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The centrality dependence of the charged-particle pseudorapidity density measured with ALICE in Pb–Pb 
collisions at √sNN = 2.76 TeV over a broad pseudorapidity range is presented. This Letter extends the 
previous results reported by ALICE to more peripheral collisions. No strong change of the overall shape of 
charged-particle pseudorapidity density distributions with centrality is observed, and when normalised to 
the number of participating nucleons in the collisions, the evolution over pseudorapidity with centrality 
is likewise small. The broad pseudorapidity range (−3.5 < η < 5) allows precise estimates of the total 
number of produced charged particles which we find to range from 162 ± 22(syst.) to 17170 ± 770(syst.)
in 80–90% and 0–5% central collisions, respectively. The total charged-particle multiplicity is seen to 
approximately scale with the number of participating nucleons in the collision. This suggests that hard 
contributions to the charged-particle multiplicity are limited. The results are compared to models which 
describe dNch/dη at mid-rapidity in the most central Pb–Pb collisions and it is found that these models 
do not capture all features of the distributions.

© 2016 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The measurement of the charged-particle pseudorapidity (η) 
density distribution in heavy-ion collisions provides insight into 
the dominant particle production mechanisms, such as parton frag-
mentation [1] and the observed phenomenon of limiting fragmen-
tation [2]. The unique capability of ALICE to perform such mea-
surements from large to small overlaps of the colliding nuclei over 
a broad pseudorapidity range allows for significant additional in-
formation to be extracted e.g., the total number of charged parti-
cles and the evolution of the distributions with centrality.

The charged-particle pseudorapidity density (dNch/dη) per se
does not provide immediate understanding of the particle produc-
tion mechanism, but as a benchmark tool for comparing models it 
is indispensable. Various models [3–5] make different assumptions 
on how particles are produced in heavy-ion collisions resulting in 
very different charged-particle pseudorapidity density distributions 
— both in terms of scale and shape. Models may, for example, in-
corporate different schemes for the hadronisation of the produced 
quarks and gluons which leads to very different pseudorapidity 
distributions of the charged particles.

� E-mail address: alice-publications@cern.ch.

The ALICE Collaboration has previously reported results on the 
charged-particle pseudorapidity density in the 0–30% most central 
Pb–Pb collisions at 

√
sNN = 2.76 TeV over a wide pseudorapidity 

range [6], and in the 80% most central collisions at mid-rapidity 
(η ≈ 0) only [7]. The ATLAS Collaboration has reported on the 
charged-particle pseudorapidity density in the 80% most central 
events in a limited pseudorapidity range of |η| < 2 [8]. Similarly, 
the CMS Collaboration has reported on the same measurements in 
the 90% most central events at η ≈ 0, and for selected centralities 
up to |η| < 2 [9].

In this Letter we present the primary charged-particle pseu-
dorapidity density dependence on the event centrality from mid-
central (30–40%) to peripheral (80–90%) collisions over a broad 
pseudorapidity range to complement results previously reported 
by ALICE in the 0–30% centrality range. Unlike previous [6], in the 
forward regions where the signal is dominated by secondary par-
ticles produced in the surrounding material, we use a data-driven 
correction to extract the primary charged-particle density.

Primary charged particles are defined as prompt charged par-
ticles produced in the collision, including their decay products, 
but excluding products of weak decays of muons and light flavour 
hadrons. Secondary charged particles are all other particles ob-
served in the experiment e.g., particles produced through interac-
tions with material and products of weak decays.
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In the following section, the experimental set-up will be briefly 
described. Section 3 outlines analysis procedures and describes a 
data-driven method to isolate the number of primary charged par-
ticles from the secondary particle background at large pseudora-
pidity. Systematic uncertainties are discussed in Sect. 4. In Sect. 5, 
the resultant charged-particle pseudorapidity density distributions 
are presented along with their evolution with centrality. Further-
more we extract from the measured dNch/dη distributions the 
total number of charged particles as a function of the number of 
participating nucleons. We finally compare the measured charged-
particle pseudorapidity density to a number of model predictions 
before concluding in Sect. 6.

