Darstellung, Eigenschaften, KMR-, IR- und Raman-Spektren von Verbindungen des Typs R-P(Se)F₂, R-P(Se)FC1 und R-P(Se)Cl₂

Preparation, Chemical Properties, NMR- and Vibrational Spectra of Compounds of the Type R-P(Se)F₂-, R-P(Se)FCl and R-P(Se)Cl₂

H. W. ROESKY und W. KLOKER

Anorganisch-Chemisches Institut I der Universität Frankfurt/M.

(Z. Naturforsch. 28b, 697-706 [1973]; eingegangen am 3. April 1973)

Seleniumphosphoryl-compounds, NMR-spectra, IR-spectra, Raman-spectra

 $R-P(Se)F_{2}$ - ($R = CH_3$, C_2H_5 , C_6H_{11} , C_6H_5 , $N(CH_3)_2$, $N(C_2H_5)_2$, $NHSi(CH_3)_3$) and R-P(Se)FCl-compounds ($R = CH_3$, C_2H_5) can be prepared by reaction of $R-P(Se)Cl_2$ -derivatives with antimony(III)fluoride under reduced pressure. In some cases the oxidation of fluorophophines with elemental selenium is successful. The isolated compounds are colourless volatile liquids which are sensitive to air and moisture. The chemical properties are described.

¹H-, ¹⁹F-, ³¹P-NMR-, IR- and Raman-spectroscopic data are given. Main stretching frequencies are discussed by comparison with similar oxygen- and sulphur-compounds.

In den letzten Jahren haben wir uns verschiedentlich mit der Synthese und den Eigenschaften von Sauerstoff- und Schwefel-Phosphor-Verbindungen befaßt^{1,2}. Bei diesen Untersuchungen hatte sich gezeigt, daß gravierende Unterschiede in den physikalischen und chemischen Eigenschaften bestehen. Wir waren jetzt daran interessiert, wie sich homologe Selenverbindungen verhalten. Es ist bekannt, daß Verbindungen des Typs R-P(Se)Cl. thermodynamisch nicht sehr stabil sind und sich beispielsweise beim Destillieren unter Selenabspaltung zersetzen, wenn R ein Alkylrest ist^{3,4}. Auch die Amide (CH₃)₂NP(Se)Cl₂ und (C₂H₅)₂NP(Se)Cl₂ sind hergestellt, aber nicht in reiner Form isoliert worden. Die entsprechenden Diamide sind dagegen anscheinend wesentlich stabiler und können destillativ gereinigt werden^{5,7}.

Über fluorhaltige Abkömmlinge ist wenig bekannt. Lediglich $HP(Se)F_2^{12}$ und $CH_3P(Se)F_2^{13,14}$ konnten bisher isoliert werden.

Für die Präparation von Selen-Phosphorverbindungen werden Methoden angegeben, die von Phosphor-(III)-verbindungen ausgehen. Sie lassen

Sonderdruckanforderungen an Prof. Dr. H. W. ROESKY, Anorgan.-Chem. Institut I der Universität, D-6000 Frankfurt a. M., Niederurseler Hang 5. sich mit elementarem roten Selen, Selenwasserstoff oder Selendioxid zu Selen-Phosphorverbindungen oxidieren^{3,6-11}.

Wir haben für die Darstellung trockenes amorphes Selen langsam zu einem Überschuß des Chlorphosphins gegeben. Wie bei der Oxidation mit elementarem Schwefel erweisen sich auch hier katalytische Mengen von Aluminiumtrichlorid als günstig³. Die Temperatur der Mischung soll nicht wesentlich über Raumtemperatur steigen, da sich sonst das noch nicht reagierte Selen bevorzugt in die schwarze Modifikation umwandelt. Nur bei sehr stabilen Selen-Phosphor-Verbindungen kann man Phosphin und Selen vor der Reaktion zusammengeben und gemeinsam erhitzen. Deshalb ist es für die Darstellung der Fluorderivate oft vorteilhafter, die entsprechenden Fluorphosphine mit Selen zu oxidieren, als sie über die Chlorverbindungen durch Fluorierung mit Antimontrifluorid zu gewinnen. Dabei beobachtet man teilweise Zersetzung der Ausgangsverbindungen.

Teilfluorierte Produkte entstehen, wenn man mit einem Überschuß des Chlorids arbeitet.

Die thermodynamische Stabilität nimmt von den Chlor-zu den Fluor-Phosphor-Selenverbindungenzu. Sie sind unter reduziertem Druck unzersetzt destillierbar, jedoch empfindlich gegen Luftsauerstoff und Feuchtigkeit. In Tab. I werden die dargestellten Selen-Phosphor-Derivate zusammengefaßt.

Vergleicht man die leichte Oxidierbarkeit von $(CH_3)_2NPF_2$ mit Selen

$$(CH_3)_2NPF_2 + Se \rightarrow (CH_3)_2NP(Se)F_2$$

mit homologen Schwefel-Fluorverbindungen, so fällt auf, daß derartige Reaktionen nicht bekannt sind¹⁵. Die Siedepunkte der Selenverbindungen liegen nur unwesentlich höher als bei entsprechenden Schwefelderivaten. So findet man für $(CH_3)_2NP(S)F_2$ einen Siedepunkt von 33–34 °C bei 30 Torr; dieser liegt um 6 °C höher bei der Selenverbindung. Weiterhin überrascht, daß bei der Fluorierung mit Antimontrifluorid kein quantitativer Ersatz des Selens gegen Fluoratome bei niederer Temperatur stattfindet und Fluorphosphorane gebildet werden¹⁵. Offensichtlich erfolgt zunächst ein ChlorFluor-Austausch. Die fluorierte Verbindung ist kinetisch stabil und läßt sich unter diesen Bedingungen nicht weiter fluorieren.

In Tab. II werden einige Kernresonanzdaten angegeben, die für den Vergleich homologer Sauerstoff-, Schwefel- und Selenverbindungen Bedeutung haben.

Betrachtet man etwa die Kopplungskonstanten $J_{\rm PF}$ der Verbindungsreihe $\rm CH_3P(O)F_2$, $\rm CH_3P(S)F_2$ und $\rm CH_3P(Se)F_2$, so ergibt sich eine Zunahme der Spin-Spin-Wechselwirkung von 1105 Hz und 1147 Hz¹⁵ nach 1190 Hz. Ähnliche Verhältnisse beobachtet man in der Reihe der Amide¹⁵:

$$\begin{array}{rl} ({\rm C_2H_5})_2{\rm NP}({\rm O}){\rm F_2}\colon & J_{\rm FP}=1000~{\rm Hz}\\ ({\rm C_2H_5})_2{\rm NP}({\rm S}){\rm F_2}\colon & J_{\rm FP}=1083~{\rm Hz}\\ ({\rm C_2H_5})_2{\rm NP}({\rm Se}){\rm F_2}\colon & J_{\rm FP}=1122~{\rm Hz} \end{array}$$

obwohl die Größe der Kopplungskonstanten abge-

Tab. I. Selen-Phosphor-Verbindungen.

