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Background: Persistent pain in breast cancer survivors is common. Psychological and sleep-related fac-
tors modulate perception, interpretation and coping with pain and may contribute to the clinical
phenotype. The present analysis pursued the hypothesis that breast cancer survivors form subgroups,
based on psychological and sleep-related parameters that are relevant to the impact of pain on the
patients’ life.
Methods: We analysed 337 women treated for breast cancer, in whom psychological and sleep-related
parameters as well as parameters related to pain intensity and interference had been acquired. Data
were analysed by using supervised and unsupervised machine-learning techniques (i) to detect patient
subgroups based on the pattern of psychological or sleep-related parameters, (ii) to interpret the
detected cluster structure and (iii) to relate this data structure to pain interference and impact on life.
Results: Artificial intelligence-based detection of data structure, implemented as self-organizing
neuronal maps, identified two different clusters of patients. A smaller cluster (11.5% of the patients)
had comparatively lower resilience, more depressive symptoms and lower extraversion than the other
patients. In these patients, life-satisfaction, mood, and life in general were comparatively more impeded
by persistent pain.
Conclusions: The results support the initial hypothesis that psychological and sleep-related parameter
patterns are meaningful for subgrouping patients with respect to how persistent pain after breast cancer
treatments interferes with their life. This indicates that management of pain should address more
complex features than just pain intensity. Artificial intelligence is a useful tool in the identification of
subgroups of patients based on psychological factors.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As treatment of breast cancer becomes more efficacious, the
number of survivors increases. Persistent treatment-related pain of
moderate to severe intensity is a significant problem in 14%e25% of
the patients [1,2]. Persistent pain can be challenging to manage [3].
Psychological factors and pain interact in the experience of pain [4].
Psychological factors modulate both perception and interpretation
of pain and coping with pain [4,5]. On the other hand, pain may
modulate the patient’s mood, sleep, and social activities [6,7]. The
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negative roles of anxiety, depressive symptoms, and catastrophis-
ing in pain experience are well accepted [4] but also protective
psychological factors that may support meaningful life with pain
have been acknowledged [5,8]. Psychological resilience refers to a
person’s ability to adapt successfully or to reach a positive outcome
in case of severe life adversity, such as cancer and persistent pain
[9]. In the context of chronic pain, psychological resilience associ-
ates inversely with pain interference and depressive symptoms
[10,11].

While the intensity of pain has been the traditional outcome in
research and therapy, it has become obvious, that this focus reflects
the clinical facets of pain only partly. A discrepancy between pain
intensity and its interference is common, and recognition of the
underlying psychological traits is necessary to provide successful
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multimodal pain management. The associations between person-
ality and sleep with pain-related outcomes have been studied to
some extent [12,13]. In this context, personality traits have been
associated with either higher intensity or poorer coping with pain
[12,14]. Indeed, the impact of pain on a persons’ life is not a linear
consequence of its intensity, but an interplay between the protec-
tive and vulnerability factors [4] the patient may have.

As the patients have to cope with the pain related to breast
cancer treatment for many years, it is important to know whether
the patients represent a psychologically heterogeneous cohort that
would allow subgroup segregation with possible relevance
regarding treatment strategies. Therefore, the present study aimed
at investigating subgroup segregation based on psychological pat-
terns of breast cancer survivors. Advancements in data science [15]
facilitate data-driven approaches [16] in this field to insights or
hypotheses regarding the intersection between pain, life interfer-
ence and psychological factors. The goal was to identify clinically
meaningful subgroups of patients in the patterns emerging in a
number of psychological parameters (mood, personality, resilience,
pain-related catastrophizing, and sleep) and to select parameters
that enable interpretation of the observed pattern and association
of patients to clinically relevant scenarios of persistent pain and its
interference with life. Information about the combination of those
psychological features that may have an effect on poorer coping
with persistent pain following breast cancer treatments, may help
clinicians to recognize these patients and to provide them with
psychosocial interventions to improve their quality of life.

