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Abstract

We study the production of transversely polarizédyperons in high-energy collisions of protons with large nuclei. The
large gluon density of the target at saturation provides an intrinsic semi-hard scale which should naturally allow for a weak-
coupling QCD description of the process in terms of a convolution of the quark distribution of the proton with the elementary
quark—nucleus scattering cross section (resummed to all twists) and a fragmentation function. In this case of transversely
polarizedA production we employ a so-called polarizing fragmentation function, which is an odd function of the transverse
momentum of theA relative to the fragmenting quark. Due to tliisodd nature, the resulting polarization is essentially
proportional to thederivative of the quark—nucleus cross section with respect to transverse momentum, which peaks near the
saturation momentum scale. Such processes might therefore provide generic signatures for high parton density effects and for
the approach to the “black-body” (unitarity) limit of hadronic scattering.
0 2003 Elsevier Science B.V. Open access under CC BY license.

It has been known for over 25 years thts produced in collisions of unpolarized hadrons exhibit polarization
perpendicular to the production plane. As of yet, such data are not available for very high energies where one
expects that hadronic cross sections are close to their geometrical values (the “black body limit"). However, the
BNL-RHIC collider will soon collide protons and deuterons on gold nuclei at energies 200 GeV in the
nucleon—nucleon center of mass frame; later on, much higher energies will be accessible at the CERN-LHC. In this
Letter, we demonstrate that the polarizatiomafiyperons produced in the forward region in high-energy collisions
of protons and heavy nuclei may generically be a sensitive probe of high-density effects and gluon saturation in the
target.

The wave function of a hadron (or nucleus) boosted to large rapidity exhibits a large number of gluonsat small
which is the fraction of the light-cone momentum carried by the gluon. The density of gluons is expected to saturate
when it becomes, parametrically, of the order of the inverse QCD coupling congtHi]t The parton density at
saturation is denoted b@?, the so-called saturation momentum. This provides an intrinsic momentum scale [2]
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Fig. 1. Kinematics of thg A — AX process. The direction of positivé polarization is indicated for each quadrant in theroduction plane.

which grows with atomic number and with rapidity because more gluons can be radiated in the initial state when
phase space is big. For sufficiently high energies and/or large nuclei, the saturation monggntam become
much larger thamqcp, such that weak coupling methods are applicable.

ForwardA production inp A collisions is dominated by high-quarks from the proton traversing the high gluon
density region of the heavy nucleus. The quarks typically experience interactions with momentum transfers of the
order of the saturation momentum. Thus, for large gluon densities in the target, such that the saturation momentum
is in the perturbative regim&); = 1 GeV, the coherence of the projectile is lost, and the scattered quarks (having an
average transverse momentum proportiong@}d fragment independently [3]. While nonperturbative constituent-
quark and diquark scattering and hadronization models [4] have been employed to understand hyperon polarization
in collisions of protons with dilute targets, we expect that in the high-energy limit the presence of the intrinsic semi-
hard scaleQ; should naturally allow for a weak-coupling QCD description of the process. One can thus calculate
the cross section fay A scattering in this kinematical domain within pQCD [5], and the deflected, outgoing quark
will subsequently fragment into hadrons, which is described by a fragmentation function.

In order to explain the transverse polarization in unpolarized hadron collisions within such a factorized
pQCD description, it has been suggested that unpolarized quarks can fragment into transversely polarized hadrons.
for instanceA hyperons. The associated probability [6,7] is described by a so-called polarizing fragmentation
function, sometimes also called Sivers (effect) fragmentation function. Its main properties are that it is an odd
function of the transverse momentum relative to the qub,rkand that theA polarization is orthogonal t@,,
because of parity invariance. The polarizing fragmentation function is definedas [7]

ANDhT/q(Z» ]_ét) = BhT/q (z, ]_ét) - Bhl/q(z» ]_ét) = BhT/q (z, ]_ét) - BhT/q(Z» —%t), (1)

and denotes the difference between the densiﬁg@q(z,l_c}) and ﬁhw(z,lz,) of spin-1/2 hadronsh, with

longitudinal momentum fraction, transverse momentukp and transverse polarizatignor |, in a jet originating

from the fragmentation of an unpolarized paripnClearly, thisk;-odd function vanishes when integrated over
transverse momentum and also when the transverse momentum and the transverse spin are parallel. In order to se
the sign convention for the polarization we define

