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Abstract In this paper, we propose a new routing problem to model a highly
relevant planning task in small package shipping. We consider the Prize-Collecting
Vehicle Routing Problem with Non-Linear cost in its single and multi-depot ver-
sion, which integrates the option of outsourcing customers to subcontractors instead
of serving them with the private fleet. Thereby, a lower bound on the total customer
demand to be served by the private fleet guarantees a high utilization of the fleet
capacity. To represent the practical situation, where a discount is given by a sub-
contractor if larger amounts of packages are outsourced, subcontracting costs follow
a non-linear function. The considered problem is NP-hard and we propose an
Adaptive Variable Neighborhood Search algorithm to solve instances of realistic
size. We propose new benchmark sets for the single and the multi-depot problem,
which are adapted from test instances of the capacitated VRP and the closely related
Multi-Depot VRP with Private fleet and Common carrier. In numerical studies, we
investigate the performance of our algorithm on the newly generated test instances
and on standard benchmark problems of related problems. Moreover, we study the
effect of different cost functions and different values of the minimal demand to be
served by the private fleet on the routing solutions obtained.
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Introduction

The market situation for small package shippers (SPS) has drastically changed since
the deregulation in the EU and the US. Before, the formerly big players like DHL'
used to operate huge vehicle fleets and perform all last-mile deliveries with their
own employees. However, rising competition has forced them to adopt the business
model of using subcontractors for last-mile delivery as done by companies like
DPD?. The subcontractors are paid per parcel delivered, saving the SPS the high
fixed costs for vehicles and employees. Beside the outsourcing of entire unprofitable
delivery areas, subcontractors are often used on the operational level to balance high
demand fluctuations, in particular when the capacity of the self-operated vehicle
fleet is not sufficient to serve all customers on a given day. On such days, the
operational task is to decide which customers should be served by the private fleet
and which customers should be subcontracted. The decision has to balance the
trade-off between the cost of serving a customer [based on the solution of a Vehicle
Routing Problem (VRP)] and the costs for subcontracting the customer. Chu (2005)
modeled this planning problem, relaxing several practical constraints, as an
extension of the Capacitated VRP (CVRP), which was later named VRP with
Private fleet and Common carriers (VRPPC) (Bolduc et al. 2008). Extending the
VRPPC, Stenger et al. (2012) proposed the Multi-Depot VRPPC (MDVRPPC) that
considers not only multiple self-owned depots but also different subcontractors with
individual subcontracting costs and limited delivery radiuses.

However, both problems disregard important real-world characteristics. First, a
lower bound on the customer demand served by the private fleet is generally
mandatory in order to maintain the profitability of the vehicle fleet. Second, the
costs charged by a subcontractor for serving additional customers follow a non-
linear cost function. Quantity discounts are given if the number of customers to
outsource falls into a certain discount range. In this way, the subcontractor tries to
improve the capacity utilization of his fleet.

We contribute by incorporating the above-described real-world characteristics in
a planning problem called Prize-Collecting Multi-Depot Vehicle Routing Problem
with Non-Linear costs (PCMDVRPNL). It extends the MDVRPPC and the well-
known Prize-Collecting Traveling Salesman Problem (PCTSP), in which a prize is
collected when visiting a customer and penalties are incurred for each unvisited
customer. The task is to collect at least a given prize while minimizing the sum of
distances traveled and penalty costs for unvisited customers. In the PCMDVRPNL,
penalty costs are equal to subcontracting costs while at least a given customer
demand (prize) has to be served by the private fleet. Besides the problem with
multiple self-owned depots and multiple subcontractors, we also consider the single-
depot case of the problem, denoted as Prize-Collecting Vehicle Routing Problem
with Non-Linear cost (PCVRPNL). This problem is modelled as a special case of
the PCMDVRPNL, in which only one self-owned depot and one subcontractor with
unlimited delivery radius are available.

' http://www.dhl.com.
2 http://www.dpd.com.
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As we are, to the best of our knowledge, the first dealing with these problems in their
given form, we propose new benchmark sets for both problems. The benchmark for
single-depot PCVRPNL is adapted from test instances of the classical VRP and the
PCMDVRPNL instances are based on test problems of the closely related
MDVRPPC. As solution method, we present an Adaptive Variable Neighborhood
Search (AVNS) algorithm that is inspired by the AVNS of Stenger et al. (2012) but
employs modified neighborhood structures, a random mechanism for ordering these
neighborhoods and route and customer selection rules specifically adapted to the
non-linear problem addressed. The performance of the method is evaluated on the
newly generated test instances and on available benchmark problems of the related
VRPPC and MDVRPPC. Moreover, we study the effect of different cost functions
on the route design and the subcontracting decisions as well as the influence of the
minimum amount of demand to be served by the private fleet.

The remainder of the paper is structured as follows. First, we review the literature
related to our work (see “Literature review”). Subsequently, we formulate the
mixed integer program of the problem at hand (see “Mathematical model of the
PCMDVRPNL”). In section “Solution method for the PCMDVRPNL”, we present
the problem-specific AVNS. The mathematical model and the details of our solution
approach are described for PCMDVRPNL, of which the single depot problem can
be considered a special case as described above. In section “Computational
studies”, we discuss the extensive numerical tests performed with our AVNS
algorithm, followed by some concluding remarks in section “Conclusion”.

Literature review

In this section, we provide a brief review of the literature that is of importance to our
work. The idea of prize-collecting first arose in the context of the iron and steel
industry, where a PCTSP was used to model the operational scheduling of a steel
rolling mill. Balas (1989) transferred this idea to the general case of a traveling
salesman and studied structural properties. As mentioned above, a traveling salesman
collects a prize for each city visited and has to pay a penalty for each city that remains
unvisited. The objective is to minimize the total distance traveled and penalty costs
incurred for unvisited cities while collecting at least a given amount of prize money.