Verbindung		Darstellung	Sdp. [°C/Torr]	Ausbeute [%]	Lit.
	$RP(Se)Cl_2$				
1	$CH_{3}P(Se)Cl_{2}$	$CH_{3}PCl_{2}+Se$	55/12.0	61	3, 13, 14
2	$C_2H_5P(Se)Cl_2$	$C_2H_5PCl_2 + Se$	54/6.0	83	4, 5, 13
3	$C_6H_{11}P(Se)Cl_2$	$C_6H_{11}PCl_2 + Se$	72/0.05	87	
4	$C_6H_5P(Se)Cl_2$	$C_{6}H_{5}PCl_{2}+Se$	60/0.01	76	
	$[\mathbf{R}_{2}\mathbf{N}]_{2}\mathbf{P}(\mathbf{Se})\mathbf{Cl}$				
5	$[(CH_3)_2N]_2P(Se)Cl$	$[(CH_3)_2N]_2PCl + Se$	60/0.1	11	
	RP(Se)FCl				
6	$CH_{3}P(Se)FCl$	$CH_{3}P(Se)Cl_{2}+SbF_{3}$	42/40	26	13, 14
7	$C_2H_5P(Se)FCl$	$C_2H_5P(Se)Cl_2+SbF_3$	29/7	21	
	$RP(Se)F_2$				
8	$CH_{3}P(Se)F_{2}$	$CH_{3}P(Se)Cl_{2}+SbF_{3}/SbCl_{5}$	34/130	75	13, 14
9	$C_2H_5P(Se)F_2$	$C_{2}H_{5}P(Se)Cl_{2}+SbF_{3}/SbCl_{5}$	37/60	45	
10	$C_6H_{11}P(Se)F_2$	$C_{6}H_{11}P(Se)Cl_{2}+SbF_{3}/SbCl_{5}$	30/0.01	74	
11	$C_{6}H_{5}P(Se)F_{2}$	$C_6H_5P(Se)Cl_2 + SbF_3/SbCl_5$	25/0.01	53	
12	$(CH_3)_2NP(Se)F_2$	$(CH_3)_2 NPF_2 + Se$	40/30	59	
13	$(C_2H_5)_2NP(Se)F_2$	$(C_2H_5)_2NPF_2 + Se$	44/4	66	
14	(CH ₃) ₃ SiNHP(Se)F ₂	$[(CH_3)_3Si]_3NPF_9 + Se/H_9O$	44/1	43	

Fab. II. Zusammenstellung	einiger	KMR-Daten.
---------------------------	---------	------------

Verbindung	$\delta_{ m P}$ [ppm]	$\delta_{ m F}$ [ppm]	$J_{ m PF} \ [m Hz]$	$J_{ m PSe} \ [m Hz]$	$J_{ m FSe} \ [m Hz]$
CH_P(Se)Cl	- 55.1			955 ± 5	
CH.P(Se)FCl	-98.1	27.3	1175	1020 ± 5	76.3
$C_{\bullet}H_{\bullet}P(Se)FCl$	-111.0	36.0	1175 + 2		75,7
$CH_{3}P(Se)F_{2}$	-112,5	38,0	1190	1040 + 5	111,5
$C_2H_5P(Se)F_2$	-121.0	46,1	$1192 \!+\! 2$		73
$C_6H_5P(Se)F_2$	-124,1	40,8	1181		110
$(CH_3)_2 NP(Se)F_2$	-67,4	41,8	1115		133
$(C_2H_5)_2NP(Se)F_2$	-73,3	40,2	1122 ± 2		129 ± 1
$(CH_3)_3SiNHP(Se)F_2$	-68,3	30,1	1144	1075	132

nommen hat. Auf der einen Seite zeigen die Ergebnisse sehr deutlich, daß der oft aufgestellte Zusammenhang zwischen der Kopplungskonstante und der Summe der Elektronegativitäten der Bindungspartner hier nicht gerechtfertigt ist. Die Elektronegativitäten betragen nach PAULING¹⁷ für Schwefel 2,58 und für Selen 2,55. Auf der anderen Seite scheinen sich aber die Kopplungskonstanten in diesen und anderen Reihen für Phosphor-Fluor-Verbindungen der Koordinationszahl 4 charakteristisch mit den Substituenten zu ändern. Innerhalb einer Gruppe des Periodensystems nimmt mit steigendem Atomgewicht die P-F-Kopplungskonstante zu. Besonders eindrucksvoll kann das in der Reihenfolge Sauerstoff-Schwefel-Selen oder auch Fluor-Chlor-Brom gezeigt werden¹⁸:

IR-Spektren

Wegen der niedrigen Symmetrie sind alle Kombinations- und Oberschwingungen erlaubt. Es erscheint deshalb hier kaum möglich, die meisten schwachen Banden der gemessenen Flüssigkeiten eindeutig zuzuordnen. Das gilt besonders für den Bereich der Deformationsschwingungen, da hier wegen Kopplung stark gemischte Bewegungen des Moleküls vorliegen. Es existieren hier auch nur unvollständige Messungen vergleichbarer Verbindungen.

Die Frequenzunterschiede der inneren Schwingungen der CH_3 -Gruppe sind in den Sauerstoff- und Schwefel-Reihen gering und fallen in die üblichen Bereiche. Nimmt man frühere Zuordnungen für Methylgruppen zuhilfe, so kann man diese Gruppe durch C_{3v} -Symmetrie beschreiben.

Um O-, S- und Se-substituierte Verbindungen gegenüberzustellen, sollen nur die Valenzschwingungen des direkt am Phosphor gebundenen Gerüstes im Vergleich mit dem vorliegenden Material ähnlicher Verbindungen erörtert werden. Deshalb wurden Raman-Spektren nur für diesen Bereich aufgenommen.

$CH_{3}P(Se)Cl_{2}$

In der Selenverbindung liegt $v_{\rm PC}$ bei 759 cm⁻¹ und damit in der Nähe von 757 cm⁻¹, die für die Sauerstoffverbindung gefunden wurde. Beide kommen

weitgehend isoliert vor. Sie sind deshalb anscheinend ungekoppelt. Eine Verschiebung von ν_{PC} nach 785 (M=S) kann hauptsächlich von der Kopplung mit $v_{\rm PS}$ abhängig sein. Wenn man auch $v_{\rm PC}$ der S-Verbindung bei etwa 758 cm⁻¹ vermutet, kann $\nu_{\rm PS}$ (670 cm⁻¹) um denselben Betrag ($\Delta \nu_{\rm PC} = 27$ cm⁻¹) korrigiert werden. $\nu_{PC}(CH_3PCl_2)$ liegt bei 757 cm⁻¹. $\nu_{\rm PF}$ und $\nu_{\rm PCl}$ sind oft in einfacher Abhängigkeit von der Summe der Elektronegativitäten gefunden worden¹⁹. Da die Elektronegativitäten für Schwefel und Selen annähernd identisch angegeben werden, sollte der gemittelte v_{PCl} -Wert verschiedener Autoren für CH₃PSCl₂ auch für die Selenverbindung gelten. Dies wird auch durch die ähnliche Lage der v_{asPCl} (S:509, Se:505 cm⁻¹) bestätigt. Die unbeeinflußte v_{sPCl} (Se) wird danach bei (505-481 = 24; 481 cm⁻¹ ist $\bar{\nu}_{PCl}$ der Schwefelverbindung) 481- $24 = 457 \text{ cm}^{-1}$ erwartet. $\varDelta v_{sPCl} = 37 \text{ cm}^{-1}$ bedeutet auch, daß der unbeeinflußte Wert von v_{PSe} kleiner als 553 cm⁻¹ sein sollte.

Berücksichtigt man die Einflüsse mechanischer Kopplung durch ein Inkrement in dieser Weise, so zeigt eine Rechnung nach dem Zweimassenmodell eine starke Abweichung für $\nu_{\rm PSe}$ Diese geht von der Annahme gleicher SP- und SeP-Bindungsgrade der Methylverbindungen aus. Nach MÜLLER¹⁹ wird die $\nu_{\rm PS}$ im Gegensatz zu Phosphorylverbindungen nicht erkennbar durch die Änderung des SP-Bindungsgrades beeinflußt. Für die Methylverbindung ergibt $\nu_{\rm PSe}$ danach einen unglaubwürdig hohen Wert. Diese Schwierigkeit, die Lage von $\nu_{\rm PSe}$ einzuordnen, scheint demnach nicht allein von Einflüssen mechanischer Kopplung abhängig zu sein, wie oft für die PS-Valenzschwingung dargestellt wird.

