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Event-related potentials (ERPs) are widely used in basic neuroscience and in clinical diagnostic procedures.
In contrast, neurophysiological insights from ERPs have been limited, as several different mechanisms lead
to ERPs. Apart from stereotypically repeated responses (additive evoked responses), these mechanisms are
asymmetric amplitude modulations and phase-resetting of ongoing oscillatory activity. Therefore, a method
is needed that differentiates between these mechanisms and moreover quantifies the stability of a response.
We propose a constrained subspace independent component analysis that exploits the multivariate informa-
tion present in the all-to-all relationship of recordings over trials. Our method identifies additive evoked
activity and quantifies its stability over trials.We evaluate identification performance for biologically plausible
simulation data and two neurophysiological test cases: Local field potential (LFP) recordings from a visuo-
motor-integration task in the awake behaving macaque and magnetoencephalography (MEG) recordings
of steady-state visual evoked fields (SSVEFs). In the LFPs we find additive evoked response contributions
in visual areas V2/4 but not in primary motor cortex A4, although visually triggered ERPs were also observed
in area A4. MEG-SSVEFs were mainly created by additive evoked response contributions. Our results demon-
strate that the identification of additive evoked response contributions is possible both in invasive and in
non-invasive electrophysiological recordings.
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Introduction

Electrophysiological measurements such as invasive recordings of
local field potentials (LFPs), electro- and magnetoencephalography
(EEG/MEG), record signals from a multitude of neuronal sources.
These recordings reflect various brain processes that may be related
to some experimental stimulus (i.e. they are responses that are
‘event-related’ in a wide sense1), or may reflect background processes
that are spontaneous and unrelated to the experiment. One of the
earliest approaches to emphasize the responses of interest relative
to background processes has been to average the recorded signals
from multiple repetitions of the experiment (Galambos and Sheatz,
1962). The obtained average signal is usually called the event-related
potential or field (ERP/F) for the case of electrical or magnetic measure-
ments, respectively. The implicit assumption behind this approach
was that there existed neuronal activity representing a response to
the stimulus that would be added in a stereotypical repetitive fashion
to each trial, i.e. phase-locked to the stimulus (additive evoked activity).
Other activity that is event-related (in a wide sense) but not phase-
locked to the stimulus (induced activity) or not event-related at all
(spontaneous activity) should average to zero if enough trials were
taken into consideration — resulting in an ERP/F that only contained
the contributions of additive evoked activity (Bertrand and Tallon-
Baudry, 2000; Galambos, 1992).

This assumption of additive evoked contributions has been chal-
lenged by the detection of two mechanisms that generate ERP/Fs
without additive evoked response contributions (Fig. 1): First, the
phase of spontaneous oscillatory activity could be altered (e.g. reset)
by an event while its power remained unchanged, such that an ERP/F
is observed, although one could not consider the contributions to be
additive any more (Makeig et al., 2002; Sayers et al., 1974). Second,
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Fig. 1. Illustration of mechanisms leading to observable event-related potentials (ERPs). Neuronal activities may be related to an experimental stimulus (yellow box) or unrelated to
the experiment (brown box). Stimulus-triggered trial averaging may elicit an observable ERP (orange box) or result in a vanishing signal (cyan box). (A) Additive evoked contri-
butions are added stimulus-locked and phase-stable to the trials, i.e. the response potentials have a fixed polarity and latency with respect to the stimuli. The stereotypical repetitive
response is conserved in the ERP. (B) Phase-reset spontaneous oscillations have varied phases in the pre-stimulus period over different trials. Following the stimulus, the phases of
the oscillations are reset to a common value without changing the variances. Thus, oscillations in the pre-stimulus period are canceled out in the averaging process, leaving only the
oscillations after the phase-reset in the ERP. (C) Asymmetrically amplitude modulated spontaneous oscillations have varied phases and symmetrically distributed amplitudes in the
pre-stimulus period over different trials. Following the stimulus, the amplitudes of the oscillations are asymmetrically modulated around zero without changing the (random)
phases. Thus, oscillations with symmetrically distributed amplitudes and varied phases in the pre-stimulus period are canceled out in the averaging process, leaving only the en-
velope of the amplitude changes in the ERP. (D) Additive induced contributions are added stimulus-related but phase-shifted to the trials, i.e. the response potentials have different
polarities and shifted latencies with respect to the stimuli. The jittered responses are thus canceled out in the averaging process. (E) Spontaneous activity contributions are added
non-stimulus-related and thus phase-varied to different trials. Hence, the potentials are canceled out in the averaging process.
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an event-related amplitude modulation of spontaneous oscillatory ac-
tivity that is asymmetric around zero could also result in a contribution
to the ERP/F that will not average out, although the phase of these
oscillations may be random. This theoretical prediction has recently
been confirmed experimentally (Mazaheri and Jensen, 2008; Nikulin
et al., 2007).

To separate the various generating mechanisms of the ERP/F from
each other a variety of tests have been developed to find phase-reset
(see Sauseng et al., 2007 for a critical review) and asymmetrically
amplitude-modulated oscillations (Mazaheri and Jensen, 2008).
Curiously, we still lack a test for the oldest of these hypotheses,
the presence of additive evoked contributions to each trial. Their
presence is typically inferred from negative evidence, i.e. by a failure
to detect phase-resetting or asymmetric amplitude modulations.

Here we present an algorithm for quantifying additive evoked
contributions to the ERP/F and demonstrate that these contributions
can indeed be found in LFP recordings from awake behaving macaques
performing a visuo-motor-integration task and in human MEG
recordings of steady-state visual evoked fields (SSVEFs).

Methods

The remainder of this manuscript is organized as follows: In this
section we will first present an overview over the various steps of
the proposed algorithm, while referring the reader interested in an
in-depth mathematical treatment to the appendix. We then describe
tests of our algorithm on various sets of simulation data. Last, we
apply our method to experimental datasets: (1) LFP data from the
awake behaving macaque performing a visuo-motor-integration
task where clear expectations on the presence of additive evoked con-
tributions exist; (2) steady-state visual evoked field (SSVEF) MEG data,
where additive response contributions are expected.

Overview of the algorithm

Herewe present an outline of the proposed algorithm, highlighting
itsmain concepts.We focus on the single channel version that is appli-
cable even to invasive single channel recordings— the commonmulti-
channel information in EEG/MEG may be used to further improve the
method.

For the following description it is important to have a basic under-
standing of independent component analysis (ICA) (Comon, 1994).
ICA describes a statistical method that can recover the unknown orig-
inal source signals when only linear combinations (mixtures) of these
source signals are observable and no details about this mixing are
known. The only assumptions that are made in the ICA model are
that there exist as many instantaneous (non-time delayed) mixtures
as source signals and that the source signals are mutually statistically
independent, while at most one source signal is Gaussian distributed
(Hyvärinen and Oja, 2000). An example of such a mixture of source
signals would be the observation of signals from multiple cortical
sources on EEG electrodes because of volume conduction. These ob-
served linear mixtures of the original source signals are usually re-
ferred to as sensor signals. The amplitude distribution of these
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sensor signals will be closer to a Gaussian distribution than the ampli-
tude distributions of the source signals (central limit theorem). If we
observe as many sensor signals as we had source signals then for each
source signal there would be a unique linear combination of the
sensor signals that would result in this particular source signal
again. Finding this linear combination is usually referred to as the
‘demixing problem’. Sensor signals demixed by this linear combi-
nation would then have an amplitude distribution that would be
further away from a Gaussian distribution (i.e. have a more peaked
or flat distribution) than that of any other linear combination
of sensor signals— because of the central limit theorem. ICA algorithms
can be thought of as clever ways of finding these linear combinations.
The estimated source signals are referred to as independent compo-
nents (ICs).

This classical ICA model assumes as many sensor signals as there
are source signals, while our goal is an algorithm that separates the
contributions of additive evoked activity from contributions of other
neuronal activity even in single-channel recordings. To make this
problem tractable we reformulate the representation of our data in
the following way: We start by noting that the single-channel signal
of each trial is the addition of contributions of various neuronal activ-
ities that may elicit a non-vanishing average over trials (Fig. 1) and
yet others that cancel out when enough trials are added. Contribu-
tions of additive evoked activity are special in three ways: First,
they appear in every single-trial — as opposed to highly individual
contributions of spontaneous activity to each trial. Second, they ap-
pear with a fixed polarity and latency to the given stimulus in each
trial — in contrast to latency shifted contributions of induced activity
to each trial. Third, they appear with an increased variance in the
post-stimulus period of each trial — in contrast to the variance stable
contributions of phase-reset activity in each trial.

To exploit these three properties we apply the following central
idea as the first step for our algorithm:We take the single-trial signals
and treat them as if they were all recorded by different channels
at the same time, i.e. we represent every trial of the single-channel
dataset as a separate channel of a multichannel dataset having only
one trial. These channels of the new multichannel dataset can now
be treated as the sensors of the classical ICA model (Figs. 2, A, B).
This way, each sensor signal of the ICA model corresponds to one
original single-trial signal. To reflect this definition we will refer to
single-trials as ‘sensors’ in the remainder of the text and each time
we do use the word sensor in the following it will explicitly mean a
single-trial signal of the original single-channel recording.

In the next four paragraphs we will explain how the contributions
of each of the four different activities (additive evoked, spontaneous,
induced and phase-reset) will appear as mixtures of source signals in
the classical ICA model when we use trials as sensors.

On our new sensors, created from the single-trials, additive evoked
contributions (AECs) appear with the same polarity and latency on
each sensor — remember the phase-locking property of additive
evoked activity. This property is required for the identifiability
of source signals in the classical ICA mixing model (see above).
Therefore, additive evoked activity generated by one group of neurons
can be considered as one source signal that is instantaneously mixed
onto all sensors (see Fig. 1 first column).

The phase-locking property does obviously not hold for spontane-
ous contributions that do not repeat over trials. Although the sponta-
neous activity may be generated by the same group of neurons in each
trial the temporal activity of these neuronsmaywell be statistically in-
dependent over trials. Thus, spontaneous activity generated by this
single group of neurons will be seen as a set of several distinct source
signals when transforming trials into sensors (Fig. 1, fifth column).
Each of these source signals will then be mixed onto one sensor
only. In the presence of several groups of neurons generating sponta-
neous activity we will therefore have more sources than sensors — in
principle this is the overcomplete bases problem for ICA (Lewicki
and Sejnowski, 2000). However, since the spontaneous contribution
is individual to each sensor but has a similar amplitude distribution
on each sensor it can be considered as (uncorrelated) sensor noise.

The phase-locking property does by definition also not hold for
induced contributions. This is because induced contributions have
shifted latencies (phases) over the sensors. Here the contributions
of induced activity generated by a single group of neurons are neither
fully statistically independent over sensors nor are they identical as it
was the case for AECs. Thus, induced activity generated by one group
of neurons can be considered as one source signal that is mixed in
a time-delayed way onto the sensors (see Fig. 1 fourth column). In
the classical ICA model, such source signals cannot be recovered
at all (see e.g. Hyvärinen et al., 2001). This is because time-delayed
mixtures of source signals will be seen as sparse mixtures of
more source signals than sensor signals when transforming trials
into sensors (see Appendix). Therefore, we can consider induced
contributions as (correlated) sensor noise for the same reason as
given above (i.e. individual contributions to each sensor).

