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Abstract  

 

Spontaneous brain activity builds the foundation for human cognitive processing during 

external demands. A huge number of neuroimaging studies identified specific characteristics 

of spontaneous (intrinsic) brain dynamics to be associated with individual differences in   

general cognitive ability, i.e., intelligence. However, respective research is inherently limited 

by low temporal resolution, thus, preventing conclusions about neural fluctuations within the 

range of milliseconds. Here, we used resting-state electroencephalographical (EEG) 

recordings from 144 healthy adults to test whether individual differences in intelligence 

(Raven’s Advanced Progressive Matrices scores) can be predicted from the complexity of 

temporally highly resolved intrinsic brain signals. We compared different operationalizations of 

brain signal complexity (multiscale entropy, Shannon entropy, Fuzzy entropy, and specific 

characteristics of microstates) in regard to their relation to intelligence. The results indicate 

that associations between brain signal complexity measures and intelligence are of small effect 

sizes (r ~ .20) and vary across different spatial and temporal scales. Specifically, higher 

intelligence scores were associated with lower complexity in local aspects of neural 

processing, and less activity in task-negative brain regions belonging to the default-mode 

network. Finally, we combined multiple measures of brain signal complexity to show that 

individual intelligence scores can be significantly predicted with a multimodal model within the 

sample (10-fold cross-validation) as well as in an independent sample (external replication, N 

= 57). In sum, our results highlight the temporal and spatial dependency of associations 

between intelligence and intrinsic brain dynamics, proposing multimodal approaches as 

promising means for future neuroscientific research on complex human traits.   

 

Keywords: resting-state, brain signal complexity, microstates, EEG, cognitive ability, 

intelligence  
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Significance Statement  

 

Spontaneous brain activity builds the foundation for intelligent processing - the ability of 

humans to adapt to various cognitive demands. Using resting-state EEG, we extracted multiple 

aspects of temporally highly resolved intrinsic brain dynamics to investigate their relationship 

with individual differences in intelligence. Single associations were of small effect sizes and 

varied critically across spatial and temporal scales. However, combining multiple measures in 

a multimodal cross-validated prediction model, allows to significantly predict individual 

intelligence scores in unseen participants. Our study adds to a growing body of research 

suggesting that observable associations between complex human traits and neural 

parameters might be rather small and proposes multimodal prediction approaches as 

promising tool to derive robust brain-behavior relations despite limited sample sizes.   
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Introduction  

 

Intelligence is one of the most important predictors of crucial life outcomes, such as academic 

achievement, health, and longevity (Sternberg, 1997; Deary et al., 2004; Calvin et al., 2011). 

Identifying biomarkers of individual differences in intelligence in brain function and brain 

structure is an ongoing goal of neuroscientific research (Jung and Haier, 2007; Basten et al., 

2015; Haier, 2017). Spontaneous brain activity observed during the so-called resting state, i.e., 

in the absence of an instructed task, is suggested to reflect intrinsic neural communication. 

Individual differences in such intrinsic neural dynamics are assumed to possess trait character 

(Hilger and Markett, 2021) and to determine major parts of individual neural processing during 

external demands (Cole et al., 2014; Schultz and Cole, 2016; Thiele et al., 2022). Different 

characteristics of intrinsic brain activity have also been identified as biomarkers of a person’s 

general cognitive ability level, mostly operationalized as intelligence (Hilger and Sporns, 2021). 

 

The majority of this research is, however, based on neuroimaging techniques (functional 

magnetic-resonance imaging) with limited temporal resolution (~1Hz). 

Electroencephalography (EEG) allows to study intrinsic neural dynamics with much higher 

temporal resolution (~250Hz) and measures of intrinsic brain dynamics that have been related 

to individual differences in intelligence include graph measures (Langer et al., 2012), 

coherence (Cheung et al., 2014), and theta-gamma cross-frequency coupling (Pahor and 

Jaušovec, 2014).  

  

Besides those conventional EEG measures, the complexity (or unpredictability) of 

spontaneous brain dynamics contains additional information about intrinsic predispositions for 

information processing across functional brain networks (McDonough and Nashiro, 2014). 

Sufficient complexity of neural signals was hypothesized to constitute the basis for efficient 

neural communication (de Pasquale et al., 2016) and higher complexity was related to 

increased information processing capacity (Heisz and McIntosh, 2013). Further, individual 

variations in brain signal complexity have been associated with differences in creativity (Kaur 

et al., 2021), the genetic risk for psychological diseases (Li et al., 2008), and also with 

differences in intelligence (Lutzenberger et al., 1992; Dreszer et al., 2020). However, across-

study findings on relations between individual differences in intelligence and intrinsic brain 

signal complexity are heterogeneous. Higher intelligence has been associated with higher 

complexity (Jaušovec and Jaušovec, 2003; Thatcher et al., 2005; Stankova and Myshkin, 

2016), Dreszner et al. (2020) found both positive and negative associations, and other studies 

could not find any significant relation (Anokhin et al., 1999; Ueno et al., 2015). Sample 

characteristics (Dreszer et al., 2020), varying complexity measures (Goldberger et al., 2002; 

Ferenets et al., 2006), and differences in the considered time scale capturing, e.g., local vs. 

global processing (Vakorin et al., 2011; Courtiol et al., 2016; Dreszer et al., 2020) were 

proposed as contributing to this heterogeneity. Consequently, results of the existing studies 

are difficult to compare and highlight the need for a holistic framework simultaneously 

investigating the relation between intelligence and brain signal complexity with various 

measures, on multiple spatial and temporal scales and in different study samples. 

 

Most studies investigated brain signal complexity exclusively using different entropy measures. 

Properties of EEG microstates, defined as spontaneous spatial brain activity patterns 

(Lehmann et al., 1987) provide complementary insights, i.e., into the spatial dimension of 

neural dynamics’ complexity. Notably, the appearance, stability, and variability of microstates 

has been associated with variations in intelligence (Santarnecchi et al., 2017; Liu et al., 2020). 
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However, entropy and microstate measures have only been examined in separation of each 

other but not in a combined analysis approach, so far.  

 

In this study we used resting-state EEG of 144 adults to investigate associations between 

individual differences in intelligence and variations in brain signal complexity. We developed a 

framework that combines multiple measures of entropy and microstates, multiple brain regions, 

and multiple temporal scales to show that individual intelligence scores can significantly be 

predicted by a multimodal brain complexity model. Significant prediction was achieved within 

the sample via internal cross-validation as well as in an external replication sample.  

