGGTC	
	LP43	CGACATCTGGCGTATGTGATTTACACTTCTG	$\begin{gathered} \hline \text { pJW76 } \\ 5.487 \end{gathered}$
	LP56	CGACATAGGCATGGAATTCCTCCTGTTAGC	
pFP9	LP55	GAGGAATTCCATGCCTATGTCGTGCAATCG	$\begin{gathered} \text { X. stockiae gDNA } \\ 3.171 \end{gathered}$
	LP64	CTGACTGCCAGAAGAGAGTCACCACCC	
	LP63	GACTCTCTTCTGGCAGTCAGGATGATCGAACG	$\begin{gathered} \hline \text { pJW76 } \\ 5.286 \end{gathered}$
	LP44	GTAAATCACATACGCCAGATGTCGTGAGGTC	
	LP43	CGACATCTGGCGTATGTGATTTACACTTCTG	$\begin{gathered} \hline \text { pJW76 } \\ 5.487 \end{gathered}$
	LP56	CGACATAGGCATGGAATTCCTCCTGTTAGC	
pFP11	LP55	GAGGAATTCCATGCCTATGTCGTGCAATCG	$\begin{gathered} \text { X. stockiae gDNA } \\ 3.202 \end{gathered}$
	LP66	CAATCCTATACGACGTATACGGGCAGTCATCTG	
	LP65	CCGTATACGTCGTATAGGATTGGGCCTGTC	$\begin{gathered} \hline \text { pJW76 } \\ 5.257 \\ \hline \end{gathered}$
	LP44	GTAAATCACATACGCCAGATGTCGTGAGGTC	
	LP43	CGACATCTGGCGTATGTGATTTACACTTCTG	$\begin{gathered} \hline \text { pJW76 } \\ 5.487 \end{gathered}$
	LP56	CGACATAGGCATGGAATTCCTCCTGTTAGC	
pLP31	LP134	TGGGCTAACAGGAGGAATTCCATGCCTATGTCG TGCAATCG	X. stockiae gDNA 3.297
	LP160	GCTAATTTCACGATGTTCAGTAATAACCTGAGC CAACTC	
	LP161	GTTATTACTGAACATCGTGAAATTAGCGTGCCT G	$\begin{gathered} \hline \text { pJW76 } \\ 5.110 \end{gathered}$
	LP133	GAACATTCGGATCAAGTACCGTTAACGCGG	

	LP136	AACGGTACTTGATCCGAATGTTC	$\begin{gathered} \hline \text { pJW76 } \\ 5.545 \end{gathered}$
	LP137	GGAATTCCTCCTGTTAGCCC	
pPI16	26	TTTTTGGGCTAACAGGAGGAATTCCATGAATAT GACACGTAACCATACATCC	$\begin{aligned} & \text { X. indica gDNA } \\ & 3.098 \end{aligned}$
	29	GTGAGTGCCCGCCAAGCTCAAAGAAATGATCG TGGCGACCGACAC	
	12	TTCTTTGAGCTTGGCGGGC	$\begin{gathered} \text { X. doucetiae } \\ \text { gDNA } \\ 1.536 \end{gathered}$
	AL13-2	ATCCACCAGCAGTTGTTGTCG	
	40	GGAGCGACAACAACTGCTGGTGGATTGGAATG CAACCGCAACC	$\begin{gathered} \text { P. luminescens } \\ \text { subsp. laumondii } \\ \text { TT01 gDNA } \\ 3.203 \end{gathered}$
	AT_492	GATAGGGGGTTTCTGTCGCGTTCCAAGTTTCCA ATAACAACTTGCGCTC	
	AT_226	TGGAACGCGACAGAAACC	P. luminescens subsp. laumondii TT01 gDNA 1.668
	9	ATTATCGTGTCGGCCGATTTGCTC	
	14	AAATCGGCCGACACGATAATTTTTTTCAATATCG GAGGACATTCGC	$\begin{aligned} & \hline \text { X. indica gDNA } \\ & 1.383 \end{aligned}$
	6	TATACGAGCCGATGATTAATTGTCATTACTTATA TTCCGGTTCATATTTTTTGTCC	
	pACYC-2	TGACAATTAATCATCGGCTCG	$\begin{gathered} \hline \text { pJW75 } \\ 5.220 \end{gathered}$
	pACYC-1	GGAATTCCTCCTGTTAGCC	
pPI16_XUT	26	TTTTTGGGCTAACAGGAGGAATTCCATGAATAT GACACGTAACCATACATCC	$\begin{gathered} \hline \text { X. indica gDNA } \\ 3.098 \end{gathered}$
	29	GTGAGTGCCCGCCAAGCTCAAAGAAATGATCG TGGCGACCGACAC	
	12	TTCTTTGAGCTTGGCGGGC	$\begin{aligned} & X . \text { doucetiae } \\ & \text { gDNA } \\ & 1.536 \\ & \hline \end{aligned}$
	AL13-2	ATCCACCAGCAGTTGTTGTCG	
	40	GGAGCGACAACAACTGCTGGTGGATTGGAATG CAACCGCAACC	P. Iuminescens subsp. laumondii TT01 gDNA 3.203
	AT_492	GATAGGGGGTTTCTGTCGCGTTCCAAGTTTCCA ATAACAACTTGCGCTC	
	AT_226	TGGAACGCGACAGAAACC	```P. Iuminescens subsp. laumondii TT01 gDNA 1.578```
	LP356	AATTTGGCGAGCAAAAGCATCC	
	LP357	AGAGGATGCTTTTGCTCGCCAAATTTCTGAGGA ACGTCTGACTTC	$\begin{aligned} & X \text {. indica gDNA } \\ & 1.478 \end{aligned}$
	6	TATACGAGCCGATGATTAATTGTCATTACTTATA TTCCGGTTCATATTTTTTTGTCC	
	pACYC-2	TGACAATTAATCATCGGCTCG	$\begin{gathered} \hline \text { pJW75 } \\ 5.220 \end{gathered}$
	pACYC-1	GGAATTCCTCCTGTTAGCC	
$\text { pPI16_type }_{\text {II }}$	26	TTTTTGGGCTAACAGGAGGAATTCCATGAATAT GACACGTAACCATACATCC	$\begin{gathered} \text { X. indica gDNA } \\ 3.098 \end{gathered}$
	29	GTGAGTGCCCGCCAAGCTCAAAGAAATGATCG TGGCGACCGACAC	
	12	TTCTTTGAGCTTGGCGGGC	X. doucetiaegDNA1.536
	AL13-2	ATCCACCAGCAGTTGTTGTCG	

	40	GGAGCGACAACAACTGCTGGTGGATTGGAATG CAACCGCAACC	P. luminescens subsp. laumondii TT01 gDNA 3.203
	AT_492	GATAGGGGGTTTCTGTCGCGTTCCAAGTTTCCA ATAACAACTTGCGCTC	
	AT_226	TGGAACGCGACAGAAACC	P. Iuminescens subsp. laumondii TT01 gDNA 1.680
	LP358	CAAGGCAAAAAAATTATCGTGTCGGC	
	LP359	CCGACACGATAATTTTTTTTGCCTTGGGAGGACA TTCGCTATTAGC	$\begin{aligned} & \hline X . \text { indica gDNA } \\ & 1.376 \end{aligned}$
	6	TATACGAGCCGATGATTAATTGTCATTACTTATA TTCCGGTTCATATTTTTTGTCC	
	pACYC-2	TGACAATTAATCATCGGCTCG	$\begin{gathered} \text { pJW75 } \\ 5.220 \end{gathered}$
	pACYC-1	GGAATTCCTCCTGTTAGCC	
pPI16_end	26	TTTTTGGGCTAACAGGAGGAATTCCATGAATAT GACACGTAACCATACATCC	$\begin{aligned} & X . \text { indica gDNA } \\ & 3.098 \end{aligned}$
	29	GTGAGTGCCCGCCAAGCTCAAAGAAATGATCG TGGCGACCGACAC	
	12	TTCTTTGAGCTTGGCGGGC	$\begin{aligned} & \hline X . \text { doucetiae } \\ & \text { gDNA } \\ & 1.536 \end{aligned}$
	AL13-2	ATCCACCAGCAGTTGTTGTCG	
	40	GGAGCGACAACAACTGCTGGTGGATTGGAATG CAACCGCAACC	P. Iuminescens subsp. laumondii TT01 gDNA 3.203
	AT_492	GATAGGGGGTTTCTGTCGCGTTCCAAGTTTCCA ATAACAACTTGCGCTC	
	AT_226	TGGAACGCGACAGAAACC	```P. Iuminescens subsp. laumondii TT01 gDNA 1.803```
	LP360	TGCGCAGATTTTCTCGGTAAATGTCGCC	
	LP361	GACATTTACCGAGAAAATCTGCGCATATCTGAA TAATAATCAAAAAAACAATAACGAAATG	$\begin{aligned} & \text { X. indica gDNA } \\ & 1.250 \end{aligned}$
	6	TATACGAGCCGATGATTAATTGTCATTACTTATA TTCCGGTTCATATTTTTTGTCC	
	pACYC-2	TGACAATTAATCATCGGCTCG	$\begin{gathered} \hline \text { pJW75 } \\ 5.220 \end{gathered}$
	pACYC-1	GGAATTCCTCCTGTTAGCC	
pCK_0678	ck002 ck0467 ck0436b ck0468 ck0465 ck0468	CATGGAATTCCTCCTGTTAG CATCAGGATATGTTAATTAACCTAGGCTGCTGC CAC AGGAATTCCATGACAAAATCTGAATATTTAGTAA GTTCA GAATTGTCAGAAACCTACCAAGCTTTGCG CCTAGGTTAATTAACATATCCTGATGGGCTTTG GCTCCTG TTCCCGCAAAGCTTGGTAGGTTTCTGAC	$\begin{gathered} \hline \text { pCK_0401 } \\ 3.672 \\ \\ \text { X. mauleonii } \\ \text { gDNA } \\ \text { 3.773 } \\ \text { X. mauleonii } \\ \text { gDNA } \\ 6.992 \\ \hline \end{gathered}$
pCK_0679	ck0459 ck0460 ck0471 ck0472	Mlul/SnaBI CAAAGCGGGACCAAAGCCATG TGAGACCTTTTTTTGGTCTCGGAATTCCTCCTGT TAG CCGAGACCAAAAAAAGGTCTCACCCCTTGAATA CAAGGCGTTGC CCCGTTCGCTGGGATATTCTGG	$\begin{gathered} \hline \text { pCK_0678 } \\ 12.499 \\ \text { pCK_0401 } \\ 230 \\ \\ \text { pCK_0678 } \\ 365 \end{gathered}$

