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Abstract

Modifications of the gyromagnetic moment of electrons and muons due to a minimal length scale combined with a m
fundamental scaleMf are explored. First-order deviations from the theoretical SM value forg − 2 due to these string theory
motivated effects are derived. Constraints for the fundamental scaleMf are given.
 2004 Elsevier B.V.Open access under CC BY license.
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String theory suggests the existence of a minim
length scale. An exciting quantum mechanical imp
cation of this feature is a modification of the unc
tainty principle. In perturbative string theory [1,2
the feature of a fundamental minimal length sc
arises from the fact that strings cannot probe d
tances smaller than the string scale. If the energ
a string reaches the Planck massmp, excitations of the
string can occur and cause a non-zero extension
Due to this, uncertainty in position measurement
never become smaller thanlp = h̄/mp. For a review,
see [4,5].

Although a full description of quantum gravity
not yet available, there are general features that s
to go hand in hand with promising candidates for su
a theory:
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• the need for a higher-dimensional space–time
• the existence of a minimal length scale.

Naturally, this minimum length uncertainty is r
lated to a modification of the standard commutat
relations between position and momentum [6,7]. A
plication of this is of high interest for quantum flu
tuations in the early universe and inflation [8–1
The incorporation of the modified commutation r
lations into quantum theory is not fully consistent
all approaches. We will follow the propositions ma
in [17].

In our approach, the existence of a minimal len
scale grows important for collider physics at high e
ergies or for high precision measurements at low e
gies due to the lowered value of the fundamental s
Mf . This new scale is incorporated through the cen
idea of large extra dimensions (LXDs). The model
LXDs which was recently proposed in [18–22] mig
indeed allow to study first effects of unification
quantum gravity in near future experiments. Here,

http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


110 U. Harbach et al. / Physics Letters B 584 (2004) 109–113

ted

a-
our

ne.
ew
g

he

a
tum

re-
ters

,
logy
ion
ling
er
ergy
i-

gies
37–
ne
en-
ob-

all
difi-
les
del

n-
ive
ill
ay

di-

al
ase
r

up

ess

ed

la-

lly
c-
y

is

,
ers
in

un-

e-

es

or-
hierarchy-problem is solved or at least reformula
in a geometric language by the existence ofd com-
pactified LXDs in which only gravitons can prop
gate. The standard model particles are bound to
4-dimensional sub-manifold, often called our 3-bra
This results in a lowering of the Planck scale to a n
fundamental scaleMf and gives rise to the excitin
possibility of TeV scale GUTs [23].

In this scenario the following relation between t
four-dimensional Planck massmp and the higher-
dimensional Planck massMf can be derived:

(1)m2
p = RdMd+2

f .

The lowered fundamental scale would lead to
vast number of observable phenomena for quan
gravity at energies in the rangeMf . In fact, the non-
observation in past collider experiments of these p
dicted features gives first constraints on the parame
of the model, the number of extra dimensionsd and
the fundamental scaleMf [24,25]. On the one hand
this scenario has major consequences for cosmo
and astrophysics such as the modification of inflat
in the early universe and enhanced supernova-coo
due to graviton emission [20,26–29]. On the oth
hand, additional processes are expected in high-en
collisions [30,31]: production of real and virtual grav
tons [32–36] and the creation of black holes at ener
that can be achieved at colliders in the near future [
43] and in ultra high energetic cosmic rays [44]. O
also has to expect the influence of the extra dim
sions on high precision measurements. The most
vious being the modification of Newton’s law at sm
distances [45–47]. Of highest interest are also mo
cations of the gyromagnetic moment of Dirac partic
which promises new insight into non-standard mo
couplings and effects [48–53].

In this Letter we study implications of these exte
sions in the Dirac equation without the aim to der
them from a fully consistent theory. Instead we w
analyse possible observable modifications that m
arise by combining the assumptions of both extra
mensions and a minimal length scale.

