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Abstract

We study the production of transversely polarizedΛ hyperons in high-energy collisions of protons with large nuclei. The
large gluon density of the target at saturation provides an intrinsic semi-hard scale which should naturally allow for a weak-
coupling QCD description of the process in terms of a convolution of the quark distribution of the proton with the elementary
quark–nucleus scattering cross section (resummed to all twists) and a fragmentation function. In this case of transversely
polarizedΛ production we employ a so-called polarizing fragmentation function, which is an odd function of the transverse
momentum of theΛ relative to the fragmenting quark. Due to thiskt -odd nature, the resultingΛ polarization is essentially
proportional to thederivative of the quark–nucleus cross section with respect to transverse momentum, which peaks near the
saturation momentum scale. Such processes might therefore provide generic signatures for high parton density effects and for
the approach to the “black-body” (unitarity) limit of hadronic scattering.
 2003 Elsevier Science B.V.

It has been known for over 25 years thatΛ’s produced in collisions of unpolarized hadrons exhibit polarization
perpendicular to the production plane. As of yet, such data are not available for very high energies where one
expects that hadronic cross sections are close to their geometrical values (the “black body limit”). However, the
BNL-RHIC collider will soon collide protons and deuterons on gold nuclei at energies of∼ 200 GeV in the
nucleon–nucleon center of mass frame; later on, much higher energies will be accessible at the CERN-LHC. In this
Letter, we demonstrate that the polarization ofΛ hyperons produced in the forward region in high-energy collisions
of protons and heavy nuclei may generically be a sensitive probe of high-density effects and gluon saturation in the
target.

The wave function of a hadron (or nucleus) boosted to large rapidity exhibits a large number of gluons at smallx,
which is the fraction of the light-cone momentum carried by the gluon. The density of gluons is expected to saturate
when it becomes, parametrically, of the order of the inverse QCD coupling constantαs [1]. The parton density at
saturation is denoted byQ2

s , the so-called saturation momentum. This provides an intrinsic momentum scale [2]
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Fig. 1. Kinematics of thepA →ΛX process. The direction of positiveΛ polarization is indicated for each quadrant in theΛ production plane.

which grows with atomic number and with rapidity because more gluons can be radiated in the initial state when
phase space is big. For sufficiently high energies and/or large nuclei, the saturation momentumQs can become
much larger thanΛQCD, such that weak coupling methods are applicable.

ForwardΛ production inpA collisions is dominated by high-x quarks from the proton traversing the high gluon
density region of the heavy nucleus. The quarks typically experience interactions with momentum transfers of the
order of the saturation momentum. Thus, for large gluon densities in the target, such that the saturation momentum
is in the perturbative regime,Qs � 1 GeV, the coherence of the projectile is lost, and the scattered quarks (having an
average transverse momentum proportional toQs ) fragment independently [3]. While nonperturbative constituent-
quark and diquark scattering and hadronization models [4] have been employed to understand hyperon polarization
in collisions of protons with dilute targets, we expect that in the high-energy limit the presence of the intrinsic semi-
hard scaleQs should naturally allow for a weak-coupling QCD description of the process. One can thus calculate
the cross section forqA scattering in this kinematical domain within pQCD [5], and the deflected, outgoing quark
will subsequently fragment into hadrons, which is described by a fragmentation function.

In order to explain the transverseΛ polarization in unpolarized hadron collisions within such a factorized
pQCD description, it has been suggested that unpolarized quarks can fragment into transversely polarized hadrons,
for instanceΛ hyperons. The associated probability [6,7] is described by a so-called polarizing fragmentation
function, sometimes also called Sivers (effect) fragmentation function. Its main properties are that it is an odd
function of the transverse momentum relative to the quark,�kt , and that theΛ polarization is orthogonal to�kt ,
because of parity invariance. The polarizing fragmentation function is defined as [7]1

