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Abstract In this paper, we propose a new routing problem to model a highly

relevant planning task in small package shipping. We consider the Prize-Collecting

Vehicle Routing Problem with Non-Linear cost in its single and multi-depot ver-

sion, which integrates the option of outsourcing customers to subcontractors instead

of serving them with the private fleet. Thereby, a lower bound on the total customer

demand to be served by the private fleet guarantees a high utilization of the fleet

capacity. To represent the practical situation, where a discount is given by a sub-

contractor if larger amounts of packages are outsourced, subcontracting costs follow

a non-linear function. The considered problem is NP-hard and we propose an

Adaptive Variable Neighborhood Search algorithm to solve instances of realistic

size. We propose new benchmark sets for the single and the multi-depot problem,

which are adapted from test instances of the capacitated VRP and the closely related

Multi-Depot VRP with Private fleet and Common carrier. In numerical studies, we

investigate the performance of our algorithm on the newly generated test instances

and on standard benchmark problems of related problems. Moreover, we study the

effect of different cost functions and different values of the minimal demand to be

served by the private fleet on the routing solutions obtained.
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Introduction

The market situation for small package shippers (SPS) has drastically changed since

the deregulation in the EU and the US. Before, the formerly big players like DHL1

used to operate huge vehicle fleets and perform all last-mile deliveries with their

own employees. However, rising competition has forced them to adopt the business

model of using subcontractors for last-mile delivery as done by companies like

DPD2. The subcontractors are paid per parcel delivered, saving the SPS the high

fixed costs for vehicles and employees. Beside the outsourcing of entire unprofitable

delivery areas, subcontractors are often used on the operational level to balance high

demand fluctuations, in particular when the capacity of the self-operated vehicle

fleet is not sufficient to serve all customers on a given day. On such days, the

operational task is to decide which customers should be served by the private fleet

and which customers should be subcontracted. The decision has to balance the

trade-off between the cost of serving a customer [based on the solution of a Vehicle

Routing Problem (VRP)] and the costs for subcontracting the customer. Chu (2005)

modeled this planning problem, relaxing several practical constraints, as an

extension of the Capacitated VRP (CVRP), which was later named VRP with

Private fleet and Common carriers (VRPPC) (Bolduc et al. 2008). Extending the

VRPPC, Stenger et al. (2012) proposed the Multi-Depot VRPPC (MDVRPPC) that

considers not only multiple self-owned depots but also different subcontractors with

individual subcontracting costs and limited delivery radiuses.

However, both problems disregard important real-world characteristics. First, a

lower bound on the customer demand served by the private fleet is generally

mandatory in order to maintain the profitability of the vehicle fleet. Second, the

costs charged by a subcontractor for serving additional customers follow a non-

linear cost function. Quantity discounts are given if the number of customers to

outsource falls into a certain discount range. In this way, the subcontractor tries to

improve the capacity utilization of his fleet.

We contribute by incorporating the above-described real-world characteristics in

a planning problem called Prize-Collecting Multi-Depot Vehicle Routing Problem

with Non-Linear costs (PCMDVRPNL). It extends the MDVRPPC and the well-

known Prize-Collecting Traveling Salesman Problem (PCTSP), in which a prize is

collected when visiting a customer and penalties are incurred for each unvisited

customer. The task is to collect at least a given prize while minimizing the sum of

distances traveled and penalty costs for unvisited customers. In the PCMDVRPNL,

penalty costs are equal to subcontracting costs while at least a given customer

demand (prize) has to be served by the private fleet. Besides the problem with

multiple self-owned depots and multiple subcontractors, we also consider the single-

depot case of the problem, denoted as Prize-Collecting Vehicle Routing Problem

with Non-Linear cost (PCVRPNL). This problem is modelled as a special case of

the PCMDVRPNL, in which only one self-owned depot and one subcontractor with

unlimited delivery radius are available.