$\begin{aligned} & \hline \text { pCK_0680 } \\ & \text { NRPS-19 } \end{aligned}$	$\begin{aligned} & \text { ck0469b } \\ & \text { ck0470 } \end{aligned}$	$\mathrm{Ncol} / \mathrm{Pacl}$ GGTGGCAGCAGCCTAGGTTAATTAACTGGCTTT ATTAAGAT- ACCTCAAGAAAACCCCAGCCCCTGATAGGTATG TTTG	$\begin{gathered} \hline \text { pCK_0678 } \\ 14.247 \end{gathered}$ X. mauleonii gDNA 12.632
pCK_0681	$\begin{aligned} & \text { ck0594 } \\ & \text { ck0463b } \\ & \text { ck0459 } \\ & \text { ck0460 } \end{aligned}$	Mlul/Ascl GGCACCACCGATATACAGTTCACC AGGAATTCCATGACAAAATCTGAATATTTAGTAA GTTCA CAAAGCGGGACCAAAGCCATG TGAGACCTTTTTTTGGTCTCGGAATTCCTCCTGT TAG	$\begin{gathered} \hline \text { pCK_0680 } \\ 12.905 \\ \text { pCK_0680 } \\ 2 . \overline{5} 20 \\ \text { pCK_0401 } \\ 230 \end{gathered}$
pCK_0682	$\begin{aligned} & \text { ck0455 } \\ & \text { ck0456 } \\ & \text { ck0451 } \\ & \text { ck0452 } \\ & \text { ck0453 } \\ & \text { ck0454 } \end{aligned}$	CTGTGATATCAGCCAATTAATTAACCTAGGCTG CTGCCAC GATCTCATGGAATTCCTCCTGTTAGCCCA TTTGGGCTAACAGGAGGAATTCCATGAGATCAT TTGAG-GATTCACTGA GGGTCTTTAGACCACCCGATTGC GCGCAATCGGGTGGTCTAAAGAC CTAGGTTAATTAATTGGCTGATATCACAGTGCT GTAATGG	$\begin{gathered} \text { pCK_0401 } \\ 3.681 \end{gathered}$ X. innexi gDNA 10.179 X. innexi gDNA 3.904
$\begin{gathered} \text { pCK_0683 } \\ \text { NRPS-8 } \end{gathered}$	$\begin{aligned} & \text { ck0457 } \\ & \text { ck0522 } \end{aligned}$	BgIII/AvrlI GAACCAAACAGGGTTATCGTCAGTGC TGCTCAGCGGTGGCAGCAGCCTAGGTTAATTTA CGCCAATACCTTTTCCTGAC	$\begin{gathered} \text { pCK_0682 } \\ 17.584 \end{gathered}$ X. innexi gDNA 8.441
pCK_0684	$\begin{gathered} \text { ck0454 } \\ \text { ck0460 } \\ \text { ck0461b } \\ \text { ck0462 } \end{gathered}$	AvrII/Ascl CTAGGTTAATTAATTGGCTGATATCACAGTGCT GTAATGG TGAGACCTTTTTTTGGTCTCGGAATTCCTCCTGT TAG CGAGACCAAAAAAAGGTCTCAGCCCCTTATCCG CAGGATAAAC TGTCATCAGATGATGCGCCAGTTGG	$\begin{gathered} \hline \text { pCK_0682 } \\ 12.549 \\ \text { pCK_0682 } \\ 3 \overline{6} 93 \\ \\ \text { pCK_0682 } \\ 1 \overline{174} \end{gathered}$
pCK_0685	$\begin{aligned} & \text { ck0457 } \\ & \text { ck0523 } \end{aligned}$	BgIII/AvrlI GAACCAAACAGGGTTATCGTCAGTGC TATTGCTCAGCGGTGGCAGCAGCCTAGGTTAAT TTACGCCAATACCTTTTCCTGAC	pCK_0684 16.242 X. innexi gDNA 8.444
$\begin{aligned} & \text { pCK_0760 } \\ & \text { NRPS-9a } \end{aligned}$	ck0618 ck0592 ck0475 ck0635	Bsal/Aatll TATGTTGCCCCCCGTAACGCA AATATAAGCAGCCATATCGCTGAGCG TTTTTTTGGGCTAACAGGAGGAATTCAATGAGA ACATCTGAAAGCTCGTTG TGCGTTACGGGGGGCAACATAACCGTCCCGGT TTCCCCA	$\begin{gathered} \text { pCK_0685 } \\ 20.443 \\ \text { pCK_0683 } \\ 2 . \overline{6} 58 \end{gathered}$ X. bovienii gDNA 3.003
$\begin{aligned} & \text { pCK_0761 } \\ & \text { NRPS-9b } \end{aligned}$		Bsal/AatII	$\begin{gathered} \text { pCK_0685 } \\ 20.443 \end{gathered}$

	ck0617 ck0592 ck0475 ck0636	AATTCCCTGAGCGCCATTAAGCTG AATATAAGCAGCCATATCGCTGAGCG TTTTTTTGGGCTAACAGGAGGAATTCAATGAGA ACATCTGAAAGCTCGTTG GCTTAATGGCGCTCAGGGAATTTCCCCCGATCC GGAAAAAGTTA	$\begin{gathered} \hline \text { pCK_0683 } \\ 2.550 \end{gathered}$ X. bovienii gDNA 3.112
$\begin{aligned} & \hline \text { pCK_0762 } \\ & \text { NRPS-10a } \end{aligned}$	ck0618 ck0592 ck0477 ck0637	Bsal/AatII TATGTTGCCCCCCGTAACGCA AATATAAGCAGCCATATCGCTGAGCG TTTTTTTGGGCTAACAGGAGGAATTCAATGAGA ATACCTGAAGGTTCGT TGCGTTACGGGGGGCAACATAACTGTCCCGGT TTTCCCATACG	$\begin{gathered} \hline \text { pCK_0685 } \\ 20.443 \\ \text { pCK_0683 } \\ 2.658 \\ x . \text { doucetiae } \\ \text { gDNA } \\ 2.997 \end{gathered}$
$\begin{aligned} & \text { pCK_0763 } \\ & \text { NRPS-10b } \end{aligned}$	ck0617 ck0592 ck0477 ck0638	Bsal/AatII AATTCCCTGAGCGCCATTAAGCTG AATATAAGCAGCCATATCGCTGAGCG TTTTTTTGGGCTAACAGGAGGAATTCAATGAGA ATACCTGAAGGTTCGT GCTTAATGGCGCTCAGGGAATTGCCACCGATA CGGAAAAAATTATCC	$\begin{gathered} \hline \text { pCK_0685 } \\ 20.443 \\ \text { pCK_0683 } \\ 2.550 \\ X . \text { doucetiae } \\ \text { gDNA } \\ 3.106 \end{gathered}$
$\begin{aligned} & \text { pCK_0768 } \\ & \text { NRPS-11a } \end{aligned}$	ck0618 ck0592 ck0487 ck0648	Bsal/AatII TATGTTGCCCCCCGTAACGCA AATATAAGCAGCCATATCGCTGAGCG TTTTTTTGGGCTAACAGGAGGAATTCAATGAGA AAAGCTGAGGATCATTTGAA TGCGTTACGGGGGGCAACATAACTGTCTCTGTT GCCGAAAGC	$\begin{gathered} \hline \text { pCK_0685 } \\ 20.443 \\ \text { pCK_0683 } \\ 2.658 \\ \text { X. sp. KK7.4 } \\ \text { gDNA } \\ 2.943 \end{gathered}$
$\begin{aligned} & \hline \text { pCK_0769 } \\ & \text { NRPS-11b } \end{aligned}$	ck0617 ck0592 ck0487 ck0649	Bsal/Aatll AATTCCCTGAGCGCCATTAAGCTG AATATAAGCAGCCATATCGCTGAGCG TTTTTTTGGGCTAACAGGAGGAATTCAATGAGA AAAGCTGAGGATCATTTGAA GCTTAATGGCGCTCAGGGAATTGCCGCCGATA CGGAAGAAATTATC	pCK_0685 20.443 pCK_0683 2.550 X. sp. KK7.4 gDNA 3.052
$\begin{aligned} & \hline \text { pCK_0820 } \\ & \text { NRPS-12a } \end{aligned}$	ck0618 ck0592 ck0708 ck0717	Bsal/Aatll TATGTTGCCCCCCGTAACGCA AATATAAGCAGCCATATCGCTGAGCG TTTTTTTGGGCTAACAGGAGGAATTCAATGAAT CACCCTGAAAATATGAAAC TGCGTTACGGGGGGCAACATATTCTTGTGTGAT TACTGCTGAATG	pCK_0685 20.443 pCK_0683 2.658 X. indica gDNA 3.030
$\begin{aligned} & \hline \text { pCK_0822 } \\ & \text { NRPS-13a } \end{aligned}$	ck0618 ck0592 ck0711 ck0719	Bsal/Aatll TATGTTGCCCCCCGTAACGCA AATATAAGCAGCCATATCGCTGAGCG TTTTTTTGGGCTAACAGGAGGAATTCAATGAAC AAACAAACTGATGTGAAGAG	pCK_0685 20.443 pCK_0683 2.658 Serratia sp. SCBI gDNA 4011

