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Derived from a biophysical model for the motion of a crawling cell, the evolution 
system

{
ut = Δu−∇ · (u∇v),
0 = Δv − kv + u,

(�)

is investigated in a finite domain Ω ⊂ Rn, n ≥ 2, with k ≥ 0. Whereas a 
comprehensive literature is available for cases in which (�) describes chemotaxis-
driven population dynamics and hence is accompanied by homogeneous Neumann-
type boundary conditions for both components, the presently considered modeling 
context, besides yet requiring the flux ∂νu − u∂νv to vanish on ∂Ω, inherently 
involves homogeneous Dirichlet boundary conditions for the attractant v, which 
in the current setting corresponds to the cell’s cytoskeleton being free of pressure 
at the boundary. This modification in the boundary setting is shown to go along 
with a substantial change with respect to the potential to support the emergence 
of singular structures: It is, inter alia, revealed that in contexts of radial solutions 
in balls there exist two critical mass levels, distinct from each other whenever k > 0
or n ≥ 3, that separate ranges within which (i) all solutions are global in time 
and remain bounded, (ii) both global bounded and exploding solutions exist, or 
(iii) all nontrivial solutions blow up. While critical mass phenomena distinguishing 
between regimes of type (i) and (ii) belong to the well-understood characteristics 
of (�) when posed under classical no-flux boundary conditions in planar domains, 
the discovery of a distinct secondary critical mass level related to the occurrence of 
(iii) seems to have no nearby precedent. In the planar case with the domain being a 
disk, the analytical results are supplemented with some numerical illustrations, and 
it is discussed how the findings can be interpreted biophysically for the situation of 
a cell on a flat substrate.
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r é s u m é

Dérivé d’un modèle biophysique pour le mouvement d’une cellule rampante, le 
système d’évolution

{
ut = Δu−∇ · (u∇v),
0 = Δv − kv + u,

(�)

est étudiée dans un domaine fini Ω ⊂ Rn, n ≥ 2, avec k ≥ 0. Alors qu’une littérature 
complète est disponible pour les cas dans lesquels (�) décrit une dynamique 
de population pilotée par chimiotaxie et donc s’accompagne de conditions aux 
limites homogènes de type Neumann pour les deux composantes, le contexte de 
modélisation actuellement considéré, en plus d’exiger que le flux ∂νu − u∂νv
disparaisse sur ∂Ω, implique intrinsèquement des conditions aux limites homogènes 
de Dirichlet pour l’attractif v, qui, dans le cas présent, correspond au cytosquelette 
de la cellule libre de toute pression à la frontière. Il est démontré que cette 
modification des conditions aux limites s’accompagne d’un changement substantiel 
en ce qui concerne le potentiel d’émergence de structures singulières : Il est, entre 
autres, révélé que dans les contextes de solutions radiales dans les boules, il existe 
deux niveaux de masse critique, distincts l’un de l’autre quand k > 0 ou n ≥ 3, qui 
séparent les plages dans lesquelles (i) toutes les solutions sont globales en temps et 
restent bornées, (ii) à la fois des solutions globales bornées et explosives existent, 
ou (iii) toutes les solutions non triviales explosent. Alors que les phénomènes de 
masse critique qui distinguent les régimes de type (i) et (ii) appartiennent aux 
caractéristiques bien comprises des régimes de type (�), lorsqu’ils sont posés sous 
des conditions limites classiques sans flux dans des domaines planaires, la découverte 
d’un niveau de masse critique secondaire distinct lié à l’occurrence de (iii) semble 
n’avoir aucun précédent proche. Dans le cas planaire où le domaine est un disque, les 
résultats analytiques sont complétés par quelques illustrations numériques, et nous 
discutons de la manière dont les résultats peuvent être interprétés biophysiquement 
dans le cas d’une cellule sur un substrat plat.

© 2022 The Authors. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A Keller-Segel type model for crawling keratocytes. This study is concerned with the cross-diffusion problem

⎧⎪⎨
⎪⎩

ut = Δu−∇ · (u∇v), x ∈ Ω, t > 0,
0 = Δv − kv + u, x ∈ Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

(1)

in a bounded domain Ω ⊂ Rn, n ≥ 2. During the past decades, this system has received noticeable interest 
when used as a parabolic-elliptic simplification of the celebrated Keller-Segel model to describe collective 
behavior in microbial populations with movement chemotactically biased by a chemical signal, and hence 
typically found accompanied by no-flux boundary conditions in the literature ([18], [15], [21]).

In contrast to this, the context to be considered in the present paper necessitates to supplement (1) by 
the requirements

∂u

∂ν
− u

∂v

∂ν
= v = 0, x ∈ ∂Ω, (2)

on the boundary of the domain Ω ⊂ Rn, as intrinsically linked to the role which, quite independently of 
the above, (1) plays when derived from a biomechanical model for a single crawling keratocyte, or rather a 
keratocyte fragment, that has been introduced in [2] for space dimension n = 2. These fragments are similar 
to lamellipodia, i.e., very flat structures, and can in good approximation be described as two-dimensional 
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entities. The computational model presented in [2] was reduced and analyzed in [4], and similar models in 
one space dimension have been investigated in, e.g., [33]. From the physical model in [2], a reduced free 
boundary problem has been derived in [4] by combining bulk and shear components of the stress in the 
actin gel in a phenomenological way, allowing for the stress tensor to be represented as a scalar multiple 
of the identity matrix. This step used the fact that cytoskeleton gels are rather unusual viscoelastic fluids 
with the stress not being shear dominated. This led to a free boundary problem for two variables, in our 
context named v for the stress in the cytoskeleton and u for the density of myosin motor proteins. The 
latter actively generate stress by binding to and pulling on the actin filaments constituting the cytoskeleton 
meshwork.

The first equation in (1) is thus interpreted as a diffusion-advection equation for the concentration of 
myosin molecules which are either freely diffusing inside the cytoplasm or are bound to the actin gel and 
hence convected with the velocity ∇v which is the divergence of the stress tensor, vI. The second equation 
describes the force balance in the actin gel with the term u representing the actively generated stress due 
to the myosin motors, which is assumed to be proportional to the density of these motors. The term −kv

models the dissipation of stress via traction with the substrate to which the actin gel is linked by adhesion 
molecules. The distribution of these adhesions is supposed to be uniform and constant in time for a resting 
cell. Moreover, the second equation being elliptic assumes that stresses equilibrate on a much faster time 
scale than the motion of the actin gel, indicated by very low Deborah numbers reported for moving, let 
alone resting cells [34]. This simply means that the gel behaves more like a viscous fluid than an elastic 
solid on the relevant time scale. The parameter k is the typical stress stored in the actin gel relative to 
the typical stress generated by myosin motors. The second parameter present in the model is the size of 
the domain Ω which is measured in multiples of 

√
kL, where L is the viscous length of the actin gel which 

describes how far the locally generated stress acts through the network before being dissipated away. It is 
defined as square root of the ratio of the viscosity and the traction coefficient.

Whereas both [2] and [4] were interested in traveling wave solutions to their respective free boundary 
problems to describe steady cell motion, we will focus here on the behavior of steady states and the possibility 
of finite time blow up. Steady state solutions clearly correspond to a resting cell although we should mention 
that stationarity in (1) does not imply that there is no motion inside the cell; recall that the velocity of the 
actin gel is ∇v. More strikingly, solutions blowing up in finite time are interpreted as the cell being physically 
disrupted by too much contractile activity of myosin motors as represented by a large total myosin mass 
m =

´
Ω u which is obviously a conserved quantity for (1)-(2). While the bifurcation from rest to motion 

at subcritical values of m described in [4] refers to a dynamic instability of the free boundary problem 
modeling a potentially motile cell switching from rest to directed motion, blow up of solutions for large 
m in system (1) with fixed boundary relates to the observed disruption of immobile cells upon variations 
of myosin activity or adhesion strength as has been seen experimentally ([1], cf. e.g. [35] for mechanism 
of fragmentation of actin filaments by myosin generated forces). Mechanical breakdown due to enhanced 
myosin activity and concomitant concentration of myosin is also associated with physiological processes 
such as programmed cell death, or apoptosis, as described in [11].

To rule out possible issues of self intersection of the moving boundary as mechanism for the break down 
of solutions we fixed the shape of the domain Ω occupied by the cell. Physically, this may be achieved by 
letting the cell sit on a particularly sticky substrate or by providing it with an adhesive patch of substrate of 
a given shape Ω and making the surrounding region, viz. R2\Ω, particularly hostile by coating with adverse 
substances or no coating at all. Keeping the stress-free boundary condition v = 0 and the no-flux condition 
for the myosin molecules from the original model ([2]), we finally arrive at (1)-(2) which differs from the 
classical parabolic-elliptic Keller-Segel system most significantly in the boundary conditions. The peculiar 
condition v = 0 on ∂Ω arises from the fact that myosin motors at the boundary are not supposed to generate 
stress since there is nothing outside the cell to be pulled against. There is no contradiction in the cytoskeleton 
gel’s velocity being different from zero at the boundary. In fact, in a resting cell, actin is polymerized at the 
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boundary, leading on average to a radial expansion of the cytoskeleton, which is counteracted by the actin 
gel constantly moving toward the center where the actin filaments are depolymerized. This retrograde flow 
means that the gel moves away from the boundary at non-zero velocity.