(1)∆NDh↑/q(z, �kt )≡ D̂h↑/q(z, �kt)− D̂h↓/q(z, �kt )= D̂h↑/q(z, �kt)− D̂h↑/q(z,−�kt ),
and denotes the difference between the densitiesD̂h↑/q(z, �kt ) and D̂h↓/q(z, �kt ) of spin-1/2 hadronsh, with

longitudinal momentum fractionz, transverse momentum�kt and transverse polarization↑ or ↓, in a jet originating
from the fragmentation of an unpolarized partonq . Clearly, thiskt -odd function vanishes when integrated over
transverse momentum and also when the transverse momentum and the transverse spin are parallel. In order to set
the sign convention for theΛ polarization we define

(2)∆NDh↑/q(z, �kt )≡∆NDh↑/q
(
z, |�kt |

) �Ph · (�q × �kt )
|�q × �kt |

,

where�q is the momentum of the unpolarized quark that fragments and�Ph is the direction of the polarization vector
of the hadronh (the↑ direction). Fig. 1 shows the kinematics of the process under consideration and indicates the
direction of positiveΛ polarization for each quadrant in theΛ production plane.

It should be emphasized that such a nonzero probability difference∆NDh↑/q(z, �kt ) is allowed by both parity and
time reversal invariance. Generally it is expected to occur due to final state interactions in the fragmentation process,

1 Another commonly used notation for the polarizing fragmentation function isD⊥
1T , but with a slightly different definition [6].



D. Boer, A. Dumitru / Physics Letters B 556 (2003) 33–40 35

where the direction of the transverse momentum yields an oriented orbital angular momentum compensated by the
transverse spin of the final observed hadron. This polarizing fragmentation function is the analogue of the so-called
Sivers effect for parton distribution functions [8], which yields different probabilities of finding an unpolarized
quark in a transversely polarized hadron, depending on the directions of the transverse spin of the hadron and
the transverse momentum of the quark. The Sivers effect can lead to single spin asymmetries, for instance in
p↑p → πX, a process for which such (large) asymmetries have been observed in several experiments.

Recently, such a single spin asymmetry inep↑ → e′πX has been calculated in a one-gluon exchange model [9].
Shortly afterwards it was understood [10] as providing a model for the Sivers effect distribution function. A similar
calculation has recently been performed by Metz [11] for the production of polarized spin-1/2 hadrons in
unpolarized scattering, which can be viewed as providing a model for the polarizing fragmentation function. Here
we will not employ such a model calculation, but rather use a parametrization for the polarizing fragmentation
functions obtained from a fit to data [7]. However, these model calculations do demonstrate that nonzero Sivers
effect functions can arise in principle.

Due to thekt -odd nature of the polarizing fragmentation function it is accompanied by a different part of
the partonic cross section (essentially the first derivative w.r.t.kt ) compared to the ordinary, unpolarizedΛ
fragmentation function, which iskt -even. The characteristics of the resultingΛ polarization will turn out to be
rather different from presently available data for hadronic collisions at moderately high energies and with “dilute”
targets. These data show aΛ polarization that increases approximately linearly as a function of the transverse
momentumlt of theΛ, up to lt ∼ 1 GeV/c, after which it becomes flat, up to the highest measuredlt values:
lt ∼ 4 GeV/c. No indication of a decrease at these highlt values has been observed. Furthermore, the polarization
increases with the longitudinal momentum fractionξ and is to a large extent

√
s independent. These features do

not change with increasingA [12–14]. The onlyA dependence observed is a slight overall suppression of the
Λ polarization for largeA and higher energies. For Cu and Pb fixed targets, probed with a 400 GeV/c proton
beam [13,14], the magnitude of the polarization is about 30% lower than for light nuclei. This effect is usually
attributed to secondaryΛ production throughπ−N interactions [14]. The slight suppression shows no evidence
for a dependence onlt in the investigated range 0.9< lt < 2.6 GeV/c, albeit with rather low statistical accuracy. It
is clear that this data on heavy nuclei is not in the kinematic region where saturation is expected to play a dominant
role and the main differences to the results presented below are that in the saturation regime the transverseΛ

polarizationwill depend on the collision energy and no plateau region is expected.
We shall now present our calculation ofΛ polarization in the gluon saturation regime, following Ref. [7]

regarding the treatment of the polarizing fragmentation functions.
As mentioned above, in the calculation of theqA cross section one is dealing with small coupling if the target

nucleus is very dense; however, the well-known leading-twist pQCD cannot be used when the density of gluons is
large. Rather, scattering amplitudes have to be resummed to all orders inα2

s times the density. When the target is
probed at a scale� Qs , scattering cross sections approach the geometrical “black body” limit, while for momentum
transfer far aboveQs the target appears dilute and cross sections are approximately determined by the known
leading-twist pQCD expressions.