In order to implement the notion of a minim
lengthLf , let us now suppose that one can incre
the momentump arbitrarily, but that the wave numbe
k has an upper bound. This effect will show
whenp approaches a certain scaleMf . The physical
interpretation of this is that particles could not poss
arbitrarily small Compton wavelengthsλ = 2π/k and
that arbitrarily small scales could not be resolv
anymore.

To incorporate this behaviour, we assume a re
tion k = k(p) betweenp and k which is an uneven
function (because of parity) and which asymptotica
approaches 1/Lf . Furthermore, we demand the fun
tional relation between the energyE and the frequenc
ω to be the same as that between the wave vectork and
the momentump. A possible choice for the relations

(2)Lf k(p) = tanh1/γ
[(

p

Mf

)γ ]
,

(3)Lf ω(E) = tanh1/γ
[(

E

Mf

)γ]
,

with a real, positive constantγ .
In the following we will study an approximation

namely the regime of first effects including the ord
(p/Mf )

3. For this purpose, we expand the function
a Taylor series for small arguments.

Because the exact functional dependence is
known, we assume an arbitrary factorα in front of the
order (p/Mf )

3-term. Therefore the most general r
lations fork(p) andω(E) which we will use in the
following should be

(4)Lf k(p) ≈ p

Mf
− α

(
p

Mf

)3

,

(5)Lf ω(E) ≈ E

Mf

− α

(
E

Mf

)3

,

(6)
1

Mf

p(k) ≈ kLf + α(kLf )
3,

(7)
1

Mf

E(ω) ≈ ωLf + α(ωLf )
3,

with α being of order one, in general negative valu
of α cannot be excluded.

This yields to 3rd order

(8)
1

h̄

∂p

∂k
≈ 1+ 3α

(
p

Mf

)2

.

The quantisation of these relations is straightf
ward. The commutators betweenk̂ and x̂ remain in
the standard form:

(9)[x̂, k̂] = iδij .
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Inserting the functional relation between the wa
vector and the momentum then yields the modifi
commutator for the momentum. With the commuta
relation

(10)
[
x̂, Â(k)

] = +i
∂A

∂k
,

the modified commutator algebra now reads

(11)[x̂, p̂] = +i
∂p

∂k
.

This results in the generalised uncertainty relation

(12)�p�x � 1

2

∣∣∣∣
〈
∂p

∂k

〉∣∣∣∣.
With the approximations (4)–(7), the results

Ref. [8] are reproduced up to the factorα:

(13)[x̂, p̂] ≈ ih̄

(
1+ 3α

p̂2

M2
f

)

giving the generalised uncertainty relation

(14)�p�x � 1

2
h̄

(
1+ 3α

〈p̂2〉
M2

f

)
.

Quantisation proceeds in the usual way from
commutation relations. Focusing on conservative
tentials in quantum mechanics we give the opera
in the position representation which is suited best
this purpose:

x̂ = x, k̂ = −i∂x,

(15)p̂ = p̂(k̂),

yielding the new momentum operator

(16)p̂(k̂) ≈ −ih̄
(
1− αL2

f ∂
2
x

)
∂x.

In ordinary relativistic quantum mechanics t
Hamiltonian of the Dirac particle is1

(17)Ĥ = ih̄∂0 = γ 0(ih̄γ i∂i +m
)
.

This leads to the Dirac equation

(18)(/p −m)ψ = 0,

with the following standard abbreviationγ νAν := /A
and pν = ih̄∂ν . To include the modifications due t

1 Greek indices run from 0 to 3, roman indices run from 1 to
the generalised uncertainty principle, we start with
relation

(19)Ê(ω) = γ 0(γ i p̂i(k)+m
)
.

Including the altered momentum wave vector relat
p̂(k̂) from Eq. (16), this yields again Eq. (18) with th
modified momentum operator

(20)
(
/p(k̂)−m

)
ψ = 0.

This equation is Lorentz invariant by constructio
Since it contains—in position representation—3
order derivatives in space coordinates, it conta
3rd order time-derivatives too. In our approximatio
we can solve the equation for a single order ti
derivative by using the energy conditionE2 = p2 +
m2. This leads effectively to a replacement of tim
derivatives by space derivatives:

(21)h̄ω̂ ≈ Ê − αÊ3

M2
f

= Ê

(
1− α

p̂i p̂i +m2

M2
f

)
.