Detecting explosion-related dichotomies in Keller-Segel systems. Over the past decades, significant effort 
in the analysis of chemotaxis problems has been directed towards excluding (e.g. [30]) or detecting blow-
up ([16,14,29]) and the study of additional qualitative properties (e.g. [36,26,38,8,9]) in (1) and related 
variants, e.g. further simplified like in [16], or rather fully parabolic and hence more complex. Among the 
apparently most striking characteristics of such Keller-Segel systems, the literature has identified situations 
in which the occurrence of blow-up depends on the size of the conserved total mass 

´
Ω u in a crucial manner. 

Specifically, when posed along with homogeneous Neumann boundary conditions for both components in 
planar bounded domains Ω, (1) with arbitrary k > 0 is known to exhibit a sharp and well-understood critical 
mass phenomenon in the sense that whenever 0 ≤ u0 is sufficiently regular with 

´
Ω u0 < 4π, an associated 

initial-boundary value problem with u|t=0 = u0 admits a globally defined bounded solution, whereas for any 
m > 4π one can find smooth initial data with 

´
Ω u0 = m such that the corresponding solution blows up in 

finite time ([29]); a restriction to radially symmetric solutions in balls increases this separating mass level 
to the value 8π ([29]). Similar dichotomies have been detected in Neumann problems for further parabolic-
elliptic and for fully parabolic relatives of (1) [27,7,14,30]; cf. also [9,39] for some related findings for Cauchy 
problems on the whole plane Ω = R2).

A secondary critical mass phenomenon enforced by Dirichlet conditions for v. Main results. The present 
study will now reveal that when considered along with the boundary conditions in (2), the system (1) may 
gain a further dynamical facet that is linked to the presence of a secondary, and apparently yet undiscovered, 
critical mass phenomenon.

To appropriately formulate and embed our findings in this regard, let us first summarize some fundamental 
properties thereof, as can readily be verified upon straightforward adaptation of arguments known from the 
literature (cf. e.g. [37] for Part i), [37], [29] for Part ii), and [28] for Part iii)):

Theorem A. Let n ≥ 2 and Ω ⊂ Rn be a bounded domain with smooth boundary, and let k ≥ 0.

i) If n = 2 and u0 ∈ C0(Ω) is nonnegative with

ˆ

Ω

u0 < 8π,

then (1)-(2) possesses a global classical solution (u, v) which is bounded in the sense that there exists 
C > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C for all t > 0. (3)

ii) If n = 2, then for all m > 8π there exists some nonnegative u0 ∈ C0(Ω) with 
´
Ω u0 = m such that the 

corresponding solution of (1)-(2) blows up in finite time in the sense that lim sup
t↗T

‖u(·, t)‖L∞(Ω) = ∞ for 

some finite T > 0. Here, if Ω = BR(0) with some R > 0, then u0 can be chosen to be radially symmetric 
with respect to x = 0.

iii) In the case n ≥ 3 and if Ω is star-shaped, for all m > 0 one can find nonnegative u0 ∈ C0(Ω) with ´
u0 = m, radially symmetric if Ω is a ball, such that the solution of (1)-(2) blows up.
Ω
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As a direct consequence for the general, not necessarily radial case, this implies the following essentially 
well-known statement identifying the number 8π as a k-independent critical mass in (1)-(2) when n = 2, 
whereas if n ≥ 3 then a corresponding critical mass phenomenon seems absent:

Corollary B. Let n ≥ 2, Ω ⊂ Rn be a bounded domain with smooth boundary, and k ≥ 0. Then

M�(Ω, k) := inf
{
m > 0

∣∣∣∣ There exists some nonnegative u0 ∈ C0(Ω) with
ˆ

Ω

u0 = m

such that the solution of (1)-(2) blows up
}

(4)

is well-defined and satisfies

M�(Ω, k) =
{

8π if n = 2,
0 if n ≥ 3.

(5)

(In (4) and the following, “blows up” may refer to blow-up at a finite time T > 0 or at T = ∞.)
Now the first of our main results identifies a secondary mass threshold which, as can already be stated 

at this stage, at least in the case n ≥ 3 indeed differs from the value M�(Ω, k) = 0.

Theorem 1.1. Let n ≥ 2 and Ω ⊂ Rn be a bounded domain with smooth boundary which is strictly star-shaped 
with respect to 0 ∈ Ω in the sense that

γ := inf
x∈∂Ω

x · ν(x) > 0. (6)

Then for all k ≥ 0,

M�(Ω, k) := inf
{
m > 0

∣∣∣∣ For all nonnegative u0 ∈ C0(Ω) with
ˆ

Ω

u0 = m,

the solution of (1)-(2) blows up
}

(7)

is well-defined and finite (in particular, the set in (7) is non-empty) with

8π ≤ M�(Ω, k) ≤ 4|∂Ω|
γ

+ 2k|Ω| if n = 2 (8)

and

0 < M�(Ω, k) ≤ 2n|∂Ω|
γ

+ 2k|Ω| if n ≥ 3. (9)

In two-dimensional domains, however, the situation will turn out to be more subtle, involving a crucial 
qualitative dependence on whether or not the parameter k is positive. As a first step toward revealing 
this, let us concentrate on the special situation when Ω is a ball, in which the above enables us to rather 
explicitly estimate this secondary critical mass, and to thereby detect, in particular, coincidence of both 
mass thresholds in the planar case when k = 0 in such geometries.
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Corollary 1.2. Let n ≥ 2, R > 0 and Ω = BR(0) ⊂ Rn. Then for all k ≥ 0,

8π = M�(BR(0), k) ≤ M�(BR(0), k) ≤ 8π + 2kπR2 if n = 2

and

0 = M�(BR(0), k) < M�(BR(0), k) ≤ 2ωnR
n

n
+ 2nkωnR

n−2 if n ≥ 3,

where ωn denotes the (n − 1)-dimensional measure of the unit sphere ∂B1(0). In particular, for k = 0,

M�(BR(0), 0) = M�(BR(0), 0) = 8π for all R > 0 if n = 2.

On further specializing the setup by resorting henceforth to radially symmetric solutions in balls 
Ω = BR(0) ⊂ Rn, n ≥ 2, R > 0, emanating from initial data in the space C0

rad(Ω) := {ϕ ∈
C0(Ω) | ϕ is radially symmetric with respect to x = 0}, we can rephrase part of Theorem A as follows.

Corollary C. Let n ≥ 2, R > 0, and Ω = BR(0) ⊂ Rn, and let k ≥ 0. Then

m�(n,R, k) := inf
{
m > 0

∣∣∣∣ There exists some nonnegative u0 ∈ C0
rad(Ω) with

ˆ

Ω

u0 = m

such that the solution of (1)-(2) blows up
}

(10)

is well-defined with

m�(n,R, k) = M�(BR(0), k) =

⎧⎨
⎩

8π if n = 2,

0 if n ≥ 3.

Now the second of our main results makes sure that a corresponding secondary mass threshold, defined 
in the spirit of Theorem 1.1, plays the role of a genuinely new critical mass for radial solutions not only 
when n ≥ 3 and k ≥ 0, but also when n = 2 and k > 0 is arbitrary, thus complementing the outcome of 
Corollary 1.2 in quite a sharp manner:

Theorem 1.3. Let n ≥ 2, R > 0, and Ω = BR(0) ⊂ Rn. Then for all k ≥ 0,

m�(n,R, k) := inf
{
m > 0

∣∣∣∣ For all nonnegative u0 ∈ C0
rad(Ω) with

ˆ

Ω

u0 = m,

the solution of (1)-(2) blows up
}

(11)

satisfies

M�(BR(0), k) = m�(n,R, k) ≤ m�(n,R, k) ≤ M�(BR(0), k). (12)

In particular, the set in (11) is non-empty.
Moreover,

m�(2, R, 0) = m�(2, R, 0) = 8π, (13)
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but

8π = m�(2, R, k) < m�(2, R, k) for all k > 0, (14)

and apart from that,

0 = m�(n,R, k) < m�(n,R, k) for all k ≥ 0 if n ≥ 3. (15)

For the special case k = 0, the finiteness of M� (in n-dimensional balls, n ≥ 2, but for possibly nonradial 
u0) was already observed in [5] and that of m� in [6]. It is remarkable that the values of m� and m�, which 
coincide for k = 0 and n = 2, differ for positive k. In this sense linear signal degradation affects the blow-up 
affinity of (1) and makes it possible to find two separate critical masses in the same system.

2. Local existence and extensibility

Let us first adapt an essentially well-established contraction-based reasoning to see that similar to its 
no-flux type relative, the problem (1)-(2) admits local smooth solutions which can cease to exist within 
finite time only when becoming unbounded with respect to the L∞ norm in their first component.

Proposition 2.1. Let n ≥ 2 and Ω ⊂ Rn be a bounded domain with smooth boundary, let k ≥ 0, and suppose 
that u0 ∈ C0(Ω) is nonnegative. Then there exist Tmax ∈ (0, ∞] and a uniquely determined pair (u, v) of 
nonnegative functions

{
u ∈ C0(Ω × [0, Tmax)) ∩ C2,1(Ω × (0, Tmax)) and
v ∈ C2,0(Ω × (0, Tmax))

(16)

which solve (1)-(2) classically in Ω × (0, Tmax), and which are such that

if Tmax < ∞, then (u, v) blows up at t = Tmax, (17)

where we say that (u, v) blows up at t = Tmax if and only if lim supt↗Tmax
‖u(·, t)‖L∞(Ω) = ∞.