At high energies, and in the eikonal approximation, the transverse momentum distribution of quarks is
essentially given by the correlation function of two Wilson linesV running along the light-cone at transverse
separationrt (in the amplitude and its complex conjugate),

(3)σqA =
∫

d2qt dq
+

(2π)2
δ
(
q+ − p+)〈 1

Nc

tr

∣∣∣∣
∫

d2zt e
i �qt ·�zt [V (zt )− 1

]∣∣∣∣2
〉
.

Here,P+ is the large light-cone component of the momentum of the incident proton, and that of the incoming quark
isp+ = xP+ (q+ for the outgoing quark). The correlator of Wilson lines has to be evaluated in the background field
of the target nucleus. A relatively simple closed expression can be obtained [5] in the “Color Glass Condensate”
model of the small-x gluon distribution of the dense target [2]. In that model, the small-x gluons are described as
a classical non-Abelian Yang–Mills field arising from a stochastic source of color charge on the light-cone which
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is averaged over with a Gaussian distribution. The quarkqt distribution is then given by [5]

q+ dσqA

dq+ d2qt d2b
= q+

P+ δ

(
p+ − q+

P+

)
1

(2π)2
C(qt ),

(4)C(qt )=
∫

d2rt e
i �qt ·�rt

{
exp

[
−2Q2

s

∫
d2pt

(2π)2
1

p4
t

(
1− exp(i �pt · �rt )

)] − 2 exp

[
−Q2

s

∫
d2pt

(2π)2
1

p4
t

]
+ 1

}
.

This expression is valid to leading order inαs (tree level), but to all orders inQs since it resums any number of
scatterings of the impinging quark in the strong field of the nucleus. The saturation momentumQs , as introduced
in Eq. (4), is related toχ , the total color charge density squared (per unit area) from the nucleus integrated up to
the rapidityy of the probe (i.e., the projectile quark), by

(5)Q2
s = 4π2α2

s

N2
c − 1

Nc

χ.

In the low-density limit,χ is related to the ordinary leading-twist gluon distribution function of the nucleus, see
for example [15]. From BFKL evolution,Q2

s evolves as∼ exp(λy)∼ xλ, with the interceptλ � 0.3 [16]. Thus, if
Q2

s � 10 GeV2 at the proton beam rapidity (i.e.,x = 1) and forA � 200 targets [5], thenQs � 3 GeV atx = 0.6,
decreasing toQs � 2 GeV atx = 0.05; furthermore, assumingQ2

s ∼A1/3 scaling, then atx = 0.6,Qs drops from
3 GeV to 2 GeV when the atomic numberA of the target decreases from 200→ 20. It is clear therefore that in order
to be sensitive to high-density effects, experimentally one should study high-energypA collisions in the forward
region (where the polarization is largest anyway, see below) and with large target nuclei, and then compare topp

collisions. Below, we shall focus on polarizedΛ production in a relatively small rapidity interval in the forward
region, and so takeQs as a constant of order 2–3 GeV.

The integrals overpt in Eq. (4) are cut off in the infrared by some cutoffΛ, which we assume is of order
ΛQCD. We denote the momentum of the producedΛ by �l = z�q + �k, with �k the transverse momentum relative to
the fragmenting quark. Assuming parity conservation in the hadronization process, only the component of�k in the
production plane contributes to the polarizationPΛ, therefore in order to simplify the kinematics we chooseky = 0
as was done in Ref. [7]. For forward kinematics,q+ � qt , one then findszqt � lt − kt . The polarized cross section
is given by

PΛ(lt , ξ)ξ
dσ

dξ d2lt d2b

(6)=
∫

d

(
q+

P+

)∫
dz

z2 fq/p
(
x,Q2)∫

d2kt

(2π)2
∆NDΛ↑/q

(
z,Q2, �kt

) q+

P+ δ

(
q+

P+ − x

)
C(qt )