Es ist aber sehr schwierig, über elektronische Effekte darüberhinausgehende Aussagen zu machen.

$C_2H_5P(Se)Cl_2$

 $v_{\rm PC}$ Wird von GRYSKIEWICZ-TROCHIMOWSKI⁵ einer starken Bande bei 760 cm⁻¹ zugeordnet. In den von uns gemessenen Spektren findet man dagegen wie schon bei anderen Äthylverbindungen eine Verdopplung der meisten Frequenzen, die verschiedenen Konformationsisomeren zugeschrieben wird. Zusammen mit einer anderen Bande bei 716 cm⁻¹ ($\Delta v_{\rm PC} = 47$ cm⁻¹) wollen wir der $v_{\rm PC}$ in C₂H₅P(Se)Cl₂ deshalb besser eine durchschnittliche Frequenz $\bar{\nu}$ bei 740 cm⁻¹ zuordnen. Diese Schwingung kann jedoch durch mechanische Kopplung mit einer nahen symmetrischen Deformationsschwingung der C₂H₅- Gruppe beeinflußt sein. Wenn man das vernachlässigt, sind die $\nu_{\rm PC}$ in $C_2H_5P(O)Cl_2$ und $C_2H_5P(Se)Cl_2$ weitgehend als charakteristisch anzusehen. Dabei stellt man keinen Unterschied zwischen beiden Verbindungen fest. Für $\nu_{\rm PC}$ (M = O) findet man durchschnittlich ($\Delta \nu_{\rm PC} = 23 \text{ cm}^{-1}$) $\overline{\nu}_{\rm PC} = 732 \text{ cm}^{-1}$. Dagegen ist $\overline{\nu}_{\rm PC}$ (M = S) mit 763 cm⁻¹ ($\Delta = 29$) durch Kopplung mit $\overline{\nu}_{\rm PS}(\nu_{\rm PS} = 667 \text{ cm}^{-1})$ am stärksten (nach höheren Wellenzahlen) verschoben.

Die gleichen Verhältnisse findet man auch für $C_6H_{11}P(Se)Cl_2$. v_{PC} der Sauerstoffverbindung $v_{PC} = 752 \text{ cm}^{-1}$ ($\Delta = 0$) und der Selenverbindung $\overline{v}_{PC} = 747 \text{ cm}^{-1}$ ($\Delta = 19$) sind innerhalb der Fehlergrenzen gleich groß. Mit $\overline{v}_{PC} = 761 \text{ cm}^{-1}$ ($\Delta = 20 \text{ cm}^{-1}$) fällt die S-Verbindung heraus. Die v_{PC1} sind in den $RP(O)Cl_2$ als nahezu unbeeinflußt zu erwarten und sind außerdem einander identisch (R = Alkyl).

Die Berechnung einer Durchschnittsfrequenz aus denen der einzelnen Konformeren ist natürlich fragwürdig und zeigt die Fehlergrenzen dieser Überlegungen. Damit ist es erklärbar, wenn der Wert $\bar{\nu}_{as}$ $(C_2H_5P(Se)Cl_2) = 495 \text{ cm}^{-1}$ aus der Reihe $\bar{\nu}_{as}$ $(C_6H_{11}$ $P(S)Cl_2) = 518$, ν_{as} $(C_6H_{11}P(Se)Cl_2) = 512$, $\bar{\nu}_{as}$ $(C_2H_5 - P(S)Cl_2) = 514 \text{ cm}^{-1}$ herausfällt.

Man erhält ähnliche Durchschnittswerte von v_{PCl} als Folge nahezu unabhängiger $v_{s PCl}$ und identischer $v_{as PCl}$ in RP(S)Cl₂-Verbindungen: $\overline{v}_{PCl} = 481$ (CH₃), 483 (C₂H₅), 484 cm⁻¹ (C₆H₁₁).

In der Reihe RP(Se)Cl₂ ergeben sich ähnliche v_{PCl} aus identischen $v_{as PCl}$ und gleicher Kopplungsverschiebung der $v_{s PCl}$ -Banden durch die PSe-Valenzschwingung:

 $\bar{v}_{PCl} = 460(CH_3), 459(C_2H_5), 475 \text{ cm}^{-1} (C_6H_{11}).$

Zwei im IR-Spektrum sehr starke Banden werden der $v_{\rm PSe}$ zugeordnet. Sie sind im Raman-Effekt sehr schwach. Die durchschnittliche Lage $v_{\rm PSe} = 562$ cm⁻¹ ist stark beeinflußt durch $v_{\rm s \ PCl}$, das drückt sich auch in der scheinbar vergrößerten Aufspaltung $\bar{\nu}_{\rm as}$ - $\bar{\nu}_{\rm s}$ (=72 cm⁻¹) aus (C₂H₅P(S)Cl₂ Δ = 62, C₂H₅P(O)Cl₂ Δ = 61 cm⁻¹). Diese Δ -Werte in RP(O,S)Cl₂ bzw. RP(Se)Cl₂ werden größer für Methylverbindungen, weil hier die Mittelwertbildung der Konformeren entfällt:

 $CH_3P(Se)Cl_2 \varDelta = 85$, $CH_3P(S)Cl_2 \varDelta = 58$, $CH_3P(O)-Cl_2 \varDelta = 50$ cm⁻¹.

$CH_{3}P(Se)F_{2}$

Die Skelettschwingungen sind durch mechanische Kopplung untereinander stark beeinflußt. In der Literatur werden oft Kopplungen v_{PS} mit gleichrassigen v_{sPF} und v_{PC} diskutiert. Sicher tritt in allen diesen RP(M)F₂-Verbindungen noch eine starke Kopplung zwischen v_{sPF} und v_{PC} auf.

Wenn keine Massenkopplung stattfindet, sollte der Wert für $\nu_{\rm PC}$ in CH₃P(O)F₂ (752) höher liegen als in CH₃P(O)Cl₂ (757 cm⁻¹). Auf der anderen Seite sind die Aufspaltungen $\Delta(\nu_{\rm as}-\nu_{\rm s})_{\rm PF}$ der Selen- und Schwefelverbindung sehr verschieden, die $\nu_{\rm asPF}$ dagegen gleich (Se: 858, $\Delta = 10$; S: 856 cm⁻¹, $\Delta =$ 41 cm⁻¹). Das kann wenigstens zum Teil auf Massenbeeinflussung zurückgeführt werden. $\nu_{\rm PSe}$ wird einer starken IR- und einer sehr starken polarisierten Raman-Bande bei 522 cm⁻¹ zugeordnet und ist als weitgehend ungestört und charakteristisch zu betrachten.

$C_2H_5P(Se)F_2$

Hier tritt Verdopplung der meisten Frequenzen auf. Der $v_{\rm PC}$ werden zwei sehr starke IR-Banden bei 767 und 730 cm⁻¹ zugeordnet. Im Raman-Spektrum sind sie schwach und polarisiert. An der Stelle der $v_{\rm asPF}$ von $C_2H_5P(Se)F_2$ findet man eine sehr starke breite Bande für sämtliche PF-Valenzfrequenzen.

$(CH_3)_3SiNHP(Se)F_2$

Weil sich Wasserstoffbrücken ausbilden können, sollten die $v_{\rm PNSi}$ in der Sauerstoffverbindung ($v_{\rm asPNSi}$: 1040 cm⁻¹) höher liegen als in den analogen Schwefel- bzw. Selenverbindungen (S:1015, Se:1015 cm⁻¹). Deren Einfluß sollte auf die $v_{\rm PNSi}$ am größten sein.

Obwohl $v_{\rm PF}$ und $v_{\rm PO}$ erniedrigt werden, kann keine quantitative Aussage über die Stärke der Wasserstoffbrückenbildung gemacht werden.

