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The production cross section of electrons from semileptonic decays of beauty hadrons was measured at
mid-rapidity (|y| < 0.8) in the transverse momentum range 1 < pT < 8 GeV/c with the ALICE experiment
at the CERN LHC in pp collisions at a center of mass energy

√
s = 7 TeV using an integrated luminosity

of 2.2 nb−1. Electrons from beauty hadron decays were selected based on the displacement of the decay
vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within
uncertainties. The data were extrapolated to the full phase space to determine the total cross section for
the production of beauty quark–antiquark pairs.

© 2013 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
The measurement of heavy-flavor (charm and beauty) produc-
tion in proton–proton (pp) collisions at the CERN Large Hadron
Collider (LHC) provides a crucial testing ground for quantum chro-
modynamics (QCD), the theory of strong interactions, in a new
high-energy regime. Because of their large masses heavy quarks
are mainly produced via initial hard parton–parton collisions, even
at low transverse momenta pT. Therefore, heavy-flavor production
cross sections constitute a prime benchmark for perturbative QCD
(pQCD) calculations. Furthermore, heavy-flavor measurements in
pp collisions provide a mandatory baseline for corresponding stud-
ies in nucleus–nucleus collisions. Heavy quark observables are sen-
sitive to the properties of the strongly interacting partonic medium
which is produced in such collisions.

Earlier measurements of beauty production in pp̄ collisions at√
s = 1.96 TeV at the Tevatron [1] are in good agreement with

pQCD calculations at fixed order with next-to-leading log resum-
mation (FONLL) [2,3]. Measurements of charm production, avail-
able at high pT only [4], are close to the upper limit but still
consistent with such pQCD calculations. The same trend was ob-
served in pp collisions at

√
s = 0.2 TeV at RHIC [5,6].

In pp collisions at the LHC, heavy-flavor production was in-
vestigated extensively at

√
s = 7 TeV in various decay channels.

With LHCb beauty hadron production cross sections were mea-
sured at forward rapidity [7] and, at high pT only, with CMS at
mid-rapidity [8]. At low pT, mid-rapidity J/ψ meson production
from beauty hadron decays was studied with ALICE [9]. These

results, as well as the mid-rapidity D-meson production cross sec-
tions measured with ALICE [10], are well described by FONLL pQCD
calculations. The same is true for the production cross sections
of electrons and muons from semileptonic decays of heavy-flavor
hadrons reported by ATLAS [11] at high pT, and by ALICE down
to low pT [12,13]. However, still missing at the LHC is the separa-
tion of leptons from charm and beauty hadron decays at low pT,
which is important for the total beauty production cross section
and which provides a crucial baseline for Pb–Pb collisions.

This Letter reports the mid-rapidity (|y| < 0.8) production
cross section of electrons, (e+ + e−)/2, from semileptonic beauty
hadron decays measured with the ALICE experiment in the range
1 < pT < 8 GeV/c in pp collisions at

√
s = 7 TeV. Two independent

techniques were used for the separation of beauty hadron decay
electrons from those originating from other sources, in particular
charm hadron decays. The resulting invariant cross sections of elec-
trons from beauty and from charm hadron decays are compared
with corresponding predictions from a FONLL pQCD calculation.
In addition, the measured cross sections were extrapolated to the
full phase space and the total beauty and charm production cross
sections were determined.

The data set used for this analysis was recorded during the
2010 LHC run with ALICE, which is described in detail in [14].
Charged particle tracks were reconstructed in the pseudorapidity
range |η| < 0.8 with the Time Projection Chamber (TPC) and the
Inner Tracking System (ITS) which, in addition, provides excellent
track spatial resolution at the interaction point. Electron candi-
dates were selected with the TPC and the Time-Of-Flight detector
(TOF). Data were collected using a minimum bias (MB) trigger [12]
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derived from the VZERO scintillator arrays and the Silicon Pixel De-
tector (SPD), which is the innermost part of the ITS consisting of
two cylindrical layers of hybrid silicon pixel assemblies. The MB
trigger cross section σMB = 62.2 ± 2.2 mb [15] was measured in a
van-der-Meer scan. An integrated luminosity of 2.2 nb−1 was used
for this analysis.

Pile-up events were identified by requiring no more than one
primary vertex to be reconstructed with the SPD as discussed
in [12]. Taking into account the efficiency of the pile-up event
identification, only 2.5% of the triggered events suffered from pile-
up. The corresponding events were removed from the analyzed
data sample. The systematic uncertainty due to the remaining un-
detected pile-up events was negligible.