1 http://www.dhl.com.
2 http://www.dpd.com.
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Aswe are, to the best of our knowledge, the first dealingwith these problems in their

given form, we propose new benchmark sets for both problems. The benchmark for

single-depot PCVRPNL is adapted from test instances of the classical VRP and the

PCMDVRPNL instances are based on test problems of the closely related

MDVRPPC. As solution method, we present an Adaptive Variable Neighborhood

Search (AVNS) algorithm that is inspired by the AVNS of Stenger et al. (2012) but

employs modified neighborhood structures, a random mechanism for ordering these

neighborhoods and route and customer selection rules specifically adapted to the

non-linear problem addressed. The performance of the method is evaluated on the

newly generated test instances and on available benchmark problems of the related

VRPPC and MDVRPPC. Moreover, we study the effect of different cost functions

on the route design and the subcontracting decisions as well as the influence of the

minimum amount of demand to be served by the private fleet.

The remainder of the paper is structured as follows. First, we review the literature

related to our work (see ‘‘Literature review’’). Subsequently, we formulate the

mixed integer program of the problem at hand (see ‘‘Mathematical model of the

PCMDVRPNL’’). In section ‘‘Solution method for the PCMDVRPNL’’, we present

the problem-specific AVNS. The mathematical model and the details of our solution

approach are described for PCMDVRPNL, of which the single depot problem can

be considered a special case as described above. In section ‘‘Computational

studies’’, we discuss the extensive numerical tests performed with our AVNS

algorithm, followed by some concluding remarks in section ‘‘Conclusion’’.

Literature review

In this section, we provide a brief review of the literature that is of importance to our

work. The idea of prize-collecting first arose in the context of the iron and steel

industry, where a PCTSP was used to model the operational scheduling of a steel

rolling mill. Balas (1989) transferred this idea to the general case of a traveling

salesman and studied structural properties. As mentioned above, a traveling salesman

collects a prize for each city visited and has to pay a penalty for each city that remains

unvisited. The objective is to minimize the total distance traveled and penalty costs

incurred for unvisited cities while collecting at least a given amount of prize money.

Several solution methods for the PCTSP have been proposed. For example,

Dell’Amico et al. (1998) proposed a heuristic using lagrangian relaxation to

produce an initial solution and subsequently apply an extension and collaborate

procedure in the improvement phase. Recently, Chaves and Lorena (2008)

presented a hybrid metaheuristic for generating initial solutions using a combination

of greedy randomized search procedure and VNS. Based on the generated solutions,

clusters are formed and promising clusters are identified and further improved by

means of a local search procedure. However, no generally used set of PCTSP

benchmark problems exists and thus the quality of the proposed solution methods

cannot be evaluated in a straightforward fashion. For an extended literature review,

the reader is referred to Feillet et al. (2005), who provide an overview of the

literature on traveling salesman problems with profits.

The prize-collecting vehicle routing problem 59

123



The PCTSP was extended to a Prize-Collecting Vehicle Routing Problem

(PCVRP) by Tang and Wang (2006) in order to model the hot rolling production

scheduling problem. Here, every customer represents an order to be scheduled that

has a given length that corresponds to the demand of the customer. Each vehicle

route describes a turn and the vehicle capacity corresponds to the maximum length of

a turn. The objective is to find the schedule that minimizes the variable production

and fixed set-up costs and maximizes the profits of scheduled orders.

Chu (2005) presented an extension of the CVRP, in which customers can either be

served by the private fleet or be outsourced to a common carrier. The costs for

deliveries by the private fleet depend on the traveled distance and fixed vehicle cost.