Several solution methods for the PCTSP have been proposed. For example,
Dell’Amico et al. (1998) proposed a heuristic using lagrangian relaxation to
produce an initial solution and subsequently apply an extension and collaborate
procedure in the improvement phase. Recently, Chaves and Lorena (2008)
presented a hybrid metaheuristic for generating initial solutions using a combination
of greedy randomized search procedure and VNS. Based on the generated solutions,
clusters are formed and promising clusters are identified and further improved by
means of a local search procedure. However, no generally used set of PCTSP
benchmark problems exists and thus the quality of the proposed solution methods
cannot be evaluated in a straightforward fashion. For an extended literature review,
the reader is referred to Feillet et al. (2005), who provide an overview of the
literature on traveling salesman problems with profits.
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The PCTSP was extended to a Prize-Collecting Vehicle Routing Problem
(PCVRP) by Tang and Wang (2006) in order to model the hot rolling production
scheduling problem. Here, every customer represents an order to be scheduled that
has a given length that corresponds to the demand of the customer. Each vehicle
route describes a turn and the vehicle capacity corresponds to the maximum length of
a turn. The objective is to find the schedule that minimizes the variable production
and fixed set-up costs and maximizes the profits of scheduled orders.

Chu (2005) presented an extension of the CVRP, in which customers can either be
served by the private fleet or be outsourced to a common carrier. The costs for
deliveries by the private fleet depend on the traveled distance and fixed vehicle cost.
The common carrier is paid a fixed price per outsourced customer. The objective is to
minimize the total costs including fixed vehicle costs, variable travel costs of the
private fleet and the costs of assigning deliveries to the common carrier. To solve the
problem (later named VRPPC by Bolduc et al. (2008), Chu (2005) proposed a simple
heuristic based on the well-known Clarke and Wright algorithm (Clarke and Wright
1964). Another heuristic that outperforms the approach of Chu (2005) was developed
by Bolduc et al. (2007). They modeled the VRPPC as heterogeneous VRP and
presented a randomized construction-improvement-perturbation heuristic. Further-
more, they generated two large sets of benchmark instances for the VRPPC with up
to 480 customers, which are based on classical VRP instances. Recently, two Tabu
Search (TS) heuristics have been developed for the VRPPC. C6té and Potvin (2009)
presented a heuristic which is mainly based on the unified TS framework proposed by
Cordeau et al. (1997). The solutions obtained by this heuristic were further improved
by the TS of Potvin and Naud (2011) which enhances the earlier TS by the concept of
ejection chains. Numerical studies show that ejection chains help to significantly
improve the solution quality, in particular on instances with a heterogeneous vehicle
fleet, but also strongly increase computing time.

As described above, this paper considers a multi-depot problem that extends the
classical Multi-Depot Vehicle Routing Problem (MDVRP) first described by Wren
and Holliday (1972). Compared to the single-depot VRP, only few heuristic solution
methods were presented for the MDVRP. Chao et al. (1993) proposed a multi-phase
extension of the record-to-record travel method of Dueck (1993) and were able to
solve benchmark instances with up to 360 customers and 9 depots. Renaud et al.
(1996) presented a tabu-search heuristic which first assigns customers to their
closest depot and next determines an initial routing solution using the improved
petal heuristic of Renaud et al. (1996). Subsequently, a fast improvement phase, an
intensification and a diversification phase are applied, all based on a set of local
search operators which exchange customers of up to three routes. Cordeau et al.
(1997) proposed another tabu search heuristic for MDVRP that is also able to solve
Periodic VRP (PVRP) and periodic TSP problems. To diversify the search,
attributes that are added to solutions are analyzed and penalties are modified
accordingly in order to efficiently guide the search. Pisinger and Ropke (2007) used
an Adaptive Large Neighborhood Search (ALNS), which was designed for a wide
range of routing problems, to solve the MDVRP. The solutions obtained by ALNS
were of higher quality than those found by Cordeau et al. (1997) but required larger
computing time. Recently, Vidal et al. (2012) presented a Hybrid Genetic Search
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with Adaptive Diversity Control (HGSADC) to solve MDVRP, PVRP and periodic
MDVRP. The computational studies performed show considerable improvements
for all problem classes. Stenger et al. (2012) proposed the MDVRPPC and
developed an AVNS algorithm that biases the random shaking step. The approach
obtains high quality solutions in short computing time for MDVRPPC and closely
related problems, such as the MDVRP and the single-depot VRPPC.

Mathematical model of the PCMDVRPNL

In this section, we provide the mathematical formulation of the PCMDVRPNL,
which includes the PCVRPNL as a special case.

We model the problem as an extension of the MDVRPPC proposed in Stenger
et al. (2012). To define PCMDVRPNL, let G = (V, E) be an undirected, complete
graph. The set of nodes V =J U H is composed of the set J of customers and the
set H of depots. Set H itself is partitioned into a subset / of self-owned depots and a
subset L of subcontractor depots. The total capacity of a depot i € H, i.e., the
maximum total demand it can serve, is limited to w; units. A customer can either be
served by a vehicle k of the set of private vehicles K or by a subcontractor. At most
kmax 1dentical vehicles of the private fleet K with a restricted capacity Q are
available at each self-owned depot, where |IKl < k.-l holds. For each employed
vehicle a fixed cost of F is charged as well as the variable costs that are identical to
the travel times c;; for traversing arc (i, j) € E. With each customer j € J a service
time of # units is associated. The maximum duration of a route is limited tO fy,y.
Furthermore, r,.x denotes the maximum delivery radius of subcontractor depots,
i.e., customers outside this range are not served by the respective subcontractor.

The cost of subcontracting customer j € J to depot I € L is p;. This cost is
discounted with factor (1 — ¢;(g5")), where e,(g;"") denotes the discount given by
subcontractor / for subcontracted demand g5"°. Moreover, at least T demand units
have to be delivered by the private fleet.