Events and tracks were selected following the approach from a
previous analysis [12]. Charged particle tracks reconstructed in the
TPC and ITS were propagated towards the outer detectors using
a Kalman filter approach [16]. Geometrical matching was applied
to associate tracks with hits in the outer detectors. To guarantee
good particle identification based on the specific dE/dx in the TPC,
tracks were required to include a minimum number of 80 clus-
ters used for the energy loss calculation. A cut on the number
of clusters for tracking is used to enhance the electron/pion sep-
aration. The stringent request for at least 120 clusters from the
maximum of 159 enhances electrons relative to hadrons. In total,
at least four ITS hits were required to be associated with a track.
A cut on the distance of closest approach (DCA) to the primary
vertex in the plane perpendicular to the beam axis (xy) as well as
in the beam direction (z) was applied to reject background tracks
and non-primary tracks. Differently from the heavy-flavor electron
analysis [12], the pseudorapidity range was extended to |η| < 0.8,
and tracks were required to be associated with hits in both layers
of the SPD in order to minimize the contribution from tracks with
randomly associated hits in the first pixel layer. The latter criterion
provides a better measurement of the track’s transverse impact pa-
rameter d0, i.e. the DCA to the primary collision vertex in the plane
perpendicular to the beam axis, where the sign of d0 is attributed
on the basis of the relative position of primary vertex and the track
prolongation in the direction perpendicular to the direction of the
transverse momentum vector of the track.

Electron candidates were required to be consistent within three
standard deviations with the electron time of flight hypothesis,
thus efficiently rejecting charged kaon background up to momenta
of ≈ 1.5 GeV/c and proton background up to ≈ 3 GeV/c. Addi-
tional background, in particular from charged pions, was rejected
using the specific energy loss, dE/dx, measured for charged parti-
cles in the TPC.

Due to their long lifetime (cτ ∼ 500 μm), beauty hadrons de-
cay at a secondary vertex displaced in space from the primary
collision vertex. Consequently, electron tracks from semileptonic
beauty hadron decays feature a rather broad d0 distribution, as in-
dicated by simulation studies in Fig. 1(a). Also shown are the d0
distributions of the main background sources, i.e. electrons from
charm hadron decays, from Dalitz and dilepton decays of light
mesons, and from photon conversions. These distributions were
obtained from a detailed Monte Carlo simulation of the experiment
using GEANT3 [17]. With the PYTHIA 6.4.21 event generator [18]
pp collisions were produced employing the Perugia 0-parameter
tuning [19]. The pT shapes of beauty hadron decay electrons from
a FONLL pQCD calculation [20] and from PYTHIA are in good
agreement. The PYTHIA simulation does not reproduce precisely
the pT-differential yields of background sources measured in data.
Therefore, the pT distributions of the relevant electron sources
in PYTHIA were re-weighted to match the distributions measured
with ALICE, prior of propagation through the ALICE apparatus us-
ing GEANT3. After the full Monte Carlo simulation, the same event

Fig. 1. (Color online.) (a) d0 distributions of electrons from beauty and charm hadron
decays as well as from decays of light hadrons and from photon conversions ob-
tained from PYTHIA simulations in the electron pT range 1 < pT < 6 GeV/c. The
distributions were normalized to the same integrated yield. (b) Ratios of the mea-
sured and the simulated d0 distributions of conversion electrons in the ranges
1 < pT < 2 GeV/c and 2 < pT < 6 GeV/c (points shifted in d0 by 10 μm for bet-
ter visibility).

cuts and track selection criteria (including that on d0) as in data
were applied. The pT distributions of the backgrounds were nor-
malized by the number of events passing these event selection
cuts, corrected for the efficiency to reconstruct a primary vertex.
Background electrons surviving these selection criteria were sub-
tracted from the inclusive electron spectrum obtained from data.
This approach relies on the availability of the pT-differential cross
section measurements of the main background sources.

The production cross sections of π0 and η mesons, the dom-
inant sources of electrons from Dalitz decays and from photons
which convert in material into e+e− pairs, were measured with
ALICE in pp collisions at