Inserting the modifiedÊ(ω) and p̂(k) and keeping
only derivatives up to 3rd order, we obtain the follo
ing expression of the Dirac equation:

(22)

ω|ψ〉 ≈ γ 0
(
γ i k̂i + m

h̄

)(
1− α

h̄2k̂i k̂i +m2

M2
f

)
|ψ〉.

The task is now to derive the modifications of t
anomalous gyromagnetic moment due to the existe
of a minimal length. Therefore we assume as us
the particle is placed inside a homogeneous and s
magnetic fieldB. Regarding the energy levels of a
electron the magnetic field leads to a splitting of
energetic degenerated values which is proportiona
the magnetic fieldB and the gyromagnetic momentg.
Since the energy of the particle in the field is n
modified (see (18)) there is no modification of t
splitting as one might have expected from the fact t
the particles spin is responsible for the anomaly.

However, if we look at the precession of a dipole
a magnetic field without minimal length and compa
its precession frequency to that of the spin 1/2
particle under investigation, again the factorg occurs.
Without minimal length the frequency from quantu
mechanics is two times the classical one. In t
case a further modification from the minimal leng
are expected since the relation between energy
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frequency is involved. Thus, the modification ofg
depends crucially on the way it is measured. Let
now derive this novel formulation.

Eq. (22) with minimally coupled electromagne
fields reads

(23)

ω|ψ〉 ≈ γ 0
(
γ iK̂i + m

h̄

)(
1− α

h̄2K̂iK̂i +m2

M2
f

)
|ψ〉,

where K̂ = k̂ + eÂ/h̄. Higher derivatives acting o
the magnetic potential can be dropped too for a st
and uniform field. In addition, the constant elect
potential can be set to zero. In the non-relativis
approximation we can simplify this equation in th
Coulomb gauge to

(24)(E +mF̂ )|χ〉 =
(
(h̄K̂)2

2m
F̂ + eh̄

2m
σB̂F̂

)
|χ〉

with

(25)F̂ =
(

1− α
h̄2K̂iK̂i +m2

M2
f

)
, |ψ〉 =

∣∣∣∣χφ
〉
.

Hereχ is the upper component of the Dirac spinor a
σ denotes the Pauli matrices.

Therefore, the modified expressiong̃ for the gyro-
magnetic moment is

(26)g̃ = g

(
1− α

m2

M2
f

)
.

The experimental data concerning the muon gy
magnetic moment are as follows: Davier and colla
rates provide two standard model theory results; t
differ in the experimental input2 used to the hadroni
contributions [54]. It is convenient to use the quan
a = (g − 2)/2:

aµ,τ = 11659193.6(10.9)× 10−10,

aµ,ee = 11659169.3(9.8)× 10−10.

The experimental ‘world average’ is [55]

(27)aµ = 11659203(8)× 10−10.

The results indicate that modifications to the st
dard model calculation have to be smaller than 10−8.

2 The indices indicate the source of the vector spectral functi
they are obtained by either hadronicτ decays ore+e−-annihilation
cross-sections.
This leads to the following constraint on the fund
mental scale of the theory:

(28)Mf /
√|α| � 1 TeV.

As we are working within a model with large ext
dimensions, there might further be corrections due
graviton loops [56,57]. However, recent calculatio
show that neither sign nor value of these correcti
are predictable due to unknown form-factors a
cutoff parameters [58].

A model, which combines both large extra dime
sions and the minimal length scaleLf is studied. The
existence of a minimal length scale leads to m
ifications of quantum mechanics. With the recen
proposed idea of large extra dimensions, this n
scale might be in reach of present day experime
The modified Dirac equation is used to derive an
pression for the gyromagnetic moment of spin 1/2
particles. Our results for the muong − 2 value are
compared to the values predicted by QED and exp
ment. For the commonly used settingγ = 1 (α = 1/3),
a specific limit on the fundamental scaleMf can be
obtained from presentg − 2 data:Mf � 577 GeV.
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