The model uses two sets of decision variables. If node i follows node j on tour
k, the binary variable x;; takes value 1, and value O otherwise. In addition, if
customer j € J is assigned to depot i € H, binary variable z; is equal to 1 and 0
otherwise. With the above definitions, the mathematical model of PCMDVRPNL
can be stated as follows:

mmZZZFka+ Z Z Zc,]x,,k—i—zz 1 —ei(g]™)) iz (1)

i€l jeJ kekK ie(1UJ) je(1uJ) keK jeJ leL
SN xp=1-Yz VjeJ (2)
keK ie(1UJ) leL
YD grw<Q Vkek 3)
JET ie(1ur)
> qzi<w VieH (4)
jel
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€max otherwise

The objective (1) is to minimize the sum of fixed costs of employed vehicles,
travel and subcontracting costs. Constraints (2) ensure that each customer is
either visited exactly once by a vehicle of the private fleet or it is subcontracted.
Constraints (3) and (4) describe the capacity restrictions of vehicles and depots.
Constraints (5) and (6) define that each node entered by a vehicle has to be left
and that each route has to end at the depot from which it originated. Constraint
(7) determines the minimum customer demand 7 to be served by the private
fleet. Subtour elimination is ensured by Constraints (8). Constraints (9) guarantee
that a customer is only assigned to a certain depot if there exist a route starting
from this depot that visits the customer. Constraints (10) guarantee that each
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customer is assigned to a depot. The number of employed vehicles is restricted
by (11). Compliance with route duration constraints is ensured in (12). Due to
Constraints (13), a customer can only be subcontracted to depot [ if it is not
farther from [ than r,,, units. Equation (14) defines the subcontracted demand
for each subcontractor. Binary variables are defined in Constraints (15) and (16)
(Fig. 1).

In (17), we define the nonlinear cost function, which is inspired by real-life
considerations. In industry practice, a subcontractor is paid per package volume,
i.e., the demand units assigned to it by the SPS. However, the price per demand
unit is usually not fixed but depends on the total subcontracted demand. More
precisely, subcontractors grant discounts if the demand transferred by the SPS is
sufficient to fill an entire vehicle as this renders the subcontractor’s delivery
operations most efficient. To model this circumstance, the price charged by the
subcontractor follows a step function, i.e., the discount factor e, is increased from
0 every time the total demand assigned to the subcontractor g5"® exceeds a given
percentage 3 of the vehicle capacity Q (also assumed for the fleet of the
subcontractor). The subcontractor discount is limited to e,,,,. Further, ¢; is linked
to the minimum demand 7 to be delivered by the private fleet such that e; reaches
its maximum value at the latest when the subcontracted demand is equal to ) e,
g; — T. In detail, the number of discount steps are p = [(3_;c,; q; — T)/Q], where

|-] denotes rounding to the nearest integer. Thus, if the subcontracted demand
exceeds ((y—1)+9) - Q demand units, with y =1,..., p, factor ¢; is increased
by v-emax/p. Figure 3 depicts an example with three discount steps, ep.x = 0.4
and 9 = 0.8.

The PCVRPNL is defined as special case of PCMDVRPNL, with I/l = 1,
ILl = 1, rpax = 0.

Fig. 1 Example of the stepwise Cost Factor
subcontracting cost function
with three discount steps.
Symbol ¢ is used to denote the
total demand of all customers,

i.C., q = Zie./ qi

.

080 180 2801 -
0 ¢ ¢ Qﬁ-T Subcontracted
Demand g;'”h
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Solution method for the PCMDVRPNL

The PCMDVRPNL extends the already NP-hard CVRP by real-world character-
istics of SPS. Consequently, only small problems can be solved by means of an
exact approach. In order to handle problem instances of realistic size, we propose an
Adaptive VNS (AVNS) metaheuristic approach to solve both the single and multi-
depot version of the problem. AVNS, proposed by Stenger et al. (2012), is a
metaheuristic that successfully combines ideas of Adaptive Large Neighborhood
Search (ALNS) (Pisinger and Ropke 2007) and VNS. For a detailed description of
the well-known metaheuristic concepts VNS and ALNS, we refer the reader to
Mladenovié¢ and Hansen (1997) and Pisinger and Ropke (2007).

AVNS follows the solution process of a VNS and, starting from an initial
solution, performs local search on systematically changing neighborhoods. In detail,
a new neighboring solution is determined in each shaking step by exchanging
customers among routes according to a set of predefined neighborhood structures. In
contrast to standard VNS, the routes and customers involved in this shaking are not
selected randomly in AVNS. Instead, a set of methods that bias the route and
customer selection are applied to explore the solution space more efficiently. AVNS
incorporates these selection methods in a fashion similar to the treatment of the
removal and insertion heuristics in ALNS. In each iteration, one route and one
customer selection method are chosen, while the probability of each method
depends on its success in former iterations. In this way, the heuristic adapts to the
characteristics and requirements of the problem instance to be solved and to the
current state of the solution process. In the next step, AVNS performs a greedy local
search on the generated neighboring solution and the resulting solution is finally
accepted according to a simulated annealing criterion. If the solution is accepted, it
replaces the current starting solution and a new shaking step using the first
neighborhood structure is performed. Otherwise, the solution found is rejected and
the shaking procedure is repeated with a more distant neighborhood and the former
starting solution.

The major advantage of the AVNS framework is its high flexibility, which allows
to design a problem-specific heuristic by simple modifications. Stenger et al. (2012)
propose several route and customer selection methods that are specifically designed
for solving problems including subcontractors, which are hence also applicable for
the PCMDVRPNL. However, these methods are not sufficient to address the
peculiarities induced by a non-linear cost-function. Therefore, to enhance the
quality of our approach, we develop additional methods that consider these special
requirements, like e.g., methods that aim at subcontracting several customers in one
step in order to reach the next discount level. Furthermore, we do not use a fixed
sequence of neighborhood structures, but generate a random ordering of the
neighborhoods every time a new solution is accepted or after one iteration with all
neighborhoods is complete (cp. Pirkwieser and Raidl 2008). Both modifications
have proven their positive effect on the solution quality of the method in numerical
tests. Finally, the local search is based on a subset of the operators that were
employed in Stenger et al. (2012). In detail, tests on PCMDVRPNL instances
revealed that we obtain similar solution quality without using the Or-Opt exchange,
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Define the neighborhood structures N, with K = 1, .., Kmaz
Generate initial solution x
Set k:=1
repeat
if k =1 then
7« generate random permutation of {1, .., Kmas }
end if
{Adaptive Shaking}
Select route and customer selection method and generate z’ € ./\/',r<,,./>($)
{Local Search}
Find local optimum z” with local search algorithm starting from initial solution z’
{Acceptance Decision}
if accept(z”) then
T — x//
K1
else
k<« k+1 mod Kmaz
end if
Update weights of route and customer selection methods
j=1
until given number of iterations without improvement reached

Fig. 2 Pseudocode of the AVNS-RN heuristic for solving PCMDVRPNL

while the computing time for the local search phase significantly decreases. A
pseudocode overview of our AVNS with random neighborhood ordering (AVNS-RN)
for solving PCMDVRPNL is given in Fig. 2.