Furthermore,

‖u(·, t)‖L1(Ω) =
ˆ

Ω

u0 for all t ∈ (0, Tmax). (18)

Proof. We fix some p > n and let M := ‖u0‖Lp(Ω) + 1. With T > 0 to be determined later, we set

XM,T :=
{
u ∈ C0([0, T ];Lp(Ω)) | ‖u‖L∞((0,T );Lp(Ω)) ≤ M, u(·, 0) = u0

}
.

Given any u ∈ XT := C0([0, T ]; Lp(Ω)), for t ∈ (0, T ) letting v(·, t) ∈ W 1,2
0 (Ω) denote the weak solution of 

the Dirichlet problem for 0 = Δv(·, t) −kv(·, t) +u(·, t) we obtain a function v = v(u) ∈ C0([0, T ]; W 2,p(Ω) ∩
W 1,p

0 (Ω)) and note that due to our choice of p, elliptic regularity theory (see e.g. [25, Thm. 37,I]) and a 
Sobolev embedding, we can find c1 > 0 such that

‖∇v(u)‖C0([0,T ];L∞(Ω)) ≤ c1‖u‖C0([0,T ];Lp(Ω)) for all u ∈ XT .

According to [23, Thm. VI.39], for each v(u), u ∈ XM,T , the problem

ut = ∇ · (∇u− u∇v(u)) in Ω × (0, T ), (∇u− u∇v(u)) · ν = 0 on ∂Ω × (0, T ), u(·, 0) = u0 in Ω,
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has a unique solution u ∈ V2 =
{
u ∈ L∞((0, T );L2(Ω)) | ∇u ∈ L2(Ω × (0, T ))

}
which is nonnegative and 

bounded by some c2(M) in Ω × [0, T ] ([23, Thm. VI.40]) and Hölder-continuous in Ω× (0, T ) ([31, Thm. 1.3 
and Remark 1.3]). We denote this solution by Φ(u), thus defining a mapping Φ: XM,T → XT . For arbitrary 
t ∈ (0, T ), h1 ∈ (0, T − t), h2 ∈ (0, T − t − h1), we let ψ ≡ 1 on [0, t), ψ ≡ 0 on (t + h1, T ) and linearly 
interpolated between t and t + h1. Given u1, u2 ∈ XM,T , we then let

ϕ(x, τ) := 1
h2

τ+h2ˆ

τ

(Φ(u1) − Φ(u2))p−1(x, s)ds · ψ(τ), x ∈ Ω, τ ∈ (0, T ),

and use this regularized version of (Φ(u1) − Φ(u2))p−1 as test function in the difference of the definitions 
of weak solutions (cf. [23, p. 136]) for Φ(u1) and Φ(u2). After successively taking h1 → 0 and h2 → 0 and 
several applications of Young’s inequality we find that with some c3 > 0,

1
p

ˆ

Ω

((Φ(u1) − Φ(u2))(t))p ≤ c3(1 + Mp)
tˆ

0

ˆ

Ω

(Φ(u1) − Φ(u2))p + c3c
p
2(M)

tˆ

0

ˆ

Ω

|∇(v1 − v2)|p

holds for every t ∈ (0, T ), u1, u2 ∈ XM,T . Therefore, by a Grönwall-type argument we find that with some 
c4 > 0,

‖Φ(u1)(t)−Φ(u2)(t)‖pLp(Ω) ≤ c4(ec4t−1)‖∇v1−∇v2‖pL∞((0,T );Lp(Ω)) ≤ c1c4(ec4T −1)‖u1−u2‖pL∞((0,T );Lp(Ω))

is satisfied for all u1, u2 ∈ XM,T and all t ∈ (0, T ). Upon suitably small choice of T , the map Φ: XM,T →
XM,T becomes a contraction. Banach’s theorem hence entails the existence of a fixed point u = Φ(u), unique 
within XM,T , whose further regularity follows from successive applications of [13, Thm. 6.6], [22, Thm 1.1]
and [19, Thm. IV.5.3]. The extensibility criterion (17) is a consequence of the exclusive dependence of T on 
M , and hence on ‖u0‖L∞(Ω), whereas (18) is obvious in view of (1) and (2). �

The following observation on boundedness enforced by suitably small data generalizes knowledge on 
similar properties in related Keller-Segel type systems ([10]), and will be of importance in our derivation 
both of Theorem 1.1 and of Theorem 1.3. For simplicity in presentation, we confine ourselves here to an 
argument based on uniform smallness of the initial data, but we at least note that, in fact, at the cost of 
additional technical expense the norm appearing in (19) could be replaced by that in L

n
2 (Ω).

Lemma 2.2. Let n ≥ 3 and Ω ⊂ Rn be a bounded domain with smooth boundary, and let k ≥ 0. Then there 
exists δ > 0 with the property that whenever u0 ∈ C0(Ω) is nonnegative with

‖u0‖L∞(Ω) < δ, (19)

the solution (u, v) of (1)-(2) is global and satisfies (3) with some C > 0.

Proof. In view of a known result from parabolic regularity theory ([23, Theorem VI.40]), it is sufficient to 
find δ > 0 such that whenever (19) holds, we have

sup
t∈(0,Tmax)

‖∇v(·, t)‖L∞(Ω) < ∞. (20)

To achieve this, we fix any p > n and then invoke standard elliptic regularity ([12, Thm. 19.1]) to obtain 
c1 > 0 such that
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‖∇ϕ‖2
L∞(Ω) ≤ c1‖Δϕ + kϕ‖2

Lp(Ω) for all ϕ ∈ W 2,p(Ω) ∩W 1,p
0 (Ω), (21)

while according to a Poincaré inequality ([17, Cor. 9.1.4], [20, Lemma 9.1]) we can pick c2 > 0 fulfilling

ˆ

Ω

ϕ2 ≤ c2

ˆ

Ω

|∇ϕ|2 for all ϕ ∈ W 1,2(Ω) such that
∣∣{ϕ = 0}

∣∣ ≥ |Ω|
2 . (22)

We then abbreviate

c3 := 2(p− 1)
pc2

, c4 := 2
2
p+p+1p(p− 1)c1 and c5 := 2

2
p−1p(p− 1)c1 · (22p|Ω|1−p)

p+2
p ,

and let

δ := min
{(c3y

2c5

) 1
p+2

,
( y

|Ω|
) 1

p

}
(23)

with

y :=
( c3

2c4

) p
2
,

observing that the first restriction in (23) guarantees that

c3y − c4y
p+2
p − c5δ

p+2 = c3
2 y ·

(
1 − 2c4

c3
y

2
p

)
+ c3

2 ·
(
y − 2c5

c3
δp+2

)
≥ 0. (24)

Now assuming u0 ∈ C0(Ω) to be nonnegative and such that (19) holds, we may use that p > n ≥ 2, and 
that writing a := 2

|Ω|
´
Ω u0 we thus know that 0 ≤ ξ → (ξ− a)p+ ∈ C2([0, ∞)), to see relying on (1), Young’s 

inequality, and (21) that y(t) :=
´
Ω(u(·, t) − a)p+, t ∈ [0, Tmax), belongs to C0([0, Tmax)) ∩ C1((0, Tmax))

with

y′(t) + 2(p− 1)
p

ˆ

Ω

∣∣∣∇(u− a)
p
2
+

∣∣∣2 = −p(p− 1)
2

ˆ

Ω

(u− a)p−2
+ |∇u|2 + p(p− 1)

ˆ

Ω

u(u− a)p−2
+ ∇u · ∇v

≤ p(p− 1)
2

ˆ

Ω

u2(u− a)p−2
+ |∇v|2

≤ p(p− 1)c1
2 ‖u‖2

Lp(Ω)

ˆ

Ω

u2(u− a)p−2
+

≤ p(p− 1)c1
2 ‖u‖p+2

Lp(Ω) for all t ∈ (0, Tmax). (25)

Since (18) ensures that m =
´
Ω u ≥ a · |{u > a}| and thus |{u ≤ a}| ≥ |Ω|

2 for all t ∈ (0, Tmax) according to 
our choice of a, we may hence utilize (22) to estimate

2(p− 1)
p

ˆ

Ω

∣∣∣∇(u− a)
p
2
+

∣∣∣2 ≥ 2(p− 1)
pc2

ˆ

Ω

(u− a)p+ = c3y(t) for all t ∈ (0, Tmax),

whereas noting that a ≤ 2δ by (19) we obtain the inequality
|Ω|
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p(p− 1)c1
2 ‖u‖p+2

Lp(Ω) = p(p− 1)c1
2 ·

{ ˆ

{u≥2a}

up +
ˆ

{u<2a}

up

} p+2
p

≤ p(p− 1)c1
2 ·

{
2p

ˆ

{u≥2a}

(u− a)p + (2a)p|Ω|
} p+2

p

≤ p(p− 1)c1
2 ·

{
2py(t) + 22p|Ω|1−pδp

} p+2
p

≤ 2
2
p−1p(p− 1)c1 ·

{
(2py(t))

p+2
p + (22p|Ω|1−pδp)

p+2
p

}
= c4y

p+2
p (t) + c5δ

p+2 for all t ∈ (0, Tmax).