)ﬁh'(éxzt)

ANDys (2 k) = AN Dyt g (2, 1K) 2
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&)
whereg is the momentum of the unpolarized quark that fragmentsf%;;rid the direction of the polarization vector
of the hadror: (the 4 direction). Fig. 1 shows the kinematics of the process under consideration and indicates the
direction of positiveA polarization for each quadrant in tieproduction plane.
It should be emphasized that such a nonzero probability diﬁerﬂr‘Yo@m/q (z, k¢) is allowed by both parity and
time reversal invariance. Generally it is expected to occur due to final state interactions in the fragmentation process,

1 Another commonly used notation for the polarizing fragmentation functidhfi,s, but with a slightly different definition [6].
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where the direction of the transverse momentum yields an oriented orbital angular momentum compensated by the
transverse spin of the final observed hadron. This polarizing fragmentation function is the analogue of the so-called
Sivers effect for parton distribution functions [8], which yields different probabilities of finding an unpolarized
quark in a transversely polarized hadron, depending on the directions of the transverse spin of the hadron and
the transverse momentum of the quark. The Sivers effect can lead to single spin asymmetries, for instance in
p' p— 7 X, aprocess for which such (large) asymmetries have been observed in several experiments.

Recently, such a single spin asymmetryjri — ¢’z X has been calculated in a one-gluon exchange model [9].
Shortly afterwards it was understood [10] as providing a model for the Sivers effect distribution function. A similar
calculation has recently been performed by Metz [11] for the production of polarized gpihadrons in
unpolarized scattering, which can be viewed as providing a model for the polarizing fragmentation function. Here
we will not employ such a model calculation, but rather use a parametrization for the polarizing fragmentation
functions obtained from a fit to data [7]. However, these model calculations do demonstrate that nonzero Sivers
effect functions can arise in principle.

Due to thek,-odd nature of the polarizing fragmentation function it is accompanied by a different part of
the partonic cross section (essentially the first derivative vikf)t.compared to the ordinary, unpolarizet
fragmentation function, which i&-even. The characteristics of the resultingpolarization will turn out to be
rather different from presently available data for hadronic collisions at moderately high energies and with “dilute”
targets. These data show/mpolarization that increases approximately linearly as a function of the transverse
momentum/; of the A, up tol, ~ 1 GeV/c, after which it becomes flat, up to the highest measura@lues:

I; ~ 4 GeV/c. No indication of a decrease at these highalues has been observed. Furthermore, the polarization
increases with the longitudinal momentum fractipand is to a large extenys independent. These features do

not change with increasing [12—14]. The onlyA dependence observed is a slight overall suppression of the

A polarization for largeA and higher energies. For Cu and Pb fixed targets, probed with a 400cGe¥uton

beam [13,14], the magnitude of the polarization is about 30% lower than for light nuclei. This effect is usually
attributed to secondaryt production throughr ~ N interactions [14]. The slight suppression shows no evidence

for a dependence dpin the investigated range 09/, < 2.6 GeV/c, albeit with rather low statistical accuracy. It

is clear that this data on heavy nuclei is not in the kinematic region where saturation is expected to play a dominant
role and the main differences to the results presented below are that in the saturation regime the transverse
polarizationwill depend on the collision energy and no plateau region is expected.

We shall now present our calculation df polarization in the gluon saturation regime, following Ref. [7]
regarding the treatment of the polarizing fragmentation functions.

As mentioned above, in the calculation of e cross section one is dealing with small coupling if the target
nucleus is very dense; however, the well-known leading-twist pQCD cannot be used when the density of gluons is
large. Rather, scattering amplitudes have to be resummed to all ordgzrsimes the density. When the target is
probed at a scalg Q;, scattering cross sections approach the geometrical “black body” limit, while for momentum
transfer far above)d; the target appears dilute and cross sections are approximately determined by the known
leading-twist pQCD expressions.