		TGCGTTACGGGGGGCAACATAGTTTTCACGCAT GGCGGC	
$\begin{aligned} & \text { pCK_0823 } \\ & \text { NRPS-13b } \end{aligned}$	ck0617 ck0592 ck0711 ck0720	Bsal/Aatll AATTCCCTGAGCGCCATTAAGCTG AATATAAGCAGCCATATCGCTGAGCG TTTTTTTGGGCTAACAGGAGGAATTCAATGAAC AAACAAACTGATGTGAAGAG GCTTAATGGCGCTCAGGGAATTACCGCCCAACT CGAAGAAG	pCK_0685 2.443 pCK_0683 2.550 Serratia sp. SCBI gDNA 4120
$\begin{aligned} & \text { pCK_0824 } \\ & \text { NRPS-14a } \end{aligned}$	ck0618 ck0592 ck0714 ck0721	Bsal/AatII TATGTTGCCCCCCGTAACGCA AATATAAGCAGCCATATCGCTGAGCG TTTTTTTGGGCTAACAGGAGGAATTCAATGAAG CATTCCACCCGCC TGCGTTACGGGGGGCAACATACAGGCGAGTGA CGAAGGC	$\begin{gathered} \text { pCK_0685 } \\ 20.443 \\ \text { pCK_0683 } \\ 2.658 \\ \text { P. lurida } \\ \text { gDNA } \\ 2.877 \end{gathered}$
$\begin{aligned} & \text { pCK_0825 } \\ & \text { NRPS-14b } \end{aligned}$	$\begin{aligned} & \text { ck0617 } \\ & \text { ck0592 } \\ & \text { ck0714 } \\ & \text { ck0722 } \end{aligned}$	Bsal/AatII AATTCCCTGAGCGCCATTAAGCTG AATATAAGCAGCCATATCGCTGAGCG TTTTTTTGGGCTAACAGGAGGAATTCAATGAAG CATTCCACCCGCC GCTTAATGGCGCTCAGGGAATTCCCGCCGAGT TCAAAGAAG	pCK_0685 20.443 pCK_0683 2.550 P. lurida gDNA 2.986
$\begin{aligned} & \text { pCK_0826 } \\ & \text { NRPS-15a } \end{aligned}$	$\begin{aligned} & \text { ck0618 } \\ & \text { ck0592 } \\ & \text { ck0723 } \\ & \\ & \text { ck0729 } \end{aligned}$	Bsal/AatII TATGTTGCCCCCCGTAACGCA AATATAAGCAGCCATATCGCTGAGCG TTTTTTTTGGGCTAACAGGAGGAATTCAATGGAT AACATTCTGGCCTCG TGCGTTACGGGGGGCAACATAAACATAGCGGC TCTGTTTAAAATC	pCK_0685 20.443 pCK 0683 2.658 X. bovienii gDNA 2.877
$\begin{aligned} & \hline \text { pCK_0827 } \\ & \text { NRPS-15b } \end{aligned}$	$\begin{aligned} & \text { ck0617 } \\ & \text { ck0592 } \\ & \text { ck0723 } \\ & \\ & \text { ck0730 } \end{aligned}$	Bsal/AatII AATTCCCTGAGCGCCATTAAGCTG AATATAAGCAGCCATATCGCTGAGCG TTTTTTTGGGCTAACAGGAGGAATTCAATGGAT AACATTCTGGCCTCG GCTTAATGGCGCTCAGGGAATTGCCCCCCAGA TGAAAAAAGT	pCK_0685 20.443 pCK 0683 2.550 X. bovienii gDNA 2.986
$\begin{aligned} & \text { pCK_0828 } \\ & \text { NRPS-16 } \end{aligned}$	ck0618 ck0592 ck0726 ck0731	Bsal/AatII TATGTTGCCCCCCGTAACGCA AATATAAGCAGCCATATCGCTGAGCG TTTTTTTTGGGCTAACAGGAGGAATTCAATGAGC GAACATACTTATTCTTTAACC TGCGTTACGGGGGGCAACATAGTAGGTCTCCG CATCTGC	$\begin{gathered} \text { pCK_0685 } \\ 20.443 \\ \text { pCK_0683 } \\ 2.658 \end{gathered}$ B. subtilis 168 gDNA 2.925
pCK_0868	$\begin{gathered} \text { ck0828 } \\ \text { ck0829 } \\ \text { ck0785b } \\ \text { ck0867 } \end{gathered}$	TTAATTAACCTAGGCTGCTGCCACC CATTGAATTCCTCCTGTTAGCCCAAAAAAACG TTTTTTTGGGCTAACAGGAGGAATTCAATGAGC GCAGTGTCCAATATTGA ACTTCCGCTTCGGGAAGGACAATCT	pCK_0406 3.173 M. xanthus gDNA 3.281

	$\begin{aligned} & \hline \text { ck0866 } \\ & \text { ck0868 } \end{aligned}$	AGATTGTCCTTCCCGAAGCGGAAGT TGGCAGCAGCCTAGGTTAATTAATGGTGTACTC ATGCTGTCTCCCTCT	M. xanthus gDNA 3.261
$\begin{aligned} & \text { pCK_0870 } \\ & \text { NRPS-20b } \end{aligned}$	ck0787 ck0788 ck0820 ck0822	Bsal/AatII GGCGGCAATTCCCTGATGG GCATTGAAGAATTTTTCTTGTGCAGC TTTTTTTGGGCTAACAGGAGGAATTCAATGTCC GCTTATTCCCTGACGA TAGCCATCAGGGAATTGCCGCCCAGCGCGAAG AA	pCK_0681 21.482 pCK_0680 2135 S. marcescens gDNA 3.055
pCK_0873	$\begin{aligned} & \text { ck0870 } \\ & \text { ck0798 } \\ & \text { ck0790 } \\ & \text { ck0592 } \\ & \hline \end{aligned}$	Bsal/AatII TTGGGCTAACAGGAGGAATTCAATGAGTACACC AGCTGACAACATGAA TTCCTGTGCGTTACGGGGGGCAACGTAGGCCG TCTCCAGG GTTGCCCCCCGTAACGCA AATATAAGCAGCCATATCGCTGAGCG	pCK_0685 20.451 M. xanthus gDNA 4.375 pCK_ 0683 2.665
$\begin{gathered} \hline \text { pSB002 } \\ \text { NRPS-18b } \end{gathered}$	$\begin{aligned} & \text { ck0617 } \\ & \text { ck0592 } \\ & \text { SB001 } \\ & \\ & \text { SB003 } \end{aligned}$	Bsal/AatII AATTCCCTGAGCGCCATTAAGCTG AATATAAGCAGCCATATCGCTGAGCG TTTTTTTGGGCTAACAGGAGGAATTCCATGTCT ATGTCATGT-CACCGTATTAACAACG GCTTAATGGCGCTCAGGGAATTCCCGCCCAGC TCAAAGAAATG	$\begin{gathered} \text { pCK_0685 } \\ 20.443 \\ \text { pCK_0683 } \\ 2.550 \\ \text { X. szentirmaii } \\ \text { gDNA } \\ 6.490 \end{gathered}$
pCK_088	ck0828 ck0921 ck0857 ck0886 ck0873 ck0874	TTAATTAACCTAGGCTGCTGCCACC CATTGAATTCCTCCTGTTAGCCCAAA CGAGACCAAAGAAGAAGGTCTCAGCTGCACCG CAAGGAGAAACCGAAAC TTGCTCAGCGGTGGCAGCAGCCTAGGTTAATTA ATTACAGCGCCTCCGCTTCACAATTCATTG TTTGGGCTAACAGGAGGAATTCAATGAAAGATA GCATGGCTAAAAAGGAA TGAGACCTTCTTCTTTGGTCTCGATAAATTTGGC GAGCAAAAGCATC	$\begin{gathered} \hline \text { pCK_0401 } \\ 3.669 \end{gathered}$ P. luminescens subsp. laumondii TT01 gDNA 4.365 P. luminescens subsp. laumondii TT01 gDNA 4.993
pCK_0882	ck0828 ck0921 ck0860 ck0886 ck0873 ck0875	TTAATTAACCTAGGCTGCTGCCACC CATTGAATTCCTCCTGTTAGCCCAAA CGAGACCAAAGAAGAAGGTCTCAGGTGGCCAT TCGTTGCTTGCGG TTGCTCAGCGGTGGCAGCAGCCTAGGTTAATTA ATTACAGCGCCTCCGCTTCACAATTCATTG TTTGGGCTAACAGGAGGAATTCAATGAAAGATA GCATGGCTAAAAAGGAA TGAGACCTTCTTCTTTGGTCTCGCAAGGCAAAA AAATTATCGTGTCGG	$\begin{gathered} \hline \text { pCK_0401 } \\ 3.669 \end{gathered}$ P. luminescens subsp. laumondii TT01 gDNA 4.266 P. luminescens subsp. laumondii TT01 gDNA 5.092
pLS_002	$\begin{aligned} & \text { Is06 } \\ & \text { Is07 } \end{aligned}$	Bsal GCCGACACGATAATTTTTTTGCCTTGGGCGGGC ACTCGCTGCTCGCGAT TACCGCAAGCAACGAATGGCCCCCCAAGTCGA AGAAGTTGTCCTCCGCG	pCK_0882 12.921 M. xanthus gDNA 3.194
pLS_003		Bsal	pCK_0881

