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In this Letter, we propose a new scenario emerging from the conjectured presence of a minimal length �

in the spacetime fabric, on the one side, and the existence of a new scale invariant, continuous mass
spectrum, of un-particles on the other side. We introduce the concept of un-spectral dimension DU

of a d-dimensional, euclidean (quantum) spacetime, as the spectral dimension measured by an “un-
particle” probe. We find a general expression for the un-spectral dimension DU labelling different
spacetime phases: a semi-classical phase, where ordinary spectral dimension gets contribution from
the scaling dimension dU of the un-particle probe; a critical “Planckian phase”, where four-dimensional
spacetime can be effectively considered two-dimensional when dU = 1; a “Trans-Planckian phase”, which
is accessible to un-particle probes only, where spacetime as we currently understand it looses its physical
meaning.

© 2010 Elsevier B.V. Open access under CC BY license.
If we look at a fractal, for instance the Cantor set in Fig. 1a),
we can grasp the meaning of what could be the spacetime in
the presence of strong quantum gravity fluctuations. Indeed frac-
tals capture two of the main features of what we expect to be a
quantum spacetime. When extreme energy/small distance regimes
are probed, the spacetime itself changes its own nature and ex-
hibits frenzy geometrical and topological fluctuations. The shorter
is the spacetime scale probed, the more involved is the fluctua-
tion pattern. Thus, below some fundamental length scale we can-
not model spacetime as a smooth manifold any longer, rather
it will look like a rough and fragmentated (hyper)surface, e.g. a
fractal. Another feature for which a Cantor set, or more gener-
ally a fractal, turns out to be quite useful is the self-similarity,
namely the property of being exactly similar to a part of itself.
In other words, fractals are scale invariant because at any mag-
nification there is a smaller piece of the fractal that is similar to
the whole. Fig. 1b) is an artistic representation of a fractal space-
time where fractality is represented by a self-similar distribution of
holes. From this perspective, quantum gravity seems to be closely
connected to both roughness and scale invariance, both features
being supported by recent non-perturbative string theory develop-
ments like AdS/CFT duality and M-theory. A related consideration
is given by the (non)renormalizability of gravity following from
mass−2 dimension (in natural units) of the Newton constant. On
the other hand, in a two-dimensional spacetime the gravitational
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Fig. 1. a) A Cantor set. Increasing energy, one moves from the upper continuous
surface to the lower fractal. b) A quantum spacetime, showing fractal self-similarity.

http://dx.doi.org/10.1016/j.physletb.2010.10.041
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:nicolini@th.physik.uni-frankfurt.de
mailto:spallucci@trieste.infn.it
http://dx.doi.org/10.1016/j.physletb.2010.10.041
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


P. Nicolini, E. Spallucci / Physics Letters B 695 (2011) 290–293 291
coupling constant becomes dimensionless and gravity is expected
to be power-counting renormalizable. This special feature is ac-
companied by the fact that in two dimensions the spacetime is
conformally flat and field theories more naturally enjoy properties
like conformal invariance. In support of this line of reasoning there
is the concept of spectral dimension, one of the most intriguing
features of a quantum spacetime. If we expect an increasing degree
of fuzziness in the quantum regime, then we must accept the idea
that also spacetime dimension should be reviewed. As the classi-
cal manifold dissolves into a sort of fractal dust, the very concept
of “dimensionality” must change from an assigned property into
a dynamical quantity running with the energy scale of the probe.
An effective way to measure the actual dimension of a quantum
manifold consists in studying the diffusion of a test particle. The
dynamics of the process is encoded into the heat kernel equation

�K (x, y; s) = ∂

∂s
K (x, y; s) (1)

where s is a fictitious diffusion time of dimension of a length
squared, � is the Laplace operator and K (x, y; s) is the heat ker-
nel, representing the probability density of diffusion from x to y in
a “lapse of time s”. The initial condition for the diffusion process
is that the test particle starts from x at s = 0

K (x, y;0) = δd(x − y)√
det gab

(2)

where δd(x − y) is the d-dimensional Dirac delta, d is an inte-
ger number representing the topological dimension and gab is the
metric of the manifold. If we consider a closed random path, i.e.
x = y, we can define the return probability by integrating the Kernel
over all spacetime and factorizing out the total invariant volume

P (s) =
∫

ddx
√

det gab K (x, x; s)∫
ddx

√
det gab

. (3)

From P (s) we can define the spectral dimension as

D = −2
∂ ln P g(s)