The common carrier is paid a fixed price per outsourced customer. The objective is to

minimize the total costs including fixed vehicle costs, variable travel costs of the

private fleet and the costs of assigning deliveries to the common carrier. To solve the

problem (later named VRPPC by Bolduc et al. (2008), Chu (2005) proposed a simple

heuristic based on the well-known Clarke and Wright algorithm (Clarke and Wright

1964). Another heuristic that outperforms the approach of Chu (2005) was developed

by Bolduc et al. (2007). They modeled the VRPPC as heterogeneous VRP and

presented a randomized construction-improvement-perturbation heuristic. Further-

more, they generated two large sets of benchmark instances for the VRPPC with up

to 480 customers, which are based on classical VRP instances. Recently, two Tabu

Search (TS) heuristics have been developed for the VRPPC. Côté and Potvin (2009)

presented a heuristic which is mainly based on the unified TS framework proposed by

Cordeau et al. (1997). The solutions obtained by this heuristic were further improved

by the TS of Potvin and Naud (2011) which enhances the earlier TS by the concept of

ejection chains. Numerical studies show that ejection chains help to significantly

improve the solution quality, in particular on instances with a heterogeneous vehicle

fleet, but also strongly increase computing time.

As described above, this paper considers a multi-depot problem that extends the

classical Multi-Depot Vehicle Routing Problem (MDVRP) first described by Wren

and Holliday (1972). Compared to the single-depot VRP, only few heuristic solution

methods were presented for the MDVRP. Chao et al. (1993) proposed a multi-phase

extension of the record-to-record travel method of Dueck (1993) and were able to

solve benchmark instances with up to 360 customers and 9 depots. Renaud et al.

(1996) presented a tabu-search heuristic which first assigns customers to their

closest depot and next determines an initial routing solution using the improved

petal heuristic of Renaud et al. (1996). Subsequently, a fast improvement phase, an

intensification and a diversification phase are applied, all based on a set of local

search operators which exchange customers of up to three routes. Cordeau et al.

(1997) proposed another tabu search heuristic for MDVRP that is also able to solve

Periodic VRP (PVRP) and periodic TSP problems. To diversify the search,

attributes that are added to solutions are analyzed and penalties are modified

accordingly in order to efficiently guide the search. Pisinger and Ropke (2007) used

an Adaptive Large Neighborhood Search (ALNS), which was designed for a wide

range of routing problems, to solve the MDVRP. The solutions obtained by ALNS

were of higher quality than those found by Cordeau et al. (1997) but required larger

computing time. Recently, Vidal et al. (2012) presented a Hybrid Genetic Search
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with Adaptive Diversity Control (HGSADC) to solve MDVRP, PVRP and periodic

MDVRP. The computational studies performed show considerable improvements

for all problem classes. Stenger et al. (2012) proposed the MDVRPPC and

developed an AVNS algorithm that biases the random shaking step. The approach

obtains high quality solutions in short computing time for MDVRPPC and closely

related problems, such as the MDVRP and the single-depot VRPPC.

Mathematical model of the PCMDVRPNL

In this section, we provide the mathematical formulation of the PCMDVRPNL,

which includes the PCVRPNL as a special case.

We model the problem as an extension of the MDVRPPC proposed in Stenger

et al. (2012). To define PCMDVRPNL, let G = (V, E) be an undirected, complete

graph. The set of nodes V = J [ H is composed of the set J of customers and the

set H of depots. Set H itself is partitioned into a subset I of self-owned depots and a

subset L of subcontractor depots. The total capacity of a depot i [ H, i.e., the
maximum total demand it can serve, is limited to wi units. A customer can either be

served by a vehicle k of the set of private vehicles K or by a subcontractor. At most

kmax identical vehicles of the private fleet K with a restricted capacity Q are

available at each self-owned depot, where |K| B kmax�|I| holds. For each employed

vehicle a fixed cost of F is charged as well as the variable costs that are identical to

the travel times cij for traversing arc (i, j) [ E. With each customer j [ J a service
time of tj units is associated. The maximum duration of a route is limited to tmax.

Furthermore, rmax denotes the maximum delivery radius of subcontractor depots,

i.e., customers outside this range are not served by the respective subcontractor.

The cost of subcontracting customer j [ J to depot l [ L is plj. This cost is

discounted with factor (1 - el(gl
sub)), where el(gl

sub) denotes the discount given by

subcontractor l for subcontracted demand gl
sub. Moreover, at least T demand units

have to be delivered by the private fleet.