The phase-locking property also takes an exceptional form for
phase-reset contributions. This is because phase-reset contributions
have a fixed latency only in the post-stimulus period. Here the contribu-
tions of phase-reset activity generated by a single group of neurons are
neither completely shifted over the sensors nor are they fully statistical-
ly independent as it was the case for spontaneous contributions. Thus,
phase-reset activity generated by one group of neurons can be consid-
ered as one source signal that is mixed in a partially time-delayed way
onto the sensors (Fig. 1 second column). However, the classical ICA
model does not account for phase-reset sources for the same reasons
as for induced and spontaneous source signals — phase-reset sources
have an individual contribution to each sensor (single-trial signal) be-
cause of their distinct pre-stimulus (non phase-reset) part, which
must be included in the analysis. Therefore, we can consider phase-
reset contributions as (correlated) sensor noise for the same reason as
given above (individual contributions to each sensor).

At this point our ICA mixing model comprises additive evoked
sources contributing to every sensor, spontaneous sources contributing
only to single sensors, induced sources that contribute in a time-
delayed way to the sensors and phase-reset sources that contribute in
a partially time-delayed way to the sensors. The latter three reflect
sources contributing only to single sensors and therefore we consider
them as sensor noise.

This new formulation of the problem lets us see the following im-
portant property: The fact that additive evoked sources contribute
instantaneously to every sensor means that we could choose any
subset of our sensors and still all additive evoked sources would con-
tribute to our subset. However, any given subset of sensors will be
free of spontaneous, induced and phase-reset contributions that are
specific to other sensors, i.e. those not considered for the particular
subset. We will now describe how we use this property of subsets
to attenuate spontaneous, induced and phase-reset contributions
(i.e. the noise) and recover the AECs only.

Based on the idea above, we choose several non-identical subsets
of an equal number of sensors (Fig. 2, C). We assume that the number
of sensors in each subset is higher than the number of AECs. Our goal
is to decompose the data from each subset in such a way that each
of the AECs is represented as one estimated source signal — perhaps
with some distortions (see Appendix). The contributions of all other
sources should be represented by one or more additional nuisance
signals, which should be clearly separable from AECs. To this end,
we consider the problem as a constrained subspace ICA where only
the mutually independent AECs are considered as the source signals
to be recovered. All other contributions are considered as noise to
be attenuated and not recovered individually. An approximate solu-
tion to our constrained ICA problem is to simultaneously decompose
all subsets in a coupled way, by maximizing the mutual independence
of the estimated components of each single subset decomposition
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and using a similarity constraint that concurrently forces the decom-
positions to converge to such signal components that are most similar
over all subsets (Fig. 2, D). These criteria are equivalent to our goal
stated above because the mutually independent AECs satisfy both
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sensor signals are mixtures of additive evoked and the other contri-
butions. This is because we need the possibility to estimate additional
source signals reflecting the residual contributions of induced, spon-
taneous and phase-reset sources that are specific to each subset.
This way, some of the estimated source signals will approximate in-
dependent components (ICs) that are common to all subsets — i.e.
consistently present in all subsets. Therefore, we will refer to such
consistent ICs as common ICs (CICs). However, since we do not have
a priori knowledge about the number of truly consistent CICs in our
data, we will preliminarily consider all CICs estimated by our algo-
rithm to be consistent. Later on, we will describe how we distinguish
consistent CICs from inconsistent ones.

The main difficulty to overcome is the design of a similarity con-
straint for these coupled simultaneous subset decompositions. To im-
plement the constraint we make use of the fact that for each CIC there
is only one uniquemixing coefficient for each sensor. However, of this
coefficient we obtain multiple estimates by decomposing multiple
subsets that contain that particular sensor. An elegant way to enforce
convergence to a global optimum is to constrain the estimated mixing
coefficients corresponding to the same CICs and sensors to converge to
the same values. For this, we first perform a single iteration step of a
fixed-point ICA (Hyvärinen, 1999a) decomposition for each subset.
Then, we compute a global mixing matrix for all CICs and sensors
using the estimated coefficients from the subset decompositions.
This global mixing matrix will typically be rectangular, with the coef-
ficients in the rows corresponding to the sensors and the coefficients
in the columns corresponding to the CICs. One estimate of
the coefficients for certain sensors (rows) and all CICs (columns) is
provided by each single subset decomposition. Due to the fact that
we have many more possible subsets than we have single sensors,
we get — as outlined above — repeated estimates of the coefficients in
the global mixing matrix. To get an estimate of the unique mixing
coefficient for a given CIC and sensor combinationwe therefore average
over all corresponding estimates obtained from the subset decomposi-
tion. This average is then used as a starting point for the reestimation
of the subset mixing coefficients in the next iteration step of the subset
decompositions. The algorithm then iteratively alternates between one
step of subset decompositions and one step of coefficient reestimations
until all mixing coefficients become stable — i.e. the differences be-
tween corresponding mixing coefficients from the subset decomposi-
tions and the global mixing matrix are negligible (see Appendix).

The convergence to stable mixing coefficients is further improved
by the similarity constraint for the CICs themselves: So far we have
only used the fact that there exist unique mixing coefficients for all
CIC and sensor combinations. However, we also know that unique
CICs exist. Therefore corresponding CICs over the subsets should
be as similar as possible — at least for independent AECs. We can im-
plement this knowledge by changing the subset mixing coefficients
before the coefficient averaging step in such a way that corresponding
CICs over the subsets become more similar. To this end we average
over all corresponding CICs and modify the subset mixing coefficients
to maximize the non-linear cross-correlation between CICs and
corresponding mean CICs (μ-CICs) (Fig. 2, E). This procedure will
also increase the similarity between all corresponding CICs over
Fig. 2. Illustration of the Common Independent Component Analysis (CICA) algorithm. (A)
sized single-trial signals triggered to the stimulus onset (red bars). Right: ERP calculated by
treated as an individual sensor signal of a simultaneous multichannel recording. (C) Generat
ing of a same number of randomly chosen sensor signals. Subsets have to differ in at least o
components (CICs). Estimated CICs are constrained to be maximally, mutually independent i
(E) Averaging of the decomposed subsets. Top: Green traces in the subsets depict similar CIC
straint. Bottom: Mean CICs (μ-CICs) obtained by averaging of index equal CICs over the sub
posed of dissimilar CICs. The μ-CICs are used as a constraint for the next round of couple
continued until convergence. (F) Comparison of CICs and corresponding μ-CICs. Consistent C
efficients (identical green traces), while inconsistent CICs (red traces) are dissimilar to corr
additive evoked contributions (AECs). Consistent CICs are accepted as AECs if their mixing
corresponding ‘stable’ μ-CICs.
the subsets if the variances of the CICs are kept fixed during the itera-
tions (see Appendix). The alternating steps of subset decompositions,
similarity maximizations and coefficient stabilizations are then iterated
until the algorithm converges.

After the convergence of the algorithm we have to judge whether
the obtained CICs are consistent over the subsets and thus can be ac-
cepted as AECs. To this end we use a similarity measure that puts the
focus on the actual presence (i.e. consistence) of AECs. In our mixing
model such a similarity measure is given by the ‘stability’ of the sub-
set mixing coefficients — quantified as the mean over the normalized
inner-products of corresponding subset and global mixing coeffi-
cients (Fig. 2, F). This way, the obtained stability value will gradually
indicate the presence of an AEC in the range of [0, 1]. We will refer to
the stability value asΘ and the decision parameter for critical stability
as Θc in the remainder of the text. Consequently, contributions being
consistent over the subsets (AECs) will have stability indices Θ close
to 1, while inconsistent contributions (noise residuals) will have sta-
bility indices clearly lower than 1.

Last, we note that if only very little pre-stimulus data are included in
the analysis, then mean CICs (μ-CICs) for phase-reset activity might be
linked to subset mixing coefficients with high stability indices as well
and therefore might be misclassified as AECs. This is because the post-
stimulus period of phase-reset activity is by definition phase-stable
and thus identical over trials. Unfortunately, μ-CICs representing
phase-reset contributions might also have a pre-stimulus period that
is close to zero due to the pre-stimulus random phases of phase-reset
activity. Nevertheless, a criterion to distinguish phase-reset from
AECs can be derived based on the following observation: CICs repre-
senting phase-reset contributions obtained from single subset decom-
positions effectively reflect a weighted average (linear combination)
over a smaller number of sensors than the final μ-CICs. The CICs repre-
senting phase-reset contributions therefore have an increased variance
in the pre-stimulus period already, compared to their corresponding
μ-CICs. This is different from AECs that have — due to their additive
property — a pre-stimulus period close to zero both in the μ-CIC and
in each CIC obtained from a subset decomposition. Hence, we
can argue that if the CICs from the subsets have only a relatively
small difference in variance between pre- and post-stimulus period
they can be suspected to reflect phase-reset contributions. In contrast,
if a CIC from a subset has a large increase in variance between pre-
and post-stimulus period it very likely represents an AEC (see Fig. 3
for examples of both cases). The expected relative increase ηe between
pre- and post-stimulus variance due to the cancelation of random
phases φj (i.e. for phase-reset contributions) in the pre-stimulus period
over a number of N trials (the size of the subset) is:

ηe ¼
Powerphase−reset−Powerrandom−phase

Powerrandom−phase
¼

1− 1
N∑

N

j¼1
exp iφj

� �

1
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� �
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Segmentation of a multitrial single-channel recording. Left: Segmentation into equally
averaging over trials. (B) Modeling of a multichannel system. Each single-trial signal is
ion of signal subsets. The multichannel system is subdivided into subsets, each consist-
ne sensor index. (D) Coupled decomposition of the subsets into common independent
n each subset and maximally similar to CICs with corresponding indices over all subsets.
s because of the constraint (see D), black traces depict dissimilar CICs despite the con-
sets. Bold green traces: μ-CICs composed of similar CICs, bold black traces: μ-CIC com-
d decomposition. The alternation of coupled decomposition and mean estimation is
ICs (green traces) are similar to corresponding μ-CICs and thus have stable mixing co-
esponding μ-CICs and have instable mixing coefficients (black traces). (G) Selection of
coefficients satisfy a given stability criterion. Identified AECs are finally represented by
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dependent phase-reset components (IPC 1–3). In the case of IOCs only 3 of 300 components are shown. Mixing onto the trials was performed non-time-delayed for IECs, time-delayed
with different latencies for IICs, partially time-delayedwith fixed latencies in the designated task period for IPCs and completely sparse for IOCs. (B) Seven example trial signals (of a total
of 100). (C) ERPs obtained from averaging 100 trial signals (ERP) and the sum over the estimated additive evoked contributions to 100 trials (Σ AEC). (D) Results obtainedwhen estimat-
ing 7 CICs from the trial data, ranked according their stability indices in descending order. (Green, identified AECs= μ-CICs reflecting consistent CICs that satisfy the stability criterion of
Θc=0.97 and variance criterion of Δc=1; red, noise residuals= μ-CICs reflecting inconsistent CICs). The linear cross-correlation coefficients of μ-CICs and IECs are depicted on the right.
The number of identified AECs (green traces) equals the number of simulated IECs. (E) Superposition of the results obtained from the corresponding subset decompositions. The variance
indices of the estimated CICs are depicted on the right. Note the significant variance increase in the designated task period of the first 3 CICs (recovered AECs).
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Therefore, we suggest using an average variance increase η/ηeN1
in the CICs as an additional criterion to test for AECs. We will refer
to this important decision ratio as the critical variance index in the
remainder of the text and denote it by the symbol Δc from here on.

