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We present, in the framework of the interacting hadron resonance gas, an evaluation of thermodynamical
quantities. The interaction is modelled via a correction for the finite size of the hadrons. We investigate
the sensitivity of the model calculations on the radius of the hadrons, which is a parameter of the
model. Our calculations for thermodynamical quantities as energy and entropy densities and pressure
are confronted with predictions using the lattice Quantum Chromodynamics (QCD) formalism.
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1. Introduction

One of the major goals of ultrarelativistic nuclear collision
studies is to obtain information on the QCD phase diagram [1].
A promising approach is the investigation of hadron production.
Hadron yields measured in central heavy ion collisions from AGS
up to RHIC energies can be described very well [2–9] within a
hadro-chemical equilibrium (also called hadron resonance gas or
statistical) model. The main result of these investigations is that
the extracted temperature values rise rather sharply from low en-
ergies on towards a center-of-mass energy per colliding nucleon
pair

√
sN N � 10 GeV and reach, for higher collision energies, con-

stant values near T = 160–165 MeV, while the baryochemical po-
tential μb decreases monotonically as a function of energy. The
Hagedorn limiting temperature [10] behavior suggests a connec-
tion to the phase boundary between the hadronic world and the
deconfined phase. It was, indeed, argued [11] that the quark–
hadron deconfinement phase transition drives the equilibration dy-
namically, at least for SPS energies and above. For lower energies,
the quarkyonic state of matter [12] could complement this picture.
The conjecture of the triple point [13] between hadronic, decon-
fined and quarkyonic matter was put forward in this context. In a
recent study [14] it is argued, however, that the chemical frezee-
out region at large μb is not close to the phase boundary.

Theoretical investigations of the QCD phase diagram are an im-
portant priority for ongoing research. While effective field theories
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need to be employed to model QCD in the strongly interacting
regime for finite μb [15–17], QCD calculations on the lattice are
an increasingly reliable approach for μb � 0. Employing calcula-
tions of QCD on lattice all groups predict indeed a steep increase
of thermodynamical quantities near a critical temperature for de-
confinement, Tc . Until recently, values for Tc between 151 MeV
[18] and 192 MeV [19] were obtained. New results on larger lat-
tices and with quark masses approaching the physical values [20,
21] lead to better agreement on the Tc value in the range 155–
160 MeV, while important details of lattice QCD calculations con-
tinue to be addressed. In this context, the hadron resonance gas
(HRG) is used by lattice QCD groups as reference for their cal-
culations in the hadronic sector [22,23]. This follows earlier ideas
of [24] and involves modelling of quark mass dependence in the
hadron resonance gas model to account for the finite lattice spac-
ing [22–24]. Conversely, lattice data are used to constrain effective
models based on hadronic resonances [25] to describe hadronic
matter near Tc .

The details of the hadron resonance gas (or statistical) model
are important too, as we have recently shown in [9], where we
demonstrated that the completeness of the hadron spectrum in-
volved in calculations is important for a precise description of
data in nucleus–nucleus collisions. The aim of this Letter is to
confront our HRG model calculations with lattice QCD predictions
for thermodynamical observables in the hadronic sector. In par-
ticular, we investigate the effect of the excluded volume correc-
tion employed in the model to approximate a short-range repul-
sive hadron–hadron interaction. Such excluded volume corrections
were first introduced in [26], albeit not yet in a thermodynamically
consistent way. A thermodynamically consistent approach was first
developed in [27] and will be the basis for our investigations.
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2. Model description

We restrict ourselves here to the basic features and essential
results of the statistical model approach. A complete survey of the
assumptions and results, as well as of the relevant references, is
available in Ref. [28].