2. Methods

2.1. Patients and data acquisition

The patient sample consisted of a subgroup of 402 women
(“NeuroPain” study, Fig. 1) from a cohort of 1,000 women (the
original “BrePainGen” study) (18e75 years) operated for breast
cancer at the Helsinki University Hospital (during years
2006e2010). The present cross-sectional data were collected 4e9
years after the patients had undergone the index surgery. The pa-
tients answered the questionnaires during the research visit. The
study protocols have been described earlier in detail [17,18]. Infor-
mation about patient recruitment is provided in Fig. 1. The study
was approved by the Coordinating Ethics Board of the Helsinki and
Uusimaa Hospital District and it was registered in ClinicalTrials.gov
(NCT02487524). All patients provided an informedwritten consent.

2.2. Acquisition of psychological questionnaires

To evaluate the intensity and the interference of pain during the
past week, both in the surgical area and other parts of the body, the
Brief Pain Inventory (BPI) was used in its long form [19]. The pain
intensity variablewas formed by calculating themean of “the worst
pain”, “the mildest pain”, “the average pain”, and “pain at the
moment” items. The pain interference items of the questionnaire
asked the patients to evaluate the overall pain interference and in
addition, interference with function, mood, walking, working, re-
lationships, sleeping, and life-satisfaction. Patients completed the
BPI separately for any pain and for the pain in the operated area on
a Numerical Rating Scale from 0 (not at all) to 10 (theworst possible
pain intensity/very much pain interference).

To assess mood, theHospital Anxiety and Depression Scale (HADS)
[20] was used. A sum score of all items (0e21) was calculated.
Higher scores indicate higher amounts of mood symptoms. Pain-
related catastrophising was assessed using the Pain Catastrophis-
ing Scale (PCS) sum score (0e52). A higher value indicates a higher
tendency for catastrophic thinking [21]. Symptoms of insomnia
were queried using the Insomnia Severity Index (ISI) [22] (scores
from 0 to 28). Again, higher scores indicate more severe symptoms.
Personality traits were assessed using the Ten Point Personality In-
ventory (TIPI) [23]. The “Big Five” framework is a hierarchical model
of personality traits suggesting that most individual differences in
personality can be classified into five domains, i.e., agreeableness,
emotional stability, extraversion, openness, and conscientiousness.
Scores of the TIPI vary from 0 to 7, with higher scores indicating a
stronger profile for the factor in question. Finally, the Temperament
and Character Inventory (TCI) [24] was used to measure tempera-
ment: Harm avoidance (HA), novelty seeking (NS), reward depen-
dence (RD), and persistence (P) and character: self-directedness
(SD), cooperativeness (CO), and self-transcendence (ST)) traits.

2.3. Data analysis

The data analysis was performed using the R software package
version 3.5.1 for Linux (http://CRAN.R-project.org/ [25]) on an Intel
Core i7® - 7500U notebook computer running on Ubuntu Linux
18.04.1 64-bit. The data set comprised d ¼ 17 psychological and
sleep-related parameters (insomnia severity, pain catastrophising,
resilience, temperament traits NS, HA, RD, P (see above) and
characters SD, CO, and ST, personality traits extraversion, agree-
ableness, conscientiousness, emotional stability, openness, anxiety,
and depression, d ¼ 24 parameters related to pain and its inter-
ference with the patient’s life (separately for pain in the treated
area and other pains: worst pain intensity, mildest pain, average
pain, pain now, pain interference with function, mood, walking,
working, to relationships, sleep, and life-satisfaction), which were
acquired completely from up to n ¼ 373 patients (Fig. 1).

The datawere analysed using machine learning methods, which
are increasingly proving to be suitable for knowledge discovery in
pain-related data. A summary on the application of this family of
methods has recently been presented [16]. The analysis of the
present data set was performed in three main steps, comprising (i)
the detection of subgroups based on the pattern of psychological or
sleep-related parameters, (ii) the psychological interpretation of
the detected cluster structure and (iii) the interpretation of the
cluster structure from a pain interference and impact perspective.
For the first step, unsupervised methods were used to detect sub-
groups in the data without imposing any pre-classification.