Therefore, (25) implies that

y′(t) + c3y(t) − c4y
p+2
p (t) − c5δ

p+2 ≤ 0 for all t ∈ (0, Tmax),

so that since (19) along with the second requirement on δ in (23) guarantees that

y(0) =
ˆ

Ω

(u0 − a)p+ ≤ δp|Ω| ≤ y,

a comparison argument on the basis of (24) asserts that y(t) ≤ y for all t ∈ (0, Tmax). As thus 
supt∈(0,Tmax) ‖u(·, t)‖Lp(Ω) is finite, once again relying on (21) we obtain (20) and conclude as intended. �
3. Mass bounds for steady states. Proofs of Theorem 1.1 and of Corollary 1.2

Our strategy toward proving Theorem 1.1 will be based on the link between solutions to (1)-(2) and 
solutions of the corresponding stationary problem

⎧⎪⎨
⎪⎩

∇u
u −∇v = 0, x ∈ Ω,

Δv − kv + u = 0, x ∈ Ω,

v = 0, x ∈ ∂Ω,

(26)

as established through an energy-based argument in the following.

Lemma 3.1. Let n ≥ 2 and Ω ⊂ Rn be a bounded domain with smooth boundary, and let k ≥ 0 and 
0 ≤ u0 ∈ C0(Ω) be such that the solution (u, v) of (1)-(2) from Proposition 2.1 is global in time and bounded 
in the sense that u ∈ L∞(Ω × (0, ∞)). Then there exist (tj)j∈N ⊂ (1, ∞) and functions u∞ and v∞ from 
C2(Ω) such that u∞ > 0 and v∞ ≥ 0 in Ω, that tj → ∞, u(·, tj) → u∞ and v(·, tj) → v∞ in C0(Ω) as 
j → ∞, and that (u∞, v∞) solves (26) with 

´
Ω u∞ =

´
Ω u0.

Proof. Using that u > 0 in Ω×(0, ∞) by the strong maximum principle, by means of a standard computation 
we obtain the identity

F(t) +
tˆ

1

D(τ)dτ = F(1) for all t > 1, (27)

where we have set F(t) := 1
2
´
Ω |∇v(·, t)|2 + k

2
´
Ω v2(·, t) −

´
Ω u(·, t)v(·, t) +

´
Ω u(·, t) ln u(·, t) and D(t) :=´

|2∇
√

u(·, t)−
√
u(·, t)∇v(·, t)|2 for t > 0. Now since u is bounded and nonnegative, it readily follows that 
Ω
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inft>1 F(t) > −∞, by (27) meaning that 
´∞
1 D(τ)dτ is finite, so that we can pick (tj)j∈N ⊂ (1, ∞) such 

that tj → ∞ and

2∇
√
u(·, tj) −

√
u(·, tj)∇v(·, tj) → 0 a.e. in Ω (28)

as j → ∞. Once more due to the boundedness of u, we may next invoke elliptic regularity theory ([13]) 
to see that also ∇v is bounded in Ω × (0, ∞), and that thus we may employ a standard result on Hölder 
continuity in parabolic equations under no-flux boundary conditions ([31]) to obtain θ1 ∈ (0, 1) such that 
(u(·, t))t>1 is bounded in Cθ1(Ω). Again by elliptic estimates, this entails boundedness of (v(·, t))t>1 even 
in C2+θ1(Ω), whence the Arzelà–Ascoli theorem provides a subsequence of (tj)j∈N , for convenience again 
denoted by (tj)j∈N , such that u(·, tj) → u∞ in Cθ2(Ω) and v(·, tj) → v∞ in C2(Ω) as j → ∞ with θ2 := θ1

2
and some nonnegative limit functions u∞ ∈ Cθ1(Ω) and v∞ ∈ C2(Ω) for which using (1) and (2) we can 
easily verify that −Δv∞ + kv∞ = u∞ in Ω with v∞ = 0 on ∂Ω, and that 

´
Ω u∞ =

´
Ω u0. Moreover, along 

with (28) this entails that as j → ∞ we have

2∇
√

u(·, tj) →
√
u∞ ∇v∞ in Cθ3(Ω)

for some θ3 ∈ (0, 1). Therefore, 
√
u(·, tj) → √

u∞ in C1+θ3(Ω) as j → ∞ and 2∇√
u∞ ≡ √

u∞∇v∞ in Ω, 
which in particular means that if we pick x0 ∈ Ω such that u∞(x0) = ‖u∞‖L∞(Ω) ≥ 1

|Ω|
´
Ω u0 > 0, then in 

the connected component C of {x ∈ Ω | u∞(x) > 0} containing x0 we have ∇(lnu∞ − v∞) ≡ 0 and hence 
can find c1 > 0 such that lnu∞ ≡ v∞ + c1 in C. As ln ξ → −∞ as ξ ↘ 0, however, this ensures that actually 
C = Ω and that thus u∞ ≡ ev∞+c1 is positive in Ω and belongs to C2(Ω), and that also the first equation 
in (26) holds throughout Ω. �

Now a crucial observation, generalizing and quantitatively sharpening a statement from [4] concentrating 
on radial solutions in a disk, rules out large-mass steady states in strictly star-shaped two- or higher-
dimensional domains:

Lemma 3.2. Let n ≥ 2 and Ω ⊂ Rn be a bounded domain with smooth boundary such that

γ := min
x∈∂Ω

x · ν(x) > 0, (29)

and suppose that k ≥ 0. Then whenever u ∈ C1(Ω) ∩ C2(Ω) and v ∈ C0(Ω) ∩ C2(Ω) are such that u > 0
and v ≥ 0 in Ω and that (u, v) solves (26), we necessarily have

ˆ

Ω

u ≤ 2n|∂Ω|
γ

+ 2k|Ω|. (30)

Proof. We firstly integrate the second equation in (26) to see that
ˆ

Ω

u = k

ˆ

Ω

v −
ˆ

∂Ω

∂v

∂ν
, (31)

and in order to estimate both summands on the right-hand side herein appropriately, we next use x ·∇v as 
a test function for the second equation in (26) to find the identity

ˆ
Δv(x · ∇v) − k

ˆ
v(x · ∇v) = −

ˆ
u(x · ∇v). (32)
Ω Ω Ω
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Here following a well-known observation ([32]), twice integrating by parts and using our definition of γ we 
obtain that

ˆ

Ω

Δv(x · ∇v) = −
ˆ

Ω

|∇v|2 − 1
2

ˆ

Ω

x · ∇|∇v|2 +
ˆ

∂Ω

∂v

∂ν
(x · ∇v)

= n− 2
2

ˆ

Ω

|∇v|2 − 1
2

ˆ

∂Ω

(x · ν)|∇v|2 +
ˆ

∂Ω

∂v

∂ν
(x · ∇v)

= n− 2
2

ˆ

Ω

|∇v|2 + 1
2

ˆ

∂Ω

(x · ν)|∇v|2

≥ γ

2

ˆ

∂Ω

|∇v|2, (33)

because n ≥ 2, and because the properties v|∂Ω = 0 and v ≥ 0 in Ω imply that on ∂Ω we have ∇v = −|∇v|ν
and hence ∂v∂ν (x · ∇v) = (x · ν)|∇v|2.

Apart from this, again due to the homogeneous Dirichlet boundary conditions satisfied by v. Another
integration by parts yields

−k

ˆ

Ω

v(x · ∇v) = −k

2

ˆ

Ω

x · ∇v2 = k

2

ˆ

Ω

(∇ · x)v2 = nk

2

ˆ

Ω

v2, (34)

and using that u∇v = ∇u by (26) we infer from a final integration by parts that

−
ˆ

Ω

u(x · ∇v) = −
ˆ

Ω

x · ∇u =
ˆ

Ω

(∇ · x)u−
ˆ

∂Ω

(x · ν)u ≤ n

ˆ

Ω

u, (35)

once more because x · ν ≥ 0 by (29).
Now a combination of (32) with (33)-(35) reveals that

γ

2

ˆ

∂Ω

|∇v|2 + nk

2

ˆ

Ω

v2 ≤ n

ˆ

Ω

u

and that hence, by Young’s inequality,

k

ˆ

Ω

v −
ˆ

∂Ω

∂v

∂ν
≤ k

ˆ

Ω

v +
ˆ

∂Ω

|∇v|

≤
{
k

4

ˆ

Ω

v2 + k|Ω|
}

+
{

γ

4n

ˆ

∂Ω

|∇v|2 + n|∂Ω|
γ

}

≤ 1
2

ˆ

Ω

u + k|Ω| + n|∂Ω|
γ

.