∂ ln s
. (4)

It is easy to show that in flat space, for a “free” diffusion, the re-
turn probability is P (s) = (4π s)−d/2 and the spectral dimension is
D = d. In the presence of gravity, the above formula can be yet
employed to check an effective dimensional reduction, even if the
large s limit holds only on local patches of the manifold which
approximates the tangent space. The importance of the spectral
dimension lies in the fact that it could provide a glimpse about
a crucial feature of a quantum manifold: if it turned out that in
the quantum gravity regime the actual dimension measured by the
diffusion process is two, we could conclude that gravity is a renor-
malizable theory, overcoming the conventional difficulties about its
quantization. As a result there have been many attempts to cal-
culate the spectral dimension [1] and it has been found that D

tends to the value 2 for scales approaching �, an effective mini-
mal length in the manifold [2,3]. However, in all the approaches
above it is understood that short distance can be probed only by
ultra-relativistic objects with a negligible rest mass. Thus, scale in-
variance is kinematically realized in a light-cone type limit. Indeed,
if we consider the heat equation for a massive particle we find

�̃K (x, y; s) = ∂

∂s
K (x, y; s) (5)

where the operator �̃ = � − m2 includes a non-differential
term m2. From the definition (4) we get

D = −2s

∫
ddx

√
det gab�K (x, x; s)∫

ddx
√

det g K (x, x; s)
+ 2sm2. (6)
ab
The first term in the r.h.s of (6) leads to a constant, i.e. scale in-
dependent, value of the spectral dimension, but the second one
is linear in s and diverges for asymptotic diffusion times spoiling
a meaningful definition of D. From this viewpoint, one concludes
that the spectral dimension can be safely introduced only in a scale
invariant framework. In other words, spacetime spectral dimension
cannot be probed by massive objects as they break scale invari-
ance.

In this Letter we are going to present a new, scale invariant,
procedure to compute D by means of a massive probe providing
a non-trivial modification to the standard definition. It may sound
odd to preserve scale invariance in the presence of a massive ob-
ject, but this problem can be by-passed by using un-particle probes
borrowed from a recently proposed extension of the elementary
particle standard model. The new idea is that there exists a new
high-energy sector of the particle standard model where the fun-
damental objects display a continuous, scale-invariant, mass spec-
trum in alternative to the discrete mass spectrum of ordinary
elementary particles. This new “stuff” is very weakly coupled to
ordinary matter below some threshold energy, say some TeV [4].
Beyond these energies the standard model fields interact with a
new scale invariant sector described by the so-called Banks–Zaks
(BZ) fields. The interaction is mediated by very heavy particles of
mass MU . Below MU , the interaction leads to non-renormalizable
effective couplings of the form O sm O BZ/Mk

U where O sm is an op-
erator with mass dimension dsm built out of the standard model
fields and O BZ is the equivalent for BZ fields. The scale invariance
properties of the BZ sector emerge below a scale ΛU , through di-
mensional transmutation of the BZ fields into un-particle fields.
The above interaction term becomes CU (ΛU )dBZ−dU O sm O U /Mk

U ,
where the BZ operators O BZ match un-particle operators O U ;
dU is the un-particle scaling dimension and CU is a normaliza-
tion constant. In this scenario the BZ fields decouple from ordinary
matter at low energies and therefore the interaction O sm O BZ/Mk

U
should not affect the scale invariant properties of un-particles.
Even if the scaling dimension can be arbitrarily large, it is cus-
tomary to assume that 1 < dU < 2. Recently it has been argued
that un-particle might affect the gravitational interaction too: in-
deed un-gravity could arise from the un-graviton exchange among
massive particles [5]. In addition by exploiting results coming from
Cavendish experiments one obtains that eventual un-particle cor-
rections to Newton’s law might occur at energy scales higher than
TeV, in agreement with the basic hypotheses about un-particle
physics. Following this line of reasoning, un-gravity corrections to
Schwarzschild metric have been perturbatively derived in [6] and
confirmed at the non-perturbative level by solving the field equa-
tions derived from an effective action including the un-graviton
corrections at all order [7]. As a special result, the Hawking tem-
perature and the Bekenstein entropy of the un-Schwarzschild black
hole suggest that the dimension of the horizon is a non-integer
number 2dU . These examples suggest that un-particle physics pro-
vides a tool to implement fractalization of conventional scenarios,
by forcing the presence of the scaling dimension dU . From this
vantage point, it is almost compelling to explore the spectral di-
mension, i.e. the fractal structure of the Planckian spacetime, by
means of un-particle probes. For sake of clarity we stress that in
this case un-particles do not generate gravity since we are consid-
ering a generic manifold either classical or quantum. In the sim-
plest case of a scalar un-particle the Green function turns out to
be [8]