 

Materials and Methods  

 

Preregistration 

Before data analysis, we preregistered our correlative analyses, sample size, and variables of 

interest in the Open Science Framework. The preregistration can be accessed under 

https://osf.io/9sp36. Please note that the predictive analyses (see below) were not 

preregistered, as they were developed afterwards to overcome the limitations inherent to the 

low effects sizes of single associations observed in the preregistered analyses.   

 

Participants 

Main analyses were conducted on data from 150 healthy, adult, and right-handed males. The 

size of the sample was determined by a combination of a priori power calculations and 

monetary feasibility. Specifically, the minimal sample size to detect effect sizes of r = .25 (for 

meta analysis see Nuijten et al., 2020) with a power of 80% (𝛼 = .05) was 123, setting the 

lower limit for our study; our monetary resources allowed us to recruit 27 additional 

participants. The decision to stop at 150 participants was drawn before data acquisition started. 

Recruitment was performed through the online study registration system of the University of 

Würzburg as well as via flyers and various bulletin board websites. Study participation was 

monetarily compensated with 10€/h. Students with a Major or Minor study subject in 

Psychology were excluded. All participants had self-reported normal or corrected-to-normal 

visual acuity, no use of drug substances, no history of chronic pain, no psychiatric or 

neurological diseases, and normal cardiovascular and endocrinological conditions. Note, that 

the reason for the exclusively male sample and the above-mentioned exclusion criteria was 

that data acquisition took place as part of a larger project, in which, beyond others, differences 

in stress hormone concentrations were analyzed and differences in menstruation cycles 

needed to be prevented. 

 

All study procedures were approved by the local ethic committee (Psychological Institute, 

University of Würzburg, Germany, GZEK 2020 -18), and informed consent in accordance with 

the declaration of Helsinki was obtained from all participants. After the exclusion of six 

participants due to excessive artefacts (see below), the final sample consisted of 144 subjects 

(18-35 years, mean age = 24.9 years). 

 

Intelligence 

Intelligence was assessed in group settings (up to five participants) with Raven’s Advanced 

Progressive Matrices (RAPM, Raven and Court, 1998). RAPM scores ranged between 14 and 

36 (M = 26.90, SD = 4.48) corresponding to intelligence quotient (IQ) scores between 65 and 
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139 (M = 100.49, SD = 15.41). RAPM sum scores were used in all analyses as the variable of 

interest (see Fig. 1A for RAPM sum score distributions). 

 

Electroencephalographical Recordings and Preprocessing 

Electroencephalographical (EEG) recordings were assessed during five minutes of eyes-

closed resting state. Participants sitting on a chair in a sound-shielded room, were instructed 

to stay relaxed, to prevent motion, to not engage in specific thoughts during the measurement 

period, to close their eyes, and to remain awake. The EEG was monitored by the experimenter 

throughout the recording to detect irregularities. Due to the Covid-19 pandemic, medical masks 

had to be worn during the lab visit. Data were recorded with Brainvision Recorder using 28 

active Ag/AgCl electrodes (arranged in a 10–20 layout) and an actiChamp amplifier (Brain 

Products GmbH, Gilching, Germany). FCz served as online reference, and AFz as ground. 

The sampling rate was 1000 Hz, impedance levels were kept below 5 kOm, and a low pass 

filter of 250 Hz was applied during acquisition (notch filter on). Two additional electrodes were 

placed below the left (SO1) and the right (SO2) eye to record ocular artifacts, and mastoid 

electrodes were placed behind both ears (M1, M2). Preprocessing of EEG data were 

conducted in Python using Python MNE (Gramfort et al., 2013) and Pyprep (Bigdely-Shamlo 

et al., 2015).  

 

For preprocessing, EEG data was bandpass filtered (0.1 – 40 Hz) and down sampled to 250 

Hz. EEG channels with NaN (not a number) values, with flat signal, with z-threshold larger than 

5, and channels too low correlated with other channels within non-overlapping time windows 

of one second length (maximum correlation with another channel < .4 in more than 1% of all 

windows) were interpolated. An average reference was estimated with signals from all 28 scalp 

electrodes and all signals were re-referenced to this average reference. Subsequently, eye 

movements were corrected via independent component analysis (ICA) using MNE’s ICA 

preprocessing tool FastICA (20 components). Eye movement and muscle artefact components 

were manually identified on ten exemplary subjects through visual inspection and through 

matching with typical EOG activity component maps (Jung et al., 2000). For all other 

participants, components strongly correlated with these artefact components were identified 

(using MNE‘s corrmap tool, Campos Viola et al., 2009) and removed. The first and last 10 

seconds of the signal were discarded. Finally, data were segmented into 2s epochs and 

epochs exceeding 1e-4 V were removed. Participants with more than one third of the epochs 

removed were excluded from further analysis (six participants). 

 

Intrinsic Brain Signal Complexity  

Three entropy measures were calculated to gain a holistic picture of intrinsic brain signal 

complexity (i.e., uncertainty of the EEG signal): 

1) Shannon entropy (Shannon, 1948) measures the uncertainty of one event 𝑥𝑖 based on 

the probability P distribution of all events x of the EEG signal: 

 

𝐻𝑆ℎ𝑎𝑛𝑛𝑜𝑛(𝑥) =  − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔

𝑖

𝑃(𝑥𝑖) 

 

2) Fuzzy entropy (De Luca and Termini, 1972; Azami et al., 2019) depicts the quantity of 

information expressed by the EEG signal based on the probability P that two data point 

patterns 𝑥𝑖 and 𝑥𝑗 of the length m continue to be similar after adding a further datapoint. 