Among the various methods, an algorithm based on artificial
intelligence was preferred to classical clustering based on earlier
observations [26] that such algorithms occasionally fail to recog-
nize the correct cluster structure. I.e. by imposing a cluster shape
instead of identifying true structures in the data, faulty clusters or
false cluster associations of individual cases may result. Therefore,
emergent self-organizing feature maps (ESOM) were used as an
unbiased alternative method for identifying true clusters in high-
dimensional data space [26e28], where the imposition of clusters
is overcome by addressing the structures without assuming a
specific cluster shape. For the second and third steps, supervised
methods were applied with the idea of training an artificial intel-
ligence with a randomly drawn fraction of the data in such a way
that it is able to assign a patient to the correct cluster in the
remaining data not available to the AI during training. In order to
accommodate the concept of explainable AI (XAI) [29], an algo-
rithm type was chosen that was designed to create simple tree-
based rules that make class assignment transparent [30]. The
three main steps of data analysis are described in detail below.

2.3.1. Subgroups detection based on the pattern of psychological or
sleep-related parameters

In the first step of the data analysis, for psychological subgroup
detection, d ¼ 17 psychological and sleep-related parameters,
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Fig. 1. Flow-chart of the patient selection from the original 1000 patient cohortAbbreviations: ICBN: InterCostoBrachial Nerve, NRS: Numerical Rating Scale.
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subsequently also called “features”, were available. For the subse-
quent projection and clustering as measure of “similarity”, the
Euclidian distance was used. Each person’s rating to the pain
stimuli (d ¼ 17 dimensions) was treated as a point in a high-
dimensional Euclidean vector space (data space). Subgroups of
patients were identified using unsupervised machine learning,
which was implemented as a self-organizing map of artificial
neurons [31] arranged in 50 rows and 80 columns (n¼ 4,000 units;
for the sizing of SOM see Ref. [26]). The high-dimensional data
points were projected onto a two-dimensional grid consisting of a
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network of artificial neurons. Specifically, the map space used was
toroidal [32] and thus borderless, i.e. opposite edges are connected
to each other. The projection is neighborhood-preserving [33], i.e.
points that are adjacent in the high-dimensional data space are also
neighbors in themap space. In addition to the input vector from 17-
dimensional space, each neuron contains another vector that
carries “weights” with the same dimensions as the 17 input di-
mensions. The weights were initially drawn randomly from the
range of data variables. Then they were adapted to the data
(learning phase).

Following training of the neural network, on the top of the SOM
grid, the distances between data points were added as a third
dimension in the so-called U-matrix [26]. Using a topographical
map analogy for colouring, large distances in the high-dimensional
space were visualised as white “heights” that resemble snow-
covered mountain ranges. They separated green “valleys” and
blue “lakes”, where data at small distances in the high-dimensional
space were projected. This finally provided a cluster structure [26].
These calculations were performed using our R package “U-matrix”
(https://cran.r-project.org/package¼Umatrix [34]). As shown pre-
viously [26], common clustering algorithms such as k-means,Ward,
complete- and average linkage are prone to detect false structures
in the data. This was the reason to use the present emergent SOM
based method as it has been shown to outperform the mentioned
classical clustering algorithms on biomedical and artificial data sets
[26]. Following subgroup detection, which resulted in two clusters
group differences in all parameters that had been used for sub-
group detection in the data space, were statistically analysed by
means of Wilcoxon-Mann-Whitney-U tests for group differences
were calculated [35,36]. The a level was set at p ¼ 0.05 and the
results were interpreted considering the a correction proposed by
Bonferroni [37].

2.3.2. Psychological interpretation of the detected cluster structure
In the second step of the data analysis, the psychological

meaning of the detected groups was assessed using supervised
machine learning. Specifically, to obtain a comprehendible and
clinically applicable explanation of the groups, simple decision
trees were used implemented as “Fast and Frugal Trees” (FFTs [30]).
FFTs [30,38] provide simple decisions trees, usually composed of
1e5 pieces of information. This makes them particularly suitable
for biomedical problems as they mimic the processes of making a
clinical diagnosis [39]. Rules were first learned on 1,000 data sets
obtained by Monte-Carlo random resampling of two thirds of the
original data. Howmany and which psychological parameters were
used in each of the 1,000 rule sets was retained. A final feature set
was obtained at the most frequent size of the psychological pa-
rameters found in the 1,000 rule sets, among the d ¼ 17 psycho-
logical and sleep-related candidate features. The relevant features
Table 1
Performance measures for the correct assignment of subjects to the groups, based on (i)
high life activity interference” group, versus the other subjects, i.e., in both cases a two-
parameters and implemented as comprehendible Fast and Frugal Trees were used. The
provide a negative control by permuting the original psychological parameters. Results rep
measures from 1,000 model runs using Bootstrap resampling. The parameters correspond
project.org/package¼caret [58]).