2. Experimental setup

A detailed description of ALICE can be found elsewhere [10,11]. 
In the following we briefly describe the detectors relevant to this 
analysis.

The Silicon Pixel Detector (SPD) is the inner-most detector of 
ALICE. The SPD consists of two cylindrical layers of 9.8 × 106

silicon-pixels possessing binary read-out. It provides a measure-
ment of charged particles over |η| < 2 using so-called tracklets — 
a combination of hits on each of the two layers (1 and 2) consis-
tent with a track originating from the interaction point. Possible 
combinations of hits not consistent with primary particles can be 
removed from the analysis, with only a small (a few %) residual 
correction for secondary particles derived from simulations. The 
SPD also provides a measurement, by combining hits on its two 
layers, of the offset with respect to the interaction point, where the 
collisions occurred. IP = (0, 0, 0) is at the centre of the ALICE co-
ordinate system, and IPz is the offset along the beam axis. Finally, 
a hardware logical or of hits in each of the two layers provides a 
trigger for ALICE.

The Forward Multiplicity Detector (FMD) is a silicon strip detec-
tor with 51 200 individual read-out channels recording the energy 
deposited by particles traversing the detector. It consists of three 
sub-detectors FMD1, 2, and 3, placed approximately 320 cm, 79 cm 
and −69 cm along the beam line, respectively. FMD1 consists of 
one inner type ring (1i), while both FMD2 and 3 consist of inner 
(2i, 3i) and outer type rings (2o, 3o). The rings have almost full 
coverage in azimuth (ϕ), and high granularity in the radial (η) di-
rection (see Table 1).

The V0 is the most forward of the three detectors used in this 
analysis. It consists of two sub-detectors: V0-A and V0-C placed at 
approximately 333 cm and −90 cm along the beam line, respec-
tively. Each of the sub-detectors are made up of scintillator tiles 
with a high timing resolution. While the V0 provides pulse-height 
measurements, the energy-loss resolution is not fine enough to do 
an independent charged particle measurement. In previous mea-
surements, using so-called satellite–main collisions (see Sect. 3), 
one could match the V0 amplitude to the SPD measurements to 
obtain a relative measurement of the number of charged particles. 
However, for collisions at |IPz| < 15 cm no such matching is pos-
sible, and the V0 is therefore not used to provide a measurement 
of the number of charged particles in this analysis. The detector is 
used, in an inclusive logical or with the SPD, for triggering ALICE 
and to provide a measure of the event centrality [7].

Details on the coverage, resolution, and segmentation of the 
three used detectors are given in Table 1.

3. Data sample and analysis method

The results presented in this paper are based on Pb–Pb collision 
data at 

√
sNN = 2.76 TeV taken by ALICE in 2010. About 100 000 

Table 1
Overview of the resolution (δ), segmentation (�), and coverage of the detectors 
used in the analysis. The ‘A’ side corresponds to z > 0, while the ‘C’ side corresponds 
to z < 0. The η range is specified for collisions with IPz = 0.

Detector δrϕ δz η range

SPD1 12 μm 100 μm −2.0 to 2.0
2 12 μm 100 μm −1.4 to 1.4

Detector �ϕ �r η range

FMD1i 18◦ 254 μm 3.7 to 5.0
2i 18◦ 254 μm 2.3 to 3.7

2o 9◦ 508 μm 1.7 to 2.3
3o 9◦ 508 μm −2.3 to −1.7
3i 18◦ 254 μm −3.4 to −2.0

V0-A 45◦ 34 to 186 mm 2.8 to 5.1
-C 45◦ 26 to 127 mm −3.7 to −1.7

events with a minimum bias trigger requirement [7] were anal-
ysed in the centrality range from 0% to 90%. The data was collected 
over roughly 30 minutes where the experimental conditions did 
not change.

The standard ALICE event selection [12] and centrality estima-
tor based on the V0-amplitude are used in this analysis [13]. We 
include here the 80–90% centrality class which was not present in 
the previous results [7]. As discussed elsewhere [13], the 90–100% 
centrality class has substantial contributions from QED processes 
and is therefore not included in this Letter.