(7)=
∫

dz

z2
fq/p

(
x,Q2)∫

d2kt

(2π)2
∆NDΛ↑/q

(
z,Q2, �kt

)
xC(qt )

(8)=
1∫

ξ

dx
x

ξ
fq/p

(
x,Q2)∫

d2kt

(2π)2
∆NDΛ↑/q

(
ξ

x
,Q2, �kt

)
C(qt ),

whereξ = lz/Pz � xz is the longitudinal momentum fraction carried by theΛ. We assume that∆NDΛ↑/q(z, �kt ) is

strongly peaked around an average�k0
t lying in the production plane, such that [7]

(9)
∫

d2kt ∆
NDΛ↑/q

(
z,Q2, �kt

)
F(�kt ) �∆NDΛ↑/q

(
z,Q2)[F (

k0
t

) − F
(−k0

t

)]
.

Note thatk0
t is a function ofz, see below. Alternatively, one could consider Gaussian distributions overkt [17],

though the above simplified treatment is sufficient for our purposes.
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Considering the unpolarized cross section, we can safely neglectkt -smearing from hadronization, which is of
orderΛQCD, while the quarks are typically scattered to much larger transverse momenta, namely of orderQs . In
our numerical results shown below we also include the contribution from antiquarks and gluons to the unpolarized
cross section, although this is a small correction forξ � 0.1. For the polarizing fragmentation functions, only
contributions fromu, d , ands quarks (the valence quarks of theΛ) are considered [7]. Thus, we obtain

(10)PΛ(lt , ξ) =
∫ 1
ξ dx xfq/p(x,Q

2)∆NDΛ↑/q
(
ξ
x
,Q2

)[
C

(
x
ξ
(lt − k0

t )
) −C

(
x
ξ
(lt + k0

t )
)]

∫ 1
ξ
dx xfq/p(x,Q2)DΛ/q

( ξ
x
,Q2

)
C

(
x
ξ
lt
) .

The factorization scale is chosen to be the saturation momentum of the dense nucleus,Q2 =Q2
s . A parametrization

for ∆NDΛ↑/q(z) in terms of the unpolarized fragmentation functionDΛ/q(z) was given in Ref. [7]. It was obtained
by performing a fit to availablepA → Λ↑X data (for light nuclei only), where the transverse momentumlt was
required to be larger than 1 GeV/c, in order to justify the application of a factorized expression and of pQCD for
the partonic cross section. Although doubts have arisen about the applicability of pQCD in the kinematic region
covered by the available data [17], the resulting functions do exhibit reasonable features. Here, we shall employ
those functions as an ansatz to investigate the dependence of theΛ polarization on the saturation momentumQs ,
which turns out not to depend on the detailed parameterization of the polarizing fragmentation functions. Rather,
it is the kt -odd structure (and the fact that it is peaked around an average nonzero transverse momentum) that is
responsible for the dependence. Of course, future parameterizations can be easily implemented.

To be explicit, we use

(11)∆NDΛ↑/q
(
z,Q2) ≡Nqz

cq (1− z)dq
DΛ/q(z,Q

2)

2
,

where

(12)Nu =Nd = −28.13, Ns = 57.53, cq = 11.64, dq = 1.23.

The average transverse momentumk0
t acquired in the fragmentation is parameterized as

(13)k0
t = 0.66z0.37(1− z)0.50 GeV/c.

For the unpolarized fragmentation functionDΛ/q in Eq. (11) the parametrization of Ref. [18] is to be used;
strictly speaking, that parameterization holds for the fragmentation intoΛ + Λ̄. However, in the forward region
(ξ � 0.1), one expectsPΛ+Λ̄ ≈ PΛ. Furthermore, the parameterization of [18] assumesSU(3) symmetry:
DΛ/u = DΛ/d = DΛ/s . However, the polarizing fragmentation functions∆NDΛ↑/q reduce the flavor symmetry
to SU(2), sinceNu,d �=Ns (Nu =Nd was imposed in [7] to reduce the number of fit parameters). But even though
∆NDΛ↑/s > |∆NDΛ↑/u,d |, the overallΛ polarization in the process under consideration is in fact dominated by
the valence-like quarks of the proton, not by the strange quark.