	$\bar{v}_{\rm PF}[{\rm cm}^{-1}]$	Lit.
$(CH_3)_3SiNHP(O)F_2$	878	20,23
$(CH_3)_3SiNHP(S)F_2$	878	21,22
$(CH_3)_3SiNHP(Se)F_2$	872	

 v_{sPNSi} und v_{sSiC} fallen in den gleichen Bereich um 600 cm⁻¹ und sind nicht unterscheidbar.

Phosphor-Selen-Valenzschwingung

CHITTENDEN und THOMAS²⁴ schlagen vor, der $v_{\rm PSe}$ Schwingung zwei Absorptionen zuzuordnen. Ausgehend von etwa 20 Phosphor-Selen-Verbindungen geben sie folgende Gebiete als charakteristisch an: 557–517 und 535–473 cm⁻¹. Wir hatten bisher keine Möglichkeit, Messungen bei tiefer Temperatur und in festem, flüssigem und gelöstem Zustand durchzuführen. Auch bei P-S-Verbindungen war die Aufspaltung der $v_{\rm PS}$ größer als es für die Isomere zu erwarten wäre. Ihre relativen Intensitäten waren außerdem unabhängig von der Temperatur. Deshalb haben die Autoren zwei Absorptionen für die PSe-Schwingung angenommen.

Für die untersuchten Verbindungen findet man Verdopplung der Banden nur bei $R = C_2 H_5$, $C_6 H_{11}$ und $N(CH_3)_2$. Die v_{PSe} -Schwingung läßt sich nicht mit Substituenteneinflüssen korrelieren. Sie scheint zu einem großen Teil von deren Elektronegativität abzuhängen, und zwar besonders a.) wenn freie Elektronenpaare am Zentralatom des Liganden fehlen, oder b.) wenn externe Wechselwirkungen an der P = Se-Gruppe ausbleiben. Daß sich π -Bindungen im P-Se-System ausbilden, wird andererseits gerade durch den Einfluß von Liganden mit freien Elektronenpaaren wahrscheinlich gemacht. Die Valenzschwingungen des Phosphorgerüsts werden in den Tabn. III-V gegenübergestellt.

Tab. III. Die Valenzschwingungen v(P = O), v(P = S) und v(P = Se) [cm⁻¹].

$\begin{array}{l} \text{Verbindung} \\ \text{M} = \text{O,S,Se} \end{array}$	$\nu(\mathbf{P}=\mathbf{O})$	Lit.	$\nu(\mathbf{P}=\mathbf{S})$	Lit.	$\nu(\mathbf{P} = \mathbf{Se})$	Lit.
$\overline{\mathrm{CH}_{3}\mathrm{P}(\mathrm{M})\mathrm{Cl}_{2}}$	1273	4,25	671 (697)*	3, 25, 26	516	3, 31
$C_{2}H_{5}P(M)Cl_{2}$	1261	26	661 (688)	26, 28, 30	533	5, 32, 33
$C_6H_{11}P(M)Cl_2$	1269	26	692 (703)	26	563	
$C_6H_5P(M)Cl_2$	1272	28, 29	(745)	28	587	
$CH_{3}P(M)FCl$	1317	34	660	45	560	
$C_{2}H_{5}P(M)FCl$			655	45	574	
$CH_{3}P(M)F_{2}$	1334	34, 35	640	35, 36, 40	522	
$C_{2}H_{5}P(M)F_{2}$	1340	35	630	36, 40	543	
$C_6H_{11}P(M)F_2$	1332	35			580	
$C_6H_5P(M)F_2$	1333	37		37	582	
$(CH_3)_2NP(M)F_2$	1350	38	625	38, 39	576	
$(C_{2}H_{5})_{2}NP(M)F_{2}$	1335		624	39	566	
$(CH_3)_3SiNHP(M)F_2$	1328	20, 23	658	21, 22	593	

* Die Werte in Klammern sind um den abgeschätzten Effekt mechanischer Kopplung korrigiert.

Verbindung	M = O	⊿*	M = S	Δ	M = Se	Δ	Phosphin	Δ	Lit.
CH ₃ P(M)Cl ₂	521	50	481	58	460	85	492	22	4, 25-27, 41
$C_{2}H_{5}P(M)Cl_{2}$	524	61	483	62	459	72	491	22	26, 42
$C_6H_{11}P(M)Cl_2$	522	52	484	69	475	75			
$C_6H_5P(M)Cl_2$	530	84			466	55			26, 37, 43, 44
$CH_{3}P(M)FCl$	855, 539		840, 497		830, 452				
C ₂ H ₅ P(M)FCl			838, 510		838, 450				
$CH_{3}P(M)F_{2}$	870	24	836	41	853	10	835	58	42
$C_2H_5P(M)F_2$	893, 885	26	839	88	860	0			
$C_6H_{11}P(M)F_2$	883	26			842	29	765	56	46
$C_6H_5P(M)F_2$	888	25			862	0	906	82	38, 43
$(CH_3)_2 NP(M)F_2$	893	15	876	52	860	32	792	44	27, 46
$(C_{2}H_{5})_{2}NP(M)F_{2}$	888	19	876	40	856	31	765	54	28, 46
$(CH_3)_3SiNHP(M)F_2$	873	56	878	45	872	37			

Tab. IV. Halogenvalenzschwingungen [cm⁻¹].

* Statt v_{as} und v_s sind in der Tabelle Durchschnittswerte angegeben, die sich um Δ unterscheiden. Weitere Literaturstellen für entsprechende Spektren siehe in Tab. III.

Verbindung	M = 0	M = S	M = Se	Phos- phin
CH ₃ P(M)Cl ₂	757	785 (759)	759	690
$C_{2}H_{5}P(M)Cl_{2}$	732	763 (736)	740	655
$C_{6}H_{11}P(M)Cl_{9}$	752	761 (750)	747	
$CH_{3}P(M)FCl$	753	800, 753	770	750
$C_{2}H_{5}P(M)FCl$		755	759	
$CH_{3}P(M)F_{3}$	752	748	782	
$C_{2}H_{5}P(M)F_{2}$	738	738	749	
$\tilde{\mathbf{C}_{6}\mathbf{H}_{11}\mathbf{P}(\mathbf{M})\mathbf{F}_{2}}$			766	
$(CH_{3})_{3}NP(M)F_{3}$	712	782	752	705
$(C_2H_5)_2NP(M)F_2$	688	753	718	680
$(CH_3)_3$ SiNHP $(M)F_2$	778	782	770	

Tab. V. ν (P-C)-Schwingungen [cm⁻¹].

Literaturstellen der entsprechenden Spektren siehe Tab. III.

Experimenteller Teil

Die Darstellung der Phosphine erfolgt nach Literaturangaben³. $C_6H_{11}P(S)Cl_2$ wird durch Umsetzung von $C_6H_{11}P(O)Cl_2$ mit P_4S_{10} hergestellt³ und anschließend im Gleichgewicht mit Triphenylphosphin reduziert:

 $C_6H_{11}P(S)Cl_2 + (C_6H_5)_3P \rightleftharpoons C_6H_{11}PCl_2 + (C_6H_5)_3PS.$

Dabei wird drei Stdn. unter Rückfluß erhitzt.

Zur Darstellung von R_2NPCl_2 und $(R_2N)_2PCl$ ($R = CH_3$, C_2H_5) wird das entsprechende Silylamid (CH_3)_3SiNR_2 unter starkem Rühren zu einer stöchiometrischen Menge frisch destilliertem PCl₃ getropft. Dabei soll das Reaktionsgefäß eine Temperatur um 0 °C (für das Monoamid) bzw. Raumtemperatur (für das Diamid) behalten. Zur Darstellung der Fluorphosphine fluoriert man die Chlorverbindung mit einem Überschuß an SbF₃/SbCl₅ nach der gleichen Methode, die für die Selenphosphorylchloride beschrieben wird.