In conjunction with (31), this entails (30). �
A combination of the latter two statements readily yields the first part of our main results:

Proof of Theorem 1.1. Given any m > 2n|∂Ω|
γ + 2k|Ω| and any function u0 ∈ C0(Ω) with 

´
Ω u0 = m, 

we conclude from Lemma 2.1 that (1)-(2) has a solution (u, v) for these initial data. If this solution were 
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global and bounded, Lemma 3.1 would yield a solution (u∞, v∞) of (6) with 
´
Ω u∞ = m, contradicting 

Lemma 3.2, which is applicable thanks to (6). Accordingly, (u, v) cannot be global and bounded, hence 
blows up at Tmax ∈ (0, ∞]. It immediately follows that the set in (7) is not empty and hence M�(Ω, k) a 
well-defined nonnegative number which moreover satisfies the upper estimates in (8) and (9), respectively. 
The left inequality in (8) is obvious from Corollary B, whereas in the case n ≥ 3, positivity of M�(Ω, k) is 
an evident by-product of Lemma 2.2. �
Proof of Corollary 1.2. Since for each x ∈ ∂Ω we have ν(x) = x

|x| and hence x · ν(x) = R, all statements are 
obvious from Theorem 1.1. �
4. A secondary critical mass phenomenon for radial solutions. Proof of Theorem 1.3

In view of Corollary C, Corollary 1.2, and Lemma 2.2, verifying the occurrence of a genuinely secondary 
critical mass phenomenon in the flavor of Theorem 1.3 amounts to making sure that whenever the degrada-
tion parameter k in (1) is positive, in any planar disk we can find global bounded radial solutions at some 
mass level larger than 8π. To accomplish this, for such radial solutions (u, v) = (u(r, t), v(r, t)), r ∈ [0, R], 
of (1)-(2) in Ω = BR(0) ⊂ R2 with R > 0, again maximally extended up to Tmax ∈ (0, ∞] in the style of 
Proposition 2.1, we follow the idea of [16] and [6] and introduce the cumulated quantities

w(s, t) :=

√
sˆ

0

ρu(ρ, t)dρ s ∈ [0, R2], t ∈ [0, Tmax), (36)

and

z(s, t) := k

√
sˆ

0

ρv(ρ, t)dρ s ∈ [0, R2], t ∈ [0, Tmax), (37)

as well as

w0(s) :=

√
sˆ

0

ρu0(ρ)dρ, s ∈ [0, R2]. (38)

Then from the nonnegativity of u, and from (1) as well as (2), it follows that ws ≥ 0 in [0, R2] × [0, Tmax)
and

⎧⎪⎨
⎪⎩

wt = 4swss + 2wws − 2zws, s ∈ (0, R2), t ∈ (0, Tmax),
w(0, t) = 0, w(R2, t) = 1

2π ·
´
Ω u0, t ∈ (0, Tmax),

w(s, 0) = w0(s), s ∈ (0, R2),
(39)

and the core of our strategy will consist in appropriately making use of the rightmost absorptive contribution 
to the first equation herein in order to ensure that some of these solutions remain bounded in C1([0, R2])
even though satisfying w|s=R2 > 4. This will be achieved by means of a parabolic comparison with stationary 
supersolutions, to be constructed in Lemma 4.5, on the basis of a pointwise lower estimate for the function 
z which plays a central role in this additional dissipative part, but which through (1)-(2) and (36) is linked 
to w in a nonlocal manner.

As a first step toward adequately coping with this, to be completed in Lemma 4.4, let us invoke a 
comparison argument to derive a fairly rough but useful lower bound for w.



J. Fuhrmann et al. / J. Math. Pures Appl. 162 (2022) 124–151 137
Lemma 4.1. Let R > 0 and Ω = BR(0) ⊂ R2, let k > 0, and suppose that u0 ∈ C0
rad(Ω) is nonnegative and 

such that w0 as in (38) satisfies

w0(s) ≥ δsβ for all s ∈ (0, R2) (40)

with some δ > 0 and some

β ≥ 1 + 1
4π ·

ˆ

Ω

u0. (41)

Then

w(s, t) ≥ δsβ for all s ∈ (0, R2) and t ∈ (0, Tmax). (42)

Proof. We abbreviate m :=
´
Ω u0 and first observe that since

k

ˆ

Ω

v =
ˆ

Ω

u +
ˆ

∂Ω

∂v

∂ν
≤ m for all t ∈ (0, Tmax)

according to the second equation in (1) and (18), the function z from (37) satisfies

z(s, t) ≤ k

R̂

0

ρv(ρ, t)dρ ≤ m

2π for all s ∈ (0, R2) and any t ∈ (0, Tmax).

Therefore, writing

w(s, t) := δsβ , s ∈ [0, R2], t ≥ 0,

by nonnegativity of w and ws we can estimate

4swss + 2wws − 2z(s, t)ws ≥ 4swss −
m

π
ws

= 4β(β − 1)δsβ−1 − m

π
· βδsβ−1

≥ 0 for all s ∈ (0, R2) and t ∈ (0, Tmax), (43)

because (41) asserts that 4β(β − 1) ≥ m
π β. Since (40) implies that w(s, 0) ≤ w0(s) for all s ∈ (0, R2), and 

that necessarily also w(R2, t) ≤ w0(R2) = w(R2, t) for all t ∈ (0, Tmax) by (18), noting that w(0, t) = 0 for 
all t ∈ (0, Tmax) we infer from the comparison principle in Lemma 7.1 from the appendix that due to (43)
indeed w ≥ w in (0, R2) × (0, Tmax). �

As a consequence, we obtain the following statement on lower control of the mass accumulated in the 
disk BR

2
(0) throughout evolution, uniform with respect to mass levels within any fixed interval.

Corollary 4.2. Let Ω = BR(0) ⊂ R2 with some R > 0, and let k > 0, m > 0, and M ≥ m. Then there exists 
C > 0 such that for all nonnegative u0 ∈ C0

rad(Ω) fulfilling

m ≤
ˆ

u0 ≤ M (44)

Ω
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as well as

−
ˆ

Br(0)

u0 ≥ −
ˆ

BR(0)

u0 for all r ∈ (0, R), (45)

the solution (u, v) of (1)-(2) satisfies
ˆ

BR
2

(0)

u(·, t) ≥ C for all t ∈ (0, Tmax). (46)

Proof. In order to apply Lemma 4.1 to β := 1 + M
4π and δ := m

2πR2β , we note that when rewritten in the 
variables w, z and s from (36) and (38), (45) together with (44) guarantees that

w0(s) ≥
ms

2πR2 for all s ∈ (0, R2).

As β > 1, namely, this entails that

w0(s)
δsβ

≥ m

2πδR2sβ−1

≥ m

2πδR2 · (R2)β−1

= m

2πδR2β

= 1 for all s ∈ (0, R2),

whence Lemma 4.1 ensures that for w as in (36) we have

w(s, t) ≥ δsβ for all s ∈ (0, R2) and any t ∈ (0, Tmax).

As a particular consequence, this implies that
ˆ

BR
2

(0)

u(·, t) = 2π · w
(R2

4 , t
)
≥ 2π · δ

(R2

4

)β

for all t ∈ (0, Tmax)

and thereby proves (46). �
This lemma will be combined with the following well-known result on positivity of the kernel associated 

with the solution operator for the Helmholtz problem solved by v:

Lemma 4.3. Let Ω = BR(0) ⊂ R2 with some R > 0, and for k > 0 let Gk denote Green’s function of −Δ +k

under homogeneous Dirichlet boundary conditions in Ω. Then Gk(x, y) ≥ 0 for all x ∈ Ω and y ∈ Ω \ {x}, 
and there exists C > 0 such that

Gk(x, y) ≥ C for all (x, y) ∈
(
BR

2
(0) ×BR

2
(0)

)
\
{

(x̃, ỹ) ∈ BR
2
(0) ×BR

2
(0)

∣∣∣ x̃ = ỹ
}
.

Proof. This can be found in [40, Section 4.9]. �
In fact, by means of a corresponding integral representation the function v can be estimated from below 

in such a way that its cumulated version satisfies a linear lower bound in the following sense:
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Lemma 4.4. Let Ω = BR(0) ⊂ R2 with some R > 0, and suppose that k > 0, m > 0, and M ≥ m. Then 
there exists C > 0 such that whenever u0 ∈ C0

rad(Ω) is nonnegative and satisfies (44) as well as (45), the 
function z given by (37) fulfills

z(s, t) ≥ C · s for all s ∈ (0, R2) and each t ∈ (0, Tmax). (47)

Proof. According to Corollary 4.2, we can pick c1 > 0 such that for any choice of u0 with the indicated 
properties we have

ˆ

BR
2

(0)

u(·, t) ≥ c1 for all t ∈ (0, Tmax).

Thus, if relying on Lemma 4.3 we fix c2 > 0 such that Green’s function Gk of −Δ + k under homogeneous 
Dirichlet conditions in Ω satisfies Gk(x, y) ≥ c2 whenever x ∈ BR

2
(0) and y ∈ BR

2
(0) \ {x}, due to (1)-(2)

and the nonnegativity of Gk and u we can estimate

v(x, t) =
ˆ

Ω

Gk(x, y)u(y, t)dy

≥
ˆ

BR
2

(0)

Gk(x, y)u(y, t)dy

≥ c2

ˆ

BR
2

(0)

u(y, t)dy

≥ c1c2 for all x ∈ BR
2
(0) and t ∈ (0, Tmax).

By definition of z, this entails that

z(s, t) = k

2π

ˆ

B√
s(0)

v(x, t)dx

≥ k

2π · c1c2 · |B√
s(0)|

= c1c2k

2 · s for all s ∈
(
0, R

2

4

)
and t ∈ (0, Tmax).