Results in the mid-rapidity region (|η| < 2) are obtained from a 
tracklet analysis using the two layers of the SPD as mentioned in 
Sect. 2. The analysis method and data used are identical to what 
has previously been presented [6,7].

The measurements in the forward region (|η| > 2) are provided 
by the FMD. The FMD records the full energy deposition of charged 
particles that impinge on the detector. Since all charged particles 
that hit the FMD are boosted in the laboratory frame, the detection 
efficiency is close to 100% for all momenta. As reported earlier [6], 
the main challenge in measuring the number of charged primary 
particles in this region, is the large background of secondary parti-
cles produced in the surrounding material. Due to the complexity 
and the limited knowledge of the material distribution of support 
structures away from the central barrel, it has not been possible 
to adequately describe (on the few %-level) the generation of sec-
ondary particles in the forward directions within the precision of 
the current simulation of the ALICE apparatus.

A suitable means to extract the number of primary charged par-
ticles was found by utilising collisions between so-called ‘satellite’ 
bunches and main bunches offset in intervals of 37.5 cm along the 
beam-line. Satellite bunches are caused by the so-called debunch-
ing effect [14]. A small fraction of the beam can be captured in 
unwanted RF buckets, due the way beams are injected into the 
accelerator, and create these satellite bunches spaced by 2.5 ns. 
Collisions between satellite and main bunches can cause instabili-
ties in the beam, and the LHC has taken steps to reduce the num-
ber of these kinds of collisions. ALICE has therefore not recorded 
collisions between satellite and main bunches before or after the 
Pb–Pb run of 2010. In satellite–main collisions the background of 
secondary particles was much smaller and much better understood 
since significantly less detector material shadows the forward de-
tectors [6].

A study utilising these satellite–main collisions led to the publi-
cation of the measurement of the charged-particle pseudorapidity 
density in the 30% most central events over |η| < 5 [6]. The study 
was limited in centrality reach by the need to use the Zero-Degree 
Calorimeter (ZDC) for the centrality estimation for collisions be-
tween satellite and main bunches. The ZDC measures the energy 
of spectator (non-interacting) nucleons with two components: one 
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Fig. 1. (Colour online.) Comparison of data-driven to simulation-based corrections for secondary particles impinging on the FMD. Different markers correspond to different 
collision systems and energies, and the colours indicate the five FMD rings. S(η) is shown for 0 cm < IPz < 2 cm as an example, while E(η) is independent of IPz (see also 
text). Pythia was used for pp collisions, and the Pb–Pb points are from simulation with a parameterisation which include the available ALICE data on particle composition 
and pT distributions. Black circles correspond to E(η).
measures protons and the other measures neutrons. The ZDC was 
located at about 114 m from the interaction point on either side 
of the experiment [10], and was therefore ideally suited for that 
study. The centrality determination capability of the ZDC is how-
ever limited to the 30% most central collisions [13].

For centralities larger than 30% the V0 amplitude is used as the 
centrality estimator, which is available only for collisions at |IPz| <
15 cm — the so-called nominal interaction point corresponding to 
main bunches of one beam colliding with main bunches of the 
other beam.

To extend the centrality reach of the dNch/dη measurement, 
a data-driven correction for the number of secondaries impinging 
on the FMD has been implemented. For each centrality class C , we 
form the ratio

EC (η) = dNch/dη|C,inclusive,nominal

dNch/dη|C,primary,satellite
. (1)

That is, the ratio of the measured inclusive charged-particle density 
from main–main collisions (|IPz| < 10 cm) provided by the FMD 
to the primary charged-particle density from satellite–main colli-
sions [6]. Here, ‘inclusive’ denotes primary and secondary charged 
particles i.e., no correction was applied to account for secondary 
particles impinging on the FMD.

Note, that the correction is formed bin-by-bin in pseudorapid-
ity, so that the pseudorapidity is the same for both the numerator 
and denominator. However, the numerator and denominator dif-
fer in the offset along the beam line of origin of the measured 
particles: For the numerator the origin lies within the nominal in-
teraction region, while for the denominator the origin was offset 
by multiples of 37.5 cm.