First, consecutive datapoints with length m (or m + 1) are extracted from the signal 
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(signal length = N) as template vectors 𝑥 with a time delay d (here d = 1) between the 

vectors. Then, a baseline is removed from all vectors 𝑥 and distances ∆ (Chebyshev 

distance) between all vectors of length l = m (or l = m + 1) are calculated. The degree 

of similarity 𝜃𝑖𝑗 between each of two patterns 𝑥𝑖 and 𝑥𝑗 of lengths l = m (or l = m + 1) is 

determined in respect to the tolerance r with a fuzzy membership function (𝜃𝑖𝑗(𝑙) =

exp (
−(∆𝑖𝑗)𝑛

𝑟
), here n = 1, and r = 0.2). Next, based on these degrees of similarity, the 

total probabilities that two patterns of lengths l = m (or l = m + 1) match are calculated: 

 

𝜑(𝑙) =
1

(𝑁 − 𝑚𝑑)(𝑁 − 𝑚𝑑 − 1)
∑ ∑ 𝜃𝑖𝑗(𝑙)

𝑁−𝑚𝑑

𝑗=1,𝑗≠𝑖

𝑁−𝑚𝑑

𝑖=1

 

 

Fuzzy entropy is then determined in respect to the functions 𝜑(𝑚) and 𝜑(𝑚 + 1): 

 

𝐹𝑢𝑧𝑧𝑦 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  −ln (
𝜑𝑚+1

𝜑𝑚
) 

 

3) Multiscale entropy (MSE, Costa et al., 2002, 2005) is an extension of sample entropy 

(Richman and Moorman, 2000) and goes beyond traditional entropy measures in 

capturing the regularity (predictability) of time series on multiple time scales. First, 

multiple coarse-grained time series of the EEG signal are constructed by averaging 

consecutive data points within non-overlapping time windows of length 𝜏  (with 𝜏 

representing the time scale). Then, sample entropy is determined for each coarse-

grained signal (scale). Sample entropy is computed similar to Fuzzy entropy (see 

above), with the differences that no baseline correction of the template vectors is 

performed before calculating the Chebyshev distances between them and that the 

similarity between two template vectors of lengths l = m (or l = m + 1) is determined in 

respect to the tolerance r (here r = 0.2 times the standard deviation of the signal) by: 

 

𝜃𝑖𝑗(𝑙) = {
1, 𝑖𝑓 ∆𝑖𝑗  ≤ 𝑟,

0, 𝑖𝑓 ∆𝑖𝑗  >  𝑟 
 

 

For mathematical insights and more detailed descriptions see Richman and Moorman 

(2000), and Valencia et al. (2019). 

 

All entropies measures were computed on the global field power as well as on each of the 28 

EEG channels separately. MSE was calculated for the time scales 𝜏 ∈ [1. .20]  (Costa et al., 

2005).  

 

For analyses of EEG microstates (Lehmann et al., 1987; Michel and Koenig, 2018) first, the 

global field power (GFP, Lehmann, 1971) of each subject-specific EEG was calculated as the 

standard deviation of the average-referenced signal across all electrodes. Second, individuals’ 

activity patterns of the 28 scalp electrodes occurring at the peaks of the GFP-signal were 

clustered (via modified k-means, Pascual-Marqui et al. 1995) into five spatial mean maps 

(individual microstates, see Michel and Koenig, 2018) with the criteria to maximize the global 

variance of the subject-specific EEG-signal that can be explained by these maps (GEV, 1000 

iterations, segmentation with maximal GEV was chosen, Poulsen et al., 2018). Third, all 

subjects’ mean maps were clustered with modified k-means clustering into five group maps 
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(group microstates), again with the criteria to maximize the total explained variance. Fourth, 

the derived group microstates were backfitted to each individuals’ original EEG time-series. 

Specifically, each time point was assigned to the group microstate that expresses the highest 

correlation with the individual-specific activity map at this specific time point (Santarnecchi et 

al., 2017; Liu et al., 2020). This step resulted in a subject-specific sequence of group 

microstates that presents the input for the calculation of five different individual-specific 

measures (e.g., Koenig et al., 2002; Brodbeck et al., 2012; Seitzman et al., 2017): 1. Coverage 

(proportion of total number of time points assigned to a specific group microstate), 2. Lifespan 

(mean duration of a microstate, i.e., mean number of consecutive time points assigned to the 

same group microstate), 3. Frequency (how often a microstate appears, i.e., count of instances 

a group microstate appears for the first time, after time points assigned to a different group 

microstate), 4. Lifespan at GFP peaks (mean duration of a microstate, i.e., mean number of 

consecutive GFP peaks assigned to the same group microstate), 5. Number of GFP peaks, 

and 6.Transition probabilities (likelihood of a group microstate to continue or to transition into 

another group microstate).  

 

Entropy and microstate measures together resulted in 709 brain signal complexity metrics per 

participant, i.e., global Shannon entropy, global Fuzzy entropy, and global sample entropy at 

20 scales (22 global entropy measures calculated at the GFP of the EEG signal); 2 x 28 

channel-wise Fuzzy entropy and Shannon entropy; 28 x 20 channel- and scale-wise sample 

entropy; number of GFP peaks; coverage, life span, frequency, and lifespan at GFP peaks for 

5 microstates (4 x 5 measures); 5 x 5 transition probabilities between microstates; 5 x 5 

transition probabilities between microstates at GFP peaks. For a simplified and schematic 

overview of the measures and analyses see Figure 2. To investigate the covariance pattern of 

the different neural complexity measures, an exploratory factor analyses with oblique rotation 

(promax) and minimal residual (MINRES) fitting was calculated. The number of factors was 

determined by parallel analysis (Horn, 1965). 

 

Correlative Associations Between Intrinsic Brain Signal Complexity and Intelligence 

Relationships between complexity measures and intelligence were assessed with partial 

Pearson correlations by controlling for age and the number of epochs removed due to 

artefacts. Statistical significance was accepted as p < .05. P-values were corrected via false 

discovery rate (FDR) or permutation testing. Specifically, significances of relations between 

intelligence and a) channel-wise entropy were FDR corrected for the number of channels, i.e., 

28; b) microstate coverage, frequency, and lifespan were FDR corrected for number of 

measures and number of microstates, i.e., 4 x 5 = 20; c) microstate transition probabilities were 

FDR corrected for the number of possible transitions, i.e., 5 x 5 = 25 respectively; and d) MSE 

were assessed via permutation testing (minimal cluster size for p < .05 was assessed by 

computing the probability of the occurrence of each cluster size across 100 permutations). 

Note that due to the explorative character of this study (high number of variables explored) 

and for hypotheses-generating purposes, in addition to corrected p-values, indicated as p(adj), 

effects without correction for multiple comparisons are also reported, indicated as p.  