To understand the above argument it may be helpful to think of
how a dataset containing only one AEC and no noise is being averaged
over subsets of sensors (i.e. trials) and finally over all sensors — one
will always obtain an average that has a zero baseline. In contrast,
a dataset containing only one phase-reset component and no noise
will result in sensor subset averages that have a non-zero baseline
whereas the final average will have a close to zero baseline. In
this phase-reset dataset we would observe a difference in baseline
amplitude depending on the number of sensors (i.e. trials) we use
for averaging. The relation to the above argument becomes clear if
we recall that a CIC reflects a subset average of a component (AEC
or phase-reset) and the μ-CIC the full average.

Performance evaluation on simulation data

We tested our algorithm on two groups of datasets. The first group
of datasets was used to test the identification of AECs on mutually
independent source signals mixed by our mixing model. Thus, contri-
butions of additive evoked, induced, phase-reset and spontaneous ac-
tivities were approximated by distinct sets of mutually independent
random variables that were mixed non-time-delayed, time-delayed,
partially time-delayed and sparse onto the simulated single-trials.
The second group of datasets was used to test the identification of
AECs in the case of temporal correlations and dominant variance in-
creases reflecting biologically plausible constraints. To this aim the
source signals were not fully independent because of their temporal
structure as explained below (also see Fig. 3 for examples). For the
quantification of the performance we evaluated the algorithm on
500 different datasets of 100 simulated single-trials each.

For each of the datasets in the first group, we initially created 30
ICs by sampling 500 data points from 15 distinct sub-Gaussian and
15 distinct super-Gaussian random variables. Each of the ICs was
mean-free and had unit variance. Next, we created 100 linear mix-
tures of 10 of the ICs (5 sub- and 5 super-Gaussian) using uniformly
distributed, positive mixing coefficients. According to our mixing
model, we considered these mixtures as contributions of 10 indepen-
dent additive evoked sources. Additionally, we created 100 time-
delayed linear mixtures of the remaining 20 ICs using uniformly
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distributed, mean-free mixing coefficients. Of these 20 ICs, 10 ICs
(5 sub- and 5 super-Gaussian) were shifted over the entire signal
length, while the remaining 10 ICs were only shifted in the first
and last third of the signal. The corresponding shifting factors
were randomly chosen from an interval of 10% of the signal length,
i.e. [1, 2, …, 50] data points. We considered these mixtures as contri-
butions of 10 independent induced and 10 independent phase-reset
sources, respectively. In order to obtain contributions of independent
spontaneous sources we created 100 sparse linear mixtures of 1000
distinct ICs using mean-free, uniformly distributed mixing coeffi-
cients. Each mixture consisted of the contributions of 10 different ICs
that were created by sampling 500 data points from 5 sub-Gaussian
and 5 super-Gaussian random variables. All ICs were mean-free and
had unit variance. Finally, we created trial signals by summing up
the sets of mixtures, removing the obtained signal means and normal-
izing their variances to unity.

For each of the datasets of the second group, we initially created 3
small sets of 3 distinct sinusoidal signals and 1 large set of 300 distinct
sinusoidal signals. Each signal had a length of 1500 data points and a
frequency randomly chosen from an interval of [1, 2, …, 100] Hz.
Next, we cross-modulated the amplitude and frequency of the signals
by the frequencies of the other signals in the same set. This way we
introduced temporal linear correlations within and statistical depen-
dencies among the signals in a set. In two of the smaller sets, we
then set the values of the first and last third of the signals to zero
and imposed this way a variance increase onto 500 data points
in the middle of these signals. In order to obtain maximally mutually
independent signals, we subsequently removed the signal means,
normalized their variances to unity and performed an ICA separately
on each set using EFICA (Koldovsky et al., 2006). On the large set of
300 sinusoidal signals, we performed ICA in a block wise manner
on 3 consecutive signals at a time. Hereafter the obtained ICs were
maximally mutually independent but still had temporal features and
statistical dependencies that are characteristic for stimulus responses
recorded in vivo. Next, we created 100 linear mixtures and 100 time-
delayed linear mixtures of the first and second IC set having a variance
increase, respectively. Additionally, we created 100 partially time-
delayed and 100 sparse mixtures of the remaining smaller and
the large IC set, respectively. We considered the mixtures having
a variance increase as contributions from independent evoked and
independent induced sources, and the mixtures without a variance
increase as contributions of independent phase-reset and indepen-
dent spontaneous sources. Parameters for these mixings were chosen
as for the first group of datasets. Again, shifting factors for time-
delayed contributions were randomly chosen from 10% of the signal
length and independent phase-reset contributions were shifted only
in the first and last 500 data points of the signals. Furthermore,
each sparse mixture of independent spontaneous contributions con-
sisted of the contributions of 3 different ICs. Finally, we created trial
signals by summing up the sets of mixtures, removing the obtained
signal means and normalizing their variances to unity.

We quantified the performance of our algorithm by evaluating
true-positive and false-positive rates as follows: A μ-CIC was counted
as a true-positive identification of an AEC if it had a linear cross-
correlation with the original independent AEC that exceeded 0.9 and
additionally if the mixing coefficients of the corresponding CICs were
stable over the subsets and their post-stimulus variance was signifi-
cantly increased — i.e. by exceeding the critical threshold Θc for the
stability index and the critical threshold Δc for the variance index. In
contrast, we counted a μ-CIC as a false-positive identification if it had
a linear cross-correlation with the original independent AEC below
0.9, but both its mixing coefficients were stable over the subsets as
well as its post-stimulus variance was significantly increased.

As the identification of an AEC depends on the chosen critical sta-
bility index Θc we quantified the performance over a wide interval
of thresholds for the critical stability index [0.8, 0.81, …, 0.99] and
also a number of estimated CICs [11, 12, …, 20] and [4, 5, …, 10]
for each dataset of the first and second group, respectively. For the
datasets of the second group we used a fixed threshold for the critical
variance index of Δc=1.

Performance on LFP – VEP and MEG – SSVEF data

Simulation data may always differ from biological signals in some
hidden quality. This difference may be small but still could favor good
performance of our algorithm. To fully test the algorithm we there-
fore need biological data where we can expect AECs to be present –
or absent – in the data. Unfortunately in biological data the ground
truth is unknown. We therefore make use of the following working
hypothesis to construct a first neurophysiological test case: If the
data were recorded only one or very few synapses away from sensory
inputs, chances are relatively high that responses are stereotypically
repeated over trials. We assume that in this case one can observe
AECs to the ERP. In contrast, when data are recorded several synaptic
connections away from the sensory input we do not expect AECs to
be present. This is because intrinsic activity of the neural networks
between sensory input and recorded sites will exert a variable influ-
ence on the response such that it either becomes jittered in time or
has a varying wave shape in each trial.

Here, we used LFP data recorded transcortically using bipolar elec-
trodes (as in Bressler et al., 1993) in various cortical areas (visual
areas: V2, V4 and primary motor cortex: Brodmann area A4) of a ma-
caque monkey (Fig. 5). All procedures were approved by the local au-
thorities (Regierungspräsidium) and are in full compliance with the
guidelines of the European Community (EUVD 86/609/EEC). Data
were recorded at a sampling rate of 1000 Hz using a hardware band-
pass filter with a high cut-off frequency of 150 Hz and a low cut-off
frequency of 5 Hz (3 dB/octave). In each recording session, the mon-
key performed one of two visuo-motor-integration tasks: The mon-
key was required to fixate a spot at the center of a CRT screen. In
task 1, after the monkey kept fixation for 300–1000 ms, a drifting si-
nusoidal grating appeared contralateral to the recorded hemisphere.
In task 2, after the initial fixation period of 300–1000 ms, two drifting
gratings appeared— one at each side of the fixation point. These stim-
uli were presented in parafoveal positions to match electrode posi-
tions in visual areas. The color of the fixation point cued the task
relevant grating where attention had to be directed (green: left,
red: right). This way the grating contralateral of the recording site
was either attended or unattended.

In both tasks the monkey had to maintain fixation of the central
fixation spot and indicate the varying speed of the task relevant grat-
ing by moving a manipulandum lever against the force of springs to
predefined positions. For the analysis the data were cut into 512 ms
long parts from 100 ms prior to stimulus onset to 412 ms post-stimulus
onset. As explained above, our expectation was to identify AECs in
visual cortices and we did not expect AECs in recordings from pri-
mary motor cortex A4, although motor cortex neurons may indeed
respond to visual stimulation (e.g. Merchant et al., 2001). We used
data from three different sessions to obtain recordings with optimal
signal-to-noise ratio: Data for the analysis of ERPs from visual area
V4 and primary motor area A4 were taken from sessions when the
monkey performed task 1, data for the analysis of ERPs from visual
area V2 were taken from a session when the monkey performed
task 2. Only trials, in which the monkey correctly performed the
task and, in the latter case, attended the grating contralateral to the
recording site, were used.

The second test case was constructed using visual evoked re-
sponses to regularly repeating stimuli — steady-state visual evoked
potentials or fields (SSVEP/Fs). These SSVEFs are known to accurately
follow the repetition frequency of the stimulus (e.g. Regan, 1977).
In addition, the Fourier transform of such steady-state potential sig-
nals exhibits power at multiple harmonics of the stimulus repetition
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frequency. This means that the wave shape of the response is highly
conserved from stimulus presentation to stimulus presentation and
from stimulus train to stimulus train. Therefore, we expect AECs to
be present in these responses. We tested this hypothesis using data
from a single-channel (MRO22) recorded at a sampling rate of
1.2 kHz with a whole head magnetoencephalograph (VSM MedTech
Ltd., Canada) while the subject passively viewed an array of LEDs in
the lower left visual hemifield. In each trial LEDs flickered at rates
of either 10, 21, 42.1 or 84.2 Hz for a stimulus train length of 3.6 s,
with a preceding fixation interval (baseline) of 3.6 s. 60 trials per
condition were recorded. Here, we present only results for the
21 Hz condition. Data were filtered between 0.5 and 150 Hz using
Fieldtrip (v20081210). Trials were defined from −500 to 3600 ms
with respect to stimulus onset and the mean of the pre-stimulus base-
line period was subtracted. Trials contaminated by artifacts (eye blinks
and movements, muscular activity) were rejected using the automated
artifact rejection routines in Fieldtrip. We then extracted the signal of
the sensor showing highest power in the stimulus frequency for further
analysis. For comparison, we also computed the event related spectral
perturbation and the inter-trial phase-locking values for the same
data using EEGLAB (Delorme and Makeig, 2004).
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Results

Results from the performance evaluation of our algorithm on
the first group of datasets indicated an overall high sensitivity and
specificity to the identification of simulated mutually independent
additive evoked contributions (AECs) (see Fig. 4). Evaluation with
a fixed number of estimated CICs showed a progressive decrease
of the false-positive rates and a general conservation of high true-
positive rates when increasing the critical stability index Θc (see
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times higher than the number of simulated AECs in the data (see blue
curves in Fig. 4, B).