The basic quantity required to compute the thermal composi-
tion of hadron yields and the thermodynamical quantities is the
partition function Z(T , V ). In the grand canonical (GC) ensemble,
the partition function for a particle species i in the limit of large
volume takes the following form (k = h̄ = c = 1):

ln Z id.gas
i = V gi

2π2

∞∫
0

±p2 dp ln
[
1 ± exp

(−(Ei − μi)/T
)]

, (1)

from which the particle density ni , the partial pressure Pi , the
energy density εi and the entropy density si are then calculated
according to:

nid.gas
i (T ,μi) = Ni/V = T

V

(
∂ ln Z id.gas

i

∂μ

)
V ,T

= gi

2π2

∞∫
0

p2 dp

exp[(Ei − μi)/T ] ± 1
, (2)

P id.gas
i (T ,μi) = T

V
ln Z id.gas

i

= ± gi T

2π2

∞∫
0

p2 dp ln
(
1 ± exp

[−(Ei − μi)/T
])

, (3)

ε
id.gas
i (T ,μi) = Ei/V = − 1

V

(
∂ ln Z id.gas

i

∂(1/T )

)
μ/T

= gi

2π2

∞∫
0

p2 dp

exp[(Ei − μi)/T ] ± 1
Ei, (4)

sid.gas
i (T ,μi) = Si/V = 1

V

(
∂(T ln Z id.gas

i )

∂T

)
V ,μ

= ± gi

2π2

∞∫
0

p2dp

(
ln

(
1 ± exp

[−(Ei − μi)/T
])

± Ei − μi

T (exp[(Ei − μi)/T ] ± 1)

)
, (5)

where gi = (2 J i + 1) denotes the spin degeneracy factor, T is the

temperature and Ei =
√

p2 + m2
i is the total energy. The (+) sign

corresponds to fermions and (−) corresponds to bosons. For the
hadron species i of baryon number Bi , third component of the
isospin I3i , strangeness Si , and charm Ci , the chemical potential
is μi = μb Bi + μI3 I3i + μS Si + μC Ci . The chemical potentials re-
lated to baryon number (μb), isospin (μI3 ), strangeness (μC ) and
charm (μC ) ensure the (on average) conservation, in the collision,
of the respective quantum numbers: i) isospin: V cons

∑
i ni I3i = I tot

3 ,
with V cons = NB/

∑
i ni Bi ; ii) strangeness:

∑
i ni Si = 0; iii) charm:∑

i ni Ci = 0. The (net) baryon number NB and the total isospin
I tot
3 of the system are input values which need to be specified ac-

cording to the colliding nuclei and rapidity interval studied. Taking
into account the conservation laws i)–iii), the freeze-out tempera-
ture T , the baryochemical potential μb and the fireball volume at
chemical freeze-out V are the parameters of the model, which are
obtained from fits to experimentally measured hadron yields.

The following hadrons (number of species, not counting gi)
are included in the calculations: i) mesons: non-strange (123),
strange (32), charm (40), bottom (28); ii) baryons: non-strange
(48), strange (48), charm (32), bottom (14). The corresponding
anti-particles are of course also included. Their characteristics, in-
cluding a rather complete set of decay channels (all strong and
electromagnetic decays), are implemented according to the 2008
PDG compilation1 [29], with hadron masses reaching 3 GeV. We
use vacuum masses for all hadrons.

Usually, whenever thermal fits are performed, the finite widths
of resonances are taken into account in the density calculation
by an additional integration, over the particle mass, with a Breit–
Wigner distribution as a weight [8]. For the range of temperatures
investigated in this work the effect of the finite resonance widths
is small and to save computing time we have not employed the ad-
ditional integration in the present calculations except where stated
otherwise.

3. Interactions in the hadron gas model

When comparing thermodynamical quantities computed within
the framework of the hadron resonance gas model with results
obtained using lattice QCD methods one has to decide how to in-
corporate interactions among the hadrons. One approach is to use
results obtained by the authors of [30–32] where two-body colli-
sions are taken into account through scattering phase shifts. Here
the interaction measure (the 2nd virial coefficient) is related to
the derivative of the phase shifts with respect to energy. To com-
pute the thermodynamics of the interacting hadron resonance gas
in this way one would need knowledge of the energy dependence
of all phase shifts. At first glance this seems quite impractical. An
interesting result was, in this context, obtained in [33]. These au-
thors show by explicit construction that, for simple systems such
as gases of pions, pions and nucleons, and pions, kaons, and nucle-
ons, the equation of state of the interacting system is obtained by
adding the relevant resonances, the ρ and f 0(980) mesons, the �

baryon, the K ∗ meson, to the list of particles and by computing the
partition function of the enlarged gas assuming no interactions.