	$\begin{aligned} & \text { Is } 08 \\ & \text { Is } 09 \end{aligned}$	GCTTTTGCTCGCCAAATTTATGAGCCGCCTCGC ACGCCTA TTCGGTTTCTCCTTGCGGTGCAGCGAAGCGCG TCTCGCTCGCG	12.921 M. xanthus gDNA 3.189
pLS_008	Is24 Is25	Bsal CGACACGATAATTTTTTTGCCTTGGGCGGCCAC TCCTTGCTGGC ACCGCAAGCAACGAATGGCCCCCCAGCGCGAA GAAGTCGTCCTGC	pCK_0882 12.921 C. crocatus gDNA 3.200
pLS_009	$\begin{aligned} & \text { Is26b } \\ & \text { Is27b } \end{aligned}$	Bsal GGATGCTTTTGCTCGCCAAATTTATGTCACGCC CCGCACGCC GGTTTCGGTTTCTCCTTGCGGTGCAGCGAACTC GAAAGCTCCCTCGGCA	pCK_0881 12.921 C. crocatus gDNA 3.205
pLS_017	$\begin{aligned} & \text { Is52 } \\ & \text { Is53 } \end{aligned}$	Bsal CCGACACGATAATTTTTTTGCCTTGGGTGGCCA TTCATTACTCGCTG TACCGCAAGCAACGAATGGCCACCGAGTTCGA AGAAGTGGTCATAACG	$\begin{gathered} \text { pCK_0882 } \\ 12.921 \\ \text { X. indica gDNA } \\ 3.241 \end{gathered}$
pLS_018	$\begin{aligned} & \text { Is68 } \\ & \text { Is55 } \end{aligned}$	Bsal GCTTTTGCTCGCCAAATTTATGAAGCGCCCATT GGCAAATTGGAA CGGTTTCTCCTTGCGGTGCAGCATAGCCACGT GTAACAACCGCTG	$\begin{gathered} \hline \text { pCK_0881 } \\ 12.921 \end{gathered}$ X. indica gDNA 3.241
pLS_019	$\begin{aligned} & \text { Is60 } \\ & \text { Is61 } \end{aligned}$	Bsal GAGGATGCTTTTGCTCGCCAAATTTATCAAGCG CCGGAAAGCCCAATGGA GGTTTCGGTTTCTCCTTGCGGTGCAGCATATTG ACTCAATACAAACGCGGATGGC	$\begin{gathered} \hline \text { pCK_0882 } \\ 12.921 \\ \text { X. mauleonii } \\ \text { gDNA } \\ 3.288 \end{gathered}$
pLS_0191	$\begin{gathered} \text { Is71_1 } \\ \text { Is74_1 } \\ \text { Is73 } \\ \text { Is72_1 } \\ \text { Is62 } \\ \text { Is63 } \end{gathered}$	GGTGGCCATTCGTTGCTTGCG CAGGTGCTACATTTGAAGAGATAAATTGC CTCTTCAAATGTAGCACCTGAAGTCAGC CAAGGCAAAAAAATTATCGTGTCGGCC CGGCCGACACGATAATTTTTTTGCCTTGGGCGG CCATTCATTGCTTG CGTACCGCAAGCAACGAATGGCCACCCAATTC AAAGAAATGATCATGGCGAC	$\begin{gathered} \text { pCK_0882 } \\ 6.395 \\ \text { pCK_0882 } \\ 6.546 \\ \text { X. mauleonii } \\ \text { gDNA } \\ 3.288 \end{gathered}$

Table S5. Detected compounds in this work.

Peptide	MS detected $[\mathrm{M}+\mathrm{H}]^{+}$	MS calculated $[\mathrm{M}+\mathrm{H}]^{+}$	Molecular ion formula	$\Delta \mathrm{ppm}$	Reference
1	444.3061	444.3068	$\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{6}$	1.5	synthetic
1	444.3062	444.3068	$\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{6}$	1.3	
2	430.2911	430.2912	$\mathrm{C}_{21} \mathrm{H}_{4} 0 \mathrm{~N}_{3} \mathrm{O}_{6}$	0.1	
3	416.2750	416.2755	$\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{6}$	1.3	
4,5	767.3932	767.3974	$\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{~N}_{6} \mathrm{O}_{10}$	5.5	isolated NP
6	783.3912	783.3923	$\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{~N}_{6} \mathrm{O}_{11}$	1.4	
7	811.4217	811.4236	$\mathrm{C}_{41} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{11}$	2.4	
8	839.4531	839.4549	$\mathrm{C}_{43} \mathrm{H}_{62} \mathrm{~N}_{6} \mathrm{O}_{11}$	2.2	
9	783.3912	783.3923	$\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{~N}_{6} \mathrm{O}_{11}$	0.9	
10	811.4219	811.4236	$\mathrm{C}_{41} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{11}$	2.1	
11	839.4531	839.4549	$\mathrm{C}_{43} \mathrm{H}_{62} \mathrm{~N}_{6} \mathrm{O}_{11}$	2.2	
12	782.4071	782.4083	$\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{~N}_{7} \mathrm{O}_{10}$	1.6	
13	810.4375	810.4397	$\mathrm{C}_{41} \mathrm{H}_{59} \mathrm{~N}_{7} \mathrm{O}_{10}$	2.6	
14	838.4680	838.4710	$\mathrm{C}_{43} \mathrm{H}_{63} \mathrm{~N}_{7} \mathrm{O}_{10}$	3.5	
15	753.3808	753.3818	$\mathrm{C}_{38} \mathrm{H}_{52} \mathrm{~N}_{6} \mathrm{O}_{10}$	1.3	
16	869.4631	869.4655	$\mathrm{C}_{44} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{O}_{12}$	2.8	
17	867.4833	867.4862	$\mathrm{C}_{45} \mathrm{H}_{66} \mathrm{~N}_{6} \mathrm{O}_{11}$	3.4	
18	895.5143	895.5175	$\mathrm{C}_{47} \mathrm{H}_{70} \mathrm{~N}_{6} \mathrm{O}_{11}$	3.6	
19	725.3855	725.3869	$\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{~N}_{6} \mathrm{O}_{9}$	1.9	
20	993.5499	993.5543	$\mathrm{C}_{52} \mathrm{H}_{76} \mathrm{~N}_{6} \mathrm{O}_{13}$	4.4	
21	995.5662	995.5700	$\mathrm{C}_{52} \mathrm{H}_{78} \mathrm{~N}_{6} \mathrm{O}_{13}$	3.8	
22	977.5557	977.5594	$\mathrm{C}_{52} \mathrm{H}_{6} \mathrm{~N}_{6} \mathrm{O}_{12}$	3.8	
23	979.5715	979.5751	$\mathrm{C}_{52} \mathrm{H}_{78} \mathrm{~N}_{6} \mathrm{O}_{12}$	3.6	
24	955.4986	977.5019	$\mathrm{C}_{54} \mathrm{H}_{68} \mathrm{~N}_{6} \mathrm{O}_{11}$	3.3	
25	836.4167	836.4888	$\mathrm{C}_{42} \mathrm{H}_{57} \mathrm{~N}_{7} \mathrm{O}_{11}$	2.6	
26	799.4429	799.4461	$\mathrm{C}_{38} \mathrm{H}_{58} \mathrm{~N}_{10} \mathrm{O}_{9}$	4.0	Isolated NP
27	813.4579	813.4618	$\mathrm{C}_{39} \mathrm{H}_{60} \mathrm{~N}_{10} \mathrm{O}_{9}$	4.7	
28	913.5475	913.5506	$\mathrm{C}_{45} \mathrm{H}_{72} \mathrm{~N}_{10} \mathrm{O}_{10}$	3.4	
29	941.5780	941.5819	$\mathrm{C}_{47} \mathrm{H}_{76} \mathrm{~N}_{10} \mathrm{O}_{10}$	4.1	
30	931.5573	931.5611	$\mathrm{C}_{45} \mathrm{H}_{74} \mathrm{~N}_{10} \mathrm{O}_{11}$	4.1	
31	945.5728	945.5768	$\mathrm{C}_{46} \mathrm{H}_{76} \mathrm{~N}_{10} \mathrm{O}_{11}$	4.2	
32	959.5892	959.5924	$\mathrm{C}_{47} \mathrm{H}_{78} \mathrm{~N}_{10} \mathrm{O}_{11}$	3.4	
33	973.6033	973.6080	$\mathrm{C}_{48} \mathrm{H}_{80} \mathrm{~N}_{10} \mathrm{O}_{11}$	4.9	
34	457.3378	457.3384	$\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{5}$	1.3	synthetic
35	471.3534	471.3541	$\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{5}$	1.4	
36	431.2857	431.2864	$\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{6}$	1.6	synthetic
37	445.3010	445.3021	$\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{6}$	1.7	
38	415.2910	415.2915	$\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{5}$	1.2	synthetic
39	429.3064	429.3071	$\mathrm{C}_{21} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{5}$	1.8	
40	511.3845	511.3854	$\mathrm{C}_{27} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{O}_{5}$	1.7	
41	525.3998	525.4010	$\mathrm{C}_{28} \mathrm{H}_{53} \mathrm{~N}_{4} \mathrm{O}_{5}$	2.3	
42	539.4159	539.4167	$\mathrm{C}_{29} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{5}$	1.5	
43	458.3218	458.3225	$\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{6}$	1.5	

Table S6. ${ }^{1} \mathrm{H}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(125 \mathrm{MHz})$ NMR data of compound 1 in DMSO-d $\mathrm{d}_{6}(\delta$ in ppm). COSY (bold) and key HMBC (arrows) are shown.