√
s = 7 TeV [21]. The conversion elec-

tron yield depends on the material budget which was measured
with a systematic uncertainty of 4.5% [21]. Other light hadrons
and heavy quarkonia contribute through their decays to the elec-
tron spectrum and their phase space distributions were calculated
with the approach described in [12]. This calculation also includes
real and virtual photon production via partonic hard scattering
processes. D0, D+, and D+

s meson production cross sections were
measured with ALICE [10,22] in the transverse momentum ranges
1 < pT < 16 GeV/c, 1 < pT < 24 GeV/c, and 2 < pT < 12 GeV/c, re-
spectively. Based on a FONLL pQCD calculation [20] the measured
pT-differential cross sections were extrapolated to pT = 50 GeV/c.
The contribution from the unmeasured high-pT region to the elec-
tron yield from D-meson decays was estimated to be �10% for
electrons with pT < 8 GeV/c. A contribution from Λc decays was
included using a measurement of the ratio σ(Λc)/σ (D0 + D+)

from ZEUS [23].
The measured pT spectra of the main background sources drop

more quickly with pT than the ones generated by PYTHIA for
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Fig. 2. (Color online.) (a) Distribution of d0× charge for electron candidates after all analysis cuts (except that on d0) superimposed to the best-fit result. The fit function is
defined as the sum of the Monte Carlo d0 distribution of beauty electrons and those of electrons from all other sources, the normalizations being the free parameters in the
fit. The error bars represent the statistical uncertainties. (b) Differences between the data and the best fit result divided by the statistical error.
pT > 1 GeV/c. The ratio of the measured yield and the yield from
PYTHIA, which was used to weight the spectra of the electron
sources in PYTHIA, is 1.3 (0.6) at pT = 1(10) GeV/c for π0. The cor-
responding ratio is 2.4 (1.3) at pT = 1(10) GeV/c for η mesons, and
0.95 (0.2) at pT = 1(10) GeV/c for electrons from charm hadron
decays.

A cut on the d0 parameter is applied in order to enhance the
signal-to-background ratio (S/B) of electrons from beauty hadron
decays. For this, it is crucial that the d0 resolution is properly re-
produced in the simulation. The d0 resolution is found to be 80 μm
(30 μm) for tracks with pT = 1(10) GeV/c [10]. The agreement of
the d0 measurement of electron candidates with the simulation
is demonstrated in Fig. 1(b), which shows the ratios of the mea-
sured d0 distribution to the one from simulation in the pT ranges
1 < pT < 2 GeV/c and 2 < pT < 6 GeV/c for electrons from photon
conversions, which is the only identifiable source in data. A pure
sample of electrons from photon conversions in the detector ma-
terial was identified using a V0-finder and topological cuts [24].
At pT > 6 GeV/c, the number of reconstructed conversions was
statistically insufficient for this cross check. In addition, the d0 res-
olution measured for charged tracks in data is reproduced within
10% by the Monte Carlo simulation [10]. The difference in the par-
ticle multiplicities between data and simulation gives an effect on
the primary vertex resolution, which is included in the d0 res-
olution as a convolution of the track position and the primary
vertex resolution. The Monte Carlo simulation shows that the elec-
tron Bremsstrahlung effect is limited to transverse momenta below
1 GeV/c. At higher pT, the particle species dependences of the d0
resolution is negligible.

Fig. 2 shows that the d0 distribution of the data sample is well
described by the cocktail of signal and background. The measured
d0 distribution of identified electrons was fitted by minimizing
a χ2 between the measured d0 distribution and the sum of the
Monte Carlo d0 distributions of signal and background in the cor-
responding electron pT range. The differences between the data
and the cocktail are consistent with statistical variations. The ra-

tio of the signal to background yields, which is obtained by this fit
procedure, agrees with that obtained in the present analysis within
statistical uncertainties.

The widths of the d0 distributions depend on pT. Only electrons
satisfying the condition |d0| > 64 + 780 × exp(−0.56pT) (with d0
in μm and pT in GeV/c) were considered for the further analysis.
This pT-dependent d0 cut was determined from the simulation to
maximize the significance for the beauty decay electron spectrum.
The possible bias introduced by this optimization is taken into ac-
count in the estimation of the systematic uncertainties, by varying
substantially the cut value.

Fits of the TPC dE/dx distribution in momentum slices indicate
that the remaining hadron contamination grows from less than
10−5 at 1 GeV/c to ≈20% at 8 GeV/c before the application of
the d0 cut. Since hadrons originate from the primary collision ver-
tex, the latter cut reduces the remaining hadron contamination to
less than 3% even at the highest pT considered here. The elec-
tron background from sources other than beauty hadron decays
was estimated based on the method described above. In Fig. 3
the raw electron yield, as well as the non-beauty electron back-
ground yield, which is subtracted in the analysis, are shown after
the application of the track selection criteria. At pT = 1 GeV/c, the
background contributions from charm hadron decays, light meson
decays, and photon conversions are approximately equal and S/B
is ≈ 1/3. At pT = 8 GeV/c, the background originates mostly from
charm hadron decays and S/B is ≈ 5.

