SUPPLEMENT TO

FOLD AND FUNCTION OF THE INLB B-REPEAT

Maria Ebbes ${ }^{1}$, Willem M. Bleymüller ${ }^{1}$, Mihaela Cernescu ${ }^{2}$, Rolf Nölker ${ }^{1}$, Bernd Brutschy ${ }^{2}$, Hartmut H. Niemann ${ }^{1}$

From the ${ }^{1}$ Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany and the ${ }^{2}$ Institute of Physical and Theoretical Chemistry, Goethe-University, Max-von-LaueStraße 9, 60438 Frankfurt, Germany

SUPPLEMENT TO

FOLD AND FUNCTION OF THE INLB B-REPEAT

Maria Ebbes, Willem M. Bleymüller, Mihaela Cernescu, Rolf Nölker, Bernd Brutschy, Hartmut H. Niemann

Supplementary Table S1.
X-ray data collection statistics

Protein	B-repeat native	InlB_{392}
Data collection		
Space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$	$\mathrm{P} 3_{2} 21$
Unit cell axes (Å)	$28.61 / 58.34 / 158.07$	$126.40 / 126.40 / 107.86$
Wavelength (A)	$0.81 / 0.95 / 1.9$	0.98
Resolution range (A)	$20-1.30(1.33-1.30)$	$15-3.2(3.28-3.20)$
Unique reflections	66287	16581
l/ σ	$31.81(2.98)$	$18.33(2.89)$
Completeness (\%)	$99.9(99.3)$	$98.7(100)$
Redundancy	22.69	14.7
$R_{\text {meas }}(\%)$	$6.6(71.9)$	$13.1(54.9)$

Supplementary Table S2.
X-ray data collection and phasing

Protein	B-repeat SeMet		
Data collection	inflection	peak	high remote
	0.97838	0.97776	0.95370
Wavelength (Å)		$20-2.0(2.05-2.0)$	
Resolution range (Å)	33,433	33,456	34,128
Unique reflections	$12.47(2.16)$	$12.67(2.19)$	$11.60(2.16)$
I/ σ	$93.3(64.1)$	$93.4(64.2)$	$95.3(72.6)$
Completeness (\%)	3.33	3.33	3.39
Redundancy	$9.8(44.0)$	$9.7(43.1)$	$11.1(51.6)$
R merge (\%)			

Phasing
Correlation coefficient
All/ Weak
49.4/ 32.9

SUPPLEMENT TO

FOLD AND FUNCTION OF THE INLB B-REPEAT

Maria Ebbes, Willem M. Bleymüller, Mihaela Cernescu, Rolf Nölker, Bernd Brutschy, Hartmut H. Niemann

Supplementary Table S3. Refinement Statistics of $\operatorname{InIB} 392$	
Resolution range (Å)	15.0-3.20 (3.28-3.20)
$\mathrm{R}_{\text {cryst }}$	19.7 (29.6)
$\mathrm{R}_{\text {free }}$	22.5 (33.1)
No. of reflections	
Working set	15752 (1105)
Test set	829 (58)
No. of atoms	
Protein	2271
Solvent/ion	0/3
R.m.s. deviation from ideal geometry	
Bond Lengths (\AA)	0.023
Bond Angles (${ }^{\circ}$)	2.037
Ramachandran plot:	
Favored (\%)	86.8
Disallowed (\%)	1.4

SUPPLEMENTARY FIGURE S1. Crystal packing of InIB $_{392}$. The crystals of InIB $_{392}$ are loosely packed with a solvent content of 80%. Crystal contacts are formed by the InIB interanlin domain (gray). No electron density is visible for the B-repeat, which probably dangles freely in the large solvent channels. The last C-terminal residue of the internalin domain that is visible in the electron density is shown as red spheres and indicates the position where the B-repeat starts.

SUPPLEMENTARY FIGURE S2. The B-repeat does not interact with the Met ectodomain in a solid-phase binding assay (ELISA). The complete Met ectodomain (Met_{928}) was immobilized on ELISA plates and incubated with increasing concentrations of a GST-B-repeat, GST- $\operatorname{lnIB}_{321}$ and GST- $\operatorname{lnIB}_{392}$ fusion proteins. Binding was detected with an anti-GST antibody coupled to horse-radish peroxidase. GST alone served as negative control.