Position	ठc, typea	$\delta \mathrm{H}$, mult. ($\mathrm{J}^{\text {in Hz}}$)
1	13.86, CH_{3}	0.88-0.79, ov
2	21.90, CH_{2}	1.31-1.81, m
3	$30.85, \mathrm{CH}_{2}$	1.31-1.81, m
4	25.00, CH_{2}	1.64-1.42, m
5	35.10, CH_{2}	2.17, m
6	172.54, C	-
7	57.85, CH	4.26, dd (12.0, 6.0)
7NH	-	7.70, d (8.32)
8	66.44, CH	3.95 , m
9	19.39, CH_{3}	1.01, d (6.34)
10	169.76, C	-
11	50.90, CH	$4.35, \operatorname{dd}(15.0,8.4)$
11 NH	,	7.81, d (8.53)
12	41.01, CH_{2}	1.64-1.42, ov
13	24.27-24.03, CH	1.64-1.42, ov
14		0.88-0.79, ov
15	-	0.88-0.79, ov
16	171.82, C	0.88-7, 0
17	50.10, CH	4.20, ddd (10.0, 8.3, 4.8)f
17NH	-	8.03, d (8.19)
18	40.04, CH_{2}	1.64-1.42, ov
19	24.27-24.03, CH	1.64-1.42, ov
20	-	0.88-0.79, ov
21	-	0.88-0.79, ov
22	173.92, C	-

Table S7. ${ }^{1} \mathrm{H}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(125 \mathrm{MHz})$ NMR spectroscopic data of compounds 4 and 5 in DMSO- d_{6} (δ in ppm and J in Hz).

no.	4		5	
	$\delta_{\text {c, type }}$	δ_{H} (mult., J)	$\delta_{\text {c }}$, type	$\delta_{\text {H }}$ (mult., J)
1	169.4		169.4	
2		6.69 (d, 5.7)		7.06 (d, 5.7)
3	37.1	3.46 (td, 13.0, 5.6)	36.9	3.46 (td, 12.8, 5.8)
		3.31 (m)		3.34 (m)
4	34.3	2.52 (m)	34.4	2.54 (m)
		2.23 (m)		2.22 (m)
5	173.3		173.6	
6		8.50 (d, 4.4)		8.38 (d, 5.1)
7	57.4	4.25 (m)	57.4	4.30 (m)
8	35.3	2.61 (dd, 14.4, 4.8)	35.3	2.64 (m)
		2.34 (dd, 14.4, 3.7)		2.37 (dd, 14.0, 2.2)
9	127.8		128.0	
10	130.2	7.04 (d, 8.3)	130.1	7.07 (d, 8.3)
11	115.6	6.71 (d, 8.3)	115.6	6.73 (d, 8.3)
12	156.6		156.6	
13	115.6	6.71 (d, 8.3)	115.6	6.73 (d, 8.3)
14	130.2	7.04 (d, 8.3)	130.1	7.07 (d, 8.3)
15	174.6		174.6	
16		8.76 (d, 8.7)		8.97 (d, 8.4)
17	54.4	4.81 (m)	55.0	4.62 (m)
18	34.9	3.17 (dd, 14.2, 3.2)	35.0	3.24 (dd, 14.0, 3.2)
		2.65 (m)		2.64 (overlap)
19	128.4		128.5	
20	130.3	7.02 (d, 8.3)	130.3	7.06 (d, 8.4)
21	115.1	6.58 (d, 8.3)	115.2	6.60 (d, 8.4)
22	156.1		156.2	
23	115.1	6.58 (d, 8.3)	115.2	6.60 (d, 8.4)
24	130.3	7.02 (d, 8.3)	130.3	7.06 (d, 8.4)
25	171.8		171.7	
26		7.40 (d, 8.1)		7.36 (d, 7.9)
27	51.9	4.17 (ddd, 12.0, 8.1, 4.2)	51.9	4.17 (ddd, 11.9, 8.0, 4.2)
28	39.2	1.82 (m)	39.3	1.81 (m)
		1.40 (m)		1.42 (m)
29	24.6	1.74 (m)	24.6	1.78 (m)
30	21.1	0.83 (d, 6.5)	21.1	0.84 (d, 6.4)
31	23.4	0.88 (d, 6.6)	23.8	0.88 (d, 5.2)
32	171.7		171.7	
33	72.0	5.11 (qd, 6.2, 1.8)	72.1	5.12 (qd, 6.1, 1.7)
34	16.0	1.02 (d, 6.2)	16.0	1.04 (d, 6.1)
35	56.2	4.46 (dd, 10.2, 1.8)	56.4	4.44 (m)
36		7.97 (d, 10.2)		7.88 (d, 10.1)
37	173.1		173.9	
38	56.9	4.33 (dd, 10.5, 8.6)	51.6	4.42 (m)
39	35.2	1.86 (overlap)	39.8	1.54 (m)
40	24.7	1.44 (overlap)	24.6	1.60 (m)
		1.20 (m)		
41	10.2	0.74 (t, 7.4)	21.1	0.62 (d, 6.4)
42	15.8	0.91 (d, 6.8)	23.4	0.90 (d, 5.9)
43		8.00 (d, 8.6)		8.01 (d, 7.9)
44	169.5		169.5	
45	22.8	1.83 (s)	22.8	1.81 (s)

Table S8. ${ }^{1} \mathrm{H}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(125 \mathrm{MHz})$ NMR spectroscopic data fof compounds $\mathbf{7}$ and 10 in DMSO$d_{6}(\delta$ in ppm and J in Hz).

no.	7		10	
	$\delta \mathrm{c}$, type	$\delta_{\text {H }}$ (mult., J)	$\delta \mathrm{c}$, type	$\delta_{\text {H }}$ (mult., J)
1	170.3		169.0	
2		7.03 (m)		6.93 (m)
3	35.1	3.39 (m)	36.7	3.50 (m)
		3.21 (m)		3.20 (m)
4	34.4	2.37 (m)	34.1	2.50 (m)
		2.19 (m)		2.26 (m)
5	172.2		173.0	
6		8.20 (d, 6.6)		8.38 (d, 4.6)
7	56.4	4.22 (m)	57.2	4.28 (m)
8	36.1	2.54 (m)	35.5	2.65 (m)
				2.42 (dd, 14.2, 3.8)
9	128.2		127.8	
10	130.4	6.94 (d, 8.4)	130.2	7.08 (d, 8.4)
11	115.4	6.65 (d, 8.4)	115.6	6.72 (d, 8.4)
12	156.4		156.6	
13	115.4	6.65 (d, 8.4)	115.6	6.72 (d, 8.4)
14	130.4	6.94 (d, 8.4)	130.2	7.08 (d, 8.4)
15	172.2		174.8	
16		8.29 (d, 8.9)		8.89 (d, 8.4)
17	55.1	4.32 (m)	55.0	4.49 (m)
18	36.0	3.02 (dd, 13.9, 3.8)	35.5	3.11 (dd, 14.0, 3.0)
		2.68 (dd, 13.9, 10.4)		2.65 (m)
19	128.6		128.5	
20	130.4	6.97 (d, 8.5)	130.4	7.04 (d, 8.4)
21	115.4	6.65 (d, 8.5)	115.3	6.62 (d, 8.4)
22	156.3		156.3	
23	115.4	6.65 (d, 8.5)	115.3	6.62 (d, 8.4)
24	130.4	6.97 (d, 8.5)	130.4	7.04 (d, 8.4)
25	171.8		171.6	
26		7.57 (d, 7.9)		7.40 (d, 7.9)
27	51.5	4.32 (overlap)	51.9	4.13 (m)
28	39.6	1.67 (m)	39.4	1.78 (m)
		1.51 (m)		1.41 (m)
29	24.5	1.67 (overlap)	24.5	1.73 (m)
30	22.0	0.86 (d, 6.3)	21.2	0.84 (d, 7.0)
31	22.3	0.90 (d, 6.3)	23.3	0.88 (d, 6.5)
32	171.5		171.6	
33	71.4	5.21 (qd, 6.3, 3.5)	71.5	5.20 (qd, 6.4, 2.1)
34	16.9	1.06 (d, 6.3)	16.1	1.04 (d, 6.4)
35	54.9	4.70 (dd, 9.3, 3.5)	56.2	4.50 (dd, 9.8, 2.1)
36		7.78 (d, 9.3)		7.69 (d, 9.8)
37	173.2		171.6	
38	35.5	2.19 (overlap)	57.9	4.48 (dd, 8.6, 3.0)
39	25.5	1.51 (overlap)		7.63 (d, 8.6)
40	31.4	1.21 (m)	172.9	
41	22.3	1.25 (m)	35.1	2.08 (m)
42	14.3	0.84 (t, 7.0)	25.4	1.47 (m)
43	169.8		31.3	1.20 (m)
44		7.93 (d, 7.6)	22.4	1.26 (m)
45	59.6	3.93 (dd, 7.6, 3.8)	14.4	0.84 (t, 7.0)
46	65.8	4.09 (m)	67.0	4.23 (m)
47	20.7	1.00 (d, 6.4)	20.1	1.07 (d, 6.3)

Table S9. ${ }^{1} \mathrm{H}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(125 \mathrm{MHz})$ NMR spectroscopic data for compound 26 in DMSO- d_{6} (δ in ppm and J in Hz).