In order to handle the outsourcing of customers to subcontracting depots, our
heuristic uses the concept of virtual vehicles as proposed by Prosser and Shaw
(1996) (see also Tang and Wang 2006; Bolduc et al. 2007). Here, a virtual vehicle
with a capacity equal to the depot capacity w; is assigned to each subcontractor
depot i € L and all customers served by i are inserted into a corresponding virtual
route. The length of the virtual subcontracting route is not considered in cost
calculations as the subcontracting cost is based on outsourced quantities and not on
the routing decision of the subcontractor.

In the following, we provide the details of our solution method: the “Initial-
ization” phase , the “Adaptive shaking” phase including the route and customer
selection methods, the “Local search” and the applied “Acceptance criterion”.

Initialization

In the initialization phase, we decide for each customer whether it shall be
outsourced or served by the private fleet and in the latter case to which depot the
customer shall be assigned. Subsequently, we determine the vehicle routes for the
private fleet. Our goal is to quickly compute a solution that serves as a starting point
for the subsequent AVNS improvement. To decide whether a customer is
outsourced or not, we use a modified version of the method proposed by Coté
and Potvin (2009) for the closely related VRPPC, which is applied by Stenger et al.
(2012) in similar fashion. We start by selecting customers to subcontract until only
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the mandatory demand 7 remains to be served by the private fleet. To this end, we
order the customers according to the quotient of subcontracting cost and demand
and the most suitable customers are chosen for subcontracting as detailed in the
following three-step procedure:

1. Determine for each customer j € J and each subcontractor depot / € L the

quotient ;; = pq—’; and insert £, into the list P sorted in increasing order.

2. Choose the first element in P denoted by &; 1, ; and check whether (1) the
distance between j; and /; is smaller than the maximal service radius rp,,, of the
subcontractor, (2) the remaining capacity of depot /; is greater than the demand
g; 1 and (3) the demand of subcontracted customers including the investigated
customer is smaller or equal to the maximum demand to be outsourced, i.e.,
Yieouyy 4i <> esq;— T, where T denotes the minimum customer
demand to be served by the private fleet (see section “Mathematical model of
the PCMDVRPNL”) and O the list of already subcontracted customers. If all
conditions are met, customer j; is subcontracted, added to the list O and all &;;;,
I € L are removed from P. Otherwise, only entry &;i;; is removed from P.

3. Repeat step 2 until P is empty.

The customers remaining after the customers to be subcontracted have been
selected are each assigned to the closest self-owned depot with free capacity. Based
on this allocation, initial vehicle routes are created by means of the well-known
Clarke and Wright algorithm (Clarke and Wright 1964). For all depots where the
number of generated routes exceeds the number of available vehicles kp,.x, we
iteratively apply the following repair mechanism:

1. Select the route with the lowest demand at a randomly chosen depot with
violations.

2. Remove all customers from this route and iteratively insert the customers at the
cost optimal position concerning all routes. To be more precise, the insertion
position is chosen such that the increase of total cost is minimized.

3. Repeat until the number of vehicles is lower or equal k.« at all depots.

Note that the obtained solution respects fleet restrictions but capacity constraints
of the generated routes may be violated. In a final step, the solution obtained is
improved by means the greedy local search described in section “Local search”.

Adaptive shaking

In the adaptive shaking phase, we perturb the initial solution based on a given set of
neighborhood structures, which are applied following a random ordering. To avoid
the evaluation of unprofitable neighboring solutions, we bias the shaking by means
of problem-specific selection methods that determine the routes and customers
involved in the selected neighborhood moves. In each iteration, the route and
customer selection method to be applied is chosen by a roulette wheel selection
mechanism. In the process, the probability of each method adapts according to the
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success of the selection method in former iterations, which is evaluated based on a
scoring system.

In the following, we detail the utilized “Neighborhood structures”, the “Route
and customer selection methods” and the “Adaptive mechanism”.

Neighborhood structures

The neighborhood structures used in our AVNS-RN algorithm are either defined by
a move-exchange or a cyclic-exchange neighborhood operator (Thompson and
Psaraftis 1993). For both operators, we define two sets of neighborhoods, one that
only considers routes of the private fleet originating from identical depots and the
other one allowing exchanges between all routes of the private fleet and the
subcontractors. For all neighborhood operators and sets, the sequence length ® to be
exchanged by neighborhood « is randomly selected from interval [0, min(((x —
1) mod 6) + 1, |N|)], where INI denotes the number of customers in the route. This
means that for each neighborhood operator, we consider exchanges of up to six
customers, while the number is obviously restricted by the number of customers in
the route.
In detail, the following neighborhood structures are used:

e Move customer sequence between vehicle routes of the private fleet
originating from same depot Neighborhood structures k = 1, ..., 6 move a
sequence of length ® customers from one route to another.

e Move customer sequence between all routes of the private fleet and
subcontractor Structures K = 7, ..., 12 are similar to the first set, however,
customer sequences can be inserted into or removed from both routes that
originate at a different depot and virtual routes of a subcontractor.

e Cyclic exchange of customer sequence between routes of the private fleet
originating from same depot This set of neighborhood structures exchanges
customer sequences between up to four different routes in a cyclic fashion. For
example, a neighborhood considering three routes ry, r,, r3 removes a customer
sequence from ry, inserts it into r,, from where a sequence of customers is
removed and transferred to route 5. The sequence removed from r; is moved to
ry, thus closing the cycle. Neighborhood structures x = 13, ..., 18 apply
exchanges between two routes, Kk = 19, ..., 24 between up to three and
K = 25, ..., 30 between up to four routes.

e Cyclic exchange of customer sequence between all routes of the private fleet
and subcontractor This set of 18 neighborhood structures is similar to the third
set but customer sequences can be inserted into or removed from both routes that
originate at a different depot and virtual routes of a subcontractor.