The electron yield from beauty hadron decays, Ne(pT), was cor-
rected for the geometrical acceptance, the track reconstruction ef-
ficiency, the electron identification efficiency, and the efficiency of
the d0 cut. The total efficiency ε is the product of these individ-
ual factors. ε was computed from a full detector simulation using
GEANT3 as discussed in [12]. In addition, the electron pT distribu-
tion was corrected for effects of finite momentum resolution and
energy loss due to Bremsstrahlung via a pT unfolding procedure
which does not depend on the pT shape of Monte Carlo simula-
tion [12].
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Fig. 3. (Color online.) The signal (black solid circle) and the background yields after
the application of the track selection criteria including the one on d0. The back-
ground electrons (red solid line), i.e. the sum of the electrons from charm hadron
decays, from Dalitz and dilepton decays of light mesons, and from photon conver-
sions, were subtracted from the inclusive electron spectrum (black open circle). The
error bars represent the statistical uncertainties. The symbols are plotted at the cen-
ter of each bin.

The invariant cross section of electron production from beauty
hadron decays in the range |y| < 0.8 was then calculated using the
corrected electron pT spectrum, the number of minimum bias pp
collisions NMB, and the minimum bias cross section σMB as

1

2π pT

d2σ

dpT dy
= 1

2π pc
T

Ne(pT)


y
pT

1

ε

σMB

NMB
, (1)

where pc
T are the centers of the pT bins with widths 
pT and


y = 0.8 is the width of the rapidity interval.
A summary of the estimated relative systematic uncertainties is

provided in Table 1. The systematic uncertainties for the tracking
and the particle identification are the following: the corrections of
the ITS, TPC, TOF tracking efficiencies, the TOF, TPC particle identi-
fication efficiencies, the pT unfolding procedure. These amount to
+17
−14(

+8
−14)% for pT < (>)3 GeV/c. Additional systematic uncertain-

ties specific for this analysis due to the d0 cut, the subtraction
of the light hadron decay background and charm hadron decay
background were added in quadrature. The systematic uncertainty
induced by the d0 cut was evaluated by repeating the full analy-
sis with modified cuts. The variation of this cut was chosen such
that it corresponds to ±1σ , where σ is the d0 resolution measured
on data [10]. These vary the minimum d0 cut efficiency by ±20%.
In addition, the full analysis was repeated after smearing the d0
resolution in the Monte Carlo simulation by 10% [10], considering
the maximum differences in the d0 distribution in data and sim-
ulation. The uncertainty due to the background subtraction was
evaluated by propagating the statistical and systematic uncertain-
ties of the light and charm hadron measurements used as analysis
input. At low pT, the uncertainties are dominated by the subtrac-
tion of charm hadron decay background.

Fig. 4 presents the invariant production cross section of elec-
trons from beauty hadron decays obtained with the analysis based
on the d0 cut. As a cross check the corresponding result from
an alternative method is shown. In the latter, the decay electron
spectrum was calculated for charm hadrons as measured with AL-
ICE [10] based on a fast Monte Carlo simulation using PYTHIA de-
cay kinematics, and it was subtracted from the electron spectrum

Fig. 4. (Color online.) Invariant cross sections of electrons from beauty hadron de-
cays measured directly via the transverse impact parameter method and indirectly
via subtracting the calculated charm hadron decay contribution from the measured
heavy-flavor hadron decay electron spectrum [12]. The error bars (boxes) represent
the statistical (systematic) uncertainties.

Table 1
Overview of the contributions to the systematic uncertainties. The total systematic
uncertainty is calculated as the quadratic sum of all contributions.

pT range (GeV/c) 1–8

Error source Systematic uncertainty [%]

Track matching ±2
ITS number of hits +1

−4

TPC number of tracking clusters +15
−7 (+3

−4) for pT < 2.5(> 2.5) GeV/c
TPC number of PID clusters ±2
DCA to primary vertex in xy (z) ±1
TOF matching and PID ±5
TPC PID +5(+2

−5) for pT < 3(> 3) GeV/c
Minimum d0 cut ±12
Charge dependence +1

−7
η dependence −6
Unfolding ±5
Light hadron decay background ≈ 10(< 2) for pT = 1(> 2) GeV/c
Charm hadron decay background ≈ 30(< 10) for pT = 1(> 3) GeV/c

measured for all heavy-flavor hadron decays [12]. The systematic
uncertainties of these two inputs have been added in quadrature
as they are uncorrelated. The results from the subtraction method,
which does not use a d0 cut, and from the analysis based on the
d0 selection agree within the experimental uncertainties, which are
much smaller, in particular at low pT, for the beauty measurement
employing the d0 cut.