 

Predicting Intelligence from Multimodal Brain Signal Complexity 

To predict intelligence from brain signal complexity, we developed a multimodal approach that 

combines multiple measures (entropies and microstate measures) into a single multivariate 

model. In analogy to the most popular prediction frameworks in neuroimaging (connectome-

based predictive modeling, CPM, Finn et al., 2015; Shen et al., 2017), the input features of this 
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model were the means of z-normalized complexity measures positively 𝑋+ and negatively 𝑋− 

correlated with intelligence (p < .05): 

 

𝑦 ̂ =  𝛽0 + 𝛽1( |  𝑋+̅̅ ̅̅̅ | +   |  𝑋−̅̅ ̅̅̅ | ) 

 

with 𝛽0 = 0 and 𝛽1= 1 and the predicted intelligence score 𝑦 ̂. To account for multicollinearity 

and the high proportion of MSE measures, MSE measures were averaged within spatial and 

temporal clusters (Dreszer et al., 2020). Specifically, we combined electrodes into seven 

spatial clusters: frontopolar (Fp1, Fp2), frontocentral (FC1, FC2, FC5, FC6), frontal (F3, F4, 

F7, F8), temporal (T7, T8), centroparietal (CP1, CP2, CP5, CP6), parietal (P3, P4, P7, P8, Pz), 

occipital (O1, O2, Oz) and aggregated the MSE values of these clusters over five time scales. 

This resulted in 28 (7 spatial clusters x 4 averaged scales) aggregated MSE measures, which 

were used as input features for the prediction models together with the measures derived from 

Shannon entropy, from Fuzzy entropy, and with the microstate measures. Performances of 

prediction models were calculated as the Pearson correlation between predicted and observed 

intelligence scores. To control for influences of age, sex, and the number of removed epochs, 

those variables were regressed out with linear regression from the input features (brain signal 

complexity measures) and from the prediction targets (RAPM scores). Complexity measures 

and RAPM scores were z-standardized after regressing out the confounds, respectively. 

 

At first, we aimed to test how much variance in intelligence we can explain with this multimodal 

approach. Therefore, the model was built and applied on the whole sample (without any cross-

validation). Second, we tested whether a model build in one subset of the sample (the training 

sample) could predict individual intelligence scores in a withheld part of the sample (the test 

sample). Therefore, we implemented 10-fold cross-validation, i.e., the sample was divided into 

ten subsamples (ensuring equal distributions of intelligence scores via stratified folds) and the 

intelligence-relevant features (as described above) were selected in nine subsamples only and 

then applied to predict the intelligence scores of the withheld tenth sample. This step was 

repeated ten times to generate predicted intelligence scores for all subjects which can then be 

compared to the observed scores. Significance of the cross-validated model was assessed 

with a non-parametric permutation test. More in detail, 100 models with varying stratified 

sample divisions were trained and tested using the observed intelligence scores. Then, the 

mean performance of these models was evaluated against the performances of 1,000 models 

trained and tested on permutated intelligence scores (null models). Performances above the 

95% confidence interval (𝛼 < .05) of these null model performances were considered as 

significant. 

 

Finally, we aimed to evaluate the generalizability of our model to a completely different cohort 

of subjects (see below). Here, we selected the features in the whole main sample and used 

this selection to predict the intelligence scores of the external replication sample (see below). 

Again, significant prediction of intelligence was evaluated with a permutation test. Specifically, 

the performance of the prediction of the observed intelligence scores in the replication sample 

was tested against the prediction of permutated intelligence scores (1,000 iterations). Again, 

performances above the 95% confidence interval (𝛼 < .05) of null model performances were 

considered significant. 

 

External Replication  

For testing the robustness and generalizability of our findings all analyses were repeated in an 

independent sample of 60 right-handed students from Goethe University Frankfurt, Germany, 
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who were recruited via local advertisement (placate, flyers) and completed the experiment for 

monetary compensation or student credits. Students with a Major or Minor study subject in 

Psychology were excluded. All participants were right-handed, had self-reported normal or 

corrected-to-normal visual acuity and no history of psychiatric or neurological diseases. The 

procedures were approved by the local ethics committee (# 2015-201) and informed written 

consent according to the Declaration of Helsinki was obtained from all participants. EEG 

recordings took place in a sound-shielded room, instructions were similar as in the main 

sample, and a total of five minutes resting-state data were acquired. One participant was 

excluded due to EEG acquisition failure, one due to a missing RAPM score and demographic 

data, and one participant due to excessive EEG artifacts, leaving a final sample of N = 57 

subjects (16 male, 41 female) with age between 18 and 33 years (M = 23.51, SD = 3.61). 

Intelligence was assessed in group settings (10-12 participants) with Raven’s Advanced 

Progressive Matrices (RAPM, Raven and Court, 1998). RAPM scores ranged from 12 to 35 

(M = 24.60, SD = 4.70; see Fig. 1B for details on RAPM’s distribution of the replication sample). 

EEG data were recorded with 64 active Ag/AgCl electrodes (arranged in an extended 10–20 

layout) using actiChamp amplifier (Brain Products GmbH, Gilching, Germany). FCz was used 

as online reference, and AFz served as ground. The sampling rate was 1,000 Hz, impedance 

levels were kept below 10 kOm, and a low pass filter of 280 Hz was applied during acquisition 

(notch filter off). Two electrodes were placed below the left (SO1) and the right (SO2) eye to 

record ocular artifacts, and mastoid electrodes were placed behind both ears (M1, M2). 

Preprocessing was performed similar as in the main sample. Due to the higher number of 

electrodes, different to the main sample, FastICA with 30 components was applied on the data 

to identify artefact components of five subject and to remove similar artifact components in all 

subjects. Note that after preprocessing the 64 scalp electrodes were reduced to the same 

electrodes as used in the main sample (28 scalp electrodes) to allow for direct comparisons. 

Statistical analyses were performed similar as in the main sample, but all partial correlations 

were additionally controlled for sex. Note that for microstate, the group microstates of the main 

sample were backfitted to the individual EEG-signals of the participants in the replication 

sample. 

 

Data and Code Availability 

Analyses were conducted using Python 3.8. All analysis code used in the current study was 

made freely available and can be downloaded under:  

https://github.com/jonasAthiele/BrainComplexity_Intelligence, 

https://doi.org/10.5281/zenodo.6728103. The raw data can be accessed from the authors by 

reasonable request.  

 

Results 

 

Intrinsic Brain Signal Complexity  

Group-average entropy measures as well as their standard deviation between participants are 

illustrated in Figure 3. Overall, mean and standard deviation of channel-wise Shannon entropy 

(Fig. 3A), channel-wise Fuzzy entropy (Fig. 3B) and channel-wise multiscale entropy (Fig. 3D) 

demonstrated obvious differences between different EEG-channels. Channel-wise means and 

standard deviations of Shannon entropy were descriptively higher than means and standard 

deviations of channel-wise Fuzzy entropy. Means of sample entropy increased between scale 

1 and 5 and remained relatively stable from scale 5 to 20 (see multiscale entropy of GFP, Fig. 