Performance parameter [%] Psychological parameters

Original data Pe

Sensitivity, recall 92.9 (85.7e100) 21
Specificity 87.2 (83.5e94.5) 59
Positive predictive value, precision 48.3 (42.4e64.8) 6.
Negative predictive value 99 (98.1e100) 87
F1 63.6 (58.7e71.4) 29
Balanced Accuracy 90.1 (87.1e92.2) 46
were chosen in decreasing order of the frequency in which the
parameters had been used in the rules during the 1,000 runs.
Subsequently, the degree at which the features were able to explain
this data structure was assessed by training the FFT with 2/3 of the
original data and assessing the trees’ performance, quantified as the
balanced accuracy, in the remaining 1/3 of the data set. Several
further standard measures of classification performance were also
calculated (Table 1). The performance in this task was assessed in
1,000 runs using disjoint 2/3 training and 1/3 test data sets
resampled without replacement from the original data. To further
address potential overfitting, the performance of the decision trees
was assessed using negative control data sets, created by random
permutation of the psychological parameters across subjects. The
calculations were performed using the R package “FFTrees”
(https://cran.r-project.org/package¼FFTrees [40]).

2.3.3. Interpretation of the cluster structure from a pain
interference and impact perspective

In the third step of the data analysis, the cluster (subgroup)
structure was interpreted in terms of pain and its interference with
the patients’ lives. The aim of this step was to find pain-related
variables that best explain the identified subgroups. This was
done in a similar way to the second step of the analysis, but the
focus was shifted from psychological parameters to pain-related
parameters. This comprised the set of d ¼ 24 features related to
pain intensity and interference (all items from the BPI). Again, pa-
rameters most relevant for the psychologically based subgroup
structure among patients were selected using FFT followed by
computed ABC analysis. Subsequently, the performance of the
selected parameters for the assignment of a patient to the correct
psychological cluster was assessed by calculating the balanced
classification accuracy and other performance measures in 1,000
runs on disjoint training (2/3) and test (1/3) data sets obtained by
Monte-Carlo resampling from the original data set.

3. Results

3.1. Participants and descriptive data

Acquisition of psychological and sleep-related parameters was
complete in 373 patients (Fig. 2). Acquisition of parameters related
to pain intensity and its interference was completed in 337 (83.8%)
patients.

3.2. Main results

3.2.1. Subgroups of patients based on the pattern of psychological or
sleep-related parameters

Unsupervised machine learning provided an emergent self-
U-matrix clustering or (ii) on the membership to the clinical “low pain intensity but
group assignment task. For group assignment, decision trees built on psychological
performance was measured (i) using the original data, (ii) data sets constructed to
resent themedians (and interquartile ranges in parentheses) of the test performance
to the performance marker set implemented in the R library “caret” (https://cran.r-

Pain and interference related parameters

rmuted data Original data Permuted data

.4 (0e92.8) 58.3 (33.3e66.7) 41.7 (25e66.7)