As z(·, t) is nondecreasing on (0, R2) thanks to the nonnegativity of v, this moreover entails that

z(s, t)
s

≥
c1c2k

2 · R2

4
R2 = c1c2k

8 for all s ∈
[R2

4 , R2
)

and t ∈ (0, Tmax),

and that thus (47) holds with C := c1c2k
8 . �

The key step in our derivation of Theorem 1.3 can now be found in the following essentially explicit 
construction of a stationary supersolution to (39) that corresponds to a mass level exceeding the value 8π.

Lemma 4.5. Let Ω = BR(0) ⊂ R2 with some R > 0, and let k > 0. Then there exist m = m(R, k) > 8π and 
a function w ∈ W 2,∞((0, R2)) such that
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w(0) = 0 (48)

in addition to

w(R2) = m

2π (49)

and

w(s) > ms

2πR2 for all s ∈ (0, R2), (50)

and such that whenever u0 ∈ C0
rad(Ω) is a nonnegative function for which w0 from (38) satisfies

4s
R2 ≤ w0(s) ≤ w(s) for all s ∈ (0, R2), (51)

the solution of (1)-(2) has the property that

w(s, t) ≤ w(s) for all s ∈ (0, R2) and t ∈ (0, Tmax) (52)

with w as defined in (36), so that

sup
(s,t)∈(0,R2)×(0,Tmax)

w(s, t)
s

< ∞. (53)

Proof. Given R > 0 and k > 0, upon application of Lemma 4.4 to m := 8π and M := 10π we obtain c1 > 0
such that for arbitrary nonnegative u0 ∈ C0

rad(Ω) fulfilling (44) and (45), the function z in (37) satisfies

z(s, t) ≥ c1s for all s ∈ (0, R2) and t ∈ (0, Tmax), (54)

where without loss of generality we may assume that

c1 ≤ 4
R2 . (55)

We next use that ln 1
s0

→ +∞ as s0 ↘ 0 to fix s0 ∈ (0, R2) sufficiently small to ensure that

c1
2 · ln R2

s0
>

c1
2 + 1

R2 , (56)

noting that the latter implies that

s2
0 ·

R2ˆ

s0

σ−2e
c1
2 (σ−s0)dσ > s0. (57)

Indeed, using that e
c1
2 ξ ≥ 1 + c1

2 ξ for ξ ≥ 0 shows that

s0 ·
R2ˆ

s0

σ−2e
c1
2 (σ−s0)dσ ≥ s0 ·

R2ˆ

s0

σ−2 ·
{

1 + c1
2 (σ − s0)

}
dσ

= s0 ·
(
1 − c1

s0

)
·
( 1 − 1

2

)
+ c1s0 · ln R2
2 s0 R 2 s0
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= 1 −
(c1

2 + 1
R2

)
· s0 + c1

2R2 s
2
0 + c1s0

2 · ln R2

s0

> 1 + s0 ·
{
c1
2 · ln R2

s0
−
(c1

2 + 1
R2

)}
> 1

by (56). Now (57) enables us to pick b > 0 small enough such that

s2
0 ·

R2ˆ

s0

σ−2e
c1
2 (σ−s0)dσ > s0 + b,

which in turn warrants the existence of ε ∈ (0, 1) such that still

s
4+ε
2

0 ·
R2ˆ

s0

σ− 4+ε
2 e

c1
2 (σ−s0)dσ > s0 + b + ε

4b · (s0 + b)2. (58)

Observing that

ϕ(ξ) := s
4+ε
2

0 ·
R2ˆ

s0

σ− 4+ε
2 e

ξ
2 (σ−s0)dσ, ξ > 0,

in the limit ξ ↘ 0 satisfies

ϕ(ξ) → s
4+ε
2

0 ·
R2ˆ

s0

σ− 4+ε
2 dσ

= 2
2 + ε

· s
4+ε
2

0 ·
(
s
− 2+ε

2
0 −R−2−ε

)

<
2

2 + ε
· s0

< s0 + b + ε

4b · (s0 + b)2

due to e.g. the monotone convergence theorem, from (58) we infer by means of a continuity argument that 
we can finally fix c2 ∈ (0, c1] such that the precise equality

s
4+ε
2

0 ·
R2ˆ

s0

σ− 4+ε
2 e

c2
2 (σ−s0)dσ = s0 + b + ε

4b · (s0 + b)2 (59)

holds.
Upon these choices, we now let

w(s) :=
{

win(s) if s ∈ [0, s0],
wout(s) if s ∈ (s0, R

2],
(60)

where
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win(s) := 4s
s + b

, s ∈ [0, s0], (61)

which already ensures (48), and where wout denotes the solution of the initial-value problem

{
4s∂2

swout + 2(4 + ε)∂swout − 2c2s · ∂swout = 0, s ∈ (s0, R
2),

wout(s0) = win(s0), ∂swout(s0) = ∂swin(s0).
(62)

Then w evidently belongs to C1([0, R2]) ∩C2([0, s0]) ∩C2([s0, R2]), and hence also to W 2,∞((0, R2)), with

ws(s) = 4b
(s + b)2 and wss(s) = − 8b

(s + b)3 for all s ∈ (0, s0), (63)

and with an explicit integration of (62) showing that

ws(s) = ws(s0) · exp
{ sˆ

s0

(
− 4 + ε

2 · 1
σ

+ c2
2

)
dσ

}

= 4b
(s0 + b)2 ·

(s0

s

) 4+ε
2
e

c2
2 (s−s0) for all s ∈ (s0, R

2] (64)

as well as

w(s) = w(s0) + 4b
(s0 + b)2 ·

sˆ

s0

(s0

σ

) 4+ε
2
e

c2
2 (σ−s0)dσ

= 4s0

s0 + b
+ 4b

(s0 + b)2 · s
4+ε
2

0 ·
sˆ

s0

σ− 4+ε
2 e

c2
2 (σ−s0)dσ for all s ∈ (s0, R

2]. (65)

In particular, (63) and (65) guarantee that thanks to (59),

w(s) ≤ w(R2)

= 4s0

s0 + b
+ 4b

(s0 + b)2 · s
4+ε
2

0 ·
R2ˆ

s0

σ− 4+ε
2 e

c2
2 (σ−s0)dσ

= 4s0

s0 + b
+ 4b

(s0 + b)2 ·
{
s0 + b + ε

4b · (s0 + b)2
}

= 4 + ε for all s ∈ [0, R2], (66)

while recalling the inequality c2 ≤ c1 and (55) we directly obtain from (62) and (64) that

2swss(s) = −(4 + ε− c2s)ws(s)

≤ −(4 + ε− c2R
2)ws(s)

≤ −(4 − c1R
2)ws(s)

< 0 for all s ∈ (s0, R
2)

and that hence, by (63),
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wss(s) < 0 for all s ∈ (0, R2) \ {s0}.

In conjunction with (66), the latter concavity property in particular implies that indeed both (49) and (50)
hold if we let m := 2π · (4 + ε), where we note that our restriction ε < 1 warrants that m ≤ 10π = M . As 
obviously also m ≥ 8π = m, assuming henceforth that u0 ∈ C0

rad(Ω) is nonnegative and such that (51) is 
valid, we firstly observe that (54) in fact applies to the function z thereupon defined through (37), whence 
again using that c2 ≤ c1 we may infer from (65), (54), and (62) that

wt − 4swss − 2wws + 2zws = −4swss − 2wws + 2zws

≥ −4swss − 2(4 + ε)ws + 2c2sws

= 0 for all s ∈ (s0, R
2) and t ∈ (0, Tmax),

whereas, simply by nonnegativity of z and ws, (63) ensures that

wt − 4swss − 2wws + 2zws ≥ −4swss − 2wws

= 0 for all s ∈ (0, s0) and t ∈ (0, Tmax).

Since clearly w(0, t) = w(0, t) = 0 and w(R2, t) = w(R2, t) = 4 + ε for all t ∈ (0, Tmax), we may employ the 
comparison principle from Lemma 7.1 to conclude that indeed (52) holds. Finally, (53) follows from (48)
together with boundedness of ws and (52). �

In order to prepare an appropriate conclusion on boundedness of ws from this, let us add the following 
observation on a linear upper bound for z.

Lemma 4.6. Let n = 2, R > 0, Ω = BR(0) ⊂ R2, and k > 0 and let u0 ∈ C0
rad(Ω) be nonnegative and such 

that w taken from (36) satisfies

sup
(s,t)∈(0,R2)×(0,Tmax)

w(s, t)
s

< ∞. (67)

Then there exists C > 0 such that

z(s, t) ≤ Cs for all s ∈ (0, R2) and t ∈ (0, Tmax), (68)

where z is as in (37).

Proof. Utilizing (67), let us define c1 > 0 such that w(s,t)
s ≤ c1 for all s ∈ (0, R2) and t ∈ (0, Tmax). Then 

since

zs(R2, t) = v(R, t) = 0 for all t ∈ (0, Tmax)

due to the Dirichlet condition on v in (2), and since by (1) we moreover have

4szss(s, t) = k(z(s, t) − w(s, t)) ≥ −kw(s, t) for all s ∈ (0, R2) and t ∈ (0, Tmax)

due to the nonnegativity of z, on integration we infer that
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zs(s, t) = 0 −
R2ˆ

s

zss(σ, t)dσ

≤ k

4

R2ˆ

s

w(σ, t)
σ

dσ ≤ c1kR
2

4 =: c2 for all t ∈ (0, Tmax) and any s ∈ (0, R2).