The polarizing fragmentation function describes the probability of an unpolarized quark to fragment into a
transversely polarizedΛ. Here, no difference is made as to whether theΛ is produced directly or as a secondary
particle, for instance as a decay product of heavier hyperons like theΣ0 or Σ+∗. This second type is usually
expected to have a depolarizing effect, which means that the degree of polarization is higher for the directly
producedΛ’s. The number of directly producedΛ’s is estimated to be roughly 75% of the total, such that the
depolarizing effect could be on the order of 30%. The polarizing fragmentation functions of Ref. [7] thus effectively
account for the depolarizing effect from decays, since they were obtained by a fit to data that does not discriminate
between direct and decay contributions either.

A numerical evaluation of Eq. (10) is shown in Fig. 2, using the CTEQ5L LO parton distribution functions for
the proton [19]. Generically, one observes thatPΛ is negative (due to the fact thatu andd quarks dominate); it
first increases with transverse momentum, then peaks atlt � Qs , and asymptotically approaches zero again. The
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Fig. 2. Transverse momentum distribution of the transverseΛ polarization. Left: at fixed longitudinal momentum fractionξ = 0.5 and varying
target saturation scale,Qs = 2,3 GeV, respectively. Right: forQs = 2 GeV and variousξ .

fact thatPΛ peaks atlt ∼ Qs has its origin in thekt -odd nature of the polarizing fragmentation function: from
Eq. (10),PΛ corresponds to thedifference of the cross sections taken with “intrinsic” transverse momentumk0

t

parallel and antiparallel to the quark transverse momentumqt . Sincek0
t is small,PΛ is essentially proportional to

the derivative of dσqA/d2qt , the differential quark–nucleus cross section, which varies most rapidly atqt ∼ Qs

(see also Eq. (17)). Consequently,|PΛ| exhibits a maximum at such transverse momentum. This conclusion is
independent of the details of the polarizing fragmentation functions; only thekt -odd nature and the fact that they
are strongly peaked about an averagek0

t matters. In contrast,kt -even distribution and fragmentation functions only
probe theqA cross section itself but not its derivative with respect toqt .

The behavior ofPΛ(lt ) is qualitatively rather different when the quark cross section is taken at leading twist. In
that case, not only is the magnitude of the polarization larger, but moreoverPΛ in the forward region peaks about
small transverse momentum� 1 GeV. This can be understood by noting that the derivative of theqA cross section
at leading twist peaks in the infrared, contrary to Eqs. (4), (17). For a more quantitative evaluation of polarizedΛ

production in the “dilute regime” (hadronic collisions far below the unitarity limit, e.g.,pp collisions at RHIC) we
refer to Ref. [7].

To understand the behavior of Eq. (10) in more detail, consider first large transverse momentum,qt � Qs .
Here, the last two terms of Eq. (4) can be dropped, since they contribute only via aδ(qt ) term. At large transverse
momentum the phase factor exp(i �qt · �rt ) in Eq. (4) effectively restricts the integral overd2rt to the region
rt � 1/qt � 1/Qs ; the first exponential can then be expanded order by order to generate the usual power series in
1/q2

t . The leading and subleading twists are (see also [20])

(14)C(qt )= 2
Q2

s

q4
t

[
1+ 4

π

Q2
s

q2
t

log
qt

Λ
+O

(
Q2

s

q2
t

)]
.

This expression is valid to leading logarithmic accuracy. The first term corresponds to the perturbative one-gluon
t-channel exchange contribution toqg → qg scattering [20]. To leading order ink0

t / lt , the polarization given in
Eq. (10) thus becomes

(15)PΛ(lt , ξ) = 8

∫ 1
ξ
dx xfq/p(x,Q

2)∆NDΛ↑/q
(
ξ
x
,Q2

)
x−4

[
1+ 6ξ2

πx2
Q2

s

l2t
log lt

Λ

]
k0
t /lt∫ 1

ξ dx xfq/p(x,Q2)DΛ/q

(
ξ
x
,Q2

)
x−4

[
1+ 4ξ2

πx2
Q2

s

l2t
log lt

Λ

] .
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It is known [7] that the polarization (for largelt ) is a higher-twist effect, i.e., it is suppressed by powers of the
“intrinsic” transverse momentum at hadronization,k0

t , over the external momentum scalelt . Eq. (15) shows
that despite a partial cancellation the first power-suppressed correction to the quark–nucleus cross section (the
subleading terms in the square brackets) enhancePΛ at largelt , in agreement with the behavior atlt � 5 GeV in
Fig. 2.