.6 (41.3e73.4) 63.6 (54.5e82.8) 61.6 (37.4e74.7)
3 (0e20.4) 16.7 (14.3e20) 11.5 (6.7e16.3)
.7 (81.3e98.9) 92.4 (90.9e93.9) 89.5 85.2e92.4)
.5 (13.7e40) 25.5 (21.6e28.6) 18.5 (11.8e25)
.8 (29.4e72.5) 60.7 56.1e64.3) 51.3 (41.3e59.2)
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Fig. 2. Distribution of psychological and activity parameters. The beanplots show the individual observations as small blue lines in a one-dimensional scatter plot. The probability
density functions (pdf) of the distributions are shown as green areas. Box and whisker plots of the same data are drawn below the beanplots. They have been constructed using the
minimum, quartiles, median (solid black red line within the box), and maximum. The whiskers add 1.5 times the interquartile range (IQR) to the 75th percentile or subtract 1.5 times
the IQR from the 25th percentile and are expected to include 99.3% of the data if normally distributed. The notches indicate the confidence interval around the median based on
median ±1:57,IQR=n0:5. The figure has been created using library “beanplot” (https://cran.r-project.org/package¼beanplot [59]) for the R software package (version 3.5.1 for Linux;
http://CRAN.R-project.org/ [25]). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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organizing feature map on which a clear two-cluster structure in
the data set was seen. That is, the U-matrix visualization resulted in
a distinct cluster comprising n ¼ 43 (11.5%) patients, which on the
topographic map-analogy was visually separated from the other
patients by a “snow-covered mountain ridge” (Fig. 3). Specifically,
an 11 %-sized subgroup of data (marked with red dots in the figure)
is surrounded on the U-matrix by large high walls indicated with a
white color, which corresponds to large distances in the data. This
separates this group clearly from the rest of the cohort, marked
with black dots in the figure. To show this separation, the cutting
line of the U-matrix island was placed in a way that emphasises
group separation. This is possible due to the cyclic (toroid) nature of
the tiled U-matrix [41]. The red-marked group in itself, however,
might contain further subgroups. However, with the small number
of data further subgrouping was not pursued and remains subject
to further research. For the given data, one can assert that the red
and black marked groups are distinct and that the inner variance of
the red group is larger than within the black group.

3.2.2. Psychological interpretation of the detected cluster structure
Feature selection implemented as fast and frugal tree (FFT)

analysis combined with computed ABC analysis, identified d ¼ 3
parameters to be relevant for patient group segregation, among the
d ¼ 17 candidate parameters (Fig. 4). Specifically, the features that
were most frequently part of the best performing tree, during the
1,000 runs on randomly drawn 2/3-data subsets, comprised resil-
ience, depressive symptoms and extraversion. Members of the rarer
psychological phenotype in cluster #2 had lower resilience, more
depressive symptoms and lower extraversion, all with significant
differences: resilience: Wilcoxon W ¼ 13,741, p < 2.2 $ 10�16,
depressive symptoms: W ¼ 1087, p < 2.2 $ 10�16, extraversion:
W ¼ 12,810, p-value < 2.2 $ 10�16.

In the subsequent classification performance assessments per-
formed in 1,000 runs on disjoint 2/3 training and 1/3 test data
randomly drawn from the original data set, tree-based rules
assigned membership to cluster #2 at a balanced accuracy of 90.1%
(Table 1). By contrast, when using permuted information for
training, the group assignment was obtained at approximately 50%
balanced accuracy, as expected from the negative control scenario.

3.2.3. Interpretation of the cluster structure from a pain
interference and impact perspective

When using the parameters related to pain intensity and its
interference for the interpretation of the psychologically-based
patient clusters, feature selection implemented as FFT combined
with computed ABC analysis identified d ¼ 3 parameters as being
relevant, among the d ¼ 24 candidate parameters (Fig. 5). Specif-
ically, the parameters pain interference with life-satisfaction, mood
and broadly with life were most frequently part of the best per-
forming tree. Importantly, the selected items referred to other
pains, not to the breast cancer surgery-related pain. The impact of
pain on these parameters was significantly higher in the subjects
belonging to the rare psychological phenotype of cluster #2 (life
satisfaction: Wilcoxon tests: W ¼ 3448, p ¼ 3.225 $ 10�5, mood:
W ¼ 3531.5, p ¼ 0.0001053 and interference: W ¼ 4035,
p ¼ 0.005202) (see Fig. 5).