After one more integration, in view of the fact that z(0, t) = 0 for all t ∈ (0, Tmax) this shows that

z(s, t) ≤ c2s for all t ∈ (0, Tmax) and s ∈ (0, R2)

and thereby readily entails (68). �
Now employing a Bernstein-type argument in the style of [41, Lemma 4.1], we can indeed turn the 

outcome of Lemma 4.5 into an L∞ bound for u by means of the following implication.

Lemma 4.7. Let n = 2, R > 0, Ω = BR(0) ⊂ R2, and k > 0 and let 0 �≡ u0 ∈ C0
rad(Ω) be nonnegative and 

such that w from (36) satisfies (67). Then there exists C > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax). (69)

Proof. In accordance with (67) and (68), we first fix c1 > 0 and c2 > 0 such that

w(s, t) ≤ c1s and z(s, t) ≤ c2s for all (s, t) ∈ (0, R2) × (0, Tmax).

With τ := min{1, 12Tmax}, the continuity properties of u stated in Proposition 2.1 enable us to find c3 > 0
satisfying

ws(s, t) = u(
√
s, t) ≤ c3 for all s ∈ [0, R2], t ∈ [0, τ ], (70)

and positivity of u(·, τ) in Ω, as ensured by the strong maximum principle, warrants the existence of c4 > 0
such that

c4 ≤ 1
2u(

√
s, τ) = ws(s, τ) for all s ∈ [0, R2].

If for c5 := min{2c4
c2

, 1
2π‖u0‖L1(Ω)} · exp(− c2

2 R2) we let w(s, t) := c5(exp( c22 s) − 1), s ∈ [0, R2], t ∈ [τ, Tmax), 
then w(s, τ) ≤ c4s for s ∈ [0, R2], w(R2, t) ≤ 1

2π‖u0‖L1(Ω) = w(R2, t) for all t ∈ [τ, Tmax), and, furthermore, 
w(s, t) ≥ c6s for all (s, t) ∈ [0, R2] × [τ, Tmax) with c6 := c2c5

2 . Since

wt − 4swss − 2wws + 2zws ≤ 0 − 4sc5
(c2

2

)2
e

c2
2 s + 0 + 2c2sc5

c2
2 e

c2
2 s = 0 in (0, R2) × (τ, Tmax),

a first comparison argument thus shows that

w(s, t) ≥ w(s, t) ≥ c6s for all (s, t) ∈ (0, R2) × [τ, Tmax). (71)

To conclude our series of selections, we note that boundedness of w and non-degeneracy of (39) in (R
2

2 , R2) ×
(0, Tmax) allows us to invoke parabolic Schauder theory in the form of [19, Thm. IV.10.1] so as to obtain 
c7 > 0 fulfilling

ws(R2, t) ≤ c7 for all t ∈ [τ, Tmax). (72)
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For α > 1, we now let

yα(s, t) := sα
w2

s(s, t)
w(s, t) , (s, t) ∈ (0, R2] × [τ, Tmax),

and observe that then (71) ensures that letting yα(0, t) = 0 for t ∈ [τ, Tmax) extends yα so as to become 

continuous in all of [0, R2] × [τ, Tmax). Moreover, from (71) and (72) we know that yα(R2, t) ≤ R2(α−1) c27
c6

for all t ∈ [τ, Tmax), while combining (70) with (71) warrants that yα(s, τ) ≤ R2(α−1) c23
c6

for all s ∈ (0, R2]. 
In the following, we fix T ∈ (τ, Tmax) and let (s0, t0) be any point at which the restriction of y = yα to 
(0, R2) × (τ, T ] attains its maximum. Then

0 = ys = αsα−1
0

w2
s

w
+ 2sα0

wswss

w
− sα0

w3
s

w2 at (s0, t0) (73)

and

0 ≥ yss =α(α− 1)sα−2
0

w2
s

w
+ 4αsα−1

0
wswss

w
− 2αsα−1

0
w3

s

w2 − 5sα0
w2

swss

w2

+ 2sα0
w2

ss

w
+ 2sα0

wswsss

w
+ 2sα0

w4
s

w3 at (s0, t0) (74)

as well as

0 ≤ yt = 2sα0
ws

w
wst − sα0

w2
s

w2wt

= 2sα0
ws

w
(4wss + 4s0wsss + 2w2

s + 2wwss − 2zsws − 2zwss) − sα0
w2

s

w2 (4s0wss + 2wws − 2zws)

= 4s0 · 2sα0
wswsss

w
+ 8sα0

ws

w
wss − 4zsα0

ws

w
wss − 4sα+1

0
w2

s

w2wss

+ 4sα0wswss + 2sα0
w3

s

w
− 4sα0 zs

w2
s

w
+ 2zsα0

w3
s

w2 at (s0, t0). (75)

Here we note that, evidently, (73) entails that

wss = ws

2

(
ws

w
− α

s0

)
at (s0, t0),

whereas (74) shows that hence

2sα0
wswsss

w
≤− sα0

w2
s

2w

(
ws

w
− α

s0

)2

− 2αsα−1
0

w2
s

w

(
ws

w
− α

s0

)

+ 5
2s

α
0
w3

s

w2

(
ws

w
− α

s0

)
− α(α− 1)sα−2

0
w2

s

w
+ 2αsα−1

0
w3

s

w2 − 2sα0
w4

s

w3

=
(
−1

2 + 5
2 − 2

)
sα0

w4
s

w3 +
(

1 − 2 − 5
2 + 2

)
αsα−1

0
w3

s

w2 +
(
−α

2 + 2α− (α− 1)
)
αsα−2

0
w2

s

w

= − 3
2αs

α−1
0

w3
s

w2 + α
(
1 + α

2

)
sα−2
0

w2
s

w
at (s0, t0).

Inserting these latter two pieces of information into (75), we obtain
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0 ≤4s0

(
−3

2αs
α−1
0

w3
s

w2 + α
(
1 + α

2

)
sα−2
0

w2
s

w

)
+ 4sα0

w2
s

w

(
ws

w
− α

s0

)
− 2zsα0

w2
s

w

(
ws

w
− α

s0

)

− 2sα+1
0

w3
s

w2

(
ws

w
− α

s0

)
+ 2sα0w2

s

(
ws

w
− α

s0

)
+ 2sα0

w3
s

w
− 4sα0 zs

w2
s

w
+ 2zsα0

w3
s

w2

= −2sα+1
0

w4
s

w3 + w3
s

w2 (−6αsα0 + 4sα0 + 2αsα0 ) + w3
s

w
(2sα0 + 2sα0 )

+ w2
s

w
(2α(2 + α)sα−1

0 − 4αsα−1
0 ) − 2αsα−1

0 w2
s + 2αzsα−1

0
w2

s

w
− 4sα0 zs

w2
s

w

≤− 2sα+1
0

w4
s

w3 + 4sα0
w3

s

w
+ 2α2sα−1

0
w2

s

w
+ 2αzsα−1

0
w2

s

w

≤− sα+1
0

w4
s

w3 + 4sα−1
0 w2

sw + 2α2sα−1
0

w2
s

w
+ 2αzsα−1

0
w2

s

w
in (s0, t0),

so that finally

y = 1
s0

w2

w2
s

· sα+1
0

w4
s

w3

≤ 1
s0

w2

w2
s

(
4sα−1

0 w2
sw + 2α2sα−1

0
w2

s

w
+ 2αzsα−1

0
w2

s

w

)

= 4sα−2
0 w3 + 2α2sα−2

0 w + 2αsα−2
0 wz

≤ 4c31sα+1
0 + 2α2c1s

α−1
0 + 2αc1c2sα0 at (s0, t0).

This entails that

yα(s, t) ≤ max
{
R2(α−1) c

2
7
c6

, R2(α−1) c
2
3
c6

, 4c31sα+1
0 + 2α2c1s

α−1
0 + 2αc1c2sα0

}
for all (s, t) ∈ [0, R2]×[τ, Tmax),

whence letting α ↘ 1 we conclude that

sup
s∈(0,R2),t∈(τ,Tmax)

s

w(s, t)w
2
s(s, t) ≤ max

{
c27
c6
,
c23
c6

, 4c31R4 + 2c1 + 2c1c2R2
}
,

so that boundedness of ws in (0, R2) × [τ, Tmax), and thus of u in Ω × [τ, Tmax), results from (67). Together 
with (70), this concludes the proof. �

The second of our main results has thereby actually been achieved already:

Proof of Theorem 1.3. The set in (11) is a superset of that featured by (7), hence non-empty. The first 
identities in (12), (14) and (15) have precisely been stated in Corollary C already. Both inequalities in (12)
are obvious by definition, and in view of Corollary 1.2, (12) directly implies (13).