This ratio is obtained separately for all previously published 
centrality classes: 0–5%, 5–10%, 10–20% and 20–30%. The variation 
of Ec for different centralities is small (<1%, much smaller than 
the precision of the measurements). The weighted average

E(η) =
∑

C �C EC (η)∑
C �C

, (2)

is used as a global correction to obtain the primary charged-
particle pseudorapidity density

dNch

dη

∣∣∣∣
X,primary

= 1

E(η)

dNch

dη

∣∣∣∣
X,inclusive,nominal

, (3)

where X stands for an event selection e.g., a centrality range.

The simulation-based correction S(η) for secondary particles to 
the charged-particle pseudorapidity density in the forward direc-
tions is given by

S(η) = Ninclusive,FMD(η)

Nprimary,generated(η)
, (4)

where Ninclusive,FMD is the number of primary and secondary parti-
cles impinging on the FMD — as given by the track propagation of 
the simulation, and Nprimary,generated is the number of generated 
primary particles at a given pseudorapidity. Complete detector-
simulation studies show that three effects can contribute to the 
generation of secondaries, and hence the value of S(η). These three 
effects are: material in which secondaries are produced, the trans-
verse momentum (pT) distribution and particle composition of the 
generated particles, and lastly the total number of produced par-
ticles. Of these three the material is by far the dominant effect, 
while the pT and particle composition only effects S(η) on the few 
percent level. The total number of generated particles has a negli-
gible effect on S(η). That is, the material surrounding the detectors 
amplifies the primary-particle signal through particle production 
by a constant factor that first and foremost depends on the amount 
of material itself, and only secondarily on the pT and particle com-
position of the generated primary particles.

To estimate how much EC(η) itself would have changed if an-
other system or centrality range was used to calculate the cor-
rection, S(η) is analysed from simulations with various collision 
systems and energies. We find that, even for large variations in 
particle composition and pT distributions, S(η) only varies by up 
to 5%. Reweighting the particle composition and pT distributions 
from the various systems to match produces consistent values of 
S(η) ensuring that the 5% variations found were only due to par-
ticle composition and pT distributions differences. This uncertainty 
is applied to E(η) to account for all reasonable variations of the 
particle composition and pT distributions, which cannot be mea-
sured in the forward regions of ALICE.

Fig. 1 shows the comparison of the data driven correction E(η)

to the simulation-based correction S(η) from Pythia [15] (pp) and 
a parameterisation of the available ALICE results [16,17] for Pb–
Pb collisions. The simulated collisions are for two distinct systems 
and span over almost an order of magnitude in collision energy. 
The total number of produced particles in these simulations span 
five orders of magnitude, and no dependence of S(η) on charged-
particle multiplicity is observed.

By comparing E(η) to S(η) from simulations, one finds a good 
correspondence between the two corrections except in regions 
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where the material description in the simulations is known to be 
inadequate. This, together with the fact that the numerator and de-
nominator of Eq. (1) measure the same physical process, but differ 
foremost in the material traversed by the primary particles, and 
hence the number of secondary particles observed, implies that 
the correction E(η) is universal. That is, Eq. (3) is applicable for 
any event selection X in any collision system or at any collision 
energy, where the produced multiplicity, pT distributions, and par-
ticle composition is close to the range of the simulated systems 
used to study S(η).

Note, for the previously published results [6], which used 
satellite–main collisions, the simulation-based approach for cor-
recting for secondary particles i.e., applying S(η) directly, was 
valid. As mentioned above, in satellite–main collisions, the parti-
cles that impinge on the FMD traverse far less and better described 
material in the simulation of the ALICE apparatus. The use of a 
simulation-based correction for secondary particles was in that 
analysis cross-checked by comparing to and combining with mea-
surements from the V0 and SPD [6]. Despite concerted efforts to 
improve the simulations by the Collaboration it has not been possi-
ble to achieve the same accuracy in S(η) for main–main collisions.