In the subsequent classification performance assessments per-
formed in 1,000 runs on disjoint 2/3 training and 1/3 test data
randomly drawn from the original data set, the tree-based rules
assigned membership to cluster #2 at a balanced accuracy of 81.2%
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Fig. 3. Clustering of subjects based on the pattern of psychological and activity related parameters, obtained using unsupervised machine learning implemented as an artificial
neuronal network of self-organizing maps. U-matrix visualization of distance-based structures of the serum concentration of d ¼ 17 parameters observed in n ¼ 373 patients. The
figure has been obtained using a projection of the data points onto a toroid grid of 4,000 neurons where opposite edges are connected. The dots represent the so-called “best
matching units” (BMU), i.e., neurons on the grid that after ESOM learning carried the vector that was most similar to a subjects’ data vector. The U-matrix visualization was coloured
as a top view of a topographic map with brown (up to snow-covered) “heights” and green “valleys” with blue “lakes”. Watersheds indicate borderlines between different clusters.
Two clusters emerged in this way, separated by the white “mountain ridge” at the left of the U-matrix. BMUs belonging to clusters #1 or #2 are coloured in black or red, respectively.
The red-marked group in itself, however, might contain further subgroups. However, with the small number of data, further subgrouping was not pursued and remains subject to
further research. For the given data, one can assert that the red and black marked groups are distinct and that the inner variance of the red group is larger than within the black
group. The figure has been created using the R software package (version 3.5.1 for Linux; http://CRAN.R-project.org/ [25]). Specifically, the U-matrix was calculated and visualised
using our R package “Umatrix” (https://cran.r-project.org/package¼Umatrix [34]). (For interpretation of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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(Table 1), whereas only approximately 50% were reached with
permuted data.
4. Discussion

Patients with pain after breast cancer treatments form a psy-
chologically heterogeneous cohort. Psychological and sleep-related
parameters provided a data pattern in which breast cancer survi-
vors segregated into two major subgroups. Patients who formed a
small distinct group (cluster #2) from the others had lower resil-
ience, more depressive symptoms and lower extraversion. In these
patients, life-satisfaction, mood, and life in general were compar-
atively more impeded by persistent pain than in the others. This
result supports that based on psychological and sleep-related
parameter patterns, breast cancer survivors are differently
impacted in their lives by persistent pain. This result supports that
based on psychological and sleep-related parameter patterns,
persistent pain impacts differently the quality of life of breast
cancer survivors. In the present cohort, particular severe life
interference by pain addressed 11.5% of the patients.

Thus, a first result of the present analysis was the recognition of
a pattern in the psychological parameters that clearly separates a
subgroup of patients. The three identified variables most relevant
for cluster segregation, i.e., resilience, depressive symptoms and
extraversion, represent common challenges in (pain) patients, but
they may be particularly prominent in cancer survivors. The bal-
ance between the identified vulnerability and protective factors
defines how a person adopts with her life with pain after breast
cancer. Resilience is likely to enable the patients to use better or
more effective coping strategies and to better adjust to pain and life
after a serious diagnosis [42]. Resilient individuals have been
shown to have more positive attributions about live adversities, for
example, how challenging or life-restricting pain becomes [8].
Resilience as a protective factor helps to maintain higher quality of
life despite adversities. On the other hand, extraversion is a factor
related to how well a person works with others or how well social
support is received [43]. It may therefore reflect an ability to receive
and seek social support after breast cancer. Social support has been
associated with better functioning, e.g., in patients with rheuma-
toid arthritis [44,45]. Similarly, in patients with neurological dis-
orders and impaired motor function, extraversion was an
independent predictor of resilience [46]. Hence, a combination of
these two traits is likely to reflect a positive affect that contributes
to better coping with cancer and pain. Also, it may be hypothesised
that less extraverted individuals focus more on their inner experi-
ences and pay more attention to bodily sensations whereas more
extraverted individuals focus their attention more outwards. The
negative effect of depressive symptoms in coping, life-satisfaction,
and social engagement is well established [4,47].