no.	26	
	$\delta \mathrm{c}$, type	$\delta_{\text {H }}$ (mult., J)
1	157.7	
2		8.05 (t, 5.0)
3	40.8	3.04 (m)
4	25.6	1.54 (m)
5	28.1	1.74 (m)
6	53.7	4.01 (m)
7	171.0	
9	69.9	5.00 (m)
10	15.0	1.10 (d, 6.5)
11	54.5	4.48 (dd, 8.4, 4.4)
12		8.03 (d, 8.4)
13	169.7	
14	22.8	1.90 (s)
15	167.6	
16		8.75 (d, 9.2)
17	55.6	4.62 (m)
18	29.8	3.16 (dd, 14.4, 8.0)
		2.99 (dd, 14.4, 6.7)
19	109.9	
20	124.1	7.12 (d, 2.0)
21		10.87 (d, 2.0)
22	136.5	
23	111.7	7.32 (d, 8.1)
24	121.3	7.05 (m)
25	118.8	6.96 (m)
26	118.6	7.54 (d, 7.9)
27	127.8	
28	172.0	
29		8.56 (d, 4.7)
30	61.0	4.19 (dd, 7.7, 4.7)
31	66.0	3.91 (m)
32	20.1	1.08 (d, 6.3)
33	173.6	
34		8.73 (d, 5.7)
35	60.9	3.88 (dd, 5.7, 4.7)
36	29.1	2.18 (m)
37	17.8	0.90 (d, 6.9)
38	19.4	0.95 (d, 7.0)
39	171.4	
40		6.83 (d, 8.0)
41	56.7	4.19 (dd, 8.0, 4.9)
42	35.5	1.87 (m)
43	26.3	1.19 (m)
		1.14 (m)
44	11.9	0.77 (t, 7.4)
45	15.0	0.75 (d, 7.0)
46	171.9	
47		7.43 (d, 5.8)

Table S10. ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}\right.$) and ${ }^{13} \mathrm{C}$ (125 MHz) NMR data of compound 41 in DMSO-d $\mathrm{d}_{6}(\delta$ in ppm). COSY (bold) and key HMBC (arrows) are shown.

Position	ठc, typea	δ \%, mult. (J in Hz)
1	-	0.91-0.80, ov
11	-	$1.30-1.15$, ov
12	25.19, CH_{2}	1.55-1.38, ov
13	$35.15, \mathrm{CH}_{2}$	2.15-2.03, ov
14	172.74, C	-
15	$52.33, \mathrm{CH}$	4.21-4.14, m
15 NH		$8.05-7.92$, m
16	28.66, CH_{2}	$1.91-1.66$, m
17	31.53, CH_{2}	2.15-2.03, m
17 NH	-	7.24 (s)
17NH	-	6.74 (s)
18	173.80, C	(s)
19	171.21, C	,
20	48.05, CH	4.33-4.21, m
20 NH	-0,	8.05-7.92, m
21	18.19, CH_{3}	1.30-1.15, ov
22	172.56, C	-
23	$56.54, \mathrm{CH}$	$4.14-4.05, \mathrm{~m}$
23 NH	-	$8.23-8.17, \mathrm{~m}$
24	36.33, CH_{2}	1.55-1.38, ov
25	24.00, CH	2.15-2.03, ov
26	,	$0.91-0.80$, ov
27	-	$0.91-0.80$, ov
28	201.05, CH	9.39-9.35, m

Table S11. Crystallographic data collection and refinement statistics of yCP:41.

	yCPC14QAL
Crystal parameters	
Space group	P2 ${ }_{1}$
Cell constants	$a=135.0 \AA$
	$b=300.9 \AA$
	$c=144.0 \AA$
	$\beta=112.8{ }^{\circ}$
CPs / AU ${ }^{\text {a }}$	1
- Data collection	
Beam line	X06SA, SLS
Wavelength (Å)	1.0
Resolution range (\AA) ${ }^{\text {b }}$	50-3.25 (3-35-3.25)
No. observations	481076
No. unique reflections ${ }^{\text {c }}$	157953
Completeness (\%) ${ }^{\text {b }}$	95.1 (93.7)
$\mathrm{R}_{\text {merge }}(\%)^{\text {b, d }}$	10.5 (65.4)
I/ (I) ${ }^{\text {b }}$	11.1 (2.4)
Refinement (REFMAC5)	
Resolution range (\AA)	30-3.25
No. refl. working set	149904
No. refl. test set	7890
No. non hydrogen	49565
No. of ligand atoms	148
Solvent ($\mathrm{H}_{2} \mathrm{O}$, ions, MES)	95
$\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}(\%)^{\text {e }}$	17.5 / 21.2
r.m.s.d. bond (\AA) / angle $\left({ }^{\circ}\right)^{\text {f }}$	$0.003 / 1.2$
Average B-factor (\AA^{2})	91.3
Ramachandran Plot (\%) ${ }^{\text {g }}$	97.6 / 2.2 / 0.2
PDB accession code	xxxx

[a] Asymmetric unit
${ }^{[b]}$ The values in parentheses for resolution range, completeness, $\mathrm{R}_{\text {merge }}$ and $\mathrm{I} / \sigma(\mathrm{I})$ correspond to the highest resolution shell
${ }^{[c]}$ Data reduction was carried out from a single crystal. Friedel pairs were treated as identical reflections
${ }^{[d]} R_{\text {merge }}(I)=\sum_{h k l} \Sigma_{j}\left|l(h k l)_{j}-<l(h k l)>\right| / \sum_{h k l} \Sigma_{j} l(h k l)_{j}$, where $l(h k l)_{j}$ is the $j^{j h}$ measurement of the intensity of reflection hkl and $\langle\mathrm{l}(\mathrm{hkl})\rangle$ is the average intensity
${ }^{[e]} R=\Sigma_{\mathrm{hk}}| | F_{\text {obs }}\left|-\left|F_{\text {calc }}\right|\right| / \Sigma_{\mathrm{hk}}\left|F_{\text {obs }}\right|$, where $R_{\text {free }}$ is calculated without a sigma cut off for a randomly chosen 5% of reflections, which were not used for structure refinement, and $R_{\text {work }}$ is calculated for the remaining reflections
${ }^{[f]}$ Deviations from ideal bond lengths/angles
${ }^{[9]}$ Percentage of residues in favored / allowed / outlier region

Fig. S1. Evolutionary analysis of ATC tridomains and T domains of representative NRPS. (a) Likelihood difference plot of two phylogenetic trees of ATC tridomains (also called XUs) that together best describe the alignment using a phylogenetic hidden Markov model. Positive numbers indicate that sites are better describe by tree 1, negative numbers indicate sites that are better described by tree two. Protein structure of XU is shown below. A domain is colored in blue, T-domain in yellow and C domain in red. (b) Likelihood difference plot as in a, but for an alignment of T domain plus A-T linker. Partitions detected by the hidden Markov model are indicated in different colors according to tree number. Recombination breakpoint is annotated in grey and lies around two conserved glycines. Protein structure of A-T-Linker and T domain is shown below. The first part of the T domain is colored in yellow and the second part in orange. An arrow points to the fusion site used for engineering.

Tree 1 of XU alignment

Fig S2. Comparison of Tree 1 and Tree 2 from the XU alignment. Taxon names indicate abbreviation of NRPSs, followed by bacterial species and then numbers of the XU within that NRPS. Lines connect the same NRPS and XU between the two trees. Red branches label XUs that contain ${ }^{\mathrm{L}} \mathrm{C}_{\llcorner }$domains and blue branches label XUs with dual C/E domains.

Tree 1 of XU alignment

Fig. S3. Comparison of Tree 1 from XU domain alignment and Tree 1 from T domain alignment. Taxon names indicate abbreviation of NRPS, followed by bacterial species and then numbers of the XU within that NRPS. Lines connect the same NRPS and XU between the two trees. Red branches label ${ }^{{ }^{\circ} \mathrm{C} L}$ domains and blue branches label dual C/E domains.

Tree 1 of T domain alignment

Fig S4. Comparison of Tree 1 from T domain alignment and Tree 2 from T domain alignment. Taxon names indicate abbreviation of NRPS, followed by bacterial species and then numbers of the XU within that NRPS. Lines connect the same NRPS and XU between the two trees. Red branches label ${ }^{L_{L}} \mathrm{C}_{\mathrm{L}}$ domains and blue branches label dual C/E domains.

Tree 1 of XU alignment

Fig. S5. Comparison of Tree 1 from XU domain alignment and Tree 2 from T domain alignment. Taxon names indicate abbreviation of NRPS, followed by bacterial species and then numbers of the XU within that NRPS. Lines connect the same NRPS and XU between the two trees. Red branches label ${ }^{\mathrm{L}} \mathrm{C}_{\mathrm{L}}$ domains and blue branches label dual C/E domains.

Figure S6. Phylogenetic analysis of T-domains in relation to preceding A-domain and following C/CEdomain. In (A) a schematic representation of the PAX producing NRPS ${ }^{24,25}$ with the T3-domain under scrutiny highlighted (reddish square). The following CE4-domain is shown in blue and the C4-domain in red. In (B) a dual alignment of the A3-T3-CE4/C4 domains from X. nematophila compared to X. doucetiae can be seen. The amino acid alignment in the middle is shown with agreements in colour, genes as yellow bars and the domains indicated in the colour used in (A). The mean pairwise identity over all pairs in the column are calculated for a sliding window size 20 amino acids (green 100\% identity, greenish-brown at least 30% under 100%, red below 30%). The drop of pairwise identity from high value between the Adomain region to the low identity between C - and CE-domains occurs in the middle of the T-domain. In (C) a phylogenetic tree of A3-, T3- second half (corresponds to T-fusion point IV in figure 2) and C4/CE4domains is presented. The phylogenetic tree was calculated for the A3-domain, T3-domain second half and the following C/CE-domains separately. To this end multiple alignments of the protein sequences were generated using Clustal Omega 1.2.2. ${ }^{26}$ with the refinement iterations number set at 10 while evaluating
the full distance matrix for the initial guide tree as well as for the refinement iteration guide tree. Only bootstrap values at critical junctions are indicated. The colours blue (CE) and red (C) refer to the condensation domains of the A3-T3-C4/CE4 unit. Abbreviations of the indicated PAX NRPS organisms: Xbud, X. budapestensis; Xbed, X. beddingii; Xbov, X. bovienii; Xdou, X. doucetiae; Xehl, X. ehlersii; X eap, X. eapokensis; Xhom, X. hominickii; Xind, X. indica; Xkho, X. khoisanae; Xkop, X. koppenhoeferi; Xkoz, X. kozodoii; Xmau, X. mauleonii; Xmir, X. miraniensis; Xnem, X. nematophila; Xsze, X. szentirmaii; Xthu, X. thuongxuanensis str. 30TX1, Xvie, X. vietnamensis, X. sp. KJ12.1, X KK7.4, X. sp. KK7.4, X. sp. PB30.3, X PB30.3). PaxABC sequences were identified using the PaxABC peptide sequences of X. nematophila and X. doucetiae as query. Domain annotation was implemented by use of AntiSMASH 6.0 ${ }^{27}$.