3C, and channel-wise multiscale entropy, Fig. 3D). The five group microstates extracted from 

the EEG data map well onto established microstates (e.g., Michel and Koenig 2018) and are 
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illustrated in Figure 4A. Means and standard deviations of microstate measures are shown in 

Figure 4B-C. Again, also these measures varied markedly between specific measures and 

between different microstates.  

 

An explorative factor analysis was conducted to examine the covariance structure of different 

brain signal complexity measures. Results are illustrated in Figure 5. As indicated by parallel 

analysis, the appropriate number of the factors to be extracted was 17 and the total amount of 

variance explained by these 17 factors was 87.12 % (Fig. 5A). Figure 5B lists all 17 extracted 

factors with the ten variables expressing the highest loadings onto these factors. For example, 

for the three factors explaining most variance, variables with highest loadings were MSE in 

coarser time scales (channels CP1, CP2, Fz; factor 1), MSE in finer time scales (channels 

FC1, FC2, FC5, Fz, CP5, CP6, C3, C4, P7; factor 2 and factor 3), and fuzzy entropy (channels 

C3, FC5, FC6; factor 3).  

 

The Association Between Intelligence and Brain Signal Entropy Depends on Spatial and 

Temporal Scales 

On a whole-brain level, we observed no significant associations between intelligence and 

Shannon or Fuzzy entropy (computed on the GFP signal; Shannon: r = -.09, p = .30; Fuzzy: r 

= -.05, p = .58). Channel-specific Shannon entropy values were mostly negatively associated 

with intelligence, but no association reached statistical significance (Fig. 6A). Fuzzy entropy 

showed a similar pattern, with some channel-specific associations reaching statistical 

significance when not correcting for multiple comparisons: Cz (r = -.21, p = .014, p(adj) = .129), 

CP1 (r = -.23, p = .007, p(adj) = .129), CP2 (r = -.21, p = .012, p(adj) = .129) and Pz (r = -.17, 

p = .045, p(adj) = .318, Fig. 6B). In the replication sample most associations were also 

negative, however, the specific channels showing strongest associations as well as the 

strengths of associations differed between the samples (see Fig. 6A,B).  

 

Whole-brain multiscale entropy (MSE, computed on the GFP signal) was on all but scale 1 

negatively associated with intelligence in the main sample (without reaching statistical 

significance) while primarily positively associations were observed in the replication sample 

(see Fig. 6C). Channel specific MSE values were negatively associated with intelligence (only 

significant when uncorrected for multiple comparisons) for channels Fp1, Fp2, Fz, FC1, FC2, 

T7, Cz, CP1, and CP2, especially (but not exclusively) at finer time scales (scales 4-9), while 

we observed a non-significant trend towards positive associations in respect to parietal (P3, 

Pz) and frontal channels (e.g., F3, FC5) at coarser time scales (scales 10-20; Fig. 6D). Similar 

tendencies were observed in the replication sample (Fig. 6D). However, while the patterns of 

associations between intelligence and sample entropy were significantly correlated between 

both samples (for all single scales and channels: r = .29, p < .001), associations of specific 

channels and time scales differed markedly.  

 

Intelligence is Associated with Two Specific EEG Microstates 

Intelligence was positively correlated with the coverage (r = .20, p = .018, p(adj) = .077), 

lifespan (r = .20, p = .017, p(adj) = .077) and lifespan at GFP peaks (r = .20, p = .019, p(adj) = 

.077) of microstate A, the transition probability (all time points) from microstates A (r = .22, p = 

.010, p(adj) = .089), and C (r = .18, p = .036, p(adj) = .23) to microstate A (note that a transition 

probability from a specific microstate into the same microstate expresses the probability that 

the microstate does not change), as well as with the transition probability calculated at GFP 

peaks from microstate A (r = .22, p = .008, p(adj) = .048), B (r = .23, p = .007 , p(adj) = .048), 

C (r = .22, p = .010, p(adj) = .048), and D (r = .20, p = .017, p(adj) = .061) to microstate A (Fig. 
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7). In contrast, intelligence was negatively correlated with the coverage (r = -.22, p = .009, 

p(adj) = .077) and frequency (r = -.21, p = .013, p(adj) = .077) of microstate C, the transition 

probabilities (all time points) from microstate A (r = -.21, p = .011, p(adj) = .089), and E (r = -

.22, p = .010, p(adj) = .089) to microstate C as well as the transition probabilities (measured at 

GFP peaks only) from microstate A (r = -.20, p = .016, p(adj) = .061), D (r = -.24, p = .005, 

p(adj) = .048), and E (r = -.26, p = .002, p(adj) = .048) to microstate C (Fig. 7). All other 

measures as well as the number of GFP peaks did not show any significant correlations (all p 

> .05). In the replication sample, intelligence was associated in the same direction as in the 

main sample with the coverage, lifespan, and lifespan at GFP peaks of microstate A, coverage 

and frequency of microstate C, transition probabilities (all time points) from microstate A, and 

C to microstate A and from microstate A, and E to microstate C as well as with the transition 

probability at GFP peaks from microstate A to microstate A and from microstate A, D, and E 

to microstate C. However, overall, the strengths of associations differed between samples and 

few associations were also of opposing direction (Fig. 7).  

 

Predicting Intelligence from Multimodal Brain Signal Complexity  

To test if a combination of multiple measures of brain signal complexity can amplify the 

observed associations with intelligence, we firstly constructed a multimodal model to explain 

the variance in intelligence scores within the complete main sample. The combined average 

values of the variables positively and negatively correlated with intelligence (p < .05, 

uncorrected) served as model features (see Methods). Positively correlated variables were: 

coverage, lifespan and lifespan at GFP peaks of microstate A, transition probabilities from 

microstates A, and C to microstate A, and transition probability at GFP peaks from microstates 

A, B, C, and D, to microstate A. Negatively correlated variables were: frontopolar MSE scale 

6-10, temporal MSE scale 6-10, Fuzzy entropy of channel Cz, CP1, CP2, and Pz, coverage 

and frequency of microstate C, transition probabilities from microstates A, and E to microstate 

C, as well as the transition probabilities at GFP peaks from microstates A, D, and E to 

microstate C. This within-sample model (without any cross-validation) reached statistical 

significance (r = .31, p < .001, see Fig. 8A) indicating that a significant portion of variance in 

intelligence scores can be explained by a combination of multimodal brain complexity features.   