GU (x − y) = AdU

∞∫
dm2 (

m2)dU −2
G
(
x − y;m2)
0
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where dU controls a continuous mass spectrum, while

AdU = 8π5/2

(Λ2
U )dU −1(2π)dU

Γ (dU + 1/2)

Γ (dU − 1)Γ (2dU )
.

The heat kernel KU (x, y; s) can be obtained from

GU (x − y) =
∞∫

0

ds KU (x, y; s)

= AdU

∞∫
0

ds

∞∫
0

dm2 (
m2)dU −2

K (x, y; s) (7)

where K (x, y; s) is the solution of Eq. (5). We can study the diffu-
sion of an un-field

�U KU (x, y; s) = ∂

∂s
KU (x, y; s) (8)

where the un-Laplacian acquires an extra term depending on the
un-particle sector �U = � − (dU − 1)/s. Eq. (8) can be classified
as an inhomogeneous heat equation, whose initial conditions are
like in (2). Employing a one-dimensional heat conduction anal-
ogy, we could say that our problem is equivalent to that of a bar
which is subjected to a time dependent “heat source” (dU −1)/s. In
other words, the heat released by the un-particle term is spatially
uniform along the length of the bar and the scale invariance is
preserved. We notice that for dU = 1 the above equation becomes
the homogeneous heat equation, in agreement with the fact that
un-particle corrections vanish for dU = 1 as in Ref. [5]. Therefore,
from Eq. (4), we can define the un-spectral dimension as

DU = −2s

∫
ddx

√
det gab�KU (x, x; s)∫

ddx
√

det gab KU (x, x; s)
+ 2Γ (dU )

Γ (dU − 1)
. (9)

The above formula can be manipulated to obtain

DU = D + 2dU − 2, (10)

Eq. (10) is the main result of this work. In analogy with the Haus-
dorff dimension (see Ref. [9]), we see that in the chosen range for
the scale dimension DU � D, while DU = D for dU = 1 only. This
increase of the dimension measured by the diffusion process can
be explained in terms of the presence of an additional sector, i.e.
the un-particles, with respect to the conventional standard model
fields calculation. On the other hand, for the specific case D = 2,
one finds that the un-spectral dimension depends uniquely on dU

and is DU = 2dU . As a result for a diffusion process in a flat plane,
d = 2 and

K p(x, x; s) = AdU

∞∫
0

dm2 (
m2)dU −2 e−m2s

(4π s)d/2
,

we obtain D = d = 2 and DU = 2dU . As a first application
of Eq. (10) we are going to investigate the nature of the un-
Schwarzschild black hole horizon, but we need to do a little
step forward. The horizon is a curved surface and therefore the
diffusion must take into account this effect through non-trivial
Seeley–deWitt coefficients in the heat kernel representation. A fur-
ther modification occurs in the Laplace operator which acquires a
non-minimal coupling to the Ricci scalar to preserve scale invari-
ance � −→ �g ≡ � − ξd R with ξd ≡ (1/4)(d − 2)/(d − 1). As a
result the heat kernel in the presence of gravity reads
K g(x, x; s)

= AdU

∞∫
0

dm2 (
m2)dU −2 e−m2s

(4π s)d/2

[
a0 +

∞∑
n=1

snan(x, x)

]
. (11)

Since the un-particle “heat source” preserves scale invariance
and does not affect the manifold coordinate x, its contribution
2Γ (dU )/Γ (dU − 1) will be unchanged in the presence of gravity.
Here, for the sake of clarity, we provide only the gravity primary
corrections

DU = d + 2dU − 2 − 2s

∫
ddx

√
det gab[a1 + 2a2s + · · ·]∫

ddx
√

det gab[a0 + a1s + · · ·] .