Allgemeine Arbeitsvorschrift zur Darstellung der Verbindungen 1–5 und 12, 13.

In einem 500 ml Zweihalskolben legt man bis zu 1 Mol des Phosphins und etwa die¹/₁₆ M Menge AlCl₃ vor und sorgt für starkes Rühren (Magnetrührer). Es muß darauf geachtet werden, daß die Apparatur sauerstofffrei und weitgehend ohne Feuchtigkeit aufgebaut wird. Dazu wird sie heiß und unter Durchleiten von gereinigtem Stickstoff zusammengesetzt. Der eine Kolbenhals (NS 29) trägt den Rückflußkühler mit einem T-Stück, der andere einen Schwenkkolben, in dem sich das Selen befindet. Damit ist eine portionsweise Zugabe möglich. Mit Hilfe des T-Stückes wird Stickstoff über die Apparatur geleitet, um auch während der Reaktion Luftfeuchtigkeit und Sauerstoff fernzuhalten.

Darstellung der teilfluorierten Selenphosphorylverbindungen 6 und 7. In einem 500 ml-Zweihalskolben wird etwa $1/_6$ Mol des Chlorids vorgelegt und stark gerührt. Die Apparatur wird genauso zusammengesetzt wie es bereits oben geschildert wurde. Auf dem NS 29 befindet sich ein Schwenkkolben mit sublimiertem und feingepulvertem SbF₃. Der andere Hals (NS 14,5) ist über eine Destille mit einer zweiteiligen Kühl- und Schutzfalle an das Vakuum angeschlossen. Der Druck wird so eingestellt, daß die erwartete Fluorchlorverbindung bei der Reaktionstemperatur von 50–60 °C gerade siedet.

Wegen des starken Aufschäumens muß die Zugabe von SbF_3 langsam erfolgen. Bei dieser Arbeitsweise kann man die Reaktion so führen, daß wenig Difluorid entsteht.

Nachher werden Kolben- und Fallenfraktion vereinigt und über eine 100 cm lange Füllkörperkolonne bei möglichst tiefer Temperatur (25–28 °C) zweimal destilliert.

Es müssen mehrere Fraktionen eines kleinen Siedebereichs entnommen und auf Reinheit geprüft werden.

Darstellung der Difluoride $RP(Se)F_2$ 9–11.

Man legt hier umgekehrt das Fluorierungsmittel SbF₃ mit dem Katalysator SbCl₅ im Kolben vor, tropft das Chlorid bei etwa 50 °C zu und stellt den jeweiligen Druck ein. Dabei wird das Reaktionsgefäß wie im obigen Fall über eine Destille, Kühlfalle und Schutzfalle an eine Vakuumpumpe angeschlossen. Bei der Reaktion entsteht infolge Zersetzung schwarzes Selen.

Die Destillation sollte bei etwa 30–40 °C über eine 80 cm lange Füllkörperkolonne ausgeführt werden.

$Darstellung \ von \ N-Trimethylsilyl-difluorselenphosphorylamid^{14}.$

Ein Überschuß des Phosphins wird in einem Zweihalskolben unter starkem Rühren bei Raumtemperatur vorgelegt. Der Aufbau der Apparatur ist wie oben beschrieben. Verwendet man nun nicht vollständig trockenes Selen, sondern solches, das etwa die halbe molare Menge Wasser oder Alkohol enthält, entsteht in 50-proz. Ausbeute die NH-Verbindung¹⁴ und Hexamethyldisiloxan bzw. der Silicium-Kohlenstoff-Äther.

Charakterisierung der Verbindungen

$$CH_{3}P(Se)Cl_{2}$$
 (1)

KMR-Spektrum:

^31P-KMR: $\delta_{\rm P} = -55.1 \text{ ppm}(J_{\rm PSe} \approx 955 \pm 5 \text{ Hz}, J_{\rm PH} = 13 \text{ Hz}).$

¹H-KMR: $\delta_{\rm H} = -3.5 \text{ ppm}(J_{\rm HP} = 13.3 \text{ Hz}).$

IR-Spektrum

 ≈ 3823 s, ≈ 3790 s, ≈ 3646 s, 2979st, 2900st, $\approx 2680 - 2500$ s, ≈ 2276 s, ≈ 2174 s, ≈ 2024 s, $\approx 1650 - 1450$ s.

1395sst, 1317
s, 1291sst, $\approx\!\!1200 {\rm sbr}, \approx\!\!1010 {\rm s}$ Sch., $\approx\!\!960 {\rm m}$ Sch., 898
st, 833st, 759sst, 679s, 678s, 555sst, 499sst, 456 Sch., 413
sst cm^-1.

Raman-Spektrum

761s, 561s, 504s, 454s, 409st, 314s, 289s, 252 Sch., 242 Sch., 237st, 195 Sch., 170st, 159sst cm⁻¹.

 $C_{2}H_{5}P(Se)Cl_{2}(2)$

KMR-Spektrum

³¹P-KMR: $\delta_{\rm P} = -73.3$ ppm.

¹H-KMR: $\delta_{CH_3} = -1.8 \text{ ppm}(J_{CH_3-Se} \approx 135 \text{ Hz}, J_{CH_{3P}} = 32.2 \text{ Hz}, J_{HH} = 7.3 \text{ Hz}),$

 $\delta_{
m CH_2} = -3.5 ~{
m ppm}(J_{
m CH_2-Se} pprox 88 ~{
m Hz}, J_{
m CH_2P} = 10.8 ~{
m Hz}).$

IR-Spektrum

 $\approx\!\!2970\mathrm{m},\approx\!\!2928\mathrm{m},\approx\!\!2898\mathrm{m},\approx\!\!2866\mathrm{s},1454\mathrm{st},1396\mathrm{m},$ 1382m, $\approx\!\!1293$ Sch., 1278s, 1251s, 1231s, 1040st, 1015m, 851s, 782s, 763sst, 752Sch., 716sst, 702st, 654s, 597sst, 562sst, 512sst, 477mSch., 430m, 416st cm⁻.

Raman-Spektrum

 ${\approx}1038{\rm s},~{\approx}976{\rm s},~{\approx}760{\rm s},~{\approx}752{\rm s},~{\approx}711{\rm s},~{\approx}694{\rm s},\\ {\approx}598{\rm s},~560{\rm s},~508{\rm m},~470{\rm s},~430{\rm m},~413{\rm sst},~345{\rm m},\\ 315{\rm m},~260{\rm m},~229{\rm sst},~190{\rm st},~159{\rm sst},~136{\rm st}~{\rm cm}^{-1}.$

$C_{6}H_{11}P(Se)Cl_{2}(264,\theta)$ (3)

Ber. C 27,3 H 4,2 Cl 26,9 P 11,7, Gef. C 27,6 H 4,3 Cl 26,9 P 11,8.

Die ³¹P und ¹H-Spektren zeigen charakteristische Absorptionen. Wegen der Breite der Peaks erscheint es aber nicht sinnvoll, chemische Verschiebungen anzugeben.

IR-Spektrum

 $\approx 2918 \mathrm{sst}, \approx 2944 \mathrm{st}, 1445 \mathrm{st}$ mit Sch., 1340s, 1289s, 1265s, 1194s, 1176m, 1112s, 1077s, 1039m, 997m, 918s, 884s mit Sch., 850m, 818s, 756m, 737s, 587sst, 562sst, 517sst, 507sst, 447m, 427m mit Sch., 405 Sch. cm⁻¹.