SUPPLEMENTARY FIGURE S3. Crystal packing of the InIB B-repeat. A, Monomers A and B (green and orange) and monomers C and D (lightblue and yellow) pack into the same dimeric arrangement. B, The dimer is not 2 -fold symmetric as can be seen from the different hydrogend bonds (blue dashed lines) formed between strand $\beta 2$ of one monomer and the extended loop connecting strands $\beta 2$ and $\beta 3$ from the other monomer. C, Detailed view of the hydrogend bonds formed between chain A and chain B.

FOLD AND FUNCTION OF THE INLB B-REPEAT
Maria Ebbes, Willem M. Bleymüller, Mihaela Cernescu, Rolf Nölker, Bernd Brutschy, Hartmut H. Niemann

SUPPLEMENTARY FIGURE S4. LILBID control measurement. Mass spectra of $\operatorname{InIB}_{321}$ and InIB_{392} in 20 mM ammonium acetate and 50 mM ammonium acetate, respectively. The monomer peaks appear at three different overall charge states (the black sticks indicate the theoretical mass/charge positions).

Supplement to

FOLD AND FUNCTION OF THE INLB B-REPEAT
Maria Ebbes, Willem M. Bleymüller, Mihaela Cernescu, Rolf Nölker, Bernd Brutschy, Hartmut H. Niemann

B-rep/1-72 - AMVYTVSYDV-DGTVIKTKVEAGTRITA----PKPPAKQGYVFKGWYTEKNGGHEWNFNTDYM-- - SGNDFTLYAVFKAE--SUMO1/1-75----KLKVIGQDSSEIHFKVKMTTHLKKLKESYCQR-QGVPMNSLRFLFE---GQRIADNHTPKELGMEEEDVIEVYQEQTGG SUMO2/1-78--DHINLKVAGQDGSVVQFKIKRHTPLSKLMKAYCER-QGLSMRQIRFRFD-- -GQPINETDTPAQLEMEDEDTIDVFQQQTGG SUMO3/1-78--DHINLKVAGQDGSVVQFKIKRHTPLSKLMKAYCER-QGLSMRQIRFRFD-- - GQPINETDTPAQLEMEDEDTIDVFQQQTGG DroMe/1-80 ETEHINLKVLGQDNAVVQFKIKKHTPLRKLMNAYCDR-AGLSMQVVRFRFD---GQPINENDTPTSLEMEEGDTIEVYQQQTGG Trypano/1-79-TALVAVKVVNADGAEMFFRIKSRTALKKLIDTYCKK-QGISRNSVRFLFD-- -GTPIDETKTPEELGMEDDDVIDAMVEQTGG Rad60/1-74 --KLITLLLRSSKSEDLRLSIPVDFTVKDLIKRYCTEVKISFHERIRLEFE---GEWLDPNDQVQSTELEDEDQVSVVL----

Conservation

Consensus

[^0]SUPPLEMENTARY FIGURE S5. Structure based multiple sequence alignment of the InIB B-repeat and six representative structures from the Pfam Rad60-SLD („Ubiquitin-2 like Rad60 SUMO-like) family (PF11976).
-SUMO1: human SUMO1 (PDB ID 2io2)
-SUMO2: human SUMO2 (PDB ID 2io0)
-SUMO3: human SUMO3 (PDB ID 2io1)
-DroMe: SUMO3 from Drosophila melanogaster (PDB ID 2k1f)
-Trypano: SUMO from Trypanosoma brucei (PDB ID 2k8h)
-Rad60: DNA repair protein rad60 from Schizosaccharomyces pombe (PDB ID 3goe)
Secondary structure of the B-repeat (chain D) is indicated above the sequence. The coloring of β-strands is the same as in Fig 2. Residues important for the fold of the B-repeat are marked with asterisks according to their conservation score as reported by Jalview (see Fig. 2). Conservation score 5 \& 6: (*); 7 \& 8: (**), 9 \& +: (***). The sequence alignment was colored in Jalview according to sequence conservation with the Clustalx color scheme and a Conservation Color Increment of 30 .

SUPPLEMENT TO

FOLD AND FUNCTION OF THE INLB B-REPEAT

Maria Ebbes, Willem M. Bleymüller, Mihaela Cernescu, Rolf Nölker, Bernd Brutschy, Hartmut H. Niemann

Supplementary Table S4: Pairwise structural comparison of chain D of the B-repeat with PDB entries 2 kt 7 , 2 kvz and 3lyy and with the N - and C-terminal domains (B1 and B2) of PDB entry $3 i 57$ using the DaliLite server.