The model uses two sets of decision variables. If node i follows node j on tour

k, the binary variable xijk takes value 1, and value 0 otherwise. In addition, if

customer j [ J is assigned to depot i [ H, binary variable zij is equal to 1 and 0

otherwise. With the above definitions, the mathematical model of PCMDVRPNL

can be stated as follows:

min
X

i2I

X

j2J

X

k2K
Fxijk þ

X

i2ðI[JÞ

X

j2ðI[JÞ

X

k2K
cijxijk þ

X

j2J

X

l2L
ð1� elðgsubl ÞÞpljzlj ð1Þ

X

k2K

X

i2ðI[JÞ
xijk ¼ 1�

X

l2L
zlj 8j 2 J ð2Þ

X

j2J

X

i2ðI[JÞ
qjxijk �Q 8k 2 K ð3Þ

X

j2J
qjzij�wi 8i 2 H ð4Þ
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X

j2ðI[JÞ
xijk �

X

j2ðI[JÞ
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X
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ðcij þ tiÞxijk � tmax 8k 2 K ð12Þ
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zij 2 f0; 1g 8i 2 H; j 2 V ð16Þ

with

elðgsubl Þ ¼

0 if gsubl �# � Q
c � emax

b
P
j2J

qj�T=Qe
if ððc� 1Þ þ #Þ � Q\gsubl �ðcþ #Þ � Q

c ¼ 1; . . .;
P
j2J

qj � T

 !
=Q

$ ’

emax otherwise

8
>>>>>>>><

>>>>>>>>:

ð17Þ

The objective (1) is to minimize the sum of fixed costs of employed vehicles,

travel and subcontracting costs. Constraints (2) ensure that each customer is

either visited exactly once by a vehicle of the private fleet or it is subcontracted.

Constraints (3) and (4) describe the capacity restrictions of vehicles and depots.

Constraints (5) and (6) define that each node entered by a vehicle has to be left

and that each route has to end at the depot from which it originated. Constraint

(7) determines the minimum customer demand T to be served by the private

fleet. Subtour elimination is ensured by Constraints (8). Constraints (9) guarantee

that a customer is only assigned to a certain depot if there exist a route starting

from this depot that visits the customer. Constraints (10) guarantee that each
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customer is assigned to a depot. The number of employed vehicles is restricted

by (11). Compliance with route duration constraints is ensured in (12). Due to

Constraints (13), a customer can only be subcontracted to depot l if it is not

farther from l than rmax units. Equation (14) defines the subcontracted demand

for each subcontractor. Binary variables are defined in Constraints (15) and (16)

(Fig. 1).

In (17), we define the nonlinear cost function, which is inspired by real-life

considerations. In industry practice, a subcontractor is paid per package volume,

i.e., the demand units assigned to it by the SPS. However, the price per demand

unit is usually not fixed but depends on the total subcontracted demand. More

precisely, subcontractors grant discounts if the demand transferred by the SPS is

sufficient to fill an entire vehicle as this renders the subcontractor’s delivery

operations most efficient. To model this circumstance, the price charged by the

subcontractor follows a step function, i.e., the discount factor el is increased from

0 every time the total demand assigned to the subcontractor gl
sub exceeds a given

percentage 0 of the vehicle capacity Q (also assumed for the fleet of the

subcontractor). The subcontractor discount is limited to emax. Further, el is linked
to the minimum demand T to be delivered by the private fleet such that el reaches
its maximum value at the latest when the subcontracted demand is equal to

P
j[J

qj - T. In detail, the number of discount steps are q ¼ bð
P

j2J qj � TÞ=Qe; where
b�e denotes rounding to the nearest integer. Thus, if the subcontracted demand

exceeds ððc� 1Þ þ #Þ � Q demand units, with c ¼ 1; . . .; q; factor el is increased

by c�emax/q. Figure 3 depicts an example with three discount steps, emax = 0.4

and 0 = 0.8.