 $C_{6}H_{5}P(Se)Cl_{2}(258,0)$ (4)

Ber.	C 27,9	H 1,9	Cl 27,5	P 12,0
Gef.	C 27,7	H 1,9	Cl 27,9	P 11,9

KMR-Spektrum

 $\label{eq:2.1} \begin{array}{l} {}^{31}\mathrm{P-KMR:}\;\delta_{\mathrm{P}}=-56.8~\mathrm{ppm}\;(J_{\mathrm{PSe}}{\approx}915~\mathrm{Hz},\;J_{\mathrm{PH}_{(0)}}=\\ 18\pm1~\mathrm{Hz}).\\ {}^{1}\mathrm{H-KMR:}\;\delta_{\mathrm{H}_{(\mathrm{m,~p})}}=-4.2~\mathrm{ppm}\;(J_{\mathrm{HP}}{\approx}19~\mathrm{Hz}), \end{array}$

$$\delta_{\mathrm{H}_{(0)}} = -4.8$$
 ppm.

IR-Spektrum

 $\approx\!\!3056\mathrm{s}$ mit Sch., $\approx\!\!1805\mathrm{s},\ 1582\mathrm{s},\ 1478\mathrm{s},\ 1438\mathrm{s}\mathrm{s}\mathrm{s}\mathrm{t},\ 1380\mathrm{s},\ 1332\mathrm{s},\ 1302\mathrm{s},\ 1270\mathrm{s},\ 1182\mathrm{s},\ 1160\mathrm{s},\ 1096\mathrm{s}\mathrm{s}\mathrm{t},\ 1066\mathrm{s},\ 1024,\ 998\mathrm{m},\ 744\mathrm{s}\mathrm{s}\mathrm{t},\ 712\mathrm{s}\mathrm{s}\mathrm{t};\ 682\mathrm{s}\mathrm{s}\mathrm{t},\ 619\mathrm{s}\mathrm{s}\mathrm{t},\ 587\mathrm{s}\mathrm{s}\mathrm{t},\ 515\mathrm{s}\mathrm{s}\mathrm{t},\ 480\mathrm{s}\mathrm{s}\mathrm{t},\ 458\mathrm{m},\ 418\mathrm{s}\ \mathrm{cm}^{-1}.$

$[(CH_3)_2N]_2P(Se)Cl(233,5)$ (5)

Ber.	C 20,6	H 5,2	Cl 15,2	N 12,0	P 13,3,
Gef.	C 20.5	H 5.3	Cl 15.6	N 12.2	P 13.2.

¹H-KMR-Spektrum

 $\delta_{\rm H} = -3.1 \text{ ppm} (J_{\rm HP} = 16 \text{ Hz}).$

IR-Spektrum

 $\approx\!\!2992\mathrm{m}, \ \approx\!\!2936\mathrm{st}, \ \approx\!\!2909\mathrm{st}, \ \approx\!\!2876\mathrm{st}, \ \approx\!\!2838\mathrm{m}, \\ \approx\!\!2798\mathrm{m}, \ \approx\!\!1550\mathrm{s}, \ 1462 \ \mathrm{Sch.}, \ 1448\mathrm{st}, \ 1401\mathrm{s}, \ 1280\mathrm{st}, \\ 1260 \ \mathrm{Sch.}, \ 1236\mathrm{m}, \ 1173\mathrm{st}, \ 1146\mathrm{st}, \ 1054\mathrm{st}, \ 1024 \ \mathrm{Sch.}, \\ 984\mathrm{sst}, \ 959\mathrm{sst}, \ 755\mathrm{s}, \ 733\mathrm{st}, \ 708\mathrm{sst}, \ 672 \ \mathrm{Sch.}, \ 603\mathrm{s}, \\ 548\mathrm{sst}, \ 473\mathrm{st}, \ 426\mathrm{s} \ \mathrm{cm}^{-1}.$

$CH_{3}P(Se)FCl(179,4)$ (6)

Ber. C 6,7 H 1,7 Cl 19,8 F 10,6 P 17,3, Gef. C 6,6 H 1,6 Cl 19,5 F 10,5 P 17,3.

KMR-Spektrum

³¹P-KMR: $\delta_{\rm P} = -98,1$ ppm, $(J_{\rm PF} = 1175$ Hz, $J_{\rm PSe} \approx 1020 \pm 5$ Hz, $J_{\rm PH} = 13,7$ Hz).

¹⁹F-KMR: $\delta_{\rm F} = 27.3$ ppm ($J_{\rm FSe} = 76.3$ Hz, $J_{\rm FH} = 6.5$ Hz). ¹H-KMR: $\delta_{\rm H} = -3.0$ ppm ($J_{\rm HP} = 14$ Hz, $J_{\rm HF} =$

^A**h**-KMK: $o_{\rm H} = -3.0$ ppm ($J_{\rm HP} = 14$ Hz, $J_{\rm HF} = 6.6$ Hz).

IR-Spektrum

 $\approx\!\!3882\mathrm{s}, \ \approx\!\!3827\mathrm{s}, \ \approx\!\!3803\mathrm{s}, \ \approx\!\!3780\mathrm{s}, \ \approx\!\!3120\mathrm{s}$ br., 2980st, 2903st, $\approx\!\!2178\mathrm{s}, \ \approx\!\!2026\mathrm{s}, \ \approx\!\!1650\mathrm{s}, \ \approx\!\!1590\mathrm{s}, \ \approx\!\!1520\mathrm{s}, \ 1401\mathrm{sst}, \ \approx\!\!1335$ Sch., 1302sst, $\approx\!1203$ s br., $\approx\!1003\mathrm{s}$ br., 914sst, 891sst, 830sst, 770sst, 560sst, 452sst cm⁻¹.

Raman-Spektrum

1400s, 914s, 893s, 833s, 768s, 558s, 451sst, 313m, 288st, 261m, 213m, 169 cm⁻¹.

$C_{2}H_{5}P(Se)FCl(189,0)$ (7)

Ber.	C 12,7	H 2,7	Cl 16,4	F 10,0	P 16,4,
Gef.	C 12,7	H 2,6	Cl 16,8	F 9,7	P 16,1.

KMR-Spektrum

³¹P-KMR: $\delta_{\rm P} = -111 \text{ ppm } (J_{\rm PF} = 1195 \text{ Hz}).$

¹⁹F-KMR: $\delta_{\rm F} = 36,0 \, {\rm ppm} \, (J_{\rm FP} = 1175 \pm 2 \, {\rm Hz}, J_{\rm FSe} = 75,7 \, {\rm Hz}, \, {}^{3}J_{\rm FH} = 4,6 \pm 0,2 \, {\rm Hz}).$

¹H-KMR: $\delta_{CH_3} = -1.9$ ppm ($J_{CH_3P} = 29$ Hz, $J_{HH} = 7.4$ Hz), $\delta_{CH_2} = -3.3$ ppm.