Regarding the scaling ofPΛ at the peak, consider the quark–nucleus cross section forqt ∼ Qs � Λ. Again, the
last two terms of Eq. (4) can be dropped, while in the leading logarithmic approximation the argument of the first
exponential reads

(16)−Q2
s r

2
t

4π
log

1

rtΛ
+O

(
Q2

s r
2
t

)
.

The phase factor effectively cuts off the integral atrt ∼ 1/qt ∼ 1/Qs , and so 1/rtΛ is large. We therefore replace
1/rt → Qs in the argument of the above logarithm, since it is slowly varying and formally makes the expression
well-behaved at largert . The remaining integral leads to

(17)C(qt )� 4π2

Q2
s logQs/Λ

exp

(
− πq2

t

Q2
s logQs/Λ

)
.

This approximation reproduces the behavior of the full expression (4) aboutqt ∼Qs reasonably well. Expressions
(16), (17) are useful only when the cutoffΛ � Qs , that is, when color neutrality is enforced on distance scales of
order 1/Λ � 1/Qs . If, however, color neutrality in the target nucleus were to occur on distances of order 1/Qs

[21] thenΛ∼Qs and one would have to go beyond the leading-logarithmic approximation.
From Eq. (17),PΛ is given by (to leading order ink0

t / lt )

(18)PΛ(lt , ξ) = 4π
l2t

Q2
s logQs/Λ

∫ 1
ξ dx xfq/p(x,Q

2)∆NDΛ↑/q
(
ξ
x
,Q2

)
x2

ξ2 exp
(− πl2t

Q2
s logQs/Λ

x2

ξ2

)
k0
t /lt∫ 1

ξ dx xfq/p(x,Q2)DΛ/q

( ξ
x
,Q2

)
exp

(− πl2t
Q2

s logQs/Λ

x2

ξ2

) .

Thus, at the peakPΛ scales approximately with 1/(Qs

√
logQs/Λ), as indeed seen in Fig. 2. The strong

dependence on the target gluon density, as parameterized byQs , is rather different from leading-twist perturbation
theory.

As mentioned above, there is a relatedkt -odd effect in processes with one transversely polarized hadron in the
initial state (the Sivers effect), which can lead to asymmetries inp↑p → πX [22], for example. Since at RHIC
polarized proton beams are also available (for recent preliminaryp↑p → πX data from STAR, see Ref. [23]), one
could investigate the processp↑A → πX in the saturation regime. Similar signatures should arise in that process
as forpA → Λ↑X pointed out here.

In summary, we have studied transverseΛ polarization inpA collisions at high energies and with dense
targets. The resultingΛ polarization is quite different from that observed inpA and pp collisions to date,
which presumably did not probe the saturation regime yet. To study the high-density limit, we have performed
a weak coupling analysis of the hardqA scattering, determined by the saturation momentumQs , and described the
unpolarized quark fragmentation into a transversely polarizedΛ hyperon by the so-called polarizing fragmentation
functions. We observe that theΛ polarization peaks at transverse momentum∼ Qs , where it also scales
approximately as 1/(Qs

√
logQs/Λ) and hence is collision energy dependent. Moreover, no plateau region for

larger transverse momenta is present. These features are independent of the details of the polarizing fragmentation
functions, but rather occur due to theirkt -odd nature. Similar effects are expected in the process ofp↑A → πX

in the saturation region. Both processes can be studied, in principle, at the BNL-RHIC collider, and perhaps in the
future at the CERN-LHC.