The PCVRPNL is defined as special case of PCMDVRPNL, with |I| = 1,

|L| = 1, rmax = ?.

1

0.6

0
0.8Q 1.8Q 2.8Q 

q-T~

Cost Factor
(1-e)

Subcontracted 

Demand gsub
l

Fig. 1 Example of the stepwise
subcontracting cost function
with three discount steps.
Symbol ~q is used to denote the
total demand of all customers,
i.e., ~q ¼

P
i2J qi
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Solution method for the PCMDVRPNL

The PCMDVRPNL extends the already NP-hard CVRP by real-world character-

istics of SPS. Consequently, only small problems can be solved by means of an

exact approach. In order to handle problem instances of realistic size, we propose an

Adaptive VNS (AVNS) metaheuristic approach to solve both the single and multi-

depot version of the problem. AVNS, proposed by Stenger et al. (2012), is a

metaheuristic that successfully combines ideas of Adaptive Large Neighborhood

Search (ALNS) (Pisinger and Ropke 2007) and VNS. For a detailed description of

the well-known metaheuristic concepts VNS and ALNS, we refer the reader to

Mladenović and Hansen (1997) and Pisinger and Ropke (2007).

AVNS follows the solution process of a VNS and, starting from an initial

solution, performs local search on systematically changing neighborhoods. In detail,

a new neighboring solution is determined in each shaking step by exchanging

customers among routes according to a set of predefined neighborhood structures. In

contrast to standard VNS, the routes and customers involved in this shaking are not

selected randomly in AVNS. Instead, a set of methods that bias the route and

customer selection are applied to explore the solution space more efficiently. AVNS

incorporates these selection methods in a fashion similar to the treatment of the

removal and insertion heuristics in ALNS. In each iteration, one route and one

customer selection method are chosen, while the probability of each method

depends on its success in former iterations. In this way, the heuristic adapts to the

characteristics and requirements of the problem instance to be solved and to the

current state of the solution process. In the next step, AVNS performs a greedy local

search on the generated neighboring solution and the resulting solution is finally

accepted according to a simulated annealing criterion. If the solution is accepted, it

replaces the current starting solution and a new shaking step using the first

neighborhood structure is performed. Otherwise, the solution found is rejected and

the shaking procedure is repeated with a more distant neighborhood and the former

starting solution.

The major advantage of the AVNS framework is its high flexibility, which allows

to design a problem-specific heuristic by simple modifications. Stenger et al. (2012)

propose several route and customer selection methods that are specifically designed

for solving problems including subcontractors, which are hence also applicable for

the PCMDVRPNL. However, these methods are not sufficient to address the

peculiarities induced by a non-linear cost-function. Therefore, to enhance the

quality of our approach, we develop additional methods that consider these special

requirements, like e.g., methods that aim at subcontracting several customers in one

step in order to reach the next discount level. Furthermore, we do not use a fixed

sequence of neighborhood structures, but generate a random ordering of the

neighborhoods every time a new solution is accepted or after one iteration with all

neighborhoods is complete (cp. Pirkwieser and Raidl 2008). Both modifications

have proven their positive effect on the solution quality of the method in numerical

tests. Finally, the local search is based on a subset of the operators that were

employed in Stenger et al. (2012). In detail, tests on PCMDVRPNL instances

revealed that we obtain similar solution quality without using the Or-Opt exchange,

64 A. Stenger et al.

123



while the computing time for the local search phase significantly decreases. A

pseudocode overview of our AVNSwith random neighborhood ordering (AVNS-RN)

for solving PCMDVRPNL is given in Fig. 2.

In order to handle the outsourcing of customers to subcontracting depots, our

heuristic uses the concept of virtual vehicles as proposed by Prosser and Shaw

(1996) (see also Tang and Wang 2006; Bolduc et al. 2007). Here, a virtual vehicle

with a capacity equal to the depot capacity wi is assigned to each subcontractor

depot i [ L and all customers served by i are inserted into a corresponding virtual

route. The length of the virtual subcontracting route is not considered in cost

calculations as the subcontracting cost is based on outsourced quantities and not on

the routing decision of the subcontractor.