IR-Spektrum Raman-Spektrum ≈2976m. ≈2932m. ≈2900s. ≈2872s. 1041s, 1017s, 991 Sch., 983s, 867s, 768s, 732s, 1455st. 1395m, 1382m, 1300 Sch., 1261s, 1230s, 1037st, 719s, 666s, 577m, 511sst, 478s, 427s, 418m, 402s, 1008m, 1000 Sch., 838sst, 759sst, 729st, 715st, 390s, 349m, 328st, 315st, 271m, 236st, 190 Sch., 692sst, 555sst, 464st, 435st cm⁻¹. 182 Sch., 154st cm⁻¹. $C_6H_{11}P(Se)F_2$ (231,1) (10) Raman-Spektrum Ber. C 31,2 H 4,8 F 16,4 P 13,4, 1034s, 1006s, 975s, 840s, 755s, 720s, 712s, 591s, 565 Sch., 559s, 466m, 434st, 413s, 382s, 361m, Gef. C 31,4 H 4,8 F 16,1 P 13,6. 330m, 301m, 293 Sch., 284m, 271 Sch., 262 Sch., KMR-Spektrum 182 Sch., 173sst, 148st cm⁻¹. ¹⁹F-KMR: $\delta_{\rm F} = 67.3$ ppm ($J_{\rm FP} \approx 1200$ Hz). $CH_{3}P(Se)F_{2}$ (163,0) (8) ¹H-KMR: $\delta_{\rm H} = 1.9$ ppm. Ber. C 7,4 H 1,9 F 23,3 P 19,0, IR-Spektrum Gef. C 7,5 H 1,9 F 23,1 P 18,9. $\approx 2920 \text{sst}, \approx 2844 \text{st}, \approx 1450 \text{st}, 1348 \text{Sch.}, 1327 \text{s},$ 1295s, 1275s, 1208s, 1180s, 1122s, 1080s, 1008m, KMR-Spektrum 921m, 891st, 862sst, 850 Sch., 830 Sch., 823st, ³¹P-KMR: $\delta_{\rm P} = -112.5$ ppm ($J_{\rm PF} = 1190$ Hz, $J_{\rm PSe}$ 776st, 755st, 600sst, 559sst, 544s, 498s, 445s, 412st $=1040 \pm 5$ Hz). cm⁻¹. ¹⁹F-KMR: $\delta_{\rm F} = 38,0$ ppm ($J_{\rm FP} = 1175$ Hz, $J_{\rm FSe} =$ 111,5 Hz). $C_{6}H_{5}P(Se)F_{2}(225,\theta)$ (11) ¹H-KMR: $\delta_{\rm H} = -2.5$ ppm ($J_{\rm HP} = 14.7$ Hz, $J_{\rm HF} =$ Ber. C 32.0 H 2.2 F 16.9 P 13,7, 6,8 Hz). Gef. C 32,2 H 2,3 F 17,1 P 13,5. IR-Spektrum KMR-Spektrum ${\approx}2987 {\rm s}, ~~{\approx}2910 {\rm s}, ~~{\approx}2148 {\rm s}, ~~{\approx}2061 {\rm s}, ~1399 {\rm s}, ~1333 {\rm s},$ ³¹P-KMR: $\delta_{\rm P} = -124,1$ ppm $(J_{\rm PF} = 1178 \text{ Hz})$ 1310m, 1240s, 1200s, 1030s, 920sst, 880 Sch., 858st, $(J_{\rm PH(o)} = 16 \pm 1 \text{ Hz}).$ 848 Sch., 782 sst, 562s, 522st, 468 s br. cm⁻¹. ¹⁹F-KMR: $\delta_{\rm F} = 40.8 \text{ ppm} (J_{\rm FP} = 1181 \text{ Hz}, J_{\rm FSe} =$ 110 Hz). Raman-Spektrum ¹H-KMR: $\delta_{H(0)} = -7,7$ ppm, $\delta_{H(m, p)} = -7,4$ ppm. 926s, 859s, 847s, 780s, 756s, 520sst, 388m, 318sst, 301s, 240m, 213st, 122s cm⁻¹. Massenspektrum (m/e) 226 (100%)M, 184 (2%), 162 (13%), 157 $C_2H_5P(Se)F_2$ (177,0) (9) (63%) C₆H₅Se, 146 (7%) C₆H₅PF₂, 107 (7%), 96 Ber. C 13,6 H 2,9 F 21,5 P 17,5, (4%), 85 (8%), 77 (8%) C₆H₅, 69 (23%) PF₂, 51 C 13,7 H 3,0 F 21,4 P 17,8. Gef. (43%) C₄H₃, 50 (23%) PF und andere Bruchstücke. KMR-Spektrum IR-Spektrum ³¹P-KMR: $\delta_{\rm P} = -121$ ppm. ≈3060s mit Sch., ≈2232s, 1588s, 1573s, 1484 mit ¹⁹F-KMR: $\delta_{\rm F} = 46.1$ ppm $(J_{\rm FP} = 1192 \pm 2$ Hz, Sch., 1440sst, 1335s, 1310s, 1282s, 1160s, 1120sst, $J_{\rm FSe} = 73$ Hz). 1094s, 1064s, 1024s, 998m, 862sst br. 747st, 730sst, $^{1}\text{H-KMR}: \delta_{\text{CH}_{3}-\text{P}} = -1,4 \text{ ppm} (J_{\text{CH}_{3}-\text{P}} = 25,5 \text{ Hz}, {}^{3}J_{\text{HH}})$ 685st, 615s, 582sst, 530s, 482m, 440st cm⁻¹. = 7,8 Hz), δ_{CH_2} = -2,6 ppm. $(CH_3)_2 NP(Se)F_2$ (192,0) (12) IR-Spektrum Ber. C 12,5 H 3,2 F 19,8 N 7,3 P 16,1, ~2974st, ~2937st, ~2904m, ~2879m, ~1700s br., Gef. C 12,5 H 3,2 F 19,4 N 7,5 P 16,2. ≈1570s br., 1460sst, 1401st, 1387m, 1370sst, 1273st KMR-Spektrum mit Sch., 1237st, 1062sst, 1018sst, 984m, 860sst br., ³¹P-KMR: $\delta_{\rm P} = -67.4$ ppm. 767sst mit Sch., 730sst mit Sch., 666s, 633s, 575sst,

510sst, 493st, 480 Sch., 429st, 418st, 390st, 349st

cm⁻¹.

¹⁹F-KMR: $\delta_{\rm F} = 41.8$ ppm ($J_{\rm FP} = 1115$ Hz, $J_{\rm FSe} \approx 133$ Hz, $J_{\rm FH} \approx 2$ Hz).

¹H-KMR: $\delta_{\rm H} = -3.2$ ppm ($J_{\rm HP} = 12.7$ Hz, $J_{\rm HF}$ $\approx 2\pm 0.5$ Hz).

Massenspektrum

(m/e) 193 (25%)M, 128 (18%), 112 (100%), 94 (62%) und andere Bruchstücke.

IR-Spektrum

2995s, 2930m, 2900 Sch., 2850s, 2816s, 2430s, 2032s, $\approx 1559s$, 1486m, 1456st, 1419s, 1315st, 1185sst, 1075st, 1011sst, 876sst, 844sst, 794s, 752sst, 587st, 564sst, 494s, 475m, 434m, 364 Sch. cm⁻¹.

$$(C_2H_5)_2NP(Se)F_2$$
 (220,1) (13)

Ber. C 21,8 H 4,6 F 17,3 N 6,4 P 14,1, Gef. C 21,9 H 5,0 F 17,0 N 6,7 P 14,9.

KMR-Spektrum

³¹P-KMR: $\delta_{\rm P} = -73.3$ ppm.

¹⁹F-KMR: $\delta_{\rm F} = 40.2$ ppm ($J_{\rm FP} = 1122 \pm 2$ Hz, $J_{\rm FSe} = 129 \pm 1$ Hz).

¹H-KMR: $\delta_{\rm CH_3} = -1.3$ ppm (³ $J_{\rm HH} = 7.2$ Hz), $\delta_{\rm CH_2} = -3.5$ ppm.

Massenspektrum

(m/e) 221 (47%)M, 149 (5%)SePF₂, 140 (150%), 112 (40%), 105 (33%), 69 (27%)PF₂, 50 (10%)PF, 43 (62%)NC₂H₅ und andere Bruchstücke.