Finally, the effect of variation of the location of the primary 
interaction point on E(η) was studied. It was found, that the effect 
is negligible, given that the distribution of IPz are similar between 
the numerator of Eq. (1) and right-hand side of Eq. (3), as was the 
case in this analysis.

The method used in this analysis to extract the inclusive num-
ber of charged particles from the FMD is the same as for previous 
published results [6], except that the data-driven correction E(η) — 
rather than a simulation-based one S(η) — is used to correct for 
secondary particles.

4. Systematic uncertainties

Table 2 summarises the systematic uncertainties of this analy-
sis. The common systematic uncertainty from the centrality selec-
tion is correlated across η and detailed elsewhere [13].

For the SPD measurements, the systematic uncertainties are the 
same as for the previously published mid-rapidity result [7], except 
for a contribution from the correction due to the larger acceptance 
used in this analysis. This uncertainty stems from the range of IPz

used in the analysis (here |IPz| < 15 cm). At larger absolute values 
of IPz the acceptance correction for the SPD tracklets grows, and 
the uncertainty with it, being therefore η-dependent and largest 
at |η| ≈ 2.

The various sources of systematic uncertainties for the FMD 
measurements are detailed elsewhere [6], but will be expanded 
upon in the following since some values have changed due to bet-
ter understanding of the detector response.

In the analysis, three η-dependent thresholds are used. The 
values for these thresholds are obtained by fitting a convoluted 
Landau–Gauss distribution [18] to the energy loss spectrum mea-
sured by the FMD in a given η range. The uncertainties associated 
with these thresholds are detailed below.

A charged particle traversing the FMD can deposit energy in 
more than one element i.e., strip, of the detector. Therefore it 
is necessary to recombine two signals to get the single charged-
particle energy loss in those cases. This recombination depends on 
a lower threshold for accepting a signal, and an upper threshold to 
consider a signal as isolated i.e., all energy is deposited in a sin-
gle strip. The systematic uncertainties from the recombination of 
signals are found by varying the lower and upper threshold values 
within bounds of the energy loss fits and by simulation studies.

To calculate the inclusive number of charged particles, a statis-
tical approach is used [6]. The strips of the FMD are divided into 

Table 2
Summary of systematic uncertainties: the common systematic uncertainties shared 
by both the SPD and the FMD, and the uncertainties particular to the detectors.

Detector Source Uncertainty (%)

Common Centrality 0.4–6.2

SPD Background subtraction 0.1
Particle composition 1
Weak decays 1
Extrapolation to pT = 0 2
Event generator 2
Acceptance 0–2a

FMD Recombination 1
Threshold +1

−2
Secondary particles 6.1
Particle composition & pT 2b

a Pseudorapidity dependent uncertainty, largest at |η| = 2.
b Additional contribution in 3.7 < η < 5. See also text.

regions, and the number of empty strips is compared to the to-
tal number of strips in a given region. Strips with a signal below 
a given threshold are considered empty. The threshold was varied 
within bounds of the energy loss fits and investigated in simula-
tion studies to obtain the systematic uncertainty.

The data-driven correction for secondary particles defined in 
Eq. (2) is derived from the previously published results, and as 
such contains contributions from the systematic uncertainties of 
those results [6]. Factoring out common correlated uncertainties 
e.g., the contribution from the centrality determination, we find 
a contribution of 4.7% from the previously published results. By 
studying the variation of the numerator of Eq. (1) under differ-
ent experimental conditions e.g., different data-taking periods, and 
adding the variance in quadrature, the uncorrelated, total uncer-
tainty on E(η) is found to be 6.1%. Systematic uncertainties can 
in general not be cancelled between the numerator and denomi-
nator of Eq. (1), since the same η regions are probed by different 
detector elements in each.

Note, that the previously published result [6] used in Eq. (1)
already carries a 2% systematic uncertainty from the particle com-
position and pT distribution [6]. This contribution is contained in 
the 4.7% quoted above, and is propagated to the final 6.1% system-
atic uncertainty on E(η).