Similar results were obtained from the performance evaluation
on the second set of simulation data. Despite the fact that the
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estimated CICs showed a progressive decrease of the false-positive
rates and a general conservation of high true-positive rates when in-
creasing the critical stability index Θc (see Fig. 4, C). Furthermore, all
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each of the chosen critical stability index (see Fig. 4, D). In particular,
all estimation runs showed a false-positive rate of less than 0.09, irre-
spective of the chosen subset size, while the true-positive rate was
above 0.95 when estimating more than 4 CICs (i.e. more than 1 addi-
tional CICs accounting for the noise residuals) using Θcb0.99. No
false-positives were reported when estimating more than 8 CICs
(see Fig. 4, D). In this case, all true-positively identified AECs had a
correlation coefficient ρN0.95 to the simulated original AECs (see ex-
ample in Fig. 5, D).

In performance evaluations with a fixed threshold for the critical
stability index, true-positive rates progressively increased with an
increasing number of estimated CICs, while the false-positive rates
remained low (Figs. 4, B and D). These findings were in line with our
expectation about the effect of estimating additional CICs that account
for the noise residuals.

Analysis of LFP recordings revealed ERPs triggered by the onset
of a visual stimulus in all three investigated recording sites in
visual areas V2, V4 and in primary motor area A4 (Fig. 5). Despite
the presence of an event-related potential in all three areas, AECs
were only identified in visual areas V2 and V4. Importantly, no
AECs were identified in primary motor area A4. These findings
were in line with our initial hypothesis about the presence or ab-
sence of AECs. In addition, we linearly mixed the obtained AECs
using the estimated mixing coefficients (‘backprojection’) and aver-
aged the resulting signals, thereby obtaining the contribution of ad-
ditive evoked activity to the original ERP. In both cases (V2, V4)
where AECs were identified, their post-stimulus amplitude maxima
and minima clearly exceeded pre-stimulus baseline amplitude
levels. In addition, they explained a large part, but not all, of the
variance (power) in the ERP.

Compatible results were obtained in our MEG study (Fig. 6). We
observed a steady-state visual evoked field (SSVEF) response
that bore a clear spectral signature of the reversal frequency of the
stimulus — this is typical for MEG data (Fawcett et al., 2004) but is
in slight contrast with typical results from EEG where the fundamen-
tal frequencies dominate (Herrmann, 2001; Vialatte et al., 2010).
Time-frequency analysis of magnetic fields at a sensor over the
right occipital cortex showed a stimulus related peak at the reversal
frequency (40.2 Hz). This response was also characterized by a high
phase-locking value (PLVs) over trials, indicating either AECs or con-
tributions of phase-reset oscillatory activity to the SSVEF. A compari-
son of the task-related increases in spectral power and in PLVs
suggested some AECs as part of the SSVEF at 40.2 Hz along with
phase-resetting. This is because the time courses of PLVs and of
task-related power increases at 40.2 Hz clearly differed with the
power increase lagging behind the increase in PLV. However, a deci-
sion cannot be made based on these measures, because even PLVs
dropped below values of 0.4 at certain times in the stimulus interval
(e.g. at 750 ms). This is to be expected because an AEC, if present,
may dominate phase calculation at points in time when it has high
amplitude, but its contribution to phase calculation is negligible at
times when it has small amplitude — it gets buried under spontane-
ous or induced contributions. Application of our algorithm clearly in-
dicated the presence of 1 AEC. The notion of just one AEC was
supported by the fact that only one component's mixing coefficients
exceeded the critical stability index Θc=0.97. In addition, the first
CIC that was estimated was particular with regard to the stability
index of its mixing coefficients and also because its average correla-
tion coefficient ρ clearly exceeded the extrapolation of the ρ-curve
based on the following CICs (see concave curvature of both curves be-
tween CICs 1, 2 and 3 in Fig. 6, D). This fact may serve as a post-hoc
verification of the chosen decision criterion. The notion that one and
only one AEC is present in the data is also supported by the separate
average backprojection of CIC 1 and CIC 2: Only CIC 1 had amplitude
values that clearly exceeded the pre-stimulus baseline noise levels
(green line and gray shading in Fig. 6, E).
Discussion

There has been a long debate whether the event-related potential
(ERP) may be partially generated by phase-resetting of oscillatory ac-
tivity (e.g. Hanslmayr et al., 2007; Makeig et al., 2002; Sauseng et al.,
2007; Sayers et al., 1974; Shah et al., 2004). Studies on this topic
mostly attempted to prove that phase-reset oscillations would con-
tribute to the ERP. So far it has not been considered to put the more
traditional hypothesis of additive evoked activity as a generator of
the ERP to a direct test, i.e. this hypothesis has been assumed to be
correct wherever attempts to prove phase-resetting or, lately, asym-
metric amplitude modulations of oscillations failed. This may be due
to the fact that it was historically the default hypothesis. Here, we
demonstrated that the hypothesis of additive evoked contributions
(AECs) is testable. Our approach is particular in several ways. First,
the use of constrained ICA enables the recovery of large and small am-
plitude contributions alike, thereby identifying AECs even when con-
tributions of other neuronal activity have large amplitudes in each
single-trial (Fig. 6, C). Second, the approach does not rely on the ex-
traction of phase and power values — that is necessarily imprecise
in the presence of spontaneous activity. Third, it incorporates infor-
mation from pre-stimulus baseline and post-stimulus task periods si-
multaneously. Fourth, it makes use of the multivariate information
that is contained in the all-to-all relationship between signals from
all single-trials, searching for stereotypical repetition that is best
assessed at this multivariate level. This kind of multivariate informa-
tion has to our knowledge not been used before to solve the prob-
lem of identifying AECs. Fifth, the proposed algorithm allows the
identification of several independent AECs and to recover their
time-courses. While the algorithm can test the presence of additive
evoked activity with high sensitivity and specificity, the recovery of
the AECs' time courses must stay imperfect due to fundamental math-
ematical limitations. The pre-stimulus baseline amplitude values of an
identified AEC – that theoretically should be zero – may serve as a
rough estimate of the remaining noise that could not be removed by
the algorithm (see Fig. 6, E).

Our algorithm is able to differentiate between phase-reset oscilla-
tions and AECs, which may be surprising if one considers that in the
post-stimulus interval oscillations that were phase-reset with respect
to the stimulus are indistinguishable from AECs. AECs will, however,
also have stereotypical – at or near zero – amplitude values in the
pre-stimulus baseline period of each trial. Phase-reset oscillations,
in contrast, will be identical over trials after the stimulus, but by
definition differ in the pre-stimulus period. Hence, phase-reset os-
cillations will be rejected by our algorithm: The fixed trial-related
mixing coefficients of an estimated source signal will not allow contri-
butions of phase-reset oscillatory activity in a single-trial to be
split into a phase-stable post-stimulus part and a random-phase pre-
stimulus part. It is therefore important to include enough pre-stimulus
data into the analysis. In addition, the critical variance index Δc may
serve to further distinguish AECs and phase reset contributions.

Our algorithm determines the estimated common independent
components (CICs) as either additive evoked or not — based on a
user-chosen threshold for the critical stability index. This raises the
question, what amount of jitter is tolerated before the algorithm
will reject a CIC as not being additive evoked. Note that this question
should relate the absolute amount of temporal jitter to the dominant
frequencies of the signals in question rather than the absolute sam-
pling rate, given signals are adequately sampled. This said, there is a
systematic dependency between jitter and the stability indices of
the estimated CICs: The larger the jitter the smaller the stability
index. Hence, increasing jitter will change a CIC from being accepted
as additive evoked to being rejected. This correctly reflects that the
characteristics of the component move from additive evoked toward
induced. The choice of a maximum tolerable deviation from a true
temporal identity over trials is made by the user in the form of a
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threshold for the stability index. Nevertheless, this choice is not arbi-
trary and the need for making this choice is not a weakness of the
proposed algorithm but rather a weakness related to the historical
definition of AECs as being of ‘fixed latency and fixed polarity’ to the
stimulus. This definition fails to give bounds for what would still
be acceptable as being of ‘fixed latency’. In the future one might
therefore consider thinking about additive evoked and (additive) in-
duced contributions as being two extremes of a continuum and
use the stability indices of the CICs as a measure of the ‘evokedness’
of an estimated additive component. Note that despite this problem
AECs can be clearly separated from phase-reset oscillations or sponta-
neous contributions as detailed above. This is important because
Sauseng et al. (2007) recently pointed out that both phase-reset os-
cillatory activity and additive evoked activity may typically generate
the ERP together, albeit with variable contributions and argued that
future approaches should try to quantify these contributions. Our
method is a first step in this direction.

Few attempts have been made to separate AECs from other contri-
butions or to test for their presence. In a recent review Sauseng et al.
(2007) tabulated signal characteristics, that taken together, allow
to distinguish ERPs generated by phase-reset oscillations from
those generated by AECs better than the application of any single cri-
terion. Nevertheless, they pointed out that none of these criteria
is decisive in the sense that it cannot yield false-positives in biolog-
ically plausible scenarios. This is expected because all of these cri-
teria involve averaging of some metric – such as time-frequency
power distributions – over trials. None of these criteria made use
of the multivariate information in the all-to-all relationship among
the trial signals. Hence, the decisive property of AECs – their stereo-
typical presence in each trial – was only evaluated very indirectly. To
our knowledge our approach is the first to exploit the multivariate
information over trials to quantify the contribution of AECs to the
ERP — and each single trial.

Our results suggest that the contribution of AECs to the ERP exists—
in line with earlier suggestions in the literature (Shah et al., 2004).
However, here we demonstrated the presence of additive evoked
activity in the ERP for extra-striate visual areas and also for recordings
of neural mass-activity with MEG. The existing slight differences
between the SSVEF and the backprojection of the recovered AEC,
however, also leave room for the co-existence of another SSVEF
generating mechanism such as phase-reset contributions (see also
the work of Moratti et al., 2007). Our results also suggest that
ERPs can be generated without any contribution of additive evoked
activity — especially in cortical areas that are remote from stimulus
input, such as primary motor area A4 of the macaque in recordings
triggered to a visual stimulus. Our results are compatible with
suggestions that ERPs in the primary sensory cortices are to a
large part generated by AECs. This can be seen by comparing the vari-
ance of the backprojected AECs with the variance of the original ERP
in V2 of the macaque (Fig. 5) and also by comparing the backprojected
single AEC of the steady-state response with the original VSSEF (Fig. 6,
E). Separating contributions of additive evoked activity from contribu-
tions of phase-reset oscillatory activity is important to improve our
understanding of cortical oscillations and their interplay with
the ERP. Ultimately this should help to understand the role of cortical
oscillations in top-down modulation of neuronal processing and of
cognitive processes as pointed out in Sauseng et al. (2007).
Conclusion

Our algorithm first allows testing for the presence of AECs in each
trial. Second, it identifies such contributions even if they are small
and only partially generate the ERP. Third, it opens the possibility to
decompose observed ERPs into several independent AECs and thus
helps to elucidate underlying neuronal mechanisms. This latter
possibility may prove useful to understand complex ERP patterns that
are thought to arise from the interplay of many neuronal generators.
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Appendix

The appendix is organized as follows. First, we model a single-trial
mixing system for single-channel recorded neuronal activities. We
then construct a multichannel mixing system by considering trials as in-
dividual sensors, while preserving the additive and stimulus time-locked
property of evoked activity on these new sensors. Hereafter we demon-
strate that only the additive evoked contributions (AECs) are consistent
over diverse sensors subsets and show that the underlying independent
source signals of AECs can be recovered by estimating the common in-
dependent components (CICs) of the sensor subsets. To this end, we de-
rive an efficient algorithm for estimating CICs and present an approach
for testing the reliability of the estimates.