 

Secondly, we tested whether individual intelligence scores can not only be explained but also 

be predicted by our model. Therefore, we selected features on only one part of the sample and 

applied this model to the withheld part of the sample (internal 10-fold cross-validation). The 

model could significantly predict individual intelligence scores (correlation between predicted 

and observed intelligence scores: r = .22; p = .032 by permutation test, see Fig. 8B). 

 

Finally, we tested whether a model trained on data from the main sample can also predict 

individual intelligence scores in a completely independent sample (out-of-sample prediction). 

This was indeed the case. Predicted and observed intelligence scores of the replication sample 

(external test sample) correlated significantly with r = .23, p = .040 (by permutation test), overall 

suggesting high generalizability of this multimodal approach (see Fig. 8C).  

 

Post-hoc Analyses 

To gain additional insights into the associations between intrinsic brain signal complexity and 

intelligence, three purely exploratory post-hoc analyses were performed: Firstly, we compared 

all subject-specific microstates with each other and tested whether their spatial similarity 

(Pearson correlation) was related to intelligence. We observed a significant negative 

association of r = -.20, p = .019 suggesting less similarity (higher variability) between individual 
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microstates in participants with higher intelligence scores. Secondly, we computed the total 

amount of variance in the subject-specific EEG signal that can be explained from the five 

extracted subject-specific microstates and tested whether this amount is associated with 

individual differences in intelligence. The average (across participants) total amount of 

explained variance was M = 63% (SD = 6%, range = 44% – 83%). However, this amount was 

not significantly correlated with intelligence (r = -,15, p = .071). Finally, we assessed the total 

amount of variance in the subject-specific EEG signal that can be explained by the five group 

microstates. Across participants the total amount of variance explained was M = 56% (SD = 

10%, range = 22% – 76%) and, interestingly, we observed that in people with higher 

intelligence scores less variance could be explained by the group microstates (r = -.21, p = 

.011). 

 

Discussion  

 

We showed that multiple measures capturing the complexity of intrinsic brain dynamics are 

associated with human intelligence. Specifically, Shannon, Fuzzy, and multiscale entropy of 

resting-state EEG were compared with features of established microstates and factor-

analytical results point towards the existence of overlapping as well as separate information 

captured by the different measures. Further analyses revealed that associations between brain 

signal complexity and intelligence not only vary between different measures but do also 

critically depend on the considered EEG channel and on the focused temporal scale, thus only 

little variance in intelligence may be explained by unimodal approaches. Therefore, we finally 

combined different measures into a multimodal model considering different measures, 

channels, and time scales simultaneously. This model allowed to significantly predict individual 

intelligence scores in the main sample as well as in a completely independent sample.    

 

At first, our study reveals that the complexity measures calculated for different EEG channels 

and on different temporal scales, can be grouped into 17 latent factors. These factors 

demonstrate clustering in respect to spatial information and time scale as well as to the kind 

of measure. For instance, Fuzzy entropy and MSE measures were clearly differentiated from 

Shannon entropy and microstate characteristics, respectively. These observations 

demonstrate that different amounts of variance in the complexity of the resting-state EEG 

signal are captured by different measures, and suggest that physiologic signal complexity 

might be too manifold to be captured in its entirety by only one single metric (Goldberger et al., 

2002). Conclusively, also for investigating associations between brain signal complexity and 

human traits, it might be more appropriate to use multiple complexity measures.  

 

When computed on the global field power, no entropy measure was significantly associated 

with intelligence. Channel-specific Shannon and Fuzzy entropy were descriptively negatively 

associated with intelligence but did not reach statistical significance. Sample entropy of fronto-

central channels demonstrated non-significant negative associations with intelligence at finer 

timescales, while sample entropy of fronto-parietal channels at coarser time scales 

demonstrated non-significant tendencies towards positive associations. Together, the finding 

of lower entropy at finer time scales and tendencies towards higher entropy at coarser time 

scales to be associated with higher intelligence is in line with the findings of Dreszer et al. 

(2020) suggesting differences in local (linked to entropy at finer time scales) versus global (as 

reflected by entropy at coarser time scales) aspects (Vakorin et al., 2011; McIntosh et al., 

2014; Courtiol et al., 2016) of intelligence-related information processes. Interestingly, it has 

been shown that entropy at finer time scales increases while entropy at coarser time scales 
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decreases with increasing age (McIntosh et al., 2014), which is in regard to our observations, 

plausible as fluid intelligence decreases with increasing age (Schaie, 1994; Salthouse, 2010; 

Ghisletta et al., 2012). We, therefore, would like to encourage future studies to test whether 

both associations exist rather independent of each other or whether intrinsic brain signal 

entropy mediates the association between increasing age and reductions in intelligence.  

  

The analysis of EEG microstates revealed intelligence-related differences in respect to two 

specific microstates. Specifically, higher intelligence scores were associated with less 

dominance of microstate C as indicated by significantly less transitions into microstate C and 

descriptive trends towards lower coverage and frequency - observations which replicated 

earlier reports (Santarnecchi et al., 2017; Liu et al., 2020). As microstate C is suggested to 

reflect increased activity of the default-mode (or task-negative) network (DMN, Michel and 

Koenig, 2018), and effective suppression of DMN activity is proposed to be essential for proper 

cognitive functioning (Sonuga-Barke and Castellanos, 2007; Anticevic et al., 2012; 

Sidlauskaite et al., 2016), this observation may indirectly point towards an intrinsic advantage 

of higher intelligent people for more effective DMN suppression. Further, higher intelligence 

was associated with higher presence of microstate A, reflected by more transitions into 

microstate A and trends towards higher coverage and lifespan. Microstate A has been related 

to reduced activity of the temporal network (Michel and Koenig, 2018) and especially to areas 

implicated in phonological processing (Britz et al., 2010), which is consistent with the 

observation that Microstate A is more present during visualization tasks expectedly implying 

inhibition of left-hemispheric language areas (Milz et al., 2016). However, implications of 

microstate patterns on cognition are far away from being completely understood and more 

research is needed to clarify whether and to which extend a higher presence of microstates A 

may possibly reflect intrinsic dispositions for verbal processing (Dreszer et al., 2020) or 

visualization (Milz et al., 2016). 