As the identified psychological pattern was highly plausible,
based on what is known about the role of psychological factors in
coping with cancer and its treatment, and also with pain, the dif-
ferences between the psychology-based groups were explored for
parameters related to pain intensity and interference. Of these,
items related to pain interference were found to be more relevant
than pain intensity. In the smaller cluster #2, patients reporting
higher overall pain interference, and interference with life-
satisfaction and mood were overrepresented. In addition, “pain
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Fig. 4. Selection of psychological and sleep-related features (parameters) that provide relevant information for the membership of a patient in the U-matrix based cluster #2 (see
Fig. 3). Relevant parameters were identified using the Fast and Frugal decision Tree (FFT [30]) algorithm. Decision tree building was performed using 1,000 iterations with randomly
resampled disjoint training and test data sets. A: Bar graph of the size of the best performing trees during the 1,000 runs of tree building. B: Bar graph displaying how many times
the features were included in the best performing trees during the 1,000 runs of tree building on randomly resampled disjoint training and test data. C: The FFT based decision tree
was built on the parameters resilience, depressive symptoms and extraversion. The figure shows the trees along with the decision limits as the basis for the assignment to either the U-
matrix based cluster #2 (named “Group 2” in the tree) or to the other subjects, i.e., U-matrix based cluster # (named “Other group in the tree). D: Beanplots of the parameters
algorithmically selected for the decision tree. Data are shown separately for U-matrix based cluster #1 (grey) or #2 (red). The individual observations are shown as black circles in a
one-dimensional scatter plot, surrounded by the probability density function (pdf) of the distributions (coloured areas). Box and whisker plots of the same data are overlaid on the
beanplots. They have been constructed using the minimum, quartiles, median (solid black red line within the box), and maximum. The whiskers add 1.5 times the interquartile
range (IQR) to the 75th percentile or subtract 1.5 times the IQR from the 25th percentile. The figure has been created using the R software package (version 3.5.1 for Linux; http://
CRAN.R-project.org/ [25]), the R package “FFTrees” (https://cran.r-project.org/package¼FFTrees [40]), and the R package “yarr” (https://cran.r-project.org/package¼yarrr [60]). (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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elsewhere” was evaluated as more interfering than pain in the
surgical area. A common finding in similar studies is that previous
pains are relevant for the experience of a new pain [48], which was
the case also in the present patient cohort [18]. It may be hypoth-
esised that the overall pain load is relevant regarding how inter-
fering the patient experiences her pain.

Resilience was the most important factor in the smaller cluster.
The results encourage us to concentrate more on the protective
factors in breast cancer treated women having pain. For example,
acceptance-based therapeutic interventions (ACT) focus particu-
larly on the strengths and finding ways to live a meaningful life
despite the pain [49]. There is some evidence to suggest that ACT
interventions may improve symptoms including distress, traumatic
responses, and pain in cancer patients [50]. These results comple-
ment previous knowledge that pain experience and coping with
pain are an interplay between protective (e.g. resilience) and
vulnerability (e.g. mood) factors [5]. The level of pain intensity is
not informative enough to explain this complex and interactive
process. This is crucial when planning specific interventions to
enhance an individual’s well-being after a serious disease, like
cancer [5]. Finally, a role of sleep in pain experience has become
obvious in the recent years [13]. In the present analysis, interfer-
ence with sleep was narrowly rejected by the feature selection
procedure. It was the next feature in line after the most relevant
features had been identified (Fig. 4). This, however, also implies
that its inclusion in the final set feature did not improve the clas-
sification performance of the trees further. Nevertheless, the results
do not contradict previous findings that have attributed sleep an
important role in the impact of persistent pain on the patients’
quality of life.