Figure S7. Phylogenetic analysis of T-domains in relation to preceding A-domain and the following TEdomain of the PAX-NRPS. The PAX biosynthesis in Xenorhabdus contains one of two types TE-domains being equally distributed in the in silico accessible biosynthesis. In (A) the final NRPS multienzymes are depicted with the X. nematophila TE-type in green and the X. doucetiae TE-type in purple. (B) A dual alignment of the A7-T7-TE unit from X. nematophila and X. doucetiae visualises the low identity between the two TE-types and that the drop of the sequence identity occurs in the middle of the T-domain. The phylogenetic tree in (C) was derived as described in Figure S6. The colour bars in all three phylogenetic trees refer to the TE in the A-T-TE unit. The Xenorhabdus species abbreviations are as in Figure S6.

Figure S8. Phylogenetic analysis of T-domains in relation to preceding A-domain and following C/CEdomain of RzmA and EpyDE. (A) Schematic representation of the endopyrrole A producing NRPS EpyDE ${ }^{28}$ and the rhizomide A producing NRPS RzmA ${ }^{29}$ from Mycetohabitans rhizoxinica (DSM 19002). In (B) the EpyDE A7-T7-C8 unit and the RzmA A3-T3-CE4 unit are shown in a dual alignment. The phylogenetic trees of the A-domains, the T-domain second half and the C/CE-domains of RzmA and EpyDE were generated separately as described in Figure S6 using the same colour code (C).

Figure S9. Phylogenetic analysis of T-domains in relation to preceding A-domain and following C/CEdomain of the syringopeptin SP-25a NRPS synthesis (SypABC; ALU60730.1, ALU60731.1, ALU60732.1) of Pseudomonas syringae pv. lapsa (DSM 50274) (A). The indicated A-domain substrate specificity was derived from published SP-25a ${ }^{30}$ in conjunction with AntiSMASH 6.0 predictions ${ }^{27}$. In (B) two dual alignments of the SypA A7-T7-C8 to the SypB A11-T11-CE12 (top) and the SypC A20-T20-CE21 unit to the A22-T22-C23 (bottom) are shown. The phylogenetic trees of the A-domains, the T-domain second half and the C/CE-domains of SypABC were generated separately as described in Figure S 6 using the same colour code (C).

Figure S10. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d) spectrum compound 1.

Figure S11. ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) spectrum of compound 1.

Figure S12. HSQC (DMSO-d ${ }^{\text {d }}$) spectrum compound 1.

Figure S13. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$ spectrum of compound 1.

Figure S14. HMBC (DMSO-d ${ }_{6}$) spectrum of compound 1.

Synthetic standard

Figure S15. HPLC/MS data refers to Figure 2 (NRPS-1 to -7) of compound 1, 2, 3 and 43 produced in E. coli DH10B::mtaA. Base Peak Chromatogram (BPC, top) and Extracted Ion Chromatogram (EIC, below) of $1\left(\mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=444.30\right), 2\left(\mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=430.29\right), 3\left(\mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=416.27\right)$ and $43\left(\mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=458.32\right)$. Chromatograms were compared to an empty vector control and a synthetic standard of compound 1 (m / z $\left.[\mathrm{M}+\mathrm{H}]^{+}=444.30\right)$.

Figure S16. HPLC/MS data refers to Figure 2 (NRPS-1, -3 and -4) of compound $\mathbf{1}$ (A) and 2 (B) produced in E. coli DH10B::mtaA. Comparison of MS 2 spectra. Compound 1 fragmentation was compared to a synthetic 1.

Figure S17. HPLC/MS data refers to Figure 2 (NRPS-1, -3 and -4) of compound $\mathbf{3}(\mathbf{A})$ and $\mathbf{4 3}$ (B) produced in E. coli DH10B::mtaA. Comparison of MS^{2} spectra.

A

NRPS-19

B

NRPS	Peptide	Peptide	Organism	Donor BGC	Fusion site	Production $\left(\mathbf{m g ~ l}^{-1}\right)$	$\%$ of NRPS-8
-19	$\mathbf{2 6 , 2 7}$	C2-TWTviR	X. mauleonii	ftrAB	WT	56.0 ± 3.5	100
-20 b	$\mathbf{2 8}, \mathbf{2 9}$	C10-3OH- SWTviR	S. marcescens	swrW	IV	2.5 ± 0.2	4

Figure S18. (A) Domain architecture of Fattvir (FA Thr Tyr Thr Val Ile aRg) producing FtrAB (NRPS-19) and NRPS-20b with their peptide product structures $26-33$ shown below. Structure elucidation of 26 is shown at Figures S19-S21 and S44-S49. (B) For quantification the signal intensities for 28 and 29 were summarized and compared to the summarized amount of $\mathbf{2 6}$ and $\mathbf{2 7}$ in the WT.

NRPS-17a

\qquad
\qquad BPC +All

NRPS-18b

LB
NRPS-19

- BPC + All MS induced - BPC +All MS uninduced

NRPS-19

- EIC 973.73
_ EIC 959.68
- EIC 931.65
- EIC 941.72
- BPC +All

Figure S19. Chromatograms and structures of 4, 5, 26 and 27 and their NRPS-engineering derivatives.

Figure S20. MS-spectra of peptides 4-33 of NRPS-8 to -20 corresponding to the extracted ion chromatograms in Fig. S19.

NRPS-8, 4, 5

NRPS-9a, 6

NRPS-9a, 7
NRPS-9b, 7

NRPS-9a, 8
NRPS-9a, 9
NRPS-9a, 10
NRPS-9b, 10

NRPS-9a, 11
NRPS-10a, 12

NRPS-10a, 13

NRPS-10a, 14

NRPS-10b, 14

NRPS-11a, 15
NRPS-11b, 15

NRPS-12a, 16

NRPS-13b, 17

NRPS-13a, 18

NRPS-13b, 18

+ Ms2(767.33), 7.0 min

295.10	529.26	651.34	${ }^{42}$	+MS52788244, 5.8 mm

59430					
295.14	383.07	516.42	680.29	$\stackrel{79244}{ }$	+MS2[810.47), 6.1.1in

Figure S21. MS ${ }^{2}$ spectra of peptides 4-33 of NRPS-8 to -20 corresponding to the signals in Fig. S20.

4

4

5

5
$\mathrm{HMBCH} H \mathrm{C} \quad 1 \mathrm{H}-1 \mathrm{H}$ COSYH-H

Figure S22. Key HMBC and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlations of compounds 4 and 5 .

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4 .

Figure S24. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4.

Figure S25. HSQC spectrum of compound 4.

Figure S26. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 4.

Figure S27. HMBC spectrum of compound 4.

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 5.

Figure S29. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 .

Figure S30. HSQC spectrum of compound 5.

Figure S31. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 5 .

Figure S32. HMBC spectrum of compound 5 .

7

$\mathrm{HMBCH} H$ C $1 \mathrm{H}-1 \mathrm{HCOSYH}=\mathrm{H}$

Figure S33. Key HMBC and ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY correlations of compounds $\mathbf{7}$ and 10.

Figure S34. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7 .

Figure S35. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7 .

Figure S36. HSQC spectrum of compound 7 .

Figure S37. ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY spectrum of compound 7 .

Figure S38. HMBC spectrum of compound 7.

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 10.

Figure S40. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 10.

Figure S41. HSQC spectrum of compound 10.

Figure S42. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 10.

Figure S43. HMBC spectrum of compound 10.

Figure S44. Key HMBC and ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY correlations of compound 26.

Figure S45. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 26.

Figure S46. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 26.

Figure S47. HSQC spectrum of compound 26.

Figure S48. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 26.

Figure S49. HMBC spectrum of compound 26.