A.1. Single-trial model

In single-trial electrophysiological recordings each trial signal
reflects a certain linear mixture of the field potential signals of
an unknown number of neuronal current sources. These source
signals describe the temporal activity of the underlying neuronal
processes, while the mixing process depends on the lead fields
which are determined by volume conduction properties of the
head (brain, tissue, liquor and bone) and the distances between
the sources and the recording electrodes (sensors) (Wolters and de
Munck, 2007). Given that we focus on frequencies below 1 kHz and
relatively short time courses, we can neglect a convolutive or a
time-varyingmixing of the source signals during stimulus responses,
respectively.

Principle 1. Single-trial mixing process
The mixing process of the underlying source signals from low-

frequency transient stimulus responses is instantaneous and stationary
on a single-trial level according to the quasistatic approximation of
Maxwell's equations.

Let us denote the signal of the j-th trial by the random variable xj
and the i-th source signal that is contributed to xj by the random var-
iable ξi

( j). Further on, let M be the number of recorded trials and N(j)

the number of source signals contributed to xj. The single-trial mixing
system is then given by

xj ¼ ∑
N jð Þ

i¼1
α jð Þ

i ⋅ξ jð Þ
i ; for j ¼ 1;…;M; ð1Þ

where αi
(j) is the mixing coefficient of ξi

( j) and αi
( j) ⋅ξi( j

)
is referred to

as the contribution from the i-th source signal to the j-th trial.
Eq. (1) can also be written in vectorized form, if we collect the mixing
coefficients in the N( j)×1 vector α( j)=(α1

( j),…,αN( j)
( j)

)T and similarly
collect the source signals in the N( j)×1 vector ξ( j)=(ξ1

( j),…,ξN ( j)
( j)

)T.
The vectorized single-trial mixing system can then be written as

xj ¼ α jð ÞT ⋅ξ jð Þ
; for j ¼ 1;…;M: ð2Þ
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In order to distinguish the contributions from source signals that
correspond to different types of neural activities, it is reasonable to
differentiate between source signals that are contributed to all trials
and source signals that are contributed to particular trials only.

Definition 1. Common and individual sources
Let ξi

( j) be the i-th source signal that is instantaneously and station-
ary mixed onto the j-th single-trial signal xj, with j∈{1,…,M} and
i∈ {1,…,N( j)}. Then, zk

(l) is referred to as the k-th ‘common’ source signal
from the l-th trial if ∀ j∃! i :zk(l)=ξi(j) and yk

(l) is referred to as the k-th
‘individual’ source signal from the l-th trial if ∃!(i, j) :yk(l)=
ξi
( j) :∀(i ', j ') :ξi

( j)≠ξi '
( j ')

, j '∈ {1,…,M}\ j, i '∈ {1,…,N( j ')}.

According to Definition 1, each source signal ξi
( j) can be defined

either as a common or an individual source signal. In order to deter-
mine the type of a source signal, it is sufficient to simply test whether
it is contributed to every trial. This can be done by including all the
source signals ξi(j) from all trials into the single-trial mixing system
and subsequently identifying repeatedly appearing source signals.
Such source signals – if present – will reflect common source signals.

Property 1. Reducibility of source signals to unique common and
individual source signals

Let ξ=(ξ(1)T,…,ξ(M)T)T=(ξ1
(1),…,ξN(M)

(M)
)T denote the concatenation

of all N=∑ j=1
M N( j) source signals from M trials. Let further on z( j)=

(z1
( j),…,zΛ

( j))T denote Λ common source signals of ξ( j) and y( j)=(y1
( j),

…,yΩ ( j)
( j) )T denote Ω( j) individual source signals of ξ( j), with j∈ {1,…,

M} and N(j)=Λ+Ω( j). Then, because z(1)=…=z(M)=z it follows
that s=(zT,y(1)

T
,…,y(M)T)T=(s1,…,sL)T reflects L=Λ+∑ j=1

M Ω( j)

‘unique’ (i.e. distinct) source signals sk, with k=1,…,L, such that
∀(i, j)∃!k : sk=ξi( j). Consequently, s=Q ⋅ξ where Q is a L×N row
selection matrix with one entry 1 in each row and 0's elsewhere.

Given Property 1, we can now equivalently describe the j-th trial
signal xj as a sparse mixture of all the ‘unique’ source signals. We
thus substitute ξ( j) from Eq. (2) by the L×1 vector s=(s1,…,sL)T

holding all Λ ‘common’ and Ω=∑ j=1
M Ω( j) ‘individual’ source signals,

where L=Λ+Ω with L≤N. Similarly, we substitute α( j) by the L×1
vector a( j)=(a1

( j),…,aL
(j))T with sparse entries defined as

a jð Þ
k ¼ α jð Þ

i

0

if sk ¼ ξ jð Þ
i

else
; with i∈ 1;…;N jð Þn o

:

(
ð3Þ

The generalized single-trial mixing system that describes the j-th
trial signal xj with respect to all source signals from all trials is then
given by

xj ¼ a jð ÞT⋅s; for j ¼ 1;…;M: ð4Þ

A.2. Multichannel model

In contrast to the mixing process on the single-trial level, the mix-
ing process on the multitrial level is influenced by trial-to-trial mod-
ulations of the sources (e.g. neuronal interactions, plastic changes) as
well as small relative movements of cortex and electrodes (e.g. due
to blood flow). These movements and modulations cause different
contributions from each source signal to the trials and thus a time-
varyingmixing of the source signals over the trials. That is: Themixing
coefficients of each source signal will vary over the trials. In addition,
modulations may cause a varying time-delay of each contribution
over the trials as well and thus a non-instantaneous mixing. However,
according to Definition 1, we can neglect a non-instantaneous mixing,
if we consider all time-delayed contributions as contributions from
different individual source signals.

Property 2. Equality of non-instantaneous and sparse mixtures
Let ξ[t], with t∈ {1,…,T}, be the t-th sample of an arbitrary source

signal from an arbitrary trial defined as above, where T is the number
of samples. Let further on T ξ; τð Þ ¼ ξ t þ τ½ � denote a time-delay of ξ
by τ samples. Then, M non-instantaneous mixtures of Λ̃ source signals
ξi, with i∈ 1;…; Λ̃

n o
, can be written in vectorized form as x̃ ¼

∑i¼1
Λ̃ ∑M

j¼1ej⋅α
jð Þ
i ⋅T ξi; τ

jð Þ
i

� �
, where αi

( j) is the j-th mixing coefficient

and τi
( j) is the j-th delay factor of ξi, respectively, and ej ¼ e1;…; eMð ÞT

is the canonical unit vector with one entry 1 at ej and 0's elsewhere.
Thus, by substituting ak ¼ α jð Þ

i ⋅ej and yk ¼ T ξi; τ
jð Þ
i

� �
, where k→(i, j)

reflects a mapping of k onto a unique pair (i, j), with k∈ 1;…;Ω̃
n o

and
Ω̃ ¼ M ⋅Λ̃ ≤Ω, x̃ can equivalently be written as M instantaneous
sparse mixtures of Ω̃ different individual sources signals given by
x̃ ¼ ∑k¼1

Ω̃ ak⋅yk.

Given Property 2, all M contributions from Λ̃ time-delayed source
signals can be treated as contributions from Ω̃ ¼ M⋅Λ̃ ≤Ω different in-
dividual source signals. Furthermore, we can neglect a time-varying
mixing as well, if we consider the single-trial signals to be simulta-
neously recorded. This is because, according to Principle 1, such a si-
multaneous recording describes concurrent single-trial mixing
processes that are all stationary. Therefore source signals in a concur-
rent single-trial mixing system can be considered being mixed with a
fixed time-delay and fixed coefficients onto the trials. Consequently,
we can construct a virtual multichannel mixing system by treating
the trial signals of a single-channel multitrial recording as sensor sig-
nals of a simultaneous multichannel recording. To this end, we will
refer to the j-th trial (signal) as the j-th sensor (signal) throughout
the rest of the appendix, if not stated otherwise.

Principle 2. Multichannel mixing process
The mixing process of both common and individual source signals is

instantaneous and stationary on a multichannel level that is constructed
by considering the trials as sensors.

Let us consider the trials to have an equal length T and collect the
sensor signals in the M×1 vector x ¼ x1;…; xMð ÞT and the corre-
sponding mixing vectors of the L source signals in the M×L matrix
A ¼ a 1ð Þ;…; a Mð Þ� �T

, such that A ¼ aj;i
� �

, for j=1,…,M and i=1,…,L.
The multichannel mixing system written in matrix form is then
given by

x ¼ A⋅s: ð5Þ

According to Principle 2, Eq. (5) describes concurrent stationary
mixing processes allowing to collect all T samples of the sensor sig-
nals in a M×T matrix X ¼ x 1½ �;…;x T½ �½ � and similarly all T samples
of the source signals in a L×T matrix S ¼ s 1½ �;…; s T½ �½ �. The time-
invariant multichannel mixing system can then be written as

X ¼ A⋅S: ð6Þ

Next, let us investigate the mixing of common and individual
source signals on the multichannel level. According to Definition 1,
common source signals are consistently contributed to all trials and
thus, with Principle 2, are densely mixed onto the sensors. Individual
source signals – on the other hand – are contributed to particular
trials only, so they are sparsely mixed onto the sensors. Note,
that with Property 2, time-delayed contributions may be described
by contributions from different individual source signals and thus are
considered as sparse mixtures as well. Hence, the multichannel mixing
system can equivalently be described as a composed mixing system
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consisting of a dense mixing part with regard to Λ common source sig-
nals and a sparsemixing part with regard toΩ individual source signals.
To this end, we substitute A ¼ B;C½ �⋅P and S ¼ PT⋅ Z;Y½ �T, where P is a
L×L permutationmatrix that sorts the common source signals to obtain
the first indices, such thatP⋅PT ¼ I. The composedmultichannel mixing
system is then given by

X ¼ B;C½ �⋅ Z
Y

� �
¼ B⋅Zþ C⋅Y; ð7Þ

where Z ¼ z 1½ �;…; z T½ �½ � is a Λ×T row submatrix of S holding the com-
mon source signals zi, with i=1,…,Λ , and Y ¼ y 1½ �;…; y T½ �½ � is the
remaining Ω×T row submatrix of S holding the individual source sig-
nals yk, with k=1,…,Ω. Accordingly, B ¼ bj;i

h i
is a dense M×Λ col-

umn submatrix of A holding the mixing coefficients of the common
source signals and C ¼ cj;i

h i
is the remaining sparseM×Ω column sub-

matrix of A holding the mixing coefficients of the individual source
signals.