The present classifier was purposely chosen to be symbolic [51],
i.e., a classifier inwhich the decision howa classification is obtained
can be interpreted by a domain expert as a combination of condi-
tions on the features. This is in line with current attempts to make
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Fig. 5. Selection of pain intensity and interference related features (parameters) that provide relevant information for the membership of a patient in the U-matrix based cluster #2
(see Fig. 3). Relevant parameters were identified using the Fast and Frugal decision Tree (FFT [30]) algorithm. Decision tree building was performed using 1,000 iterations with
randomly resampled disjoint training and test data sets. A: Bar graph of the size of the best performing trees during the 1,000 runs of tree building. B: Bar graph displaying how
many times the features were included in the best performing trees during the 1,000 runs of tree building on randomly resampled disjoint training and test data. B: Variables
referring to pain in the operated area, O: variables referring to other pains, i.e., without direct relation to the operated area. C: The FFT based decision tree was built on the pa-
rameters resilience, depressive symptoms and extraversion. The figure shows the trees along with the decision limits as the basis for the assignment to either the U-matrix based
cluster #2 (named “Group 2” in the tree) or to the other subjects, i.e., U-matrix based cluster # (named “Other group in the tree). D: Beanplots of the parameters algorithmically
selected for the decision tree. Data are shown separately for U-matrix based cluster #1 (grey) or #2 (red). The individual observations are shown as black circles in a one-
dimensional scatter plot, surrounded by the probability density function (pdf) of the distributions (coloured areas). Box and whisker plots of the same data are overlaid on the
beanplots. They have been constructed using the minimum, quartiles, median (solid black red line within the box), and maximum. The whiskers add 1.5 times the interquartile
range (IQR) to the 75th percentile or subtract 1.5 times the IQR from the 25th percentile. The figure has been created using the R software package (version 3.5.1 for Linux; http://
CRAN.R-project.org/ [25]), the R package “FFTrees” (https://cran.r-project.org/package¼FFTrees [40]), and the R package “yarr” (https://cran.r-project.org/package¼yarrr [60]). (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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machine-learned algorithms explainable [52]. Typical imple-
mentations are hierarchical rules assembled in decision trees, as
presently used in the form of so-called fast and frugal trees (FFTs).
The latter have the additional simplifying property that each
feature is used only for only one decision in the tree. This further
enhances the human comprehendibility. Indeed, its makes FFTs
particularly suitable for biomedical problems as they mimic the
processes of making a clinical diagnosis [39]; however, they also
perform well with artificial problems of decision making [53]. FFTs
performed well for providing an interpretation of the present
smaller cluster, based on the psychological parameters inwhich the
cluster structure had been detected (balanced assignment accuracy
of 90.1%). However, their only modest performance in providing an
interpretation based on the pain parameters (balanced accuracy
60.7%) raises the question whether alternative classifiers would
have performed better. In the present data, this was therefore
tested using random forests [54,55], which is a standard classifier
that uses hundreds of simple trees, and the class association is
made by a majority vote of the single-tree based decisions; how-
ever, this did not improve the classification performance (details
not shown).

Many psychological variables reported to be associated with
pain, such as pain catastrophizing and anxiety, have not been
identified in the present analysis as primary descriptors of the
cluster or subgroup structure of pain patients. The subgroup
detection was carried out using an unsupervised analysis, i.e.
without prior assumptions about a possible group structure in the
patients. The explanation by means of a supervised algorithm,
which was optimized to generate simple, comprehensible rules in
the form of a decision tree, focused on most important variables for
the detected subgroup structure in this particular patient group.
The variables found to provide rules for the interpretation of the
cluster structure reflect not only pain-related coping, but also fac-
tors that explain better coping in general among breast cancer
survivors. In contrast, in patients with active disease, pain cata-
strophizing has been associated with the pain interference [56].
Therefore, the results cannot be generalised to other patient
groups. Another limitation of this study is its cross-sectional design
and the rather small group size; in fact, the relevant cluster was
only a small fraction of 11.5% of the subjects, which reduced the
absolute number of patients from an originally quite large cohort to
only n ¼ 43 belonging to the most important subgroup. Never-
theless, the results seem to be clinically relevant and underline that
unsupervised and supervisedmachine learning procedures arewell
suited for this type of study questions.
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5. Conclusions

A cluster structure emerged in the patterns of psychological
parameters acquired in patients treated for breast cancer. Patients
with low resilience, depressive symptoms and low extraversion
formed a separate group in which pain had a significantly more
pronounced impact on life-satisfaction, mood, and life in general.
Parameters related to the impact of pain were found to be more
relevant for this patient subgroup than parameters related to the
intensity of pain. This emphasises recent developments in pain
research and multimodal pain management that support ap-
proaches where the most important parameter that should be
recognised or targeted by pain treatments, may not be pain in-
tensity but how interfering the patient experiences her pain. Based
on the present observations, a more versatile set of protective
factors should be added to the included set of psychological factors,
e.g. psychological flexibility and optimism could provide more in-
formation about the factors behind a favourable management of
breast cancer patients with pain [5]. Finally, the present analysis
supports the use of artificial intelligence as an efficient tool in the
identification of subgroups of patients, who will require particular
attention in pain therapy after cancer treatments. This approach
could also be used to create new hypotheses, and to find target
variables e.g. for interventional single-case studies [57].
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