- ¹ H. W. ROESKY, Chemiker-Ztg. **96**, 487 [1972]. ² H. W. ROESKY U. L. F. GRIMM, Chem. Ber. **103**,
- 3114 [1970].
- ³ HOUBEN-WEYL, Methoden der org. Chemie 12/1 und 12/2, Georg Thieme-Verlag, Stuttgart 1963.
- ⁴ J. QUINCHON, M. LESECH u. E. GRYSKIEWICZ-TROCHIMOWSKI, Bull. Soc. Chim. France 735 [1961].
- ⁵ E. GRYSKIEWICZ-TROCHIMOWSKI, O. GRYSKIEWICZ-TROCHIMOWSKI u. M. LESECH, Bull. Soc. chim. France 739 [1961].
- ⁶ E. NIECKE u. W. FLICK, private Mitt.
- ⁷ N. P. GRECKIN, I. A. NURETDINOV, N. A. DUINA, IZV. Akad. Nauk SSSr, Ser. Khim 1969, (1), 168 (Russ.).
- ⁸ G. Boden, J. Geissler, W. Grosskreutz, G. Kess-LER U. H. SCHELER Z. Chemie 12, 298 [1972].
- ⁹ G. N. CHREMOS U. R. A. ZINGARO, J. Organomet.
- Chem. 22, 637 [1970]. ¹⁰ G. N. CHREMOS U. R. A. ZINGARO, J. Organomet.
- Chem. 22, 647 [1970]. ¹¹ M. CHAIGNEAU U. M. SANTARROMANA, C. R. Acad.
- Sci. Ser. C 269, 1643 [1969].
- ¹² L. F. CENTOFANTI U. R. W. PARRY, Inorg. Chem. 4, 741 [1970].
- ¹³ H. W. ROESKY u. W. KLOKER, 4. Europ. Fluorsymposium Ljubljana August 1972.

IR-Spektrum

2964sst, 2922st, 2884st, 2864st, 2805m, 2764, 2736m, 2714m, 2470s, 2380, 2350, 1462sst, 1385sst, 1376 Sch., 1353 Sch., 1298m, 1215sst, 1167sst, 1102st, 1070st, 1035sst, 969sst, 952st, 930st, 871sst, 840sst, 795sst, 718sst, 678s, 566sst, 516m, 490m, 423st cm⁻¹.

$(CH_3)_3 SiNHP(Se)F_2$ (238,1) (14)

Ber.	C 15,1	H $4,2$	F 15,9	N 5,9	P 13,0,
Gef.	C 15,2	H 4,3	F 15,6	N 6,0	P 13,1.

KMR-Spektrum

³¹P-KMR: $\delta_{\rm P} = -68.3$ ppm ($J_{\rm PF} = 1144, J_{\rm PSe} =$ 1074,5 Hz).

¹⁹F-KMR: $\delta_{\rm F} = 30.1$ ppm ($J_{\rm FSe} = 132$ Hz, ${}^{3}J_{\rm FH} = 5.6$ Hz).

¹H-KMR: $\delta_{CH_3} = -0.5$ ppm, $\delta_{HN} = -4.6$ ppm.

IR-Spektrum

≈3230m, ≈2952m, ≈2890s, ≈1445s, ≈3380s, ≈1415s, 1260sst, ≈1167s, 1015sst mit Sch., ≈890sst, ≈853sst, 770m mit Sch., 705m mit Sch., 678 Sch., 613m mit Sch., 593sst, ≈498s, ≈401 Sch. cm⁻¹.

Raman-Spektrum

877s, 848s, 772s, 719s, 702s, 676s, 664s, 622 Sch., 614sst, 587s, 498m, 424s, 415 Sch., 404s, 357s, 327sst, 302m, 273m, 260m, 241 Sch., 217 Sch., 192m, 171st, 91m br. cm⁻¹.

- ¹⁴ J. G. Riess, R. Bender u. J.-C. Elkaim, Z. anorg.
- allg. Chem. 391, 60 [1972]. R. SCHMUTZLER, Advances in Fluorine Chemistry 15 5, Butterworths, London 1965.
- ¹⁶ G. A. OLAH, A. OSWALD u. S. KUHN, Liebigs Ann. Chem. 625, 88 [1959].
- ¹⁷ A. L. ALLRED, J. inorg. nuclear Chem. 17, 215 [1961].
- ¹⁸ E. FLUCK u. G. HECKMANN, Z. Naturforsch. 24b, 953 [1969].
- A. MÜLLER, B. KREBS, E. NIECKE U. A. RUOFF,
- Ber. Bunsenges. physik. Chemie 71, 571 [1967].
- ²⁰ H. W. ROESKY, Chem. Ber. 100, 2147 [1967].
- ²¹ H. W. ROESKY u. H. BEYER, Chem. Ber. 102, 2588 [1969].
- ²² O. GLEMSER, U. BIERMANN U. S. P. v. HALASZ, J. inorg. nuclear Chem. Lett. 5, 643 [1969].
- ²³ O. GLEMSER, U. BIERMANN u. S. P. v. HALASZ, J.
- inorg. nuclear Chem. Lett. 5, 501 [1969]. ²⁴ L. C. THOMAS U. R. A. CHITTENDEN, Chem. Ind.
- [London] 1913 [1961].
 ²⁵ J. R. DURIG, F. BLOCH U. I. W. LEVIN, Spectro-chimica Acta [London] 21, 1105 [1965].
- ²⁶ C. CHRISTOL u. H. CHRISTOL, J. Chim. physique 62, 246 [1965].

- 27 M. A. FLEMING, R. J. WYMA U. R. C. TAYLOR, Spectrochimica Acta [London] 21, 1189 [1965].
- 28 L. W. DAASCH u. D. C. SMITH, Analytic. Chem. 23, 853 [1951].
- ²⁹ L. C. THOMAS u. R. A. CHITTENDEN, Spectrochimica Acta [London] 20, 467 [1964]. ³⁰ F. N. HOOGE u. P. J. CHRISTEN, Rec. Trav. chim.
- Pays-Bas 77, 911 [1958].
- ³¹ R. A. CHITTENDEN U. L. G. THOMAS, Spectrochimica Acta [London] 21, 861 [1965].
- ³² E. GRYSKIEWICZ-TROCHIMOWSKI, J. Quinchon u. O. GRYSKIEWICZ-TROCHIMOWSKI, Bull. Soc. chim. France 1794 [1960]. ³³ S. D. GOUHAH U. W. L. JOLLY, Inorg. Chem. 3,
- 1141 [1964].
- ³⁴ J. R. DURIG, B. R. MITCHELL, J. S. DIYORIO U. F. ВLOCH, J. physic. Chem. 70, 3190 [1966].
- ³⁵ R. SCHMUTZLER, J. inorg. nuclear Chem. 25, 335 [1963].

- ³⁶ D. KÖTTGEN, H. STOLL, R. PANTZER, A. LENTZ U. J. GOUBEAU, Z. anorg. allg. Chem. 389, 269 [1972]. F. SEEL, K. BALLREICH U. R. SCHMUTZLER, Chem. 37
- Ber. 94, 1173 [1961].
- ³⁸ J. GOUBEAU, Chemiker-Ztg. 96, 513 [1972].
- ³⁹ H. G. HORN u. A. MÜLLER, Z. Naturforsch. 21b, 729 [1966].
- ⁴⁰ H. W. ROESKY, Chem. Ber. 101, 3679 [1968].
- ⁴¹ J. GOUBEAU, R. BAUMGÄRINER, W. KOCH u. U. MÜLLER, Z. anorg. allg. Chem. 337, 174 [1965].
- ⁴² F. SEEL, K. RUDOLPH u. R. BUDENZ, Z. anorg. allg.
- ⁴³ J. H. GREEN u. W. KYNASTON, Spectrochimica Acta [London] 25 A, 1677 [1969].
- 44 H. SCHMIDBAUR u. H. STENZENBERGER, Spectrochimica Acta [London] **26 A**, 1707 [1970]. ⁴⁵ H. W. ROESKY u. W. KLOKER, unveröffentlichte
- Ergebnisse.
- ⁴⁶ R. SCHMUTZLER, Inorg. Chem. 3, 415 [1964].