Finally, the strict inequality in (15) can be verified by once more employing Lemma 2.2, whereas that 
in (14) can be seen as follows: Given R > 0 and k > 0, we take m(R, k) from Lemma 4.5 and use that 
m(R, k) > 8π in choosing any m > 8π such that m < m(R, k). Then simply defining

u0(x) := m

πR2 , x ∈ Ω,

we see on applying Lemma 4.5 in conjunction with Lemma 4.7 and Proposition 2.1 that the corresponding 
maximally extended solution (u, v) of (1)-(2) indeed is global in time and bounded in the sense that (3)
holds. In particular, this entails that indeed we must have m�(2, R, k) ≥ m > 8π for any such R and k. �
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Fig. 1. Left: Curves of steady states as solutions of (76); shown is the Lagrange multiplier Λ plotted against the total mass m =
´
Ω u

for k = 1 and disks BR(0) ∈ R2 of radii R = 1, R = 2, and R = 4, respectively. Note the more pronounced tilt to the right for 
increasing R and the common end points (0, 0) and (8π, 0) for all curves. Right: Log-log plot of the maximal value of m =

´
Ω u, 

corrected for 8π, in numerically found steady state solutions in Ω = BR(0) ⊂ R2 depending on R for different values of k. The 
data points are the values determined from simulation, the dashed lines correspond to the curves m − 8π = kπR2.

5. Consequences for and numerical observations concerning steady states

Corollary 5.1. Let Ω = BR(0) ⊂ R2 with some R > 0, and let k > 0. Then for all m < m�(2, R, k), there 
exists at least one pair (u, v) ∈ (C2(Ω))2 of radial functions with u > 0 and v ≥ 0 in Ω which satisfy ´
Ω u = m and solve the stationary problem (26) in the classical sense.

Proof. This is an evident consequence of Theorem 1.3 when combined with Lemma 3.1. �
In fact, simulations suggest the following

Conjecture 5.2. For Ω = BR(0) ⊂ R2 with R > 0 and k > 0,

(i) there is a unique steady state with 
´
Ω u = m for each m ∈ [0, m�(2, R, k)],

(ii) there are two steady states with 
´
Ω u = m for each m ∈ (m�(2, R, k), m�(2, R, k)), and

(iii) there is a unique steady state with 
´
Ω u = m�(2, R, k).

As detailed in [4], these steady states form a continuum and can be parametrized by ‖u‖L∞ . In Fig. 1, 
the curves of steady states in the m-Λ plane are shown where Λ is the Lagrange multiplier entering problem 
(26) with k = 1 upon integrating the first equation to u = Λ exp(v) and plugging this into the second 
equation to obtain

{
−Δv + v = Λev, x ∈ Ω,

v = 0, x ∈ ∂Ω
(76)

As the curves are traced from the origin to the point (8π, 0), the norm ‖u‖L∞ increases, and the solution 
becomes more strongly concentrated near the origin. The limit point (8π, 0) would represent the singular 
Dirac-solution u = 8πδ0. The observed maximal values of m =

´
Ω u for which steady states are found, 

depend quadratically on the radius and hence linearly on the domain size as predicted by the upper bound 
on M�(BR(0), k) for n = 2 from Corollary 1.2 and behave approximately as

m�(2, R, k) � 8π + kπR2. (77)
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Fig. 2. Solutions vmax (as function of r) with maximal total mass m = Λ ́
B

ev in BR(0) for k = 1 and increasing values of 
R = 10, 25, 250 (left to right).

Indeed, the steady state solution maximizing the total mass for large R exhibits a small peak at the origin, 
a wide plateau with the value vplat ≈ 1, and decreases to zero in a thin annulus given by r � R. This 
behavior becomes obvious from the radially symmetric form

ṽ′′ + ṽ′

r
− kṽ = −Λ exp(ṽ), 0 < r < R, ṽ′(0) = 0, ṽ(R) = 0 (78)

of the steady state problem (76). For large R, the maximal value Λc of Λ allowing a solution approaches 
k e−1, meaning that the solutions v± of kv = Λev are close to 1 for Λ close to Λc. Since v± are the values of v
satisfying the differential equation in (78) as constants, we can expect plateaus in the solution at v ≈ 1. As 
we moreover observe that for large R the maximal total mass is attained at Λmax � Λc it is not surprising 
that the maximal mass behaves like

m� = 2πΛ
R̂

0

r exp(ṽ(r))dr ≈ 2πk
e

R̂

0

re1dr + small contributions for r � 0 and r ≈ kπR2 (79)

where the small contributions of the peak near r = 0 and the boundary layer near r = R contribute with 
opposite signs.

Fig. 2 illustrates the shape of the mass maximizing solutions for different values of R. The plateau and 
lack of a pronounced peak at the origin are clearly visible for large R = 250.

6. Discussion and biological interpretation

Having found three distinct solvability behaviors for (1)-(2) in two dimensions, viz. global solutions for 
any initial conditions with m =

´
Ω u0 < M�(Ω, k), unconditional blow up in finite time for m > M�(Ω, k), 

and the coexistence of both global and blowing up solutions for M�(Ω, k) < m < M�(Ω, k), we shall now 
briefly discuss what these results mean for the cytoskeleton of a hypothetical cell.

As described in [24], increased myosin activity – corresponding to larger values of m – can result in the 
total disruption of cells. This may be interpreted as the solution to the free boundary problem associated 
with (1)-(2) (cf. [4]) breaking down due to Ω becoming disconnected. This kind of domain blow up – 
breakdown of the solution accompanied by singularities in domain shape – has also been discussed by [33]
in one dimension where blow up in our sense – that is, ‖u‖∞ → ∞ in a stationary domain – can be ruled 
out. Our results show that in two dimensions, the appropriate setting for a keratocyte fragment or a thin 
amoeboid cell on a flat substrate, classical blow-up is to be expected as well. This may be viewed as strong 
concentration of myosin in small regions of the cell, thereby locally disrupting the actomyosin meshwork. 
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Clearly, upon this disruption the model will not appropriately describe the cytoskeleton anymore and would 
have to be replaced by another one.

According to this view, the regime m < M� will be thought of as describing a cell comfortably coming to 
rest on its (very sticky) substrate, and the solutions will be expected to approach the unique steady state 
solution with well defined distributions of myosin u and the stress v. Increasing m into the intermediate 
region M� < m < M� allows different fates, depending on the precise shape of the initial conditions. A 
cell with initial strongly concentrated myosin distribution u0 will be expected to suffer disruption of its 
cytoskeleton while moderately concentrated u0 may allow for a global solution approaching the presumably 
stable, weakly concentrated steady state. Further increasing m beyond M� should then lead to disruption, 
no matter how myosin is initially distributed inside the cell.

That the difference between m�(2, R, k) and m�(2, R, k) increases with R, as suggested by Fig. 1 has a 
physical interpretation as well. Recall that, given k, the cell size R is measured in multiples of 

√
kL with L

being the viscous length of the actin gel. For small R, any locally generated stress will be felt throughout 
the cell, while for large R, stresses generated at one place in the cell have little impact at places far away. 
The stress v is supposed to vanish at the boundary, and the lower branch of the two steady state solutions 
indicated in Fig. 1 for m� < m < m� comprises solutions which are monotone in r but not concave down. 
These solutions rather feature a peak at the center of the cell, at r = 0, where myosin is concentrated and 
the stress is high, a plateau at intermediate r with almost constant stress and u ≈ kv, and a region of 
further decreasing stress at the boundary. If the cell is large compared to the viscous length, a peak in the 
center can easily be established without the locally high stress being felt at the boundary, and a wider range 
of this type of steady states can be imagined. Recall that these steady states are expected to be unstable, 
and starting close to these, the solution to the time dependent problem should be expected to blow up in 
finite time or to relax to the supposedly stable steady state on the upper branch.

It should be noted that the above discussion refers to an immobilized cell that cannot undergo shape 
changes or the bifurcation to a traveling wave solution. This switch from rest to steady motion occurs at 
even lower values m < M� in the free boundary problem, and it cannot be ruled out that traveling wave 
solutions survive as global solutions for m > M�. In fact, the local disruption of the actomyosin meshwork 
has been implicated in the very symmetry breaking initiating cell motion [42]. Still, even higher values of 
m may destroy this mode of motion and lead to physical disruption of the cell as indicated above [24].

7. Appendix: a comparison principle for (39)

Let us finally extract from [3] the following comparison principle for problems of type (39), forming a 
reduced version of an actually more comprehensive statement involving more general degenerate parabolic 
operators.

Lemma 7.1. Let L > 0 and T > 0, and suppose that w and w are two functions which belong to C1([0, L] ×
[0, T )) and satisfy

ws(s, t) > 0 and w(s, t) > 0 for all s ∈ (0, L) and t ∈ (0, T )

as well as

w(·, t) ∈ W 2,∞
loc ((0, L)) and w(·, t) ∈ W 2,∞

loc ((0, L)) for all t ∈ (0, T ).

If for some a ≥ 0 and some uniformly continuous b = b(s, t, ξ) : (0, L) × (0, T ) × [0, ∞), Lipschitz continuous 
with respect to ξ ∈ [0, ξ0] in (0, L) × (0, T ) × [0, ξ0] for any ξ0 > 0, we have

wt ≤ aswss + b(s, t, w)ws and wt ≥ aswss + b(s, t, w)ws for all t ∈ (0, T ) and a.e. s ∈ (0, L),
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and if moreover

w(s, 0) ≤ w(s, 0) for all s ∈ (0, L)

as well as

w(0, t) ≤ w(0, t) and w(L, t) ≤ w(L, t) for all t ∈ (0, T ),

then

w(s, t) ≤ w(s, t) for all s ∈ [0, L] and t ∈ [0, T ).

Proof. This immediately results from [3, Lemma 5.1]. �
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