In the following, we provide the details of our solution method: the ‘‘Initial-

ization’’ phase , the ‘‘Adaptive shaking’’ phase including the route and customer

selection methods, the ‘‘Local search’’ and the applied ‘‘Acceptance criterion’’.

Initialization

In the initialization phase, we decide for each customer whether it shall be

outsourced or served by the private fleet and in the latter case to which depot the

customer shall be assigned. Subsequently, we determine the vehicle routes for the

private fleet. Our goal is to quickly compute a solution that serves as a starting point

for the subsequent AVNS improvement. To decide whether a customer is

outsourced or not, we use a modified version of the method proposed by Côté

and Potvin (2009) for the closely related VRPPC, which is applied by Stenger et al.

(2012) in similar fashion. We start by selecting customers to subcontract until only

Fig. 2 Pseudocode of the AVNS-RN heuristic for solving PCMDVRPNL
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the mandatory demand T remains to be served by the private fleet. To this end, we

order the customers according to the quotient of subcontracting cost and demand

and the most suitable customers are chosen for subcontracting as detailed in the

following three-step procedure:

1. Determine for each customer j [ J and each subcontractor depot l [ L the

quotient njl ¼ pjl
qj
and insert njl into the list P sorted in increasing order.

2. Choose the first element in P denoted by nj_1l_1 and check whether (1) the

distance between j1 and l1 is smaller than the maximal service radius rmax of the

subcontractor, (2) the remaining capacity of depot l1 is greater than the demand

qj_1 and (3) the demand of subcontracted customers including the investigated

customer is smaller or equal to the maximum demand to be outsourced, i.e.,P
i [ O [ {j1} qi B

P
j [ J qj - T, where T denotes the minimum customer

demand to be served by the private fleet (see section ‘‘Mathematical model of

the PCMDVRPNL’’) and O the list of already subcontracted customers. If all

conditions are met, customer j1 is subcontracted, added to the list O and all nj1l,
l [ L are removed from P. Otherwise, only entry nj1l1 is removed from P.

3. Repeat step 2 until P is empty.

The customers remaining after the customers to be subcontracted have been

selected are each assigned to the closest self-owned depot with free capacity. Based

on this allocation, initial vehicle routes are created by means of the well-known

Clarke and Wright algorithm (Clarke and Wright 1964). For all depots where the

number of generated routes exceeds the number of available vehicles kmax, we

iteratively apply the following repair mechanism:

1. Select the route with the lowest demand at a randomly chosen depot with

violations.

2. Remove all customers from this route and iteratively insert the customers at the

cost optimal position concerning all routes. To be more precise, the insertion

position is chosen such that the increase of total cost is minimized.

3. Repeat until the number of vehicles is lower or equal kmax at all depots.

Note that the obtained solution respects fleet restrictions but capacity constraints

of the generated routes may be violated. In a final step, the solution obtained is

improved by means the greedy local search described in section ‘‘Local search’’.

Adaptive shaking

In the adaptive shaking phase, we perturb the initial solution based on a given set of

neighborhood structures, which are applied following a random ordering. To avoid

the evaluation of unprofitable neighboring solutions, we bias the shaking by means

of problem-specific selection methods that determine the routes and customers

involved in the selected neighborhood moves. In each iteration, the route and

customer selection method to be applied is chosen by a roulette wheel selection

mechanism. In the process, the probability of each method adapts according to the
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success of the selection method in former iterations, which is evaluated based on a

scoring system.

In the following, we detail the utilized ‘‘Neighborhood structures’’, the ‘‘Route

and customer selection methods’’ and the ‘‘Adaptive mechanism’’.