Protein	PDB	Z	rmsd	Lali	\%ID
mucus binding protein repeat (Mub-R5) N-terminal domain (B1) Lactobacillus reuteri	$3 i 57 \mathrm{~N}$	5.6	2.4	61	11
mucus binding protein repeat (Mub-R5) C-terminal domain (B2) Lactobacillus reuteri	3 i 57 C	3.6	2.1	54	17
putative peptidoglycan bound protein Imo0835 residues 161-235 Listeria monocytogenes	2 kvz	5.2	2.5	58	17
putative peptidoglycan bound protein Imo0835 residues 34-128 Listeria monocytogenes	$2 \mathrm{kt7}$	3.3	2.7	57	9
adhesion protein PEPE_0118 Pediococcus pentosaceus	$31 y y$	4.4	2.8	58	17

Supplementary Table S5: Results from a Dali search with chain D of the B-repeat against the complete PDB. The top result is given for a small ubiquitin like modifier (SUMO), ubiquitin, the protein Mth1743 from Methanobacterium thermoautotrophicum and for the immunoglobulinbinding proteins protein G and protein L from Streptococcus sp. and Peptostreptococcus magnus, respectively.

Protein	PDB	\mathbf{Z}	rmsd	Lali	\%ID
SUMO3	$2 \mathrm{io1}$	6.4	2.5	63	14
ubiquitin	3 nob	5.0	3.1	61	15
Mth1743 (protein of unknown function) Methanobacterium thermoautotrophicum	1 ryj	4.5	2.9	59	10
protein L Peptostreptococcus magnus	$1 \mathrm{kh0}$	3.7	3.2	52	10
protein G Streptococcus sp	1 miO	2.5	3.0	45	11

Supplement to

FOLD AND FUNCTION OF THE INLB B-REPEAT
Maria Ebbes, Willem M. Bleymüller, Mihaela Cernescu, Rolf Nölker, Bernd Brutschy, Hartmut H. Niemann

SUPPLEMENTARY FIGURE S6. Structure based multiple sequence alignment of the InIB B-repeat and structurally similar bacterial domains. Sequence similarity is highest in strand $\beta 4$, in the turn leading into strand $\beta 3$ and in strand $\beta 1$. The highly conserved GW signature motif of the B-repeat/Flg_new domains and strand $\beta 3^{\prime}$ are missing in the other bacterial domains.
-B-rep: InIB B-repeat
-3i57N: B1 domain of repeat 5 of mucus binding protein (Mub-R5) from Lactobacillus reuteri (PDB ID 3i57)
-2kt7: residues 34-128 of Imo0835, a putative peptidoglycan bound protein from Listeria monocytogenes (PDB ID 2kt7)
-2kvz: residues 161-235 of Imo0835, a putative peptidoglycan bound protein from Listeria monocytogenes (PDB ID 2kvz)
-3i57C: B2 domain of repeat 5 of mucus binding protein (Mub-R5) from Lactobacillus reuteri (PDB ID 3i57)
-3lyy: adhesion protein PEPE_0118 from Pediococcus pentosaceus (PDB ID 3lyy)
Secondary structure of the B -repeat (chain D) is indicated above the sequence. The coloring of β-strands is the same as in Fig 2. Residues important for the fold of the B-repeat are marked with asterisks according to their conservation score as reported by Jalview (see Fig. 2). Conservation score 5 \& 6: (*); $7 \& 8$: (**), 9 \& +: (***). The sequence alignment was colored in Jalview according to sequence conservation with the Clustalx color scheme and a Conservation Color Increment of 30 .

SUPPLEMENTARY FIGURE S7. Overlay of aromatic residues in the B-repeat and structurally similar bacterial domains. Color coding is the same as in Fig. 7. Cartoon representation of the InIB B-repeat (gray), the B1 (dark blue) and B2 (cyan) domains of repeat 5 of mucus binding protein (Mub-R5) from Lactobacillus reuteri (PDB ID 3i57), residues 34-128 (red, PDB ID 2kt7) and residues 161-235 (green, PDB ID 2kvz) of Imo0835, a putative peptidoglycan bound protein from Listeria monocytogenes, and of the adhesion protein PEPE_0118 from Pediococcus pentosaceus (pink, PDB ID 3lyy). The residues shown in stick representation are the tyrosine from the GY motif at the start of strand $\beta 3$ and the aromatic residue at the end of strand $\beta 4$ (phenylalanine in the B-repeat and the B1 domain of Mub-R5 and tyrosine in the others).

[^0]: - TDHINLKVAGQDGSVVQFKIKRHTPLKKLMKAYC+R-QGLSM++IRFRFD-- - GQPINENDTPA+LEMEDEDTIDV+QQQTGG