At high energies, and in the eikonal approximation, the transverse momentum distribution of quarks is
essentially given by the correlation function of two Wilson linésrunning along the light-cone at transverse
separation; (in the amplitude and its complex conjugate),

2
>. 3)

2 + .

oA = / %wﬁ —p+)<NiCtr /dzz, iV (z) — 1]
Here, P is the large light-cone component of the momentum of the incident proton, and that of the incoming quark
is pt = x P (¢ for the outgoing quark). The correlator of Wilson lines has to be evaluated in the background field
of the target nucleus. A relatively simple closed expression can be obtained [5] in the “Color Glass Condensate”
model of the smalk gluon distribution of the dense target [2]. In that model, the sma@luons are described as

a classical non-Abelian Yang—Mills field arising from a stochastic source of color charge on the light-cone which
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is averaged over with a Gaussian distribution. The qgarkistribution is then given by [5]

q+ﬂ=£5 " 1 C(qr)
dgtd32q,d?b ~ P+ Pt Jemz "

- d’p, 1 d%p, 1
C(Qz)=/dzrz€lq"r'{eXp|:—2Qs2 2n p)lz — (1 —exp(ip; - r,)] Zexf{ f(zn];lz j| } (4)

This expression is valid to leading orderdp (tree level), but to all orders i@, since it resums any number of
scatterings of the impinging quark in the strong field of the nucleus. The saturation mom@ptasintroduced

in Eqg. (4), is related tg, the total color charge density squared (per unit area) from the nucleus integrated up to
the rapidityy of the probe (i.e., the projectile quark), by

N2-1
Qf = 47120132 —LN X. (5)
C

In the low-density limit,x is related to the ordinary leading-twist gluon distribution function of the nucleus, see
for example [15]. From BFKL evolutionp? evolves as~ exp(Ay) ~ x*, with the intercep. ~ 0.3 [16]. Thus, if

Qf ~ 10 Ge\? at the proton beam rapidity (i.ex,= 1) and forA ~ 200 targets [5], the®, ~ 3 GeV atx = 0.6,
decreasing t@; ~ 2 GeV atx = 0.05; furthermore, assuming? ~ A/3 scaling, then at = 0.6, Q, drops from

3 GeV to 2 GeV when the atomic numbéof the target decreases from 28020. It is clear therefore thatin order

to be sensitive to high-density effects, experimentally one should study high-emérggllisions in the forward
region (where the polarization is largest anyway, see below) and with large target nuclei, and then compare to
collisions. Below, we shall focus on polarizetlproduction in a relatively small rapidity interval in the forward
region, and so tak€; as a constant of order 2—-3 GeV.

The integrals ovep; in Eq. (4) are cut off in the infrared by some cutoff which we assume is of order
Aqcp. We denote the momentum of the produoedbyl = zq + k, with k the transverse momentum relative to
the fragmenting quark. Assuming parity conservation in the hadronization process, only the compérietthef
production plane contributes to the polarizatidp, therefore in order to simplify the kinematics we chobge= 0
as was done in Ref. [7]. For forward kinematigg, > g;, one then findsq; ~ I; — k,;. The polarized cross section
is given by

Pal:, §)§

de d21 d2b
de o + +
=/d(;1)—+> —qu/,,(x, 0%) = )lZANDAT/q(z, Qz,lc,);’)—+<s(;—+ —x)C(l]t) (6)
fq/,, / S5 A" Dty (e, 0% F)xCla) @
7 X 2 dzk[ N E
=§/dx§fq/p(x,Q ) (27'[)2A Dm/q 0%k | Can. (8)

where¢ =1,/ P, >~ xz is the longitudinal momentum fraction carried by theWe assume thal\NDm/q (z, Z,) is
strongly peaked around an averd?ﬁdying in the production plane, such that [7]

/dzk, AND g1 14(z, Q3 ki) F k) = AN D g1 (2, Q) [F (KO) — F(=kD)]. )

Note thatk? is a function ofz, see below. Alternatively, one could consider Gaussian distributionskp\&7],
though the above simplified treatment is sufficient for our purposes.
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Considering the unpolarized cross section, we can safely néglsatearing from hadronization, which is of
order Agcp, While the quarks are typically scattered to much larger transverse momenta, namely a grtter
our numerical results shown below we also include the contribution from antiquarks and gluons to the unpolarized
cross section, although this is a small correction&ay, 0.1. For the polarizing fragmentation functions, only
contributions fromu, d, ands quarks (the valence quarks of tii§ are considered [7]. Thus, we obtain

S xfypx, 04V D g1, (5 QI[C(E U —KD) = C(E G +K0)]
S dxxfyp(e. 0 Daq (4. 0))C(£1)