Given that C is sparse each of its columns has exactly one nonzero
entry cj, i

* , while the number of such nonzero entries in each of its rows
is given by the number of individual source signals contributing to
the corresponding sensor, i.e. ∀j∃¼Ω jð Þ

i : c
�
j;i ¼ ∑M

l¼1cl;i≠0, with
i∈ {1,…,Ω} and j∈{1,…,M}. Hence, we can average columns of C
with nonzero entries in the same row and merge the corresponding
individual source signals to ‘nuisance’ signals without changing
the resulting contributions to the sensors at all. This can be done by

modifying C into a M×M diagonal matrix D with diagonal entries

dj;j ¼ Ω jð Þ
� �−1

⋅∑Ω
i¼1cj;i, for j=1,…,M, and by modifying Y into a

M×T matrix Y
P ¼ y

P
1½ �;…; y

P
T½ �½ � holding the nuisance signals

y
P

j ¼ ∑Ω
i¼1 sgn cj;i

� 	
⋅yi, for j=1,…,M. Clearly, the benefit of this mod-

ification is that a total of Ω individual source signals are reduced to M
nuisance signals. Additionally, the contributions from these nuisance
signals can be treated as noise signals given by N ¼ D⋅Y

P ¼ C⋅Y.
The composed mixing system in Eq. (7) can thus equivalently be
described by a noise perturbed mixing system, with the noise signals
being decoupled and independent from the densely mixed common
source signals. The noise perturbed multichannel mixing system is
then given by

X ¼ B⋅Zþ N: ð8Þ

Now that we have described the properties of common and indi-
vidual source signals on the multichannel level, we have to relate
their contributions to those from different types of neural activities.
According to the explanations given in the methods chapter and
Eq. (8), contributions from additive evoked activity are reflected by
contributions from common source signals, while contributions from
all other types of response activities (i.e. induced and spontaneous)
as well as from phase-reset oscillatory activity can be described by
noise signals. Note that contributions from asymmetrical oscillatory
activity can be considered as a special case of induced activity having
a one-sided post-stimulus power increase andwill thus not be treated
separately in the following.

Principle 3. Contributions from neuronal activity
On the multichannel level additive evoked contributions are reflected

by contributions from common source signals, while contributions
from time-delayed or sparse activities such as induced, phase-reset or
spontaneous activity are described by noise signals.

A.3. Multisubset model

The multichannel mixing system constructed in Section A.2 re-
flects a generative data model that assumes the sensor signals being
generated by common source signals and perturbing noise signals.
By combining Definition 1 and Principle 2 we see that this generative
data model is equally valid for every subset of the sensor signals.
Consequently Principle 3 is valid for any sensor subset as well, allow-
ing the construction of multichannel mixing systems using only subsets
of the trial signals.

LetMφ p
λ ¼ φ p

1 ;…;φp
λ


 �
denote the p-th subset of λbM random in-

dices, where each entry φ j
p→m reflects a unique mapping of index j

onto a sensor index m, with m∈{1,…,M}, such that φj
p≠φl

p and

Mφ p
λ≠Mφ

p
λ, where j≠ l, p≠q with j, l∈ {1,…,λ}, p,q∈{1,…,K}. That

is: Indices are mutually disjoint in single subsets and mutually almost
disjoint over different subsets. Let further on X pf g ¼ X

M φ p
λ
;:
denote

the p-th sensor subset that consists of the sensor signals given by
the Mφ p

λ-th components (rows) of X. Similarly, let xj
{p}=xφj

p denote
the j-th sensor signal of the p-th sensor subset that is given by the
φ j
p-th component (row) of X. The multichannel subset mixing system

is then analog to Eq. (8) given by

X pf g ¼ B pf g⋅Zþ N pf g
; ð9Þ

where B pf g and N pf g denote the mixing coefficients and the noise sig-
nals of the p-th sensor subset, respectively. Given that Mφ

p
λ≠Mφ

p
λ it

follows for the noise signals that N pf g≠N qf g, where p,q∈{1,…,K}
with p≠q, i.e. the noise perturbation is specific to individual sensor
subsets X pf g. In contrast, since the mixing matrix B pf g is dense, all of
the common source signals are consistently contributed to X pf g and
consequently to all sensor subsets as well. That is: Common source
signals are obviously reflected by the ‘common signal components’
(Flury, 1984; Schott, 1988) of the sensor subsets. An intuitive ap-
proach to reveal these common components would thus be to esti-
mate the mutually maximally similar (in terms of a proper distance
measure) signal components from multiple sensor subsets. However,
common components estimated in this way would still be biased by
the noise perturbation of the sensor subsets. Therefore, it is reason-
able to investigate the noise perturbation of the group-average of
the sensor subsets, i.e. the average over the entire group of sensor
subsets.

Let K almost disjoint sensor subsets according to Eq. (9) consist
each of λ distinct sensor signals. The group-average of these sensor
subsets is then according to the distributivity of matrix multiplication
over matrix addition given by

X
P ¼ B

P

⋅ZþN
P

; ð10Þ

where B
P

and N
P

are the corresponding group-averages of all B pf g and
N pf g, respectively, for p∈ {1,…,K}. Let further on dj, j

{p}=dφj
p,φj

p and
yP pf g
j ¼ yPφ p

j
be defined similarly as above as the p-th diagonal entry

of D pf g and the p-th component of the subset nuisance signals Y
P pf g,

respectively, such that N pf g ¼ D pf g⋅Y
P pf g. Then, the group-average

noise signals N
P

can accordingly be decomposed into a λ×λ diagonal
matrix D̃ with diagonal entries d̃j; j ¼ K−1⋅∑K

p¼1d
pf g
j; j , for j=1,…,λ,

and into a λ×T matrix Ỹ holding averaged subset nuisance signals
ỹj ¼ ∑K

p¼1y
P pf g
j , for j=1,…,λ, such that N

P ¼ D̃ ⋅Ỹ. Furthermore, from

Mφ
p
λ≠Mφ

p
λ it follows that ∀j∃ p; qð Þ :yP pf g

j ≠yP qf g
j so that Ỹ≠ Y

P pf g and
thus N

P

≠N pf g, where p,q∈{1,…,K} with p≠q.

Property 3. Variance reduction of averaged noise
Let the noise signal n pf g

j ¼ d pf g
j;j ⋅yP pf g

j and the group-average noise
signal n

P

j ¼ K−1⋅∑q
p¼1d

pf g
j;j ⋅yP pf g

j be defined as above, for j∈{1,…,λ}.

Let further nj
{p} be mean-free, i.e. E{nj{p}}=0, such that E n pf g

j

� �2� 
¼

d pf g2
j; j ⋅E yP pf g

j

� �2� 
and E nPj

� �2� 
¼ E d pf g

j;j ⋅d qf g
j;j ⋅E yP pf g

j

� �
⋅ yP qf g

j

� �� � 

reflect the variance of nj
{p}

and n
P

j, respectively. Then, since ∀j∃ p; qð Þ :
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E yP pf g
j

� �
⋅ yP qf g

j

� �� 
b E yP pf g

j

� �2� 
it follows for the variances that

E nP j

� �2� 
b E n pf g

j

� �2� 
and thus E nPj

� �
⋅ n pf g

j

� �� 
⋅E nPj

� �2� −1

⋅

E n pf g
j

� �2� −1

< 1.

Clearly, Property 3 shows that averaging almost disjoint sensor
subsets reduces the overall noise variance of the resulting group-
average. It should be noted, however, that for an effective noise re-
duction, the chosen sensor indices in any of the used index subsets
have to be arranged in such a way that the signals of the group-
average reflect linear combinations of (at least some of) the included
sensor signals and are still mutually linearly independent.

A.4. Demixing model

In order to identify the underlying source signals of additive
evoked contributions (AECs) we can make use of Principle 3 and at-
tempt recovering the common source signals. Given, however, the
conserved consistency of common source signals over all sensor sub-
sets explained in Section A.3, we can equally well attempt recovering
the common signal components of the sensor subsets. Our goal in the
following will thus be to derive a model for estimating noise reduced
common signal components from multiple noise perturbed sensor
subsets. (The problem of determining the number of common signal
components will be treated in Section A.6.)

Let us first consider themultichannel mixing system given in Eq. (6)
and assume that only the Λ common source signals, with Λ=L≤M, are
contributed to the sensors, i.e. S ¼ Z and A ¼ B. Then, from basic linear
algebra it follows that the source signals can be recovered by inverting
the mixing process using a demixing matrix W, such that

ˆS ¼ W⋅X; ð11Þ

where ˆS is a λ×Tmatrix of the recovered source signals andW ¼ ˆAþ
is a

λ×M linear estimator for the inverse or pseudo-inverse (if LbM) of B,
with λ=L the number of recovered source signals. Usually W is un-
known but can still be estimated given available a priori knowledge of
the underlying source signals. In our case, however, we do not have
such a priori knowledge and thus have to blindly estimate a demixing
matrix given only the sensor signals (see e.g. Comon and Jutten, 2010).
To this end we will make some mild assumptions about the properties
of the common source signals that we can use as estimation criteria.

Assumption 1. Statistical independence of common source signals
Let z=(z1, . . . ,zΛ)T be a vector of Λ common source signals defined

as above. Then all source signals zi, for i=1,…,Λ, are assumed non-
Gaussian, independently distributed with zero mean and unit variance,
i.e. E{zi}=0, E{zi2}=1 and p zð Þ ¼ ∏L

i¼1pi zið Þ, where p zð Þ ¼ p z1;…; zΛð Þ
is the joint probability density function (pdf) of all source signals
z1,…,zΛ and pi zið Þ ¼ ∑z1 ;…;zi−1 ;ziþ1 ;…;zL p zð Þ is the marginal pdf of the
source signal zi.

Assumption 1 simply states thatwe assume that all common source
signals are statistically independent from each other. We note that
other applications of ICA to neuroscience data yield biologically plausi-
ble results, even when compared to other methods of signal decompo-
sition (Wibral et al., 2008), hence this assumption seems to be a fruitful
approach to assume some degree of independence.

Given Assumption 1, we can attempt recovering the common
source signals with independent component analysis (ICA) (Comon,
1994). In standard ICA theM sensor signals are assumed to be instan-
taneous linear mixtures of L≤M hidden source signals that are non-
Gaussian and independent identically distributed. The objective of
ICA is thus to decompose the sensor signals into λmutuallymaximally
independent signal components (ICs), where λ≤M is the number as-
sumed sources. Such a decomposition can be achieved by estimating a
λ×M demixing matrix WICA minimizing the Kullback–Leibler diver-
gence (KLD) between the joint probability density function (pdf) and
the product of the marginal pdfs of the estimated signal components
given by

WICA ¼ arg min
Wf g

DKL pjj∏
j
pj

 ! !