 

Importantly, according to the criteria of Cohen (1988) all observed effect sizes (r ~ .2) can be 

considered as small and only few out of all calculated measures reached statistical 

significance, when correcting for multiple comparisons. These results contribute to the current 

debate about the effect size to be expected in investigations on brain-behavior relations (Marek 

et al., 2022; Rosenberg and Finn, 2022) in demonstrating that the combination of cross-

validation (Sui et al., 2020; Cwiek et al., 2022) and multimodal analyses approaches can 

identify robust brain-behavior relations despite sample sizes that lie clearly below thousand. 

We compared three forms of analyses (explanation of intelligence scores, internal cross-

validation, and out-of-sample prediction: prediction of intelligence scores in a replication 

sample with the model constructed in the main sample) to show, in line with Cwiek et al., 

(2022), that cross-validation reduces the overall effect size markedly as compared to 

explanation (r = .31 to r = .22 and r = .23). That internally cross-validated effect size reflects a 

more realistic estimate of the ‘true’ effect size (Yarkoni and Westfall, 2017) is supported by our 

out-of-sample-prediction in the independent sample (r = .23).  

 

Importantly, in both cases (internal cross-validation and out-of-sample prediction) our models 

could significantly predict individual intelligence scores. Features contributing to this model 

were frontopolar and temporal sample entropy at finer timescales, centro-parietal Fuzzy 

entropy, and measures of microstate A and C, which again supports the relevance of these 

aspects for intelligence. The involvement of multiple brain areas in associations between 

intelligence and brain signal complexity supports theories proposing a distributed network of 

brain regions associated with diverse cognitive functions as relevant for the explanation of 
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individual differences in intelligence (Jung and Haier, 2007; Duncan, 2010; Basten et al., 

2015).  

 

Finally, post-hoc analyses revealed that higher intelligence scores were associated with higher 

variability in individual-specific microstates and with less variance explained by group 

microstates. Although, this could be interpreted as pointing towards a more diverse intrinsic 

brain network configuration in more intelligent people at time scales in the range of 

milliseconds, it is difficult to relate those findings to recent neuroimaging studies suggesting 

higher stability (less variability) of intrinsic brain activity in more intelligent people at much 

coarser time scales (Hilger et al., 2020). A pressing goal for future research is therefore to link 

those lines of research and to systematically assess how intelligence-related spatial 

configurations (microstates) of resting-state EEG relate to intelligence-related brain network 

reconfigurations as observed in fMRI studies (e.g., Thiele et al., 2022).  

 

Several limitations and methodological aspects require consideration. At first, we compared a 

very high number of parameters describing different aspects of intrinsic brain signal 

complexity, making it difficult to control for multiple comparisons. Although this was necessary 

due to the exploratory hypothesis-generating purpose of our study, and we attempted to control 

for multiple comparisons appropriately, this may have reduced our ability to detect significant 

associations. Second, the age range of our sample was restricted (18 to 35 years). As 

spontaneous brain dynamics can be influenced by age (Goldberger et al., 2002), future studies 

should test whether and to which extend our findings may generalize to different age cohorts. 

Third, our study was restricted to a specific collection of complexity measures most established 

in this field of research. Evaluating interplays of additional (and more diverse) complexity 

measures may add further insights into intrinsic brain dynamics underlying intelligence. Finally, 

as observed associations between complex human traits and neural parameters were 

relatively small, we recommend future studies aiming to investigate associations between 

complex human traits and complex neural parameters a) to use large samples (N > 200) for 

capturing enough phenotypic variation and reach sufficed statistical power (> .95) to detect 

expectedly small effects (r ~ .20), b) to combine multiple neural parameters in multimodal 

models, c) to apply internal cross-validation to obtain realistic estimates of the generalization 

error, and d) to actually test the generalizability in a completely independent sample.   

 

In sum, our study reveals that individual differences in a person’s cognitive ability level are 

reflected in the complexity of temporally highly resolved intrinsic brain dynamics. We 

demonstrated that different complexity measures capture separate but also overlapping 

information and that associations with intelligence vary across temporal and spatial scales. 

Finally, we showed that combining different measures into a single multivariate model allows 

to significantly predict individual intelligence scores from only five minutes of resting-state EEG 

data. Overall, our study highlights the potential of combining multimodal analysis approaches 

with internal cross-validation and out-of-sample prediction to reliably investigate how intrinsic 

brain dynamics might contribute to complex human traits. 
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Figure 1. Frequency distributions of intelligence scores. Frequencies of individual intelligence 

scores (RAPM sum scores, Raven and Court, 1998) are depicted for (A) the main sample and 

(B) the replication sample.   
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Figure 2. Schematic overview of the analyses to investigate relations between brain signal 

complexity and intelligence (RAPM sum scores; Raven and Court, 1998). First, from the 

preprocessed resting-state electroencephalography (EEG) signals of 144 participants different 

entropy measurers (Shannon entropy, Fuzzy entropy, multiscale entropy, see left branch) and 

microstate measures (number of GFP peaks, coverage, lifespan, lifespan at GFP peaks, 

frequency and transition probabilities between microstates, see right branch) were computed. 
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Entropy measures were determined for the GFP of the EEG signal and for each EEG channel, 

respectively; for multiscale entropy, sample entropy was calculated for different coarse-grained 

time series (scales). For microstate analyses, individual brain signals at GFP peaks were 

clustered (k-means) over time into five individual spatial mean maps (microstates). The 

individual mean maps of all participants were then clustered into five group microstates. These 

group-average microstates were then mapped back onto the individual EEG time series 

resulting in a sequence of group microstates for each individual from which different microstate 

measures were derived. As depicted in the lower left box, first, all associations between 

intelligence and single complexity measures were determined. Second, a multimodal model 

was constructed from measures of brain signal complexity significantly positively or negatively 

correlated (p < .05, uncorrected) with intelligence. It was tested a) to which extent the model 

explains intelligence scores in the main sample, b) with which accuracy the model predicts 

intelligence scores within the main sample (10-fold cross-validation), and c) with which 

accuracy the model predicts intelligence scores in the replication sample (out-of-sample 

prediction, model build in the main and applied to the replication sample). GFP, Global field 

power. Note that all equations are simplified for illustration purposes, see Methods for more 

details. 
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Figure 3. Entropy measures as indicators of brain signal complexity. Mean values (M) and 

standard deviations (SD) of three different entropy measures were calculated from the time 

series of neural activation as measured with resting-state electroencephalography (EEG) at 