The factorization scale is chosen to be the saturation momentum of the dense rtg%le:u@,f. A parametrization
for ANDAW (2) in terms of the unpolarized fragmentation functibp /, (z) was given in Ref. [7]. It was obtained
by performing a fit to availablp A — AT X data (for light nuclei only), where the transverse momentuwas
required to be larger than 1 G¢¥, in order to justify the application of a factorized expression and of pQCD for
the partonic cross section. Although doubts have arisen about the applicability of pQCD in the kinematic region
covered by the available data [17], the resulting functions do exhibit reasonable features. Here, we shall employ
those functions as an ansatz to investigate the dependence #fgbkrization on the saturation momentupy,
which turns out not to depend on the detailed parameterization of the polarizing fragmentation functions. Rather,
it is the k,-odd structure (and the fact that it is peaked around an average nonzero transverse momentum) that is
responsible for the dependence. Of course, future parameterizations can be easily implemented.

To be explicit, we use

Pals, ) = (10)

AVD g1 4 (20 0%) = Nyzt (L - 2% %Z’QZ), (11)
where

N, =Ng=-2813 Ns; =57.53, cg = 1164, dy =123 (12)
The average transverse momenttfracquired in the fragmentation is parameterized as

k0 =0.667237(1 - )°° GeVvye. (13)

For the unpolarized fragmentation functidn,,, in Eqg. (11) the parametrization of Ref. [18] is to be used,
strictly speaking, that parameterization holds for the fragmentationAnto A. However, in the forward region

(¢ 2 0.1), one expectsP,, ; ~ P,. Furthermore, the parameterization of [18] assurBg¢3) symmetry:
Daj = Daja = Days. However, the polarizing fragmentation functioné’Dm/q reduce the flavor symmetry

to SU (2), sinceN, 4 # N (N, = Ng was imposed in [7] to reduce the number of fit parameters). But even though
AND 44 s > |AVD 41, 41, the overallA polarization in the process under consideration is in fact dominated by
the valence-like quarks of the proton, not by the strange quark.

The polarizing fragmentation function describes the probability of an unpolarized quark to fragment into a
transversely polarized . Here, no difference is made as to whether thes produced directly or as a secondary
particle, for instance as a decay product of heavier hyperons lik&€ther +*. This second type is usually
expected to have a depolarizing effect, which means that the degree of polarization is higher for the directly
producedA’s. The number of directly produced’s is estimated to be roughly 75% of the total, such that the
depolarizing effect could be on the order of 30%. The polarizing fragmentation functions of Ref. [7] thus effectively
account for the depolarizing effect from decays, since they were obtained by a fit to data that does not discriminate
between direct and decay contributions either.

A numerical evaluation of Eq. (10) is shown in Fig. 2, using the CTEQ5L LO parton distribution functions for
the proton [19]. Generically, one observes t®at is negative (due to the fact thatandd quarks dominate); it
first increases with transverse momentum, then peaksa),, and asymptotically approaches zero again. The
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Fig. 2. Transverse momentum distribution of the transvergmlarization. Left: at fixed longitudinal momentum fractign= 0.5 and varying
target saturation scal@; = 2, 3 GeV, respectively. Right: foQ; = 2 GeV and varioug.

fact thatP, peaks af; ~ Qy has its origin in the,-odd nature of the polarizing fragmentation function: from
Eq. (10),P, corresponds to theifference of the cross sections taken with “intrinsic” transverse momerkfim
parallel and antiparallel to the quark transverse momerzyt;urﬁincek? is small,P, is essentially proportional to
the derivative of do?4 /d?q;, the differential quark—nucleus cross section, which varies most rapidiy-atQ;
(see also Eqg. (17)). Consequentl?| exhibits a maximum at such transverse momentum. This conclusion is
independent of the details of the polarizing fragmentation functions; only, tbed nature and the fact that they
are strongly peaked about an avera@enatters. In contrask,-even distribution and fragmentation functions only
probe they A cross section itself but not its derivative with respecjto

The behavior ofP4 (I;) is qualitatively rather different when the quark cross section is taken at leading twist. In
that case, not only is the magnitude of the polarization larger, but morgyyver the forward region peaks about
small transverse momentuml GeV. This can be understood by noting that the derivative of theross section
at leading twist peaks in the infrared, contrary to Egs. (4), (17). For a more quantitative evaluation of palarized
production in the “dilute regime” (hadronic collisions far below the unitarity limit, eog. collisions at RHIC) we
refer to Ref. [7].