Finally, it was found through simulations that the acceptance 
region of FMD1 is particularly affected by the variations in the 
number of secondary particles stemming from variations in the 
particle composition and pT distribution, and gives rise to an addi-
tional 2% systematic uncertainty, which is added in quadrature to 
the rest of the systematic uncertainties, but only for η > 3.7.

5. Results

Fig. 2 shows the charged-particle pseudorapidity density for dif-
ferent centralities from each detector separately.

The combined distributions in Fig. 3 are calculated as the av-
erage of the individual measurements from the FMD and SPD, 
weighted by statistical errors and systematic uncertainties, omit-
ting those which are common such as that from the centrality de-
termination. The distributions are then symmetrised around η = 0
by taking the weighted average of ±η points. Points at 3.5 < η < 5
are reflected on to −5 < η < −3.5 to provide the dNch/dη dis-
tributions in a range comparable to the previously published re-
sults [6].

The lines in Fig. 3 are fits of

fGG(η; A1,σ1, A2,σ2) = A1e
− 1

2
η2

σ2
1 − A2e

− 1
2

η2

σ2
2 , (5)
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Fig. 2. (Colour online.) Measurement of dNch/dη per centrality from SPD (squares) and FMD (circles) separately. Error bars reflect the total uncorrelated systematic uncertainty 
and statistical error on each point. Error bars on the left and right reflect the correlated systematic uncertainties on the SPD and FMD points, respectively. Previously published 
results for 0–30% over the full pseudorapidity range (diamonds) [6] and for 0–80% at mid-rapidity (stars) [7] are also shown.

Fig. 3. (Colour online.) Measurement of dNch/dη for all centralities and a broad η range. Combined and symmetrised dNch/dη over 30–90% centrality from both SPD and 
FMD (circles). Open boxes reflect the total uncorrelated systematic uncertainties and statistical errors, while the filled boxes on the right reflect the correlated systematic 
uncertainty. Also shown, is the reflection of the 3.5 < η < 5 values around η = 0 (open circles). Previously published results for 0–30% over the full pseudorapidity range 
(diamonds) [6] are also shown. The lines correspond to fits of Eq. (5) to the data.
to the measured distributions. The function fGG is the difference 
of two Gaussian distributions centred at η = 0 with amplitudes 
A1, A2, and widths σ1, σ2. The function describes the data well 
within the measured region with a reduced χ2 smaller than 1. We 
find values of A2/A1 for all centralities, from 0.20 to 0.31 but are 
consistent within fit uncertainties, with a constant value of 0.23 ±
0.02. Likewise values of σ2/σ1 for all centralities, ranges from 0.28
to 0.36 and are consistent with a constant value of 0.31 ± 0.02.

Qualitatively the shape of the charged-particle pseudorapidity 
density distributions broadens only slightly toward more periph-
eral events, consistent with the above observation. Indeed, the full-
width half-maximum (FWHM) shown in Fig. 4 versus the num-
ber of participating nucleons 〈Npart〉 — calculated using a Glauber 
model [13] — increase sharply only in the very most peripheral 
collisions. The dNch/dη distributions does not extend far enough 
to calculate reliable values for FWHM directly from the data. In-
stead fGG(η) − max( fGG)/2 = 0 was numerically solved, and the 
uncertainties evaluated as the error of fGG at the roots, divided by 
the slope at those roots. The width of the dNch/dη distributions 
follows the same trend, in the region of 0–50%, as was seen in 
lower energy results from PHOBOS reproduced in Fig. 4 for com-
parison [2].

Fig. 5 presents the charged-particle pseudorapidity density per 
average number of participating nucleon pairs 〈Npart〉/2 as a func-
tion of the average number of participants 〈Npart〉. Although there 

is a slight increase in the ratio to the central pseudorapidity den-
sity distribution at low 〈Npart〉 (see lower part of Fig. 5), the un-
certainties are large and no strong evolution of the shape of the 
pseudorapidity density distribution over pseudorapidity with re-
spect to centrality is observed. The ratio at 3.5 < |η| < 4.5 does 
deviate somewhat in peripheral collisions, which is attributed to 
the general broadening of the pseudorapidity density distributions 
in those collisions.