Figure S50. HPLC/MS data refers to Figure 4 (NRPS-21 and -23) of compound 34 and 35 produced in E. coli DH10B::mtaA. Base Peak Chromatogram (BPC, top) and Extracted lon Chromatogram (EIC, below) of $34\left(\mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=457.34\right)$ and $35\left(\mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=471.35\right)$. Chromatograms were compared to an empty vector control and a synthetic standard of compound $34\left(\mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=457.34\right)$.
a

Figure S51. a) HPLC/MS data refers to Figure 4 (NRPS-21 and -23) of compound 34 produced in E. coli DH10B::mtaA. MS ${ }^{2}$ and amino acid fragmentation of compound 34 produced by NRPS-21 and -23 compared to a synthetic standard of compound 34. b) HPLC/MS data refers to Figure 4 (NRPS-21 and -23) of compound 35 produced in E. coli DH10B::mtaA. MS 2 and amino acid fragmentation of compound 35 produced by NRPS-21 and -23.

pACYC

Products	\mathbf{R}
36	iPr
37	$i \mathrm{Bu}$

NRPS-22b

NRPS-22a

Figure S52. HPLC/MS data refers to Figure 4 (NRPS-22) of compound 36 and 37 produced in E. coli DH10B::mtaA. Base Peak Chromatogram (BPC, top) and Extracted Ion Chromatogram (EIC, below) of 36 $\left(\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=431.28\right)$ and $37\left(\mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=445.30\right)$. Chromatograms were compared to an empty vector control and a synthetic standard of compound $36\left(\mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=431.28\right)$.
a

37
$[\mathrm{M}+\mathrm{H}]^{+}=445.30$ $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{6}$

Figure S53. a) HPLC/MS data refers to Figure 4 (NRPS-22) of compound 36 produced in E. coli DH10B::mtaA. MS ${ }^{2}$ and amino acid fragmentation of compound 36 produced by NRPS-22 compared to a synthetic standard of compound 36. b) HPLC/MS data refers to Figure 4 (NRPS-22) of compound 37 produced in E. coli DH10B::mtaA. MS^{2} and amino acid fragmentation of compound 37 produced by NRPS-22.

Figure S54. HPLC/MS data refers to Figure 4 (NRPS-24) of compound 38 and 39 produced in E. coli DH10B::mtaA. Base Peak Chromatogram (BPC, top) and Extracted Ion Chromatogram (EIC, below) of 38 $\left(\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=415.29\right)$ and $39\left(\mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=429.31\right)$. Chromatograms were compared to an empty vector control and a synthetic standard of compound $38\left(\mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=415.29\right)$.
a

38
$[\mathrm{M}+\mathrm{H}]^{+}=415.29$ $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{5}$
b

39
$[\mathrm{M}+\mathrm{H}]^{+}=429.31$ $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{5}$

Figure S55. a) HPLC/MS data refers to Figure 4 (NRPS-24) of compound 38 produced in E. coli DH10B::mtaA. MS 2 and amino acid fragmentation of compound 38 produced by NRPS-24 compared to a synthetic standard of compound 38. b) HPLC/MS data refers to Figure 4 (NRPS-24) of compound 39 produced in E. coli DH10B::mtaA. MS 2 and amino acid fragmentation of compound 39 produced by NRPS-24.

Figure S56. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) spectrum compound 41.

Figure S57. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) spectrum compound 41.

Figure S58. HSQC (DMSO-d6) spectrum of compound 41.

Figure S59. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (DMSO-d6) spectrum compound 41.

Figure S60. HMBC (DMSO-d6) spectrum compound 41.

Figure 61. HPLC/MS data refers to Figure 5 (NRPS-25-28) of compound 40, 41 and $\mathbf{4 2}$ produced in E. coli DH10B::mtaA. Base Peak Chromatogram (BPC, top) and Extracted Ion Chromatogram (EIC, below) of 40 $\left(\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=511.38\right), 41\left(\mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=525.40\right), 42\left(\mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=539.41\right)$. Chromatograms were compared to an empty vector control and a purified compound 42 standard $\left(\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=525.40\right)$.

B

41
$[\mathrm{M}+\mathrm{H}]^{+}=525.40$
$\mathrm{C}_{28} \mathrm{H}_{53} \mathrm{~N}_{4} \mathrm{O}_{5}$

C

Figure S62. HPLC/MS data refers to Figure 5 (NRPS-26) of compound 40 (A), 41 (B) and 42 (C) produced in E. coli DH10B::mtaA. Comparison of MS^{2} spectra.

C14-QAL(H)

Figure S63. IC_{50} determination of compound 41 (termed as $\mathrm{C} 14-\mathrm{QAL}(\mathrm{H})$) for subunits beta1, -2 and -5 of yeast 20S proteasome (yCP).

References

1 Bode, E. et al. Promoter Activation in Δ hfq Mutants as an Efficient Tool for Specialized Metabolite Production Enabling Direct Bioactivity Testing. Angewandte Chemie 131, 19133-19139, doi:10.1002/ange. 201910563 (2019).
2 Bozhueyuek, K. A. J., Watzel, J., Abbood, N. \& Bode, H. B. Synthetic Zippers as an Enabling Tool for Engineering of Non-Ribosomal Peptide Synthetases**. Angewandte Chemie 133, 17672-17679, doi:10.1002/ange. 202102859 (2021).
3 Gallastegui, N. \& Groll, M. Analysing properties of proteasome inhibitors using kinetic and X-ray crystallographic studies. Methods Mol Biol 832, 373-390, doi:10.1007/978-1-61779-474-2_26 (2012).

Groll, M. \& Huber, R. Purification, crystallization, and X-ray analysis of the yeast 20S proteasome. Methods Enzymol 398, 329-336, doi:10.1016/S0076-6879(05)98027-0 (2005).
5 Kabsch, W. XDS. Acta Crystallographica Section D Biological Crystallography 66, 125-132, doi:10.1107/s0907444909047337 (2010).
6 Schneider, T. R. \& Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr 58, 1772-1779, doi:10.1107/s0907444902011678 (2002).
7 Huber, E. M. et al. A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nature Communications 7, 10900, doi:10.1038/ncomms10900 (2016).
8 Emsley, P., Lohkamp, B., Scott, W. G. \& Cowtan, K. Features and development of Coot. Acta Crystallographica Section D Biological Crystallography 66, 486-501, doi:10.1107/s0907444910007493 (2010).
9 Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792-1797, doi:10.1093/nar/gkh340 (2004).

Capella-Gutierrez, S., Silla-Martinez, J. M. \& Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973, doi:10.1093/bioinformatics/btp348 (2009).
1 Maddison, W. \& Maddison, D. R. Mesquite: A modular system for evolutionary analysis. Evolution 62, 1103-1108 (2008).
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217-223, doi:10.1111/j.2041-210X.2011.00169.x (2012).
Durfee, T. et al. The Complete Genome Sequence of Escherichia coli DH10B: Insights into the Biology of a Laboratory Workhorse. Journal of Bacteriology 190, 2597-2606, doi:10.1128/jb.0169507 (2008).
14 Schimming, O., Fleischhacker, F., Nollmann, F. I. \& Bode, H. B. Yeast Homologous Recombination Cloning Leading to the Novel Peptides Ambactin and Xenolindicin. ChemBioChem 15, 1290-1294, doi:10.1002/cbic. 201402065 (2014).
Goldman, B. S. et al. Evolution of sensory complexity recorded in a myxobacterial genome. Proceedings of the National Academy of Sciences 103, 15200-15205, doi:10.1073/pnas. 0607335103 (2006).
Krug, D. et al. Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Appl Environ Microbiol 74, 3058-3068, doi:10.1128/AEM.02863-07 (2008).
Kissoyan, K. A. B. et al. Natural C. elegans Microbiota Protects against Infection via Production of a Cyclic Lipopeptide of the Viscosin Group. Current Biology 29, 1030-1037.e1035, doi:10.1016/j.cub.2019.01.050 (2019). pathogen Serratia sp. Strain SCBI. Appl Environ Microbiol 78, 8840-8844, doi:10.1128/AEM.02580-12 (2012).
Joyce, S. A. \& Clarke, D. J. A hexA homologue from Photorhabdus regulates pathogenicity, symbiosis and phenotypic variation. Molecular Microbiology 47, 1445-1457, doi:10.1046/j.13652958.2003.03389.x (2003).

20 Tobias, N. J. et al. Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus. Nature Microbiology 2, 1676-1685, doi:10.1038/s41564-017-0039-9 (2017).
Behsaz, B. et al. Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery. Nature Communications 12, doi:10.1038/s41467-021-23502-4 (2021).
Lorenzen, W., Ahrendt, T., Bozhüyük, K. A. J. \& Bode, H. B. A multifunctional enzyme is involved in bacterial ether lipid biosynthesis. Nature Chemical Biology 10, 425-427, doi:10.1038/nchembio. 1526 (2014).
23 Kegler, C. \& Bode, H. B. Artificial Splitting of a Non-Ribosomal Peptide Synthetase by Inserting Natural Docking Domains. Angewandte Chemie 132, 13565-13569, doi:10.1002/ange. 201915989 (2020).

Fuchs, S. W., Proschak, A., Jaskolla, T. W., Karas, M. \& Bode, H. B. Structure elucidation and biosynthesis of lysine-rich cyclic peptides in Xenorhabdus nematophila. Organic \& Biomolecular Chemistry 9, 3130, doi:10.1039/c1ob05097d (2011).
Vo, T. D., Spahn, C., Heilemann, M. \& Bode, H. B. Microbial Cationic Peptides as a Natural Defense Mechanism against Insect Antimicrobial Peptides. ACS Chemical Biology 16, 447-451, doi:10.1021/acschembio.0c00794 (2021).
Sievers, F. \& Higgins, D. G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci 27, 135-145, doi:10.1002/pro. 3290 (2018).
27 Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 49, W29-W35, doi:10.1093/nar/gkab335 (2021).
28 Niehs, S. P. et al. Genome Mining Reveals Endopyrroles from a Nonribosomal Peptide Assembly Line Triggered in Fungal-Bacterial Symbiosis. ACS Chemical Biology 14, 1811-1818, doi:10.1021/acschembio.9b00406 (2019).
Wang, X. et al. Discovery of recombinases enables genome mining of cryptic biosynthetic gene clusters in Burkholderiales species. Proc Natl Acad Sci U S A 115, E4255-E4263, doi:10.1073/pnas. 1720941115 (2018).
30 Isogai, A. et al. Structural Analysis of New Syringopeptins by Tandem Mass Spectrometry. Bioscience, Biotechnology, and Biochemistry 59, 1374-1376, doi:10.1271/bbb.59.1374 (1995).