In Fig. 5(a) FONLL pQCD predictions [20] of the electron produc-
tion cross sections are compared with the measured electron spec-
trum from beauty hadron decays and with the calculated electron
spectrum from charm hadron decays. The ratios of the measured
cross sections to the FONLL predictions are shown in Figs. 5(b) and
5(c) for electrons from beauty and charm hadron decays, respec-
tively. The FONLL predictions are in good agreement with the data.
At low pT, electrons from heavy-flavor hadron decays originate
predominantly from charm hadrons. As demonstrated in Fig. 5(d),
beauty hadron decays take over from charm as the dominant
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Fig. 5. (Color online.) (a) pT-differential invariant cross sections of electrons from
beauty and from charm hadron decays. The error bars (boxes) represent the statis-
tical (systematic) uncertainties. The solid (dashed) lines indicate the corresponding
FONLL predictions (uncertainties) [20]. Ratios of the data and the FONLL calcula-
tions are shown in (b) and (c) for electrons from beauty and charm hadron decays,
respectively, where the dashed lines indicate the FONLL uncertainties. (d) Measured
ratio of electrons from beauty and charm hadron decays with error boxes depicting
the total uncertainty.

source of electrons from heavy-flavor hadron decays close to elec-
tron transverse momenta of 4 GeV/c.

The integrated cross section of electrons from beauty hadron
decays was measured as 6.61 ± 0.54(stat)+1.92

−1.86(sys) μb for
1 < pT < 8 GeV/c in the range |y| < 0.8. The beauty produc-
tion cross section σbb̄ was calculated by extrapolating this pT-
integrated visible cross section down to pT = 0 and to the full
y range. The extrapolation factor was determined based on FONLL
as described in [9], using the beauty to electron branching ra-
tio BRHb→e + BRHb→Hc→e = 0.205 ± 0.007 [25]. The related un-
certainty was obtained as the quadratic sum of the uncertain-
ties from the beauty quark mass, from perturbative scales, and
from the CTEQ6.6 parton distribution functions [26]. At mid-
rapidity the beauty production cross section per unit rapidity is
dσbb̄/dy = 42.3 ± 3.5(stat)+12.3

−11.9(sys)+1.1
−1.7(extr) μb, where the ad-

ditional systematic uncertainty due to the extrapolation proce-
dure is quoted separately. The total cross section was derived as
σbb̄ = 280 ± 23(stat)+81

−79(sys)+7
−8(extr) ± 10(BR) μb, consistent with

the result of a previous measurement of J/ψ mesons from beauty
hadron decays σbb̄ = 282 ± 74(stat)+58

−68(sys)+8
−7(extr) μb [9]. The

weighted average of the two measurements was calculated based

on the procedure described in [27]. The statistical and systematic
uncertainties of two measurements are largely uncorrelated, but
the extrapolation uncertainties using the same theoretical model
(FONLL) are correlated. The weights, defined using the statistical
and the uncorrelated systematic uncertainties, and the correlated
extrapolation uncertainties, are calculated as 0.499 for the mea-
surement using semileptonic beauty hadron decays and 0.501 for
that using non-prompt J/ψ mesons. The combined total cross sec-
tion is σbb̄ = 281 ± 34(stat)+53

−54(sys)+7
−8(extr) μb. FONLL predicts

σbb̄ = 259+120
−96 μb [20].

The production cross section of electrons from heavy-flavor
hadron decays was measured as 37.7 ± 3.2(stat)+13.3

−14.4(sys) μb for
0.5 < pT < 8 GeV/c in the range |y| < 0.5 [12]. After subtrac-
tion of the contribution from beauty hadron decays (see above)
the resulting production cross section of electrons from charm
hadron decays was converted into a charm production cross sec-
tion applying the same extrapolation method as for beauty. With
the branching ratio BRHc→e = 0.096 ± 0.004 [25], at mid-rapidity
the charm production cross section per unit rapidity is dσcc̄/dy =
1.2 ± 0.2(stat) ± 0.6(sys)+0.2

−0.1(extr) mb. The total cross section

σcc̄ = 10.0 ± 1.7(stat)+5.1
−5.5(sys)+3.5

−0.5(extr) ± 0.4(BR) mb is consistent
with the result of a previous, more accurate measurement using D
mesons σcc̄ = 8.5±0.5(stat)+1.0