To extract the total number of charged particles produced in 
Pb–Pb collisions at various centralities, a number of functions, in-
cluding Eq. (5), is fitted to the dNch/dη distributions. A trapezoid

fT(η; ybeam, M, A) = A ×

⎧⎪⎪⎨
⎪⎪⎩

0 |η| > ybeam

(ybeam + η) η < −M

(ybeam − M) |η| < M

(ybeam − η) η > +M,

(6)

was successfully used by PHOBOS to describe limiting fragmen-
tation [2]. Here, [−M, M] is the range in which the function is 
constant, and A is the amplitude. The parameterisation

fP(η; A,α,β,a) = A

√
1 − 1/ [α cosh(η)]2

1 + e(|η|−β)/a
, (7)

as suggested by PHOBOS, is likewise fitted to the dNch/dη distribu-
tions. The parameter a expresses the width of the distribution, and 
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Fig. 4. (Colour online.) Full-width half-maximum of the charged-particle pseudorapidity distributions versus the average number of participants. The uncertainties on the 
ALICE measurements are from the fit of fGG only and evaluated at 95% confidence level. Also shown are lower energy results from PHOBOS [2].

Fig. 5. (Colour online.) The charged-particle pseudorapidity density distributions scaled by the average number of participants in various pseudorapidity intervals as a function 
of the number of participants. The four right-most points (open symbols) in each η range, as well as the mid-rapidity points (circles) are from previously published results [6,
17]. The uncertainties on 〈Npart

〉
from the Glauber calculations are only included on the points at mid-rapidity. Thus, the uncertainty band around the mid-rapidity points 

reflect both the measurement uncertainties and the uncertainty on 〈Npart
〉
, while other η ranges only show the measurement uncertainties. The lower part shows the ratio 

of each distribution to the previously published distributions for |η| < 0.5.
α and β , and expresses the width and depth of the dip at η ≈ 0, 
respectively. A is an overall scale parameter. Finally, to remedy 
some of the obvious defects of the trapezoid i.e., a non-continuous 
first derivative at η = M , we use a Bjorken-inspired function [6]

fB(η; A,μ,σ ) = A ×

⎧⎪⎪⎨
⎪⎪⎩

e
− (η+μ)2

2σ2 η < −μ

e
− (η−μ)2

2σ2 η > +μ

1 |η| < μ,

(8)

which has plateau at A for |η| < μ connected to Gaussian fall-off 
beyond ±μ. The fitted functions are integrated over η up to the 
beam rapidity ±ybeam = ±7.99. Although the dNch/dη distribu-
tions in principle continue to infinity, there is no significant loss in 
generality or precision by cutting the integral at η = ±ybeam since 
the distributions rapidly approach zero. Notice that all parameters 
of the functions are left free in the fitting procedure. All functions 
give reasonable fits (with a reduced χ2 smaller than 1), though 
the trapezoid and Bjorken-inspired ansatz are too flat at the mid-
rapidity. The calculation of the central values and uncertainties are 
done as for previous results [6]: The central value is calculated 
from the integral of the trapezoid fit to compare directly to previ-

ous results; the spread between the integrals and the central value 
is evaluated to obtain the uncertainty on the total Nch.

The extrapolated total Nch versus 〈Npart〉 is shown in Fig. 6, and 
compared to lower energy results from PHOBOS [19]. At LHC ener-
gies the particle production as a function of 〈Npart〉 shows a similar 
behaviour to the lower energy results, and the factorisation [2] in 
centrality and energy seems to hold (see fit in Fig. 6).

In Fig. 7 we show comparisons of various model calculations to 
the measured charged-particle pseudorapidity density as a func-
tion of centrality. The centrality class for a given model-generated 
event was determined by sharp cuts in the impact parameter b
and a Glauber calculation [13].

The HIJING model [3] (version 1.383, with jet-quenching dis-
abled, shadowing enabled, and a hard pT cut-off of 2.3 GeV) is 
seen to overshoot the data for all centralities. In addition, the dis-
tributions at all centralities decrease with increasing |η| faster than 
the data would suggest.