To understand the behavior of Eq. (10) in more detail, consider first large transverse momgrnin;.
Here, the last two terms of Eq. (4) can be dropped, since they contribute only (g derm. At large transverse
momentum the phase factor @ - 7;) in Eq. (4) effectively restricts the integral ovefr; to the region
rr <1/q: < 1/ Qy; the first exponential can then be expanded order by order to generate the usual power series in
1/q,2. The leading and subleading twists are (see also [20])

2 2
Clq) = Q—[1+—Q—Iog—+(9(Q )} (14)
Qt Qt %

This expression is valid to leading logarithmic accuracy. The first term corresponds to the perturbative one-gluon
t-channel exchange contribution 4@ — ¢gg scattering [20]. To leading order i’rj)/l,, the polarization given in
Eq. (10) thus becomes

. 8f$ldxqu/p(x, 0)AVD 41, (5, 0?)x 1+ giz IQg log £ k01, a5
A\, = .
Jidxxfapp(x. @D asg (5. 02)x 414+ 255 flog ]
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It is known [7] that the polarization (for largk) is a higher-twist effect, i.e., it is suppressed by powers of the
“intrinsic” transverse momentum at hadronizatimﬂ, over the external momentum scdje Eqg. (15) shows
that despite a partial cancellation the first power-suppressed correction to the quark—nucleus cross section (the
subleading terms in the square brackets) enh@hgcat largel;, in agreement with the behavioriat> 5 GeV in
Fig. 2.

Regarding the scaling ¢, at the peak, consider the quark—nucleus cross sectian forQ; > A. Again, the
last two terms of Eq. (4) can be dropped, while in the leading logarithmic approximation the argument of the first
exponential reads

szrtz 1 2.2
—=llog— +0O . 16
A gr,A+ (er’) (16)
The phase factor effectively cuts off the integratat- 1/¢4, ~ 1/Q;, and so 1r; A is large. We therefore replace
1/r: — Q; in the argument of the above logarithm, since it is slowly varying and formally makes the expression
well-behaved at large . The remaining integral leads to

4? nq?
4= G2i0g0,/4 exp<_ 0Zlog Qs/A)' an

This approximation reproduces the behavior of the full expression (4) abeu; reasonably well. Expressions
(16), (17) are useful only when the cutoff« Q;, that is, when color neutrality is enforced on distance scales of
order /A > 1/Q;. If, however, color neutrality in the target nucleus were to occur on distances of gt@er 1
[21] then A ~ O, and one would have to go beyond the leading-logarithmic approximation.

From Eq. (17)P4 is given by (to leading order ik0/ ;)

1 2 2\ x2 wl? 2\ 0
2 Je dxxfyp(x, 0 YAND 41 4(5. Q );“—zexp(—m;‘—z)kt /i

2lo A 1 2 2
Q05109 Qs/ Ji dxxfoyp(e. 09 Dasq (5. 02) exp(—grao5712)

Pals, &) =4n (18)

Thus, at the peakP, scales approximately with /10;4/logQ;/A), as indeed seen in Fig. 2. The strong
dependence on the target gluon density, as parameteriz@d,liy rather different from leading-twist perturbation
theory.

As mentioned above, there is a relatgebdd effect in processes with one transversely polarized hadron in the
initial state (the Sivers effect), which can lead to asymmetrigs'ip — 7 X [22], for example. Since at RHIC
polarized proton beams are also available (for recent prelimiphpy— 7 X data from STAR, see Ref. [23]), one
could investigate the procegd A — 7 X in the saturation regime. Similar signatures should arise in that process
asforpA — A1 X pointed out here.

In summary, we have studied transvergepolarization inpA collisions at high energies and with dense
targets. The resultingl polarization is quite different from that observed g and pp collisions to date,
which presumably did not probe the saturation regime yet. To study the high-density limit, we have performed
a weak coupling analysis of the hayd scattering, determined by the saturation momen@ynand described the
unpolarized quark fragmentation into a transversely polarizégperon by the so-called polarizing fragmentation
functions. We observe that tha polarization peaks at transverse momentsim),, where it also scales
approximately as A(Q;+/log O;/A) and hence is collision energy dependent. Moreover, no plateau region for
larger transverse momenta is present. These features are independent of the details of the polarizing fragmentatior
functions, but rather occur due to théjrodd nature. Similar effects are expected in the procegs df — 7 X
in the saturation region. Both processes can be studied, in principle, at the BNL-RHIC collider, and perhaps in the
future at the CERN-LHC.
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