−2.4(sys)+5.0
−0.4(extr) mb [28]. The FONLL

prediction is σcc̄ = 4.76+6.44
−3.25 mb [20]. All measured cross sections

have an additional normalization uncertainty of 3.5% [15].
In summary, invariant production cross sections of electrons

from beauty and from charm hadron decays were measured in pp
collisions at

√
s = 7 TeV. The agreement between theoretical pre-

dictions and the data suggests that FONLL pQCD calculations can
reliably describe heavy-flavor production even at low pT in the
highest energy hadron collisions accessible in the laboratory today.
Furthermore, these results provide a crucial baseline for heavy-
flavor production studies in the hot and dense matter created in
Pb–Pb collisions at the LHC.
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A.B. Kaidalov 46, V. Kakoyan 119, S. Kalcher 36, P. Kaliňák 47, T. Kalliokoski 38, A. Kalweit 53,30, J.H. Kang 121,
V. Kaplin 69, A. Karasu Uysal 30,120, O. Karavichev 44, T. Karavicheva 44, E. Karpechev 44, A. Kazantsev 88,
U. Kebschull 51, R. Keidel 122, M.M. Khan 14, S.A. Khan 114, P. Khan 89, A. Khanzadeev 75, Y. Kharlov 43,
B. Kileng 32, M. Kim 121, D.W. Kim 37, J.H. Kim 17, J.S. Kim 37, M. Kim 37, S. Kim 17, D.J. Kim 38, B. Kim 121,
T. Kim 121, S. Kirsch 36, I. Kisel 36, S. Kiselev 46, A. Kisiel 116, J.L. Klay 4, J. Klein 82, C. Klein-Bösing 54,
M. Kliemant 52, A. Kluge 30, M.L. Knichel 85, A.G. Knospe 104, K. Koch 82, M.K. Köhler 85, T. Kollegger 36,
A. Kolojvari 115, V. Kondratiev 115, N. Kondratyeva 69, A. Konevskikh 44, A. Korneev 87, R. Kour 90,
M. Kowalski 103, S. Kox 64, G. Koyithatta Meethaleveedu 40, J. Kral 38, I. Králik 47, F. Kramer 52, I. Kraus 85,
T. Krawutschke 82,31, M. Krelina 34, M. Kretz 36, M. Krivda 90,47, F. Krizek 38, M. Krus 34, E. Kryshen 75,
M. Krzewicki 85, Y. Kucheriaev 88, T. Kugathasan 30, C. Kuhn 58, P.G. Kuijer 72, I. Kulakov 52, J. Kumar 40,
P. Kurashvili 100, A. Kurepin 44, A.B. Kurepin 44, A. Kuryakin 87, S. Kushpil 73, V. Kushpil 73, H. Kvaerno 18,
M.J. Kweon 82,∗, Y. Kwon 121, P. Ladrón de Guevara 55, I. Lakomov 42, R. Langoy 15, S.L. La Pointe 45,
C. Lara 51, A. Lardeux 101, P. La Rocca 25, R. Lea 21, Y. Le Bornec 42, M. Lechman 30, K.S. Lee 37, S.C. Lee 37,
G.R. Lee 90, F. Lefèvre 101, J. Lehnert 52, M. Lenhardt 85, V. Lenti 98, H. León 56, M. Leoncino 94,



20 ALICE Collaboration / Physics Letters B 721 (2013) 13–23

I. León Monzón 105, H. León Vargas 52, P. Lévai 60, J. Lien 15, R. Lietava 90, S. Lindal 18, V. Lindenstruth 36,
C. Lippmann 85,30, M.A. Lisa 16, L. Liu 15, V.R. Loggins 117, V. Loginov 69, S. Lohn 30, D. Lohner 82,
C. Loizides 67, K.K. Loo 38, X. Lopez 63, E. López Torres 7, G. Løvhøiden 18, X.-G. Lu 82, P. Luettig 52,
M. Lunardon 20, J. Luo 5, G. Luparello 45, L. Luquin 101, C. Luzzi 30, R. Ma 118, K. Ma 5,
D.M. Madagodahettige-Don 109, A. Maevskaya 44, M. Mager 53,30, D.P. Mahapatra 48, A. Maire 82,
M. Malaev 75, I. Maldonado Cervantes 55, L. Malinina 59,i, D. Mal’Kevich 46, P. Malzacher 85,
A. Mamonov 87, L. Mangotra 80, V. Manko 88, F. Manso 63, V. Manzari 98, Y. Mao 5, M. Marchisone 63,23,
J. Mareš 49, G.V. Margagliotti 21,92, A. Margotti 97, A. Marín 85, C.A. Marin Tobon 30, C. Markert 104,
I. Martashvili 110, P. Martinengo 30, M.I. Martínez 1, A. Martínez Davalos 56, G. Martínez García 101,
Y. Martynov 2, A. Mas 101, S. Masciocchi 85, M. Masera 23, A. Masoni 96, L. Massacrier 101,
A. Mastroserio 28, Z.L. Matthews 90, A. Matyja 103,101, C. Mayer 103, J. Mazer 110, M.A. Mazzoni 95,
F. Meddi 24, A. Menchaca-Rocha 56, J. Mercado Pérez 82, M. Meres 33, Y. Miake 112, L. Milano 23,
J. Milosevic 18,ii, A. Mischke 45, A.N. Mishra 81, D. Miśkowiec 85,30, C. Mitu 50, J. Mlynarz 117,
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B. Pastirčák 47, D.I. Patalakha 43, V. Paticchio 98, A. Pavlinov 117, T. Pawlak 116, T. Peitzmann 45,
H. Pereira Da Costa 12, E. Pereira De Oliveira Filho 106, D. Peresunko 88, C.E. Pérez Lara 72,
E. Perez Lezama 55, D. Perini 30, D. Perrino 28, W. Peryt 116, A. Pesci 97, V. Peskov 30,55, Y. Pestov 3,
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Corrigendum