Route and customer selection methods
Given a neighborhood structure k to apply for the shaking step, our AVNS-RN does

not select the routes and customers involved in the shaking step randomly as done in
standard VNS. Instead, route selection and customer selection methods are applied
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to bias the shaking step towards profitable regions of the search space. For example,
this allows us to encourage shaking moves that force subcontracting in order to
reach the next discount level at a certain subcontractor. The general procedure for
performing an adaptive shaking move in our AVNS-RN algorithm is as follows (cp.
Stenger et al. 2012):

1. Use roulette wheel selection to determine route selection method.

Determine the first route k; to be involved according to chosen route selection
method.

3. Determine the remaining routes to be involved randomly, considering closeness
measures.

4. Use roulette wheel selection to choose customer selection method.

5. For all involved routes, select randomly the number of customers ® to be
exchanged and select the customers to be exchanged according to chosen
selection method.

6. Perform the shaking move.

For selecting the first route involved in the shaking step, our AVNS-RN applies
the following selection methods:

e Random: The probability of all routes to be selected is equal. This is the standard
procedure in VNS.

e Longest route: The selection probability of a route is defined as being
proportional to its total travel distance.

¢ Unit longest route: The probability of a route to be selected is proportional to the
ratio between total travel distance and total demand of the customers in the
route. Routes with long distance and low demand are generally considered as
inefficient and are therefore more likely to be chosen for modification.

e Demand: The probability of a route is proportional to the average customer
demand in this route. Biasing towards routes of the private fleet with high
demand increases the chance of reaching the next discount step of a
subcontractor.

e Distance to Discount: The probability of a subcontracted route to be chosen is
inversely proportional to the gap between the total demand in this route and the
demand required for reaching the next discount step.

The first three methods correspond to the route selection methods successfully
applied in Stenger et al. (2012) and the last two methods constitute additional
methods that consider the problem-specific characteristics of the PCMDVRPNL.
Note that methods longest route, unit longest route and demand are only applicable
for routes of the private vehicle fleet and method distance to discount can only be
applied to routes of a subcontractor. As described above, the selection method is
exclusively used to determine the first route involved in the shaking step, the other
routes are chosen randomly. However, to avoid the evaluation of unpromising
solutions, we restrict the potential routes using the concept of an embedding
rectangle as proposed by Stenger et al. (2012). In this way, we consider merely
exchanges of customers among routes that are close to each other.
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In the next step, a customer selection method is chosen and subsequently applied
to each of the routes involved in the shaking step in order to determine the
customers to be exchanged. Our AVNS-RN applies the general selection methods
described in Stenger et al. (2012) plus two problem-specific methods that aim at
reaching higher discount levels. In case of routes of the private fleet, we exchange
customer sequences of length o (determined by selecting the first customer), while
for subcontracted routes ® individual customers are selected by iteratively applying
the selection method. We present the customer selection methods structured
according to their applicability to the different types of routes.

Applicable to all routes:

Random: The selection probability is equal for all customers.

Distance to next route: The probability of a customer or a customer sequence
being selected is inversely proportional to its distance to the center of gravity of
the target route, i.e., the route in which the customers will be inserted. In this
way, we bias towards customers that are close to the target route and thus more
likely to be part of distance-efficient routes.

Only applicable to subcontracting routes:

e Subcontracting cost: The selection probability of a customer is proportional to
its subcontracting cost. Customers with high subcontracting cost are more likely
to be served efficiently by the private fleet.

e Unit subcontracting cost: The selection probability of a customer is proportional
to the ratio between subcontracting cost and demand. This method targets at
biasing customers with high subcontracting cost and/or low demand towards
routes of the private fleet as they are likely to be efficiently served by them.

e Inverse demand: The selection probability of a customer is inversely propor-
tional to its demand. Since customers with low demand can be inserted more
easily into existing routes of the private fleet, we favor the removal of such
customers from subcontracted routes.

Only applicable to routes of self-owned vehicles:

e Distance to neighboring customers: The probability of selecting a customer is
inversely proportional to the sum of the distance between the first customer of
the sequence and its predecessor and the last customer and its successor in the
route. Customer sequences that are distant to other customers in a route are most
likely to be exchanged in a profitable way.

e Demand: The probability of a customer sequence of being selected in a route of
a self-owned vehicle is proportional to its demand. This favors the subcon-
tracting of customers with high demand, which potentially leads to higher
discount levels.

It is worth mentioning that a shaking move is capable of removing all customers
of a route. In case such a move is accepted by the algorithm, the number of routes is
reduced. In our computational studies, we found that this happens quite
frequently, in particular due to the possibility of profitably moving customers into
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subcontracted routes. Without further measures allowing the reopening of routes,
the search often gets stuck in low quality regions of the search space. To counteract,
we keep empty routes in the set of potential routes involved in the shaking. To be
more precise, for every depot that has at least one vehicle left, we add an empty
route. This allows the algorithm to open an additional route by inserting customers
in an empty route during shaking.

Adaptive mechanism

Our AVNS-RN involves a quite extensive set of route and customer selection
methods that clearly differ in their objective, i.e., they bias the shaking step in
different directions. Depending on the problem instance addressed and the current
state of the solution process, the success of individual methods will vary. Therefore,
AVNS-RN follows the approach of ALNS and chooses the selection method to be
used in each iteration based on associated probabilities that depend on the success of
the respective method in former iterations. To be more precise, each selection
method i is assigned a weight {; that represents the success of the method. Given a
set of s different methods, roulette wheel selection is applied in each shaking step to
determine the method to be used, where the probability of selecting method i is

equal to Z%" Note that route selection and customer selection are treated
=171

separately in this process.

At the beginning of the search, all methods are assigned an equal weight (.
During ¢ iterations, the success of a method is evaluated by a scoring mechanism.
In case the shaking step using method i leads to a new overall best solution, the
score of the method is increased by the amount &;. If the obtained solution improves
on the incumbent, a somewhat lower score of 9, is assigned. Finally, if a solution is
worse than the incumbent but nevertheless accepted by the algorithm, the score is
increased by 05. After the evaluation period, the weights of all methods are updated
as follows: Let ¢; denote the number of times method i was used during the
evaluation period and let ; describe the obtained score of method i, then the new
weight {; is equal to {9(1 — g) + Q,ﬂ Factor ¢ € [0,1] is used to balance between

the recent and the past success of a method when updating the weight (Pisinger and
Ropke 2007).