This interesting result has led some authors [22,23] to argue
that the thermodynamics of the interacting hadron resonance gas
is well approximated, via the Dashen, Ma and Bernstein theorem
[31,32], by that of the non-interacting case, provided that all states
(resonances) are included in the partition function. It is one of
the goals of this Letter to address the accuracy of this approxi-
mation within the framework of our interacting HRG model. Even
at the formal level, there are points to be considered. First, the η,
ω, η′ , φ and a0 mesons cannot be treated like this [33]. Second,
the baryon–baryon interaction is largely repulsive, with no known
resonance structure,2 see, e.g. Fig. 8 of [33]. More importantly,
the approach of [31,32] is, as also discussed there, a low den-
sity approach, relevant for dilute systems. At temperatures near Tc ,
the temperature of the phase boundary between hadron gas and
quark–gluon plasma, the hadron resonance gas is not dilute any-
more. As will be shown below, overall densities exceed 0.5 fm−3

and total baryon densities are close to normal nuclear matter den-
sities of 0.15 fm−3. This implies that for the whole range of baryon
chemical potentials considered here the baryon densities near Tc

1 The 2010 PDG compilation contains updates in the hadron mass spectrum, but
these are expected to have a minor influence on our results.

2 We neglect here the deuteron in the 3S1 state. In the baryon–antibaryon system
there is likely no short-range repulsion and this leads to a small correction which
is discussed below.
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are close to or exceed the critical value worked out in [33] above
which the virial expansion breaks down. In this environment also
the concept of asymptotic states needed for the S-matrix approach
of [30–32] is ill defined.

We therefore explore in the following, in addition to the ‘free’
hadron resonance gas, also the thermodynamic properties of a
hadron resonance gas in which short-distance repulsion is ex-
plicitly taken into account using the thermodynamically consis-
tent excluded volume approach developed in [27]. In essence this
amounts to a Van der Waals construction. This is implemented ac-
cording to [27,34] in an iterative procedure for the total pressure
as:

P (T ,μ1, . . . ,μm) = P id.gas(T , μ̂1, . . . , μ̂m) (6)

where P id.gas = ∑
i P id.gas

i (T , μ̂i) and for each particle i the chemi-
cal potential at a given iteration is recalculated as:

μ̂i = μi − V eigen,i P (T ,μ1, . . . ,μm). (7)

This approach yields the following formulae for the particle den-
sities ni , the total energy density ε and the total entropy density
s expressed as a function of the respective quantities in the ideal
gas, which are given in (2)–(5):

ni = ni(T ,μ1, . . . ,μm) =
(

∂ P

∂μi

)
T

= nid.gas
i (T , μ̂i)

1 + ∑
k V eigen,knid.gas

k (T , μ̂k)
, (8)

s = s(T ,μ1, . . . ,μm) =
(

∂ P

∂T

)
μ1,...,μm

=
∑

i sid.gas
i (T , μ̂i)

1 + ∑
k V eigen,knid.gas

k (T , μ̂k)
, (9)

ε = ε(T ,μ1, . . . ,μm) =
∑

i ε
id.gas
i (T , μ̂i)

1 + ∑
k V eigen,knid.gas

k (T , μ̂k)
(10)

where V eigen,i = 4 · 4π R3
i /3 is the eigenvolume of a hadron3 with

radius Ri . We checked numerically that thermodynamical consis-
tency, expressed by ε = T s − P + ∑

i μini , is well fulfilled by our
calculations, explicitly confirming the consistency of the procedure
[27] used for the excluded volume correction.