AMPT [4] without string melting reproduces the data fairly well 
at central pseudorapidity for the most central events — exactly in 
the region it was tuned to, but it fails to describe the charged-
particle pseudorapidity density for more peripheral events. Also, 
AMPT without string melting would suggest a wider central re-
gion than supported by data, and similarly to HIJING decreases 
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Fig. 6. (Colour online.) Extrapolation to the total number of charged particles as a function of the number of participating nucleons [13]. The uncertainty on the extrapolation 
is smaller than the size of the markers. The four right–most points are the previously published results [6]. A function inspired by factorisation [2] is fitted to the data, and 
the best fit yield a = 35.8 ± 4.2, b = 0.22 ± 0.05 with a reduced χ2 of 0.18. Also shown is the PHOBOS result at lower energy result [19] scaled to the ALICE total number 
of charged particles per participant at 〈Npart〉 = 180.

Fig. 7. (Colour online.) Comparison of dNch/dη per centrality class from HIJING, AMPT (with and without string melting), and EPOS-LHC model calculations to the measured 

distributions.

faster than the data. AMPT with string melting — which essentially 
implements quark coalescence, and therefore a more predominant 
parton phase — is seen to be very flat at mid-rapidity and under-
estimates the yield, except for peripheral collisions.

Finally, EPOS–LHC [5] reproduces the shape fairly well, but un-
derestimates the data by 10 to 30%.

6. Conclusions

The charged-particle pseudorapidity density has been measured 
in Pb–Pb collisions at 

√
sNN = 2.76 TeV over a broad pseudo-

rapidity range, extending previous published results by ALICE to 
more peripheral collisions. In the mid-rapidity region the well-
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established tracklet procedure was used. In the forward regions, 
a new data-driven procedure to correct for the large background 
due to secondary particles was used. The results presented here 
are consistent with the behaviour previously seen in more central 
collisions and in a limited pseudorapidity range. No strong evo-
lution of the overall shape of the charged-particle pseudorapidity 
density distributions as a function of collision centrality is ob-
served. When normalised to the number of participating nucleons 
in the collision, the centrality evolution is small over the pseudo-
rapidity range. Since the measurement was performed over a large 
pseudorapidity range (−3.5 < η < 5), it allows for an estimate of 
the total number of charged particles produced in Pb–Pb colli-
sions at 

√
sNN = 2.76 TeV. The total charged-particle multiplicity 

is found to scale approximately with the number of participating 
nucleons. This would suggest that hard contributions to the total 
charged-particle multiplicity are small. From peripheral to central 
collisions we observe an increase of two orders of magnitude in 
the number of produced charge particles. A comparison of the data 
to the different available predictions from HIJING, AMPT, and EPOS-
LHC show that none of these models captures both the shape and 
level of the measured distributions. AMPT however comes close 
in limited ranges of centrality. The exact centrality ranges that 
AMPT describes depend strongly on whether string melting is used 
in the model or not. EPOS-LHC — although systematically low — 
shows a reasonable agreement with the shape of the measured 
charged-particle pseudorapidity density distribution over a wider 
pseudorapidity range.
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ALICE Collaboration / Physics Letters B 754 (2016) 373–385 383

P. Papcun 115, V. Papikyan 1, G.S. Pappalardo 106, P. Pareek 49, W.J. Park 96, S. Parmar 87, A. Passfeld 54, 
V. Paticchio 103, R.N. Patra 132, B. Paul 100, T. Peitzmann 57, H. Pereira Da Costa 15, 
E. Pereira De Oliveira Filho 120, D. Peresunko 99,75, C.E. Pérez Lara 81, E. Perez Lezama 53, V. Peskov 53, 
Y. Pestov 5, V. Petráček 40, V. Petrov 111, M. Petrovici 78, C. Petta 29, S. Piano 109, M. Pikna 39, P. Pillot 113, 
O. Pinazza 104,36, L. Pinsky 122, D.B. Piyarathna 122, M. Płoskoń 74, M. Planinic 129, J. Pluta 133, 
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