Local search

After the shaking, greedy local search is used to determine a local optimum with
respect to the applied neighborhood operators. Note that the local search is only
performed on the routes involved in shaking. For intra-route moves, we use the
well-known edge-exchange operator 2-opt, that exchanges two existing edges with
two new ones (Lin 1965). For inter-route moves, a relocate and a swap operator are
applied. Relocate removes a single customer from a route and inserts it into the
other route at the cost-optimal position. The swap operator simply exchanges
the position of two customers from different routes. The inter-route moves are
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x < solution after shaking
Kshake < set of all routes involved in shaking
Ksupe < set of subcontracted routes involved in shaking
x1 < apply intra-route local search to all routes Kpare \ Ksube in @ using 2-opt
Initialize route pairs: Pairs < {(ka, ks) | ka, ko € Kshake N ka # kv }
while (|Pairs| > 0) do
Randomly select a pair of routes (kq, ky) € Pairs
z2 < solution obtained by best relocate move between k, and ks
if (z2 improves z1) then
X1 < T2
Reinitialize route pairs
continue
end if
x3 «— solution obtained by best swap move between k, and k;
if (x3 improves z1) then
X1 < I3
Reinitialize route pairs
continue
end if
Pairs «— Pairs \ {(ka, ks)}
end while
return xp

Fig. 3 Pseudocode of the local search

applied to all routes of the private fleet and the virtual routes of the subcontractors.
A more detailed description of the local search process is provided in pseudocode in
Fig. 3.

During the local search and the shaking phase, we accept infeasible solutions in
order to diversify the search. Solutions can be infeasible because they violate
capacity limits of vehicles or the demand served by the private fleet falls below the
mandatory lower limit. For both types of violations, a penalty term is added to the
objective function:

f(s) = c(s) + o - overCap + f - prizeDeficit,

where c(s) is the original value of the objective function, o and B are penalty factors,
which are positive weights in the interval [Peny,, Penmax], overCap denotes the
overcapacity and prizeDeficit the difference between the mandatory demand to be
served by the private fleet and the actual value. Penalty factors are initialized with
value Pen;,;, and updated after each iteration without violation (with violation) of
the respective constraint by dividing (multiplying) by 1.5. Note that we do not allow
to violate the constraint on the maximum delivery radius of a subcontractor.

Acceptance criterion
Contrary to standard VNS approaches, where only improving solutions are

accepted, we use a simulated annealing-based acceptance criterion, whose
improvement potential has been shown in recent works (see, e.g., Pirkwieser and
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Raidl 2008; see, e.g., Hemmelmayr et al. 2009; see, e.g., Stenger et al. 2012). The
solution x” obtained in the local search is compared to the currently best solution x

and accepted if it improves the latter. Additionally, we accept deteriorating moves

. . .- (")) L.
according to the Metropolis probability e~ v, where f(-) denotes the objective

function value and 6 the current temperature, which is used to control the degree of
diversification. Starting from an initial value 0;,; > 0, the temperature is decreased
by the factor nge.. after each AVNS iteration. In this way, the probability of
accepting deteriorating solutions is reduced during the search ending in an
intensification phase rejecting all non-improving solutions.

Computational studies

We perform extensive numerical tests to assess the performance of the proposed
AVNS-RN algorithm and to study the influence of several problem parameters. We
design new benchmark sets for PCMDVRPNL and its single-depot version as we
are, to the best of our knowledge, the first dealing with these problems in their given
form (see section “Generation of benchmark instances”). To find the best parameter
values for our algorithm, we performed numerous tests on new benchmark instances
(see section “Parameter setting”). Our first experiments assess the performance of
our AVNS-RN on the generated benchmark instances and investigate the influence
of the non-linear cost function on the routing solutions obtained (see section
“Performance of AVNS-RN on PC(MD)VRPNL and the influence of non-linear
subcontracting cost”). This is achieved by a comparison with the results realized
with a linear cost function. In Section “Varying the minimum demand to be
delivered by the private fleet”, we study the impact of different values of the
mandatory demand to be served by the private fleet T and show that this parameter
significantly influences the subcontracting decisions and hence the overall solutions.
Finally, to substantiate the competitive performance of our AVNS-RN, we present
results obtained on benchmark instances proposed for the MDVRPPC by Stenger
et al. (2012), which is closely related to the PCMDVRPNL (see section “Evaluating
the algorithmic performance on benchmark instances of related problems”) and on
standard test instances of the VRPPC, which is closely related to the single-depot
PCVRPNL.

All numerical tests were conducted on a desktop computer with an Intel i5
Processor clocked at 2.67 GHz and 4GB RAM. The algorithm is implemented in
Java.

Generation of benchmark instances

To generate test problems for the PCMDVRPNL, we use the MDVRPPC instances
proposed by Stenger et al. (2012) as a base. The subcontracting price p;; of these
instances depends mainly on the customer demand and can thus be used for our
problem. The minimum demand 7 to be served by the private fleet is set to 0.7 - g. In
addition, we give an upper bound which represents a high quality solution without
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subcontracting, i.e., a high quality MDVRP solution (Cordeau et al. 1997). The
upper bound provides a simple comparison value to evaluate the solution quality of
our algorithm on the newly generated instances.

As PCVRPNL is an extension of the CVRP, we use the VRP benchmark
instances proposed by Christofides and Eilon (1969) and Golden et al. (1998) as
basis for designing a new benchmark set for our single depot problem. The
benchmark design is inspired by the procedure for generating VRPPC instances
described in Bolduc et al. (2008). However, utilization of the VRPPC instances
presented there is not appropriate since their subcontracting costs mainly depend on
the customers’ distance to the depot, whereas in real-world small package shipping,
prices charged by a subcontractor are based on customer demand.