Corrigendum to “Measurement of electrons from beauty hadron decays 

in pp collisions at 
√

s = 7 TeV” [Phys. Lett. B 721 (1–3) (2013) 13–23] 

and “Beauty production in pp collisions at 
√

s = 2.76 TeV measured 

via semi-electronic decays” [Phys. Lett. B 738 (2014) 97–108]

ALICE Collaboration

a r t i c l e i n f o

Article history:
Available online 25 October 2016
We have identified a bias in the measurement of electrons from 
beauty-hadron decays in pp collisions at center-of-mass energies √

s = 2.76 TeV [1] and 
√

s = 7 TeV [2]. The efficiency corrections 
were evaluated using a Monte Carlo simulation, based on PYTHIA 
as described in [1,2]. When calculating the impact parameter (d0) 
cut efficiency for the charm-hadron decay electrons, we did not 
consider the difference between the impact parameter distribu-
tions using the measured D-meson pT distribution and the one 
from Monte Carlo.

For weakly decaying hadrons with sufficiently high transverse 
momentum (pT), the impact parameter distribution of the daugh-
ter particle at a given pT depends very weakly on the transverse 
momentum of the mother hadrons. However, at low momentum 
the impact parameter distribution of the decay particles depends 
on the momentum distribution of the mother hadrons. Due to the 
harder pT spectra of charm hadrons in the Monte Carlo simulation 
[1,2] compared to the measured ones [3,4], the d0 cut efficiency of 
decay electrons was biased towards larger values. Since the back-
ground was subtracted from the raw inclusive electron yield after 
applying the d0 cut, the charm-hadron decay background was over-
estimated.

We have now computed the d0 distribution of electrons 
from charm-hadron decays using a Monte Carlo and weighting 
each electron by the ratio (dN/dpT)

measured/(dN/dpT)
MC.

(dN/dpT)
measured and (dN/dpT)

MC are the production yields eval-
uated at the pT of the mother charm-hadron of the electron, as 
obtained from data [3,4] and in the Monte Carlo simulations [1,2], 
respectively. In such a way, the measured mother pT spectra are 
propagated to the impact parameter cut efficiency calculation for 
the daughter electrons.

DOIs of original articles: http://dx.doi.org/10.1016/j.physletb.2013.01.069, 

http://dx.doi.org/10.1016/j.physletb.2014.09.026.

http://dx.doi.org/10.1016/j.physletb.2016.10.004
0370-2693
Table 1
Effect of the corrected treatment of the D-meson pT distribution on the d0 cut 
efficiency for electrons from charm-hadron decays (εd0 ) and the resulting yield of 
signal electrons (dNsignal/dpT).

7 TeV pp collisions

pT interval (GeV/c) 1–2 2–3 3–8

ε
updated
d0

/ε
previous
d0

0.56–0.60 0.60–0.70 0.70–0.85

(dNsignal/dpT)
updated/(dNsignal/dpT)

previous 1.6–1.4 1.3–1.2 < 1.1

2.76 TeV pp collisions

pT interval (GeV/c) 1–2 2–3 3–8

ε
updated
d0

/ε
previous
d0

0.74–0.77 0.77-0.85 0.85–0.94

(dNsignal/dpT)
updated/(dNsignal/dpT)

previous 1.4–1.3 1.2–1.1 < 1.1

The new value of the d0 cut efficiency (εupdated
d0

) of electrons 
from charm-hadron decays is significantly smaller than that previ-
ously evaluated (εprevious

d0
) as summarized in Table 1.