28 scalp electrodes. Mean and standard deviations of all three measures (normalized between 

0 and 1) were calculated across 144 healthy adult participants. For illustration, values were 

interpolated and color-coded (see color bars). A, Mean and standard deviation of Shannon 

entropy computed on 28 scalp electrodes (represented as dots) separately. B, Mean and 

standard deviation of Fuzzy entropy of 28 scalp electrodes. C, Means and standard deviation 

of multiscale entropy (MSE), indexing the sample entropy at different course-grained temporal 

scales, computed on the global field power (GFP) of 28 scalp electrodes for the time scales 1 

to 20. D, Mean and standard deviation of MSE of 28 scalp electrodes for different time scales 

(1,5,10,15, and 20).   
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Figure 4. Microstate measures as indicators of brain signal complexity. Brain signals of 144 

participants were clustered (k-means) over time into five individual spatial mean maps 

(microstates). The individual mean maps of all participants were then clustered into five group 

microstates (A). These group-average microstates were then mapped back onto the individual 

electroencephalography (EEG) time series resulting in a sequence of group microstates for 

each individual. Based on these sequences, different measures were calculated (coverage, 

lifespan, lifespan at peaks of the global field power, frequency, and transition probabilities of 

microstates, see also Figure 2). For calculating means and standard deviations, all measures 

were normalized between 0 and 1. B, Means (top row) and standard deviations (bottom row) 

of individual specific coverage, lifespan, lifespan at GFP peaks, and frequency of group 

microstates. C, Maps of means and standard deviations of individual probabilities to stay in a 
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specific microstate or to transition into another specific microstate calculated on the whole 

time-series (left) and on time points with GFP peaks only (right). Values are color-coded (see 

color bars). M, mean; SD, standard deviation; GFP, global field power.  
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Figure 5. Measures of brain signal complexity can be grouped into 17 latent factors. Latent 

factors were extracted from all computed measures of brain signal complexity (see Methods) 

by exploratory factor analysis using oblique rotation and minimal residual minimization. To 

define the optimal number of factors, parallel analysis was used in accordance with Horn 

(1965). A, Proportion of total variance explained by each factor. The black curve shows the 

accumulation of explained variance. B, Extracted factors with (for illustration purposes) the ten 

brain signal complexity measures with highest loadings on the respective factor. Measures of 

multiscale entropy (MSE) are written in blue font, Shannon entropy measures in red, Fuzzy 

entropy measures in orange, and parameters derived from the microstate analysis are 

depicted in green. GFP, global field power.   
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Figure 6. The association between intelligence and intrinsic brain signal entropy depends on 

electroencephalography (EEG) channel, time scale and study sample. Pearson correlations r 

(controlled for age, sex, and number of removed epochs) between intelligence (RAPM; Raven 

and Court, 1998) and (A) Shannon entropy for each EEG channel, (B) Fuzzy entropy for each 

EEG channel, and (C) multiscale entropy (MSE), indexing the sample entropy at different 

coarse-grained temporal scales, of the global field power (GFP) at time scales 1 to 20. 

Associations found in the main sample (N = 144) are depicted in red, associations found in the 

replication sample (N = 57) are illustrated in gray. D, Pearson correlations r (controlled for age, 

sex, and number of removed epochs) between intelligence and MSE computed for the time 

scales 1 to 20 and each EEG channel. Upper panel: Main sample. Lower panel: Replication 

sample.  
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Figure 7. Intelligence is associated with two specific electroencephalography (EEG) 

microstates. Pearson correlations r between intelligence and characteristics of group 

microstates (individual brain signals of 144 subjects were clustered over time into five 

individual spatial mean maps, i.e., microstates, and the individual mean maps across all 

participants were clustered into five group microstates). A, Pearson correlations (controlled for 

age, sex, and number of removed epochs) between individual intelligence scores (RAPM; 

Raven and Court, 1998) and variations in coverage, lifespan, lifespan at GFP peaks, and 

frequency of group microstates when mapped back onto the individual time series of neural 

activation from participants of the main sample (red, N = 144) and the replication sample (gray, 

N = 57). B, Pearson correlations (controlled for age, sex and number of removed epochs) 

between intelligence (RAPM, Raven and Court, 1998) and individual-specific transition 

probabilities between group microstates (probabilities to stay in a specific microstate or 
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transitioning into another specific microstate) when mapped back onto individuals’ time series 

from the main sample (top row) and the replication sample (bottom row), for transition 

probabilities on the whole time series (left) and on time points with GFP peaks only (right). 

FDR corrected p-values < .05 are marked with asterisks. GFP, global field power. 
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Figure 8. Multimodal brain signal complexity predicts individual intelligence (RAPM, Raven 

and Court, 1998) scores. Model performances were assessed via Pearson correlation r 

between the observed and predicted intelligence scores. Standardized residuals (controlled 

for age, sex, number of removed epochs) of intelligence scores and complexity measures were 

used. A, Explanation: Model to explain variation in individual intelligence scores in the main 

sample (N = 144) from measures of brain signal complexity positively or negatively correlated 

(p < .05, uncorrected) with intelligence. B, In-sample prediction: Left: Observed vs. predicted 

intelligence scores based on 10-fold internal cross-validation within the main sample. 

Predicted intelligence scores result from a model based on measures of brain signal 

complexity positively and negatively correlated (p < .05, uncorrected) with intelligence. Results 

of the model with the highest accuracy (from 100 different stratified sample divisions). Right: 

Result of a permutation test for testing significance of the prediction. The correlation of the 

prediction model (blue vertical line) was computed as average of correlations between 

predicted and observed intelligence scores from 100 models (with different stratified sample 

divisions) using internal 10-fold cross-validation. This average correlation was then tested 

against model performances of models constructed on the basis of permutated intelligence 

scores (1000 times, null models, histogram). Note that the high frequency of zero correlations 

occurred as a correlation of zero was automatically set if no measure of brain signal complexity 

correlated significantly with the permutated RAPM scores (p < .05, uncorrected). C, Out-of-

sample prediction: Left: Observed vs. predicted intelligence scores in the replication sample 

(N = 57). Predicted intelligence scores for the replication sample resulting from a model that 
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was constructed on the main sample (model in A). Right: Permutation test for testing the 

significance of this prediction. The true model performance (blue vertical line) was tested 

against predictions of the same model for 1000 permutated intelligence scores within the 

replication sample.   
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