Of the original CVRP instances, we utilize the depot and customer coordinates,
the customer demand values and the vehicle capacities. The fixed vehicle cost F' and
the standard subcontracting price p; for each customer are computed as follows. Let
C(x") be the objective function value and k~ the number of vehicles of a high-quality
solution to the respective CVRP base instance.

The fixed usage cost of a vehicle is then computed as F = C(x)/k" rounded
down to the nearest integer. The standard subcontracting price of customer j € J is
calculated to

(F-k) + C(x7)

pi=15-¢q;-
j j g

where ¢; denotes the demand of customer j and § = ) _,, g; the total demand of all
customers of the problem instance. We restrict the number of vehicles available at
the depot to k* and the minimum demand T to be served by the private fleet is set to
0.7 - g. In this way, we generate 34 single-depot benchmark problems with up to 483
customers, which are divided into two sets. Set CEP is based on the CVRP instances
of Christofides and Eilon (1969), and the second set, named GP, contains large-scale
instances adapted from the CVRP problems presented by Golden et al. (1998).
Finally, similar to the multi-depot case, we compute a simple upper bound for all
benchmark instances by adding the vehicle fixed cost, calculated as described
above, to a high-quality solution of the corresponding CVRP instance. More pre-
cisely, for the instances proposed by Christofides and Eilon (1969), detailed solu-
tions are available at http://neumann.hec.ca/chairedistributique/data/vrp/old/, while
for the instances of Golden et al. (1998), we use the solutions presented by Mester
and Briysy (2007). These VRP solutions correspond to high-quality solutions
without subcontracting.

Parameter setting

We conducted a reasonable amount of parameter tuning using a randomly chosen
subset of the PCMDVRPNL instances described above. The tuning procedure
follows the approach described in Ropke and Pisinger (2006): Starting from a base
parameter setting adopted from the AVNS in Stenger et al. (2012), we fine tune
each parameter in turn, always keeping the best setting found for a parameter and
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Table 1 Results obtained on a subset of PCMDVRPNL instances with different parameter settings

Simulated annealing

Oinit 20 0 50

Aavg 0.0 % 0.87 % —-0.17 %

Ndec 0.9995 0.999 0.9998

Aave 0.0 % 0.03 % —0.34 %
Penalties

Pengin 1 10 100

Aavg 0.0 % 0.11 % 0.45 %

Pengax 1,000 500 2,500

Aavg 0.0 % —0.05 % —0.10 %
Adaptive mechanism

0 0.3 0.5 0.7

Aave 0.0 % —0.16 % —0.08 %

¢ 30 15 45

Agvg 0.0 % —0.55 % —-0.02 %

81/8,/35 9/2/1 9/5/1 9/2/0

Aavg 0.0 % —0.13 % —0.14 %

proceeding with the next one. In this way, we conducted tests with different values
for the simulated annealing starting temperature 6;,;, the cooling factor Mngec, the
lower (Pen,;,) and upper bound (Peny,,x) of the penalty factors used in the cost
function, the g reaction factor of the adaptive mechanism, the number of iterations ¢
in an evaluation period of the adaptive mechanism and finally different value
combinations for the scores 3;, 6, and 8;. For each parameter setting, we conducted
ten runs and used average solution costs to assess the performance. Table 1 reports
for all parameter settings the percentage deviation A,,, to the average result
obtained with the base parameter setting (shown in the first column). The best
results obtained and thus the final setting are marked in bold. Moreover, the final
setting uses a penalty initialization factor of Pen;,;; = 100. The search is stopped
after 1,500 iterations without improvement or after 2,500 s of computing time. This
provided a good tradeoff between solution quality and computation times.

Performance of AVNS-RN on PC(MD)VRPNL and the influence of non-linear
subcontracting cost

Our problem considers a stepwise cost function that models the real-world scenario
of the small packaging market, where subcontractors offer discounts depending on
the assigned package volume (see section ‘“Mathematical model of the
PCMDVRPNL”). In our benchmark instances for PCMDVRPNL and PCVRPNL,
we set the maximal discount e, given by a subcontractor to 0.4. A new discount
step is reached every time the subcontracted demand gi"® exceeds 9 = 0.8 of the
vehicle capacity Q. In order to evaluate the impact of the non-linear cost function,
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we additionally performed tests on the benchmark instances using a linear cost
function 1 — 2. g3 (see Fig. 4).

In the following, we present the results obtained with our AVNS-RN on the
newly designed benchmark sets of PCMDVRPNL and PCVRPNL in their original
form and with a linearized cost function. For all problem instances, we present the
upper bound computed as explained above (Costyg and the number of vehicles
kyg), the best solution found in ten runs (Costye; and kyeg), the deviation of this
solution from the upper bound in percentage (Apey), the average solution cost over
the ten runs plus the deviation from the upper bound (Cost,,, and A,,) and finally
the average percentage of subcontracted customers (SC,y,). For the original
instances, we additionally report the average computing time in seconds (CPU(s)),
computing times for the linearized instances are not reported due to their similarity.

Table 2 reports the results obtained on the benchmark instances for the
PCMDVRPNL. Since the values of Costyg and kyp correspond to a very
competitive solution of the specific instance without subcontracting, the results
show that our algorithm is clearly able to identify those customers that can be
profitably subcontracted and to determine efficient vehicle routes. On average, our
algorithm proves able to find solutions that improve the upper bound by more than
11 %. This result also holds if the average solution quality Cost,y, is considered,
which proves the robustness of AVNS-RN. The deviations from the upper bound as
well as the number of vehicles required are almost equal for both cost functions,
while the number of subcontracted customers is higher for linear costs. This can be
explained by the fact that in case of the stepwise function, the algorithm tries to
reach a discount step. If only a few customers are left within the delivery radius,
subcontracting additional customers is most likely not profitable. By contrast, the
linear function rewards each additionally subcontracted customer by an increased
discount.

Table 3 depicts the results obtained on the single-depot PCVRPNL instances.