Neighborhood structures

The neighborhood structures used in our AVNS-RN algorithm are either defined by

a move-exchange or a cyclic-exchange neighborhood operator (Thompson and

Psaraftis 1993). For both operators, we define two sets of neighborhoods, one that

only considers routes of the private fleet originating from identical depots and the

other one allowing exchanges between all routes of the private fleet and the

subcontractors. For all neighborhood operators and sets, the sequence length x to be

exchanged by neighborhood j is randomly selected from interval ½0;minðððj�
1Þ mod 6Þ þ 1; jNjÞ�; where |N| denotes the number of customers in the route. This

means that for each neighborhood operator, we consider exchanges of up to six

customers, while the number is obviously restricted by the number of customers in

the route.

In detail, the following neighborhood structures are used:

• Move customer sequence between vehicle routes of the private fleet
originating from same depot Neighborhood structures j = 1, …, 6 move a

sequence of length x customers from one route to another.

• Move customer sequence between all routes of the private fleet and
subcontractor Structures j = 7, …, 12 are similar to the first set, however,

customer sequences can be inserted into or removed from both routes that

originate at a different depot and virtual routes of a subcontractor.

• Cyclic exchange of customer sequence between routes of the private fleet
originating from same depot This set of neighborhood structures exchanges

customer sequences between up to four different routes in a cyclic fashion. For

example, a neighborhood considering three routes r1, r2, r3 removes a customer

sequence from r1, inserts it into r2, from where a sequence of customers is

removed and transferred to route r3. The sequence removed from r3 is moved to

r1, thus closing the cycle. Neighborhood structures j = 13, …, 18 apply

exchanges between two routes, j = 19, …, 24 between up to three and

j = 25, …, 30 between up to four routes.

• Cyclic exchange of customer sequence between all routes of the private fleet
and subcontractor This set of 18 neighborhood structures is similar to the third

set but customer sequences can be inserted into or removed from both routes that

originate at a different depot and virtual routes of a subcontractor.

Route and customer selection methods

Given a neighborhood structure j to apply for the shaking step, our AVNS-RN does

not select the routes and customers involved in the shaking step randomly as done in

standard VNS. Instead, route selection and customer selection methods are applied
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to bias the shaking step towards profitable regions of the search space. For example,

this allows us to encourage shaking moves that force subcontracting in order to

reach the next discount level at a certain subcontractor. The general procedure for

performing an adaptive shaking move in our AVNS-RN algorithm is as follows (cp.

Stenger et al. 2012):

1. Use roulette wheel selection to determine route selection method.

2. Determine the first route k1 to be involved according to chosen route selection

method.

3. Determine the remaining routes to be involved randomly, considering closeness

measures.

4. Use roulette wheel selection to choose customer selection method.

5. For all involved routes, select randomly the number of customers x to be

exchanged and select the customers to be exchanged according to chosen

selection method.

6. Perform the shaking move.

For selecting the first route involved in the shaking step, our AVNS-RN applies

the following selection methods:

• Random: The probability of all routes to be selected is equal. This is the standard

procedure in VNS.

• Longest route: The selection probability of a route is defined as being

proportional to its total travel distance.

• Unit longest route: The probability of a route to be selected is proportional to the

ratio between total travel distance and total demand of the customers in the

route. Routes with long distance and low demand are generally considered as

inefficient and are therefore more likely to be chosen for modification.

• Demand: The probability of a route is proportional to the average customer

demand in this route. Biasing towards routes of the private fleet with high

demand increases the chance of reaching the next discount step of a

subcontractor.

• Distance to Discount: The probability of a subcontracted route to be chosen is

inversely proportional to the gap between the total demand in this route and the

demand required for reaching the next discount step.

The first three methods correspond to the route selection methods successfully

applied in Stenger et al. (2012) and the last two methods constitute additional

methods that consider the problem-specific characteristics of the PCMDVRPNL.

Note that methods longest route, unit longest route and demand are only applicable

for routes of the private vehicle fleet and method distance to discount can only be

applied to routes of a subcontractor. As described above, the selection method is

exclusively used to determine the first route involved in the shaking step, the other

routes are chosen randomly. However, to avoid the evaluation of unpromising

solutions, we