For the radius parameter Ri , governing the excluded volume
calculation, we follow the earlier arguments in [4]. There it was
argued that, for baryons, the radius is given by the hard-core repul-
sive interaction as extracted from nucleon–nucleon scattering [35],
giving a radius of about 0.3 fm. Values for other baryons should be
similar. For mesons, in the absence of detailed information on their
interactions at short distance, we assign the same radius value,
based on the similarity of the meson charge radii compared to
baryons and on the energy dependence of the pion–nucleon phase
shifts [36]. For illustration, we have included the case of R = 0 for
mesons, although we believe that the physical case is for mesons
with repulsive core radius R comparable to baryons.

For the baryon–antibaryon system there are likely no short-
range repulsive interactions, because of annihilation processes,
which are by construction included in the hadron resonance gas

3 Consider a particle with radius R in the hard sphere model. Then no other parti-
cle can come closer than a distance 2R . Per pair the excluded volume is 4π(2R)3/3,
leading to V eigen = 4 · 4π R3/3 for the particle.
Fig. 1. Total hadron densities as a function of temperature, calculated for the hadron
resonance gas model at μb = 0, with and without excluded-volume corrections.
A radius value of 0.3 fm was employed, with the band spanning ±0.05 fm around
this value. The case of Rmeson=0 is shown with the dotted line, while the dot-dashed
line denotes the effect of the baryon–antibaryon annihilation correction.

at equilibrium. We have modelled the absence of short-range re-
pulsion in a schematic way, introducing a correction factor kanni for
the (anti)baryon eigenvolume based on the expression:

kanni = 1 − 2nbaryonsnantibaryons

(nbaryons + nantibaryons)
2
, (11)

where nbaryons is the density of baryons and nantibaryons the density
of antibaryons. As shown by the results presented in the follow-
ing, the absence of short-range repulsion in the baryon–antibaryon
system leads to only a small correction, since mesons dominate at
small μb and since there are very few antibaryons at large μb .

For the rest of the Letter we show results of our calculations for
radii in the range of 0.3 ± 0.05 fm, along with the cases discussed
above and contrast those with the case of no interaction (Ri = 0).
The value of 0.3 fm, common for mesons and baryons, was also
used whenever we performed thermal fits to hadron abundancies
[4,6,8,9]. In the description of hadron yields with the statistical
model, the excluded volume correction leads to a larger volume
parameter, while the fit temperature and baryochemical potential
are unchanged compared to the case of fitting hadron ratios [8], for
the case of identical Ri for mesons and baryons. The implication of
a pion radius different from all other hadrons for the description
of data has been studied by Yen et al. [34].

In Fig. 1 we present the temperature dependence of the hadron
densities calculated with our model, with and without interac-
tions modelled via excluded-volume corrections, as well as with
the cases of Rmeson = 0 and of absence of short-range interactions
for baryon–antibaryon pairs. This illustrates our remarks above,
namely that, while at low temperatures (low densities) there is
no difference between the case of excluded volume correction
and the case of free hadron resonance gas, the difference be-
comes appreciable for T above 130–140 MeV, which is signif-
icantly below the value for the critical (crossover) temperature
Tc � 160 MeV. Near Tc , the hadron resonance gas becomes man-
ifestly dense, with the mean distance between hadrons getting
significantly smaller than twice the hadron radius. All approxima-
tions appropriate for the dilute gas, discussed above, break down
and the non-interacting hadron gas is not a suitable approach any-
more.

We illustrate, for the energy density, ε, in Fig. 2 the sensitiv-
ity of the calculations on the radii of the eigenvolume for mesons
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Fig. 2. The energy density of a hadron gas as a function of the radius (for the eigen-
volume calculation) for mesons and baryons, at a temperature value of 164 MeV
and μb = 0.8 MeV. The dot indicates the radius value of 0.3 fm which we employ
as default.