40 D. Boer, A. Dumitru / Physics Letters B 556 (2003) 33–40

Acknowledgements

We thank Francois Gelis and Werner Vogelsang for helpful discussions and for contributing some of their
computer codes. A.D. gratefully acknowledges support by the German Minister for Education and Research
(BMBF) and by the US Department of Energy under contract number DE-AC02-98CH10886. The research of
D.B. has been made possible by financial support from the Royal Netherlands Academy of Arts and Sciences.

References

[1] A.H. Mueller, Nucl. Phys. B 558 (1999) 285.
[2] For a recent review see: E. Iancu, hep-ph/0210236, and references therein.
[3] A. Dumitru, L. Gerland, M. Strikman, hep-ph/0211324.
[4] B. Andersson, G. Gustafson, G. Ingelman, Phys. Lett. B 85 (1979) 417;

T.A. DeGrand, H.I. Miettinen, Phys. Rev. D 23 (1981) 1227;
T.A. DeGrand, H.I. Miettinen, Phys. Rev. D 24 (1981) 2419;
T.A. DeGrand, H.I. Miettinen, Phys. Rev. D 31 (1985) 661, Erratum;
J. Soffer, N.A. Tornqvist, Phys. Rev. Lett. 68 (1992) 907;
S.M. Troshin, N.E. Tyurin, Phys. Rev. D 55 (1997) 1265;
Z.T. Liang, C. Boros, Phys. Rev. Lett. 79 (1997) 3608.

[5] A. Dumitru, J. Jalilian-Marian, Phys. Rev. Lett. 89 (2002) 022301.
[6] P.J. Mulders, R.D. Tangerman, Nucl. Phys. B 461 (1996) 197;

P.J. Mulders, R.D. Tangerman, Nucl. Phys. B 484 (1997) 538, Erratum.
[7] M. Anselmino, D. Boer, U. D’Alesio, F. Murgia, Phys. Rev. D 63 (2001) 054029.
[8] D.W. Sivers, Phys. Rev. D 41 (1990) 83.
[9] S.J. Brodsky, D.S. Hwang, I. Schmidt, Phys. Lett. B 530 (2002) 99.

[10] J.C. Collins, Phys. Lett. B 536 (2002) 43;
X. Ji, F. Yuan, Phys. Lett. B 543 (2002) 66;
A.V. Belitsky, X. Ji, F. Yuan, hep-ph/0208038.

[11] A. Metz, hep-ph/0209054.
[12] F. Abe, et al., Phys. Rev. D 30 (1984) 1861;

F. Abe, et al., Phys. Rev. D 34 (1986) 1950;
BIS-2 Collaboration, A.N. Aleev, et al., Z. Phys. C 36 (1987) 27.

[13] K. Heller, et al., Phys. Rev. Lett. 51 (1983) 2025;
B. Lundberg, et al., Phys. Rev. D 40 (1989) 3557.

[14] A.D. Panagiotou, Int. J. Mod. Phys. A 5 (1990) 1197.
[15] M. Gyulassy, L.D. McLerran, Phys. Rev. C 56 (1997) 2219.
[16] K. Golec-Biernat, M. Wüsthoff, Phys. Rev. D 59 (1999) 014017;

A.H. Mueller, D.N. Triantafyllopoulos, Nucl. Phys. B 640 (2002) 331.
[17] M. Anselmino, D. Boer, U. D’Alesio, F. Murgia, Phys. Rev. D 65 (2002) 114014.
[18] D. de Florian, M. Stratmann, W. Vogelsang, Phys. Rev. D 57 (1998) 5811.
[19] CTEQ Collaboration, H.L. Lai, et al., Eur. Phys. J. C 12 (2000) 375.
[20] F. Gelis, A. Peshier, Nucl. Phys. A 697 (2002) 879;

F. Gelis, J. Jalilian-Marian, hep-ph/0211363.
[21] E. Iancu, K. Itakura, L. McLerran, hep-ph/0212123.
[22] M. Anselmino, M. Boglione, F. Murgia, Phys. Lett. B 362 (1995) 164;

M. Anselmino, F. Murgia, Phys. Lett. B 442 (1998) 470.
[23] STAR Collaboration, G. Rakness, hep-ex/0211068.


	Polarized hyperons from pA scattering in the gluon saturation regime
	Acknowledgements
	References