¼ arg min
Wf g

∑
ŝ1f g;…; ŝMf g

p ŝð Þ⋅ log p ŝð Þ
∏M

j¼1pj ŝj
� �

0
@

1
A

0
@

1
A; ð12Þ

where ŝj ¼ vTj ⋅x is the j-th IC, withvj the j-th column of WT
ICA;p ŝð Þ is the

joint pdf of ŝ and pj ŝj
� �

is the marginal pdf of ŝj. Since DKL pjj∏j pj
� �

is strictly nonnegative it will attain its minimum if and only if the
estimated ICs are mutually statistically independent, i.e. if p ŝð Þ ¼
∏M

j¼1pj ŝj
� �

. For an in-depth treatment of estimating WICA see

Hyvärinen et al. (2001).
Next, let us keep in mind that the multichannel mixing system in

Eq. (8) is in fact noise perturbed. Decomposing the perturbed sensor
signals X ¼ B⋅Zþ N using ICA would then indeed yield λ=M maxi-
mally mutually independent signal components, however, these ICs
would still reflect M noise biased estimates of Λ common source sig-
nals as can be seen from

ˆSICA ¼ WICA⋅ B ⋅ Zþ N½ �
¼ WICA ⋅ X̃þWICA⋅N
¼ ˆZICA þ ˆNICA ;

ð13Þ

where ˆSICA is the M×T matrix of the estimated ICs, X̃ ¼ B⋅Z is the
M×T matrix of the noise-free sensor signals; ˆZICA is the M×T matrix
of the distorted common source signals and ˆNICA is the M×T matrix
of the residual noise signals whose variance reflects the bias of the es-
timation. Note that since both the source recovery and the noise re-
duction depend on the same demixing matrix WICA, any IC in
Eq. (13) would still reflect a noise biased estimate of a common
source signal even ifWICA were the (pseudo)inverse of B. A noise un-
biased estimation can thus only be obtained if a priori knowledge
about the noise signals is available (see e.g. Hyvärinen, 1999b). Nev-
ertheless, we can exploit the specificity of the noise signals to individ-
ual sensor subsets in order to estimate noise reduced common signal
components.

For this purpose, let us model the mixing system with respect to
the common source signals to be overdetermined, i.e. we assume
that ΛbM, and subdivide the sensor signals into K sensor subsets
X pf g ¼ B pf g⋅Zþ N pf g, of size λ each, with p=1,…,K and Λ≤λbM.
Then, decomposing each X pf g yield – in analogy to Eq. (13) – corre-
sponding IC subsets Ŝ

pf g
ICA , each reflecting λ distinctly noise biased esti-

mates of Λ common source signals given by

ˆS
pf g
ICA ¼ W pf g

ICA ⋅ B pf g⋅Zþ N pf gh i
¼ W pf g

ICA ⋅X̃
pf g þW pf g

ICA ⋅N
pf g

¼ ˆZ pf g
ICA þ ˆN

pf g
ICA ;

ð14Þ

where – according to the subset notation defined in Section A.3 — the
superscript {p} indicates the p-th subset of the corresponding matrix.
In order to treat the noise bias of this estimation, we will thus make
somemild assumptions about the properties of the noise signals as well.

Assumption 2. Cross-correlation and independence of noise signals
Let n ¼ n1;…;nMð ÞT be a vector of M noise signals and z ¼

z1;…; zΛð ÞT be a vector of Λ common source signals, both defined as
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above. Then all noise signals nj, for j=1,…,M, are assumed to be mean-
free and having non-zero variances σj, i.e. E{nj}=0 and E{nj2}=σjN0.
Furthermore, all noise signals are assumed to have non-zero linear
cross-correlations and to be statistically independent of the common
source signals, i.e. E{nj ⋅nl}≠0 and DKL(pi||qj)=0, for j, l=1,…,M and
i=1,…,Λ, where pi and qj are the pdf's of zi and nj, respectively.

Assumption 2 states that noise signals are not independent from
each other but statistically independent from the common source sig-
nals. This seems to be a reasonable assumption because the noise sig-
nals and common source signals have very different neuronal origins
and can therefore be always made independent.

Applying Assumptions 1 and 2 to Eq. (14), we now see that the com-
mon source signals are actually reflected by the common independent
components (CICs) of the sensor subsets. Our new goal is thus to derive
a demixing model for signal components that simultaneously satisfy
two criteria: 1) Mutual maximal independence in each sensor subset
and2)Mutualmaximal similarity (in a least squares sense) over all sensor
subsets. In order to satisfy the latter criterionwe canminimize the sum of
squaredEuclideandistances between the signals of all component subsets
ˆS

pf g
and ˆS

qf g
, with p≠q, by including the squared Frobenius norm

‖ ˆS
pf g− ˆS

qf g
‖F
2 into Eq. (12). The objective of common independent compo-

nent analysis (CICA) can then be formulated as to estimate K individual
λ×λ subset demixing matrices W qf g

CICA that satisfy

W qf g
CICA ¼ argmin

W qf gf g
∑

ŝ qf g
1f g;…; ŝ qf g

λf g
p ŝ qf g� �

⋅ log
p ŝ qf g
� �

∏λ
j¼1pj ŝ qf g

j

� �
0
@

1
Aþ∑

r¼1;
r≠q

K
‖ ˆS

qf g− ˆS
rf g‖2F

0
B@

1
CA;

ð15Þ

where ŝ qf g
j ¼ v qf g

j

� �T
⋅x qf g is the j-th CIC obtained from the q-th sensor

subset, with v qf g
j the j-th column of W qf g

CICA

� �T
; p ŝ qf g
� �

is the joint pdf of

ŝ qf g and pj ŝ qf g
j

� �
is the marginal pdf of ŝ qf g

j , with j∈{1,…,λ} and q∈{1,

…,K}. Note, that a necessary constraint whenmaximizing the similarities
of corresponding CICs is to conserve the attained KLD of the component
subsets. Hence, we will rewrite Eq. (15) into a form that we can use
more efficiently satisfy this constraint.

Let us assume to have K component subsets ˆS
pf g ¼ W pf g⋅X pf g esti-

mated using an arbitrary blind estimation method and denote the
sum of squared Euclidean distances over all component subsets by

E ¼ ∑
p¼1

K
∑
q¼1;
q≠p

K
‖ ˆS

pf g− ˆS
qf g‖F

2
. Then, using the group-average S̃ ¼ K−1⋅

∑
q¼1

K
Ŝ

qf g
, E can equivalently be written as E ¼ ∑

p¼1

K
∑
q¼1;
q≠p

K
‖ ˆS

pf g− S̃‖F
2
¼

K⋅∑
q¼1

K
‖ ˆS

pf g− S̃‖F
2
if ˆS

qf g¼ S̃ subject to W qf g≠0, for q=1,…,K. Eq. (15)

can hence be rewritten to a cost efficient form given by

W qf g
CICA ¼ argmin

W qf gf g
∑

ŝ qf g
1f g;…; ŝ qf g

λf g
p ŝ qf g� �

⋅ log
p ˆs qf g� �

∏λ
j¼1pj ŝ qf g

j

� �
0
@

1
Aþ K⋅‖ ˆS qf g−S̃‖F

2
0
@

1
A:

ð16Þ

Finally, let us consider the group-average of K CIC subsets
S̃CICA ¼ K−1⋅∑K

q¼1
ˆS
qf g
CICA, with ˆS

pf g
CICA ¼ W pf g

CICA⋅X
pf g, in terms of a noise

biased estimate and rewrite S̃CICA analog to Eq. (14) as

S̃CICA ¼ W
P

CICA⋅X
P

¼ W
P

CICA⋅ B
P

⋅Z
� �

þ W
P

CICA⋅ N
P

¼ Z̃CICA þÑCICA ;

ð17Þ

where Z̃CICA is theM×T matrix of the distorted common source signals
and ÑCICA is theM×Tmatrix of the noise signal residuals. Given Property
3 and Assumption 2, it then follows for the variances of the noise
signal residuals that trace ÑCICA⋅ ÑCICA

� �T� �
b trace ˆN pf g

CICA⋅ ˆN pf g
CICA

� �T� �
, for

p=1,…,K, provided that W pf g
CICA is scaled in order to conserve the total

signal energy, i.e. diag W pf g
CICA⋅ W pf g

CICA

� �T� �
¼ I. That is: The group-

average of the estimated CIC subsets is less noise perturbed than any
of the single CIC subsets and consequently reflects a noise reduced esti-
mate of the sought-after common source signals. (The choice of K and λ,
influencing the noise reduction and the source identification, respec-
tively, will be treated separately in Section A.6).

A.5. Algorithmic estimation

Given the CICA objective derived in Section A.4, our cardinal task is
now to construct an algorithm for estimating the CIC subset demixing
matrices W pf g

CICA, for p=1,…,K. To this end, let us consider each W pf g
CICA

to be invertible and linearly decomposable into two λ×λ matrices
V pf g and U pf g, with rank W pf g

CICA

� �
¼ rank U pf g

� �
¼ rank V pf g

� �
¼ λ,

such that W pf g
CICA ¼ U pf g⋅V pf g. Then, W pf g

CICA can be approximated using
a demixing matrixV pf g that minimizes the KL-divergence (KLD) with-
in the p-th component subset, and a regression matrix U pf g that min-
imizes the residual sum-of-squares (RSS) between the p-th
component subset and the group-average, while conserving the KLD
attained by V pf g. For this purpose, we next construct an alternating
least squares (ALS) approach (see e.g. Kiers and ten Berge, 1989) con-
sisting of an iterative scheme of alternated reestimations of all V pf g

and all U pf g, including the above constraints.
In each ALS iteration we first update ˆS

pf g
CICA using the current W pf g

CICA
and estimate a new V pf g based on a single KLD reduction step regard-
ing ˆS

pf g
CICA, while keepingU pf g and ˆS

pf g
CICA fixed. Hereafter we update ˆS

pf g
CICA

using the obtainedV pf g and estimate a newU pf g based on a single RSS
reduction step regarding SCICA, while keeping V pf g and ˆS

pf g
CICA fixed. Fi-

nally we update ˆS
pf g
CICA using the obtained U pf g and compute a new

W pf g
CICA based on V pf g and U pf g. These steps are repeated for all K com-

ponent subsets whereupon S̃CICA is updated by computing the group-
average of all obtained ˆS

pf g
CICA. The updated S̃CICA is then used in the RSS

reduction step of the next iteration. In order to satisfy the criterion of
uncorrelated signal components in ICA, we decorrelate the signals of
each sensor subset prior to all iterations using a corresponding λ×λ
subset whitening matrix Q pf g (see e.g. Cichocki and Amari, 2002)
and during the iterations after each KLD and RSS reduction step
using a symmetric orthonormalization (Löwdin, 1950) of V pf g and
U pf g, respectively. The outlined ALS iteration scheme is then contin-
ued until algorithmic convergence is achieved, i.e. no significant
change in all of the W pf g

CICA is obtained.
Given the fast convergence of fixed point iterations we use for the

KLD reduction step a single gradient step of FastICA (Hyvärinen,
1999a). For the RSS reduction step we use a single least-squares re-
gression step of a modified EM-ePCA (Ahn et al., 2007), aimed at min-
imizing (in a least squares sense) the integrated reconstruction error
(IRE) (Choi et al., 2006) of the common orthogonal signal subspace of
the p-th component subset and the component group-average

U pf g
LS ¼ argmin

U pf gf g
∑
λ

i¼j
αj⋅‖U pf g⋅Ej ⋅

ˆ
SCICA

pf g − S̃CICA‖F
2

 !
;

subject to : U pf g
LS ⋅ U pf g

LS

� �T ¼ I; p ¼ 1;…;K ;

ð18Þ

whereU pf g
LS is the p-th λ×λ least-squares regression matrix,Ej is the p-

th λ×λ diagonal matrix with diagonal entries Ej

h i
kk

¼ 1, if k≤ j and

else Ej

h i
kk

¼ 0, for j,k=1,…,λ, and αjN0 are positive coefficients.