Fig. 3. The adiabatic speed of sound (in units of velocity of light, c = 1) squared as
a function of temperature, calculated for the hadron gas model, with and without
excluded-volume corrections. Our calculations are compared to lattice QCD calcula-
tions of Borsányi et al. [37].

and baryons, Rmeson and Rbaryon, respectively. The calculations have
been performed for T = 164 MeV, corresponding to the limit-
ing temperature reached in heavy-ion collisions [9] and for μb =
0.8 MeV, the value expected for the LHC energy according to
Ref. [9]; calculations for μb = 0 lead to identical results. We ob-
serve a strong influence of the excluded volume correction on the
energy density and this is the case for all other thermodynamical
quantities. Due to the larger abundance of mesons (and in partic-
ular of pions) in the hadron gas at these values of T and μb , the
sensitivity on Rmeson is more pronounced.

As pointed out earlier [27,33], a possible problem of the hadron
gas model with excluded volume corrections is acausal behavior
(speed of sound larger than velocity of light). As we demonstrate
in Fig. 3, our model is not plagued by such a behavior (for the
case μb �0 considered here). The adiabatic speed of sound, cs , is
calculated as:
Fig. 4. Temperature dependence of thermodynamical quantities. The calculations
with the hadron gas model are shown without (dashed line) and with (band for
R = 0.3± 0.05 fm) the excluded volume correction. The case of Rmeson = 0 is shown
with the dotted line, while the dot-dashed line denotes the effect of the baryon–
antibaryon annihilation correction. They are compared to LQCD results of Borsányi
et al. [37].

c2
s =

(
d ln s

d ln T

)−1

. (12)

It exhibits a shallow minimum as a function of T for the case of
excluded volume corrections. Our calculations are compared to lat-
tice QCD calculations [37]. In general, a good agreement between
our and the lattice result is observed. We note that our calculations
predict a shallow minimum for T around 140–150 MeV, while
the lattice values indicate a more pronounced dip and exhibit a
speed of sound value smaller than the hadron resonance gas with
interactions. It would be interesting to see if the corresponding
low temperature part of the equation of state (EoS) would lead
to changes in hydrodynamic calculations, where generally the EoS
shown in Fig. 6 or Ref. [22] is used.

4. Hadron resonance gas and lattice QCD results

In the following we compute, in the HRG model, thermody-
namical quantities with and without excluded volume corrections
and compare the results to predictions from lattice QCD. In Fig. 4
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Fig. 5. Temperature dependence of the trace anomaly. The calculations within the
hadron gas model (lines, as in Fig. 4) are compared to LQCD calculations of Borsányi
et al. [37] and HotQCD Collaboration [38] (preliminary results).

we show the temperature dependence of energy density, pressure,
and entropy density, each normalized to appropriate powers of the
temperature.

The case without interactions (no excluded volume correction)
has the expected strong dependence on temperature. As noted
early on by Hagedorn [10], a limiting temperature, also called
“Hagedorn temperature”, of T H � 200 MeV arises for calculations
of thermodynamical quantities within the HRG model if one as-
sumes a hadron mass spectrum which increases exponentially with
particle mass. Such exponential behavior is consistent with the
present knowledge of hadron resonances [29] up to 2.0–2.5 GeV
in mass. At this temperature all thermodynamical quantities for
the HRG without excluded volume corrections diverge. We note in
passing that all thermal model calculations without excluded vol-
ume corrections become meaningless for temperature values close
to T H . In the course of investigations reported in [9] we real-
ized that this implies a practical limitation to temperatures below
175 MeV as all calculations for higher temperatures become very
sensitive to details of the mass spectrum for masses larger than
3 GeV.

For the case of calculations employing finite hadron volume
corrections the Hagedorn infinities are tamed. This was already
noted by Hagedorn [10] who was the first to introduce excluded
volume corrections [26]. Our findings substantiate this and imply
that the Hagedorn limiting temperature is an artifact of the us-
age of the free hadron resonance gas description at temperatures
where the implicit approximations for dilute systems are mani-
festly inappropriate.