We remind that the above formula holds for small diffusion times
only. Indeed for a generic topological dimension gravity introduces
a scale in the conventional term for the spectral dimension. This is
the reason why there is a breaking of the scale invariance analo-
gous to the introduction of a mass as in (5). This is not the case
for d = 2. Indeed, when one considers the un-Schwarzschild black
hole horizon, we have a conformal invariant diffusion, propagat-
ing on a conformally flat manifold. Thus, the Green function (7)
reduces to the flat space un-particle Green function and we can
conclude that DU = 2dU , indicating “fractalization” of the surface.
This would confirm the argument in [7] according to which the
un-Schwarzschild horizon is exactly a 2dU -dimensional fractal sur-
face built up by un-gravitons trapped at the Schwarzschild radius.

Up to now, we have considered the case of “classical” back-
ground manifold in the sense that two points (events) can be arbi-
trarily closed. In other words, we have not considered the intrinsic
uncertainty in the localization of a single point when it is left
free to fluctuate quantum mechanically. Since our model of “quan-
tum manifold” would like to account for both a short-distance
increasing loss of resolution and self similarity, it is compelling to
understand how the un-spectral dimension behaves in regards of
both properties. To this purpose, we implement the graininess in
spacetime along the lines of Ref. [3] by studying a diffusion pro-
cess governed by the same heat equation as in (8), but with a
modified initial condition K�(x, y;0) = ρ�(x,y)√

det gab
. ρ�(x, y) is a Gaus-

sian distribution replacing the former Dirac-delta. The width � is
the minimal uncertainty in the distance between two fluctuating
points, or the best resolution which is compatible with the quan-
tum nature of the background manifold. This loss of resolution
primarily affects the early, short-distance, stages of the diffusion
process, while at distance large with respect to �, the diffusion
is insensitive to the graininess of the manifold. From a thermal
point of view, the manifold behaves like a “boiling surface”, whose
thermal instability sustains the Gaussian profile preventing it from
collapsing into a Dirac delta. In what follows, the role of fluctua-
tions in the Riemannian curvature, which is a geometrical attribute
of a classical, smooth, manifold becomes less and less relevant
with respect to the graininess of the manifold itself. Thus, for our
next purpose it is enough to consider the flat, but accounting for
quantum uncertainty, heat kernel

K�(x, y; s) = AdU

∞∫
0

dm2 (
m2)dU −2 e−m2se

− (x−y)2

4(s+�2)

[4π(s + �2)]d/2
.

The resulting un-spectral dimension turns out to be

DU = s

s + �2
d − 2 + 2dU . (12)

Eq. (12) is the second main result of this work. It provides a new
physical interpretation of the fundamental constant � as the tran-
sition scale between different phases of the background spacetime.
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Long random walks, where s � �2, test a semi-classical manifold
characterized by DU = d − 2 + 2dU . For the special case d = 2 the
manifold un-spectral dimension is totally determined by the scal-
ing parameter dU , as in the case of the un-Schwarzschild black
hole. Conversely, for dU = 1 the un-matter effects decouple and
the un-spectral dimension matches the topological dimension d.
In the critical, say Planckian, regime we have s ≈ �2 and DU =
2dU − 2 + d/2. For d = 4, we see that at Planck scale spacetime
dimension is totally determined by the scaling dimension, as it is
DU = 2dU , just like in the case of the un-Schwarzschild black hole.
In the particular case dU = 1, we obtain the dynamical reduction to
DU = 2 necessary to get a power counting renormalizable quantum
theory of gravity. However, this is not the end of story. Un-matter
allows us to access a new “trans-Planckian” phase which cannot be
probed by any sort of ordinary matter. Short paths, where s 	 �2,
measure DU = 2dU − 2 + O (s/l2) which is non-negative only in
virtue of the scaling dimension dU � 1. We see that for dU < 2
the un-particle probe scatters across something which we can dub
“spacetime vapor” to be consistent with the thermal interpretation
of the diffusion process. Moreover, as dU → 1 then DU → 0 leading
to the ultimate disintegration of space and time as we under-
stand them. This new picture follows from the introduction of un-
spectral dimension, as a dimension measured by a scale invariant
continuous mass spectrum probe. It may be worth to remark that
even in the “worst-case-scenario”, where un-particles were not
found at LHC as physical objects, the definition (9) would provide
an alternative realization of a scale invariant diffusion process, not
advocating a light-cone limit. The “extra-bonus” of this approach
is to bring into the definition of un-spectral dimension the real
parameter dU leading to a clear fractalization of the background
space(time) and the appearance of a new phase which is forbidden
to standard matter probes. As both spectral and Hausdorff dimen-
sions are employed in a variety of diffusion problems, we expect
the un-spectral dimension to have an equivalent impact in frame-
works different from the one considered in the present Letter.
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