The minimization of the IRE in Eq. (18) essentially describes an asym-
metric PCA (APCA) (Diamantaras and Kung, 1996) objective of esti-
mating the exact principal singular subspace (Kaiser et al., 2010) of
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the p-th subset cross-covariance matrix R pf g ¼ ˆS
pf g
CICA⋅ S̃CICA

� �T
. Hence,

we modify the M-Step of EM-ePCA with regard to APCA using the
propositions for nonsymmetric matrices in Hasan (2006). The RSS re-
duction step is then given by the M-Step of the resulting EM-eAPCA
that – in analogy to the limiting case of EM-ePCA – can be derived as

U pf g
LS ←U pf g

LS ⋅ UT R pf g þ
�
R pf gT�� �−h i

; ð19Þ

where R pf g þ
�
R pf gT

�
is used for reason of symmetry and UT(.) de-

notes the upper triangular matrix.
Next, let us treat the constraint of conserving the attained KLD of

the subset components during the RSS reduction step. In Oja (1997)
it was shown that nonlinear PCA of uncorrelated signals is equivalent
to ICA if an appropriate nonlinear contrast function is used to maxi-
mize the mutual independence. Consequently, nonlinearizing the
M-Step of EM-eAPCA in Eq. (19) will yield subset components that
have a maximal statistical cross-dependency to corresponding
group-average components. Since this criterion is by definition best
met for subset CICs, their attained KLD will obviously be conserved
as well. To this end, we substitute R pf g in Eq. (19) by the sum of two

nonlinear subset cross-covariance matrices R pf g
1 ¼ g ˆS

pf g
CICA

� �
⋅ S̃CICA
� �T

and R pf g
2 ¼ ˆS

pf g
CICA⋅g S̃CICA

� �T
, where g(.) is chosen similarly to Karhunen

and Ukkonen (2007) as the tanh contrast function. The nonlinear RSS
(nRSS) reduction step is then given by

U pf g
LS ←U pf g

LS ⋅ UT R pf g
1 þ R pf g

2

� �
þ R pf g

1 þ R pf g
2

� �T� �−h i
; ð20Þ

where again R pf g
1 þ R pf g

2

� �
þ R pf g

1 þ R pf g
2

� �T
is used for the reason of

symmetry.
Finally let us consider two crucial algorithmic aspects: The estima-

tion of a global optimum and the stability of the algorithmic conver-
gence. For the first, recall the validity of the generative data model for
any sensor subset explained in Section A.3. Then, from Eq. (9) we
see that each of the Λ mixing coefficients from all rows of the mixing
matrices B pf g, p=1,…,K, that correspond to the same sensor indices
has a unique value over all B pf g. These mixing coefficients reflect a
particular component of the basis vectors spanning the common sources
subspace. Consequently, when estimating λ≥Λ CICs, all λ×λ CIC subset

mixing matrices A pf g
CICA ¼ W pf g

CICA

� �−
, p=1,…,K, have to share similar

entries (estimated mixing coefficients) among each other in those
rows that correspond to the same sensor indices. The similarity of
such multiply estimated mixing coefficients, however, is influenced by
the distinct variance levels of the noise perturbations over the sensor
subsets. Wemaximize the similarity of multiply estimatedmixing coef-
ficients by substituting rows corresponding to the same sensor indices
over all A pf g

CICA by an a posteriori estimate reflecting the respective
group-average of the mixing coefficients. According to our objective of
estimating the group-average of the CICs (see Section A.4), the a poster-
iori estimate can be chosen as the mean over the respective rows.

The stability of the convergence can further be enhanced by decou-
pling the CIC group-average S̃CICA in the nRSS reduction step from the
subset matricesW pf g

CICA,Q
pf g andX pf g. To this end, we substitute S̃CICA in

the nRSS reduction step by the p-excluded CIC group-average
S̃ −pð ÞCICA ¼ K−1ð Þ−1⋅ ∑

q≠p
Ŝ

pf g
CICA, i.e. by the mean over all but the p-th

CIC subset. This way, even if S̃ −pð ÞCICA became zero, the nRSS reduc-
tion step would still monotonically minimize the objective in
Eq. (16) (Ten Berge, 1977). The relationship between the similarity
criterion using S̃CICA and S̃ −pð ÞCICA is given by ‖ S̃CICA−Ŝ

qf g
CICA‖

2
F ¼

K−1
K

� 	−1
‖S̃ −pð ÞCICA−Ŝ

qf g
CICA ‖ 2

F :
The CICA algorithm can finally be summarized in pseudocode as
follows:

Algorithm CICA:

for p=1 : K
Q pf g← R pf g

X

� �−1
2=

W pf g
CICA←Q pf g

end
for p=1 : K

Ŝ
pf g
CICAW

pf g
CICAX

pf g

S̃ pð ÞCICA KS̃CICAŜ
pf g
CICA

� �
= K1ð Þ

V pf g← arg min
V pf gf g

DKL q pf gjj∏j q
pf g
j

� �� �

V pf g← V pf g⋅ V pf g
� �T� �−1=2

⋅V pf g

Ŝ
pf g
ICAV

pf gQ pf gX pf g

U pf g
LS ←U pf g

LS ⋅ UT R pf g
1 þ R pf g

2

� �
þ R pf g

1 þ R pf g
2

� �T� �−� �

U pf g
LS ← U pf g

LS ⋅ U pf g
LS

� �T� �−1=2
⋅U pf g

LS

W pf g
CICA←U pf g

LS ⋅V pf g⋅Q pf g

S̃CICA← K−1ð Þ⋅S̃ −pð ÞCICA þW pf g
CICA⋅X

pf g
� �

=K

end

A←0

for p=1 : K

A
Mφ

p
λ ;:
←A

Mφ
p
λ ;:

þ W pf g
CICA

� �−
end

A←D Kð Þ⋅A

S̃CICA←K−1⋅∑K
p¼1 A

Mφ
p
λ ;:

� �−
⋅X pf g

A.6. Test of the algorithmic estimation

In this section we first describe a straightforward method to test for
stable CICs, i.e. for indicating the presence of common sources. We then
describe the choice of the number and size of the created sensor subsets
necessary for the identification of the common source signals.

Given the validity of the generative data model for sensor subsets
(see Section A.3) the signal space of every sensor subset has to in-
clude a subspace that accommodates the common source signals.
When using almost disjoint sensor subsets, the components of the
basis vectors spanning this subspace are repeatedly described by
sets of entries in those rows of the CIC subset mixing matrices that
correspond to the same sensor signals. According to the explanations
given in Section A.5, such sets of entries are only stable (i.e. have close
to unique values) if they reflect multiple estimates for the mixing co-
efficients of the common source signals and if the noise perturbations
in the sensor subsets is not too high. Hence, stable CIC mixing coeffi-
cients indicate the presence of a common sources subspace and conse-
quently the presence of common sources as well. In order to obtain a
measurement to test for stable CIC mixing coefficients, we can use the
average deviations of subset coefficients from their corresponding
group-average coefficients. The distinction between stable and instable
CIC mixing coefficients is then a task of determining a proper deviation
threshold that discriminates a group of low from a group of high
deviations.

Let us now treat the problem of choosing the size of the created sen-
sor subsets. From the explanations given above we know that common
source signals are reflected by CICs with stable mixing coefficients,
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provided that the generative data model holds and the noise perturba-
tions are not too high. The identification of such CICs, however, depends
on the estimation of the common sources subspace. From linear algebra
thebasis vectors spanning this subspace can only be estimated if the sub-
set size λ is at least as large as the number of the common sources Λ, i.e.
Λ≤λbM. A subset size for a reliable identification of the common source
signals can thus be found bymeans of determining stable CICmixing co-
efficients in repeated analyseswith increasing number of estimated CICs.
This way the obtained solutionswill disclose a transition to solution con-
figurations that consistently comprise a subset of the same stable CICs.
The absence of such a transition is then either an indicator that the num-
ber of common sources is larger than the number sensor signals, i.e.
ΛNM, or that the generative data model does not hold. While the latter
case is indicated by an instability of the CIC mixing coefficients in all an-
alyses, the former case is indicated by a progressively increased stability,
based on a subspace approximation of increased degree of freedom.

Finally let us treat the number of the created sensor subsets. In order
to accurately estimate the common sources subspacewe have to exploit
all available multivariate information in the multichannel sensor sig-
nals. That is, we have to create sensor subsets that collectively exhaust
all available sensor signals. Knowing also that the convergence of CICA
is improved when using almost disjoint sensor subsets, the minimum
number of sensor subsets is given byK= ⌊M/λ+1⌋, while themaximum

number is given byK ¼ M
λ

� �
, with λbM. Note, however, that the (the-

oretical) total number of sensor arrangements allowed under the above

constraints is given by
P
K ¼ M

λ

� �
⋅λ!

� �
−1≫K . A more thorough anal-

ysis of subspace approximability and source identifiability on the basis
of the size and number of created sensor subsets can be found in the
supplementary materials of von Bünau et al. (2009).

B.1. Technical note on the use of the fixed polarity constraint

The algorithm the form presented here only requires a fixed wave-
form at a fixed latency with respect to the event that lead to a response.
That means we use only a weak form of the fixed polarity constraint. In
principle our algorithmwill also recover signflipped signal components
that otherwise are exactly identical over sensors (i.e. trials). For the
intended application of the algorithm to event-related potentials, how-
ever, this does not present a problem. For reasons of cellular and net-
work physiology the occurrence of such components in actual
neuronal recordings seems extremely improbable, as the underlying
physiological mechanisms (ion pumps and channels, excitatory versus
inhibitory connectivity patterns, size of EPSPs versus (shunting)
IPSPs) seem to be too asymmetric for this situation to occur, especially
without additional latency shifts. That is, most likely, a sign flip would
change the amplitudes of different parts of a wave shape with different
gains going from excitatory to inhibitory mechanisms and vice versa.
Nevertheless, we could add an additional constraint to enforce also a
strong fixed polarity criterion. Practically, however, this will create
problems with convergence and local minima in cases of low signal-
to-noise ratio. If it is suspected that sign flipped copies of a signal exist
in the mixtures then one could inspect the signs of the corresponding
column of the reconstructed (global) mixing matrix.
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