For temperatures below 120 MeV the HRG model results with
and without excluded volume correction almost coincide, see
Fig. 4. For larger temperatures, the HRG with interactions yields, in
our view, a realistic description of the hadronic phase. Therefore,
in the confined regime, lattice QCD calculations of thermodynami-
cal variables should give results in agreement with the interacting
HRG. The expectation is that, as soon as effects of deconfinement
become important in the lattice QCD results, they should increas-
ingly exceed the HRG values. In Fig. 4 the most recent predictions
of lattice QCD are compared to the HRG results. Indeed, below
T = 150 MeV good agreement between results of lattice QCD [37]
and the interacting HRG is found. On the other hand, effects of
the onset of deconfinement [20,21] are apparent for T in excess of
150 MeV.
Fig. 6. Energy dependence of energy density, pressure, entropy density and baryon
and meson densities at chemical freeze-out in central nucleus–nucleus collisions.
The full lines are for the excluded volume corrections, the dashed line without,
while the case of Rmeson = 0 is shown with the dotted line and the dot-dashed line
denotes the effect of the baryon–antibaryon annihilation correction.

In Fig. 5 we compare our calculations for the trace anomaly
ε − 3P (normalized to T 4) to LQCD results [37,38]. We see an
agreement between LQCD data and our calculations for the inter-
acting hadron gas only up to T = 140 MeV for the data of Borsányi
et al. [37]. For the (preliminary) data of the HotQCD Collabora-
tion [38] we have used for illustration the set for hisq action with
Nt = 6, but we note that other available sets are in agreement with
those within the errors [38].

We turn now to the energy dependence of the thermodynam-
ical quantities at chemical freeze-out in central nucleus–nucleus
collisions [9]. The degree of stopping of the colliding nuclei, which
is energy dependent, brings some uncertainty in the choice of
NB and I tot

3 . As we study central collisions of heavy nuclei (Au
or Pb) and focus on data at midrapidity, we have chosen NB =
400 · μb/938 MeV and I tot

3 = −40 · μb/938 MeV, reflecting that μb
traces stopping of the two colliding nuclei. The sensitivity of the
thermodynamical quantities on NB and I tot

3 is, however, small.
In Fig. 6 we show the thermodynamical quantities as a func-

tion of collision energy for chemical freeze-out in central nucleus–
nucleus collisions. The trends seen in Fig. 6 reflect primarily the
sharp increase of the temperature at chemical freeze-out (deter-
mined from fits of experimental data up to

√
sN N = 200 GeV [9])

followed by a saturation above
√

sN N � 10 GeV. The characteristic
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energy dependence of the baryon density, exhibiting a maximum
around 8 GeV, is determined by the increase of T combined with
the strong decrease of μb with energy, as discussed in [9]. The
effect of interactions leads to up to 30% reduction of the ther-
modynamical quantities at chemical freeze-out in nucleus–nucleus
collisions.

5. Summary

We have presented an evaluation of thermodynamical quan-
tities in the framework of the interacting hadron gas model,
incorporating all known hadrons with masses reaching 3 GeV.
A Van der Waals-type interaction is modelled via an excluded
volume correction. Thermodynamic consistency is ensured by con-
struction and the model exhibits proper causal behavior.

The resulting values for the thermodynamical quantities in-
crease, already for temperatures of 130–150 MeV, i.e. significantly
below Tc , much less steeply than in case of a free hadron res-
onance gas. Near Tc the free hadron resonance gas calculations
already show signs of the Hagedorn divergence. Comparisons of
lattice QCD results with the free hadron resonance gas in this tem-
perature regime are therefore in our view problematic. Our results
imply the need to consider the hadron resonance gas with interac-
tions, beyond the usual implementations based on the Dashen, Ma
and Bernstein theorem.

On the other hand, lattice QCD simulations start to be pre-
cise enough to reproduce the complete hadron gas at low tem-
peratures. The apparent rise of the lattice QCD results above
the HRG results is a clear indication of the onset of deconfine-
ment not contained in the latter. In our view, the lattice results
show genuine quark and gluon degrees of freedom in the vicin-
ity of the (crossover) transition. In this temperature range, the
lattice results produce thermodynamical quantities well above
our predictions for the interacting hadron resonance gas. Our
findings also imply that the Hagedorn limiting temperature is
an artifact of the usage of the free hadron resonance gas de-
scription at temperatures where the gas becomes manifestly
dense.
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