In Fig. 1, the raw electron yield, as well as the non-beauty 
electron background yield, which is subtracted in the analysis, are 
shown after the application of the track selection criteria. Com-
pared to Fig. 3 in [2], the yield of electrons from charm-hadron 
decays is smaller by the factor εupdated

d0
/ε

previous
d0

given in Table 1. 
The corresponding yield of beauty-signal electrons (dNsignal/dpT) 
increases as listed in Table 1. For pp collisions at 

√
s = 2.76 TeV, 

where a similar bias was present, the same procedure has been 
applied and the correct distributions are shown in Fig. 2 (to be 
compared with Fig. 2 in [1]). Numerical values of the implication 
for the d0 cut efficiency are given in Table 1.

The uncertainty on the d0 efficiency was evaluated by propa-
gating the statistical and systematic uncertainties of the charm-
hadron pT distributions in [3] to the measurements discussed in 
this corrigendum. The uncertainty was added in quadrature as an 

independent contribution to the total systematic uncertainty.
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Fig. 1. This figure replaces Fig. 3 from [2]. Caption is the same as Fig. 3 from [2].

Fig. 2. This figure replaces Fig. 2 from [1]. Caption is the same as Fig. 2 from [1].

Table 2
Summary of the updated cross sections.

Cross sections at 7 TeV pp collisions

Visible σb→e 9.03 ± 0.50 (stat) +2.72
−2.73 (sys) ± 0.32 (norm) μb

dσbb̄/dy 57.7 ± 3.2 (stat) +17.4
−17.4 (sys) +1.4

−2.3 (extr) ± 2.0 (norm) μb

σbb̄ 383 ± 21 (stat) +116
−116 (sys) +10

−11 (extr) ± 13 (norm) ± 13 (br) μb

Weighted σbb̄ 322 ± 45 (stat) +58
−62 (sys) +8

−9 (extr) μb

dσcc̄/dy 1.1 ± 0.2 (stat) +0.6
−0.7 (sys) +0.2

−0.1 (extr) mb

σcc̄ 9.7 ± 1.7 (stat) +5.2
−5.6 (sys) +3.4

−0.5 (extr) ± 0.4 (br) mb

Cross sections at 2.76 TeV pp collisions

Visible σb→e 4.33 ± 0.38 (stat) +1.45
−1.75 (sys) ± 0.08 (norm) μb

dσbb̄/dy 29.1 ± 2.6 (stat) +9.8
−11.7 (sys) +0.6

−0.8 (extr) ± 0.6 (norm) μb

σbb̄ 162 ± 14 (stat) +55
−65 (sys) +4

−4 (extr) ± 3 (norm) ± 6 (br) μb

The relative systematic uncertainties on the charm-hadron de-
cay background increase by 3% (2%) at pT < 1.5 GeV/c for 7 TeV 
(2.76 TeV) pp collisions. The change of the systematic uncertainties 
at higher pT region is instead negligible. However, the amount of 
background decreases and as a consequence the total uncertainty 
on the beauty production measurement decreases.

The production cross sections were also corrected correspond-

ingly. The integrated cross section of electrons from beauty hadron 
Fig. 3. This figure replaces Fig. 4 from [2]. Caption is the same as Fig. 4 from [2].

Fig. 4. This figure replaces Fig. 5 from [2]. Caption is the same as Fig. 5 from [2].

decays (visible σb→e), the beauty production cross section per unit 
rapidity at mid-rapidity (dσbb̄/dy) and the total cross section (σbb̄) 
are summarized in Table 2. For 7 TeV pp collisions, the weighted 

average of this with the result of a previous measurement of
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Fig. 5. This figure replaces Fig. 4 from [1]. Caption is the same as Fig. 4 from [1].

Fig. 6. This figure replaces Fig. 5 from [1]. Caption is the same as Fig. 5 from [1].
Fig. 7. This figure replaces Fig. 6 from [1]. Caption is the same as Fig. 6 from [1].

J/ψ mesons from beauty-hadron decays [5] is also updated. 
After subtracting the new cross section of the electrons from 
beauty-hadron decays from the measured cross section of the 
electrons from heavy-flavour hadron decays [6], the production 
cross section of electrons from charm-hadron decays was con-
verted into a charm production cross section. The charm pro-
duction cross section per unit rapidity at mid-rapidity (dσcc̄/dy) 
and the total cross sections (σcc̄) at 

√
s = 7 TeV are also updated 

in Table 2. Since the corresponding quantity at 
√

s = 2.76 TeV
was not explicitly evaluated in [1], there is no correspond-
ing entry in Table 2. All measured cross sections for 7 TeV 
(2.76 TeV) have an additional normalization uncertainty of 3.5% 
(1.9%) [7].

In Figs. 3, 4, 5, 6 and 7, we have updated accordingly the ALICE 
data points.

The main conclusion of the original papers remains valid: the 
data and predictions are consistent within the experimental and 
theoretical uncertainties.
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