Fig. 4 Example of the linear Cost Factor
discount function used as
comparison method

N,
| V
Subcontracted
sub
1

Demand g
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For both discount functions, the solutions improve the VRP-based upper bound
by more than 12 % while requiring moderate computing times. In addition, the
number of vehicles required is reduced by more than 30 %. This shows again that
our algorithm is able to identify customers that can be profitably subcontracted and
to construct cost-efficient vehicle routes. Comparing the solutions obtained with the
two different cost functions, the deviation from the upper bound Costyg as well as
the number of vehicles required are almost equal for both cost functions. However,
almost 7 % less customers are subcontracted when the stepwise cost function is
considered. This can be explained by the fact that the stepwise function reaches e .«
earlier, i.e., with less subcontracted demand. In case of the linear function,
increasing the subcontracted demand can always be profitable up to ¢ — T units as
the discount factor continuously increases.

Compared to the multi depot case, the average improvement of the upper bound
is higher. In the multi-depot problem different subcontractors with a limited
delivery radius and capacity exist. Thus, the demand of outsourced customers is
distributed among several subcontractors and maximal possible discounts are not
reached. Our algorithm tries to maximize the discount by filling the vehicles of a
subcontractor but the restricted delivery radiuses often counteracts this objective.

Varying the minimum demand to be delivered by the private fleet

One of the main characteristics of prize-collecting problems is the lower bound on
the prize to be collected or, in our case, the minimum customer demand 7 that has to
be served by the private fleet. Since the value of T strongly influences the
outsourcing decision, we perform tests with different values of T to quantify the
effect on the overall solution value. In detail, we used the generated PCMDVRPNL
benchmark instances with the standard subcontracting price p; and without any
discount function. We varied the value of T between 0.5g and 0.9 in steps of 0.1g
and solved each instance 10 times with this parameter setting. Figure 5 depicts the
average gap of the best solutions found to the upper bound as well as the average
number of subcontracted customers for each value of 5 on the PCMDVRPNL

instances.
With increasing value of g, the flexibility to outsource customers decreases and

the solution quality clearly suffers. Similarly, the number of subcontracted
customers decreases when the minimum demand to be served by the private fleet
is increased. However, reducing 7 below 0.7g has only a very slight influence on the
gap to the upper bound while still significantly increasing the number of
subcontracted customers. This indicates that after the most unprofitable customers
have been outsourced, a high number of solutions with similar solution quality exist.
Their quality only slightly depends on further subcontracting customers.

Although the rough tendency of the outcome of this study appears expectable, the
results show the strong influence of the important real-world constraint defining a
lower bound on the demand served by the private fleet. In addition, the results prove
again the suitability of our algorithm to handle the subcontracting decision while
paying attention to the prize-collecting constraint.
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Fig. 5 Comparing results obtained with different values of the lower bound 7 on the multi-depot
instances

Evaluating the algorithmic performance on benchmark instances of related
problems

To prove the performance of the proposed AVNS-RN, we apply the algorithm to
benchmark instances of the closely related MDVRPPC and the VRPPC. The
MDVRPPC test instances are described in Stenger et al. (2012) and are available for
download. We compare the results obtained with our AVNS-RN to those of the
AVNS of Stenger et al. (2012) (abbreviated as SVES in the table). Table 4 reports
for each instance the best known solution (BKS), either taken from Stenger et al.
(2012) or found during the overall testing of our algorithm. For both algorithms, we
report the best solution found in ten runs (Costyes) and its percentage deviation from
the BKS (Apest), the average solution cost over the ten runs and its deviation from
the BKS (Cost,,, and A,,) and the average computing time in seconds (CPU(s)). If
the BKS is found by one of the two algorithms during the ten runs this is indicated
in bold.

Although our AVNS-RN is specifically adapted to the PCMDVRPNL and the
parameter tuning is carried out on PCMDVRPNL instances, it obtains competitive
results that even slightly improve on the average solution quality, requiring
basically identical run-time. Furthermore, we found new best solutions for two
benchmark instances during these 10 runs (BKS marked bold) and a total of 16 new
best solutions during our overall testing (BKS marked in italics). These results
further confirm the competitiveness of the proposed method.

For the VRPPC, Bolduc et al. (2008) designed 34 benchmark instances that can
be downloaded at http://www.mcbolduc.com/VRPPC/tests.htm. The benchmark
instances are based on the same VRP instances as those proposed for PCVRPNL.
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However, the number of available vehicles is reduced such that the total vehicle
capacity is not sufficient to serve the demand of all customers. As comparison
methods, we use the tabu search with ejection chains described in Potvin and Naud
(2011), the tabu search proposed by Co6té and Potvin (2009) and the AVNS algo-
rithm of Stenger et al. (2012). Table 5 presents for all algorithms the deviation of
the best solution found in ten runs from the best known solution as well as the
average computing time in seconds. For our AVNS-RN, we additionally report the
deviation of the average solution found to the best known solution. Since Potvin and
Naud (2011) mentions only the best solution found, a comparison of the average
solution quality is not possible.

The results obtained on the VRPPC instances show again the high efficiency of
the AVNS-RN algorithm. Compared to the currently best performing algorithm, the
TS with ejection chains of Potvin and Naud (2011), the average gap is slightly
worse, but we require significantly less computing time. Furthermore, we are able to
improve the results of the AVNS presented in Stenger et al. (2012), while the
computing time remains on an equal level. It is also worth mentioning that we are
able to find a new overall best solution on instance G-06. Moreover, the average
results obtained with AVNS-RN confirm the robustness of the algorithm.

Conclusion

In this paper, we proposed a single and multi-depot version of the PCVRPNL to
model an important route planning problem arising in small package shipping. To
solve the proposed NP-hard problems, we presented a powerful AVNS algorithm
applying cyclic-exchange neighborhoods, which bases on the framework of Stenger
et al. (2012). To tackle the requirements of the PCVRPNL, we designed specific
route and customer selection methods. In addition, we implemented a random
ordering of the neighborhoods used in shaking. Both extensions proved their
positive impact on solution quality during testing.

For the computational studies, we designed a set of 34 benchmark instances for
the single depot problem and 33 instances for the multi-depot problem. Numerical
studies are performed on the newly designed benchmark instances to investigate the
suitability of the algorithm for the proposed problems. The tests further demonstrate
the strong influence of the value chosen for the minimum demand to be served by
the private fleet. In addition, we solved benchmark instances of the closely related
VRPPC and MDVRPPC. The results clearly prove the high performance of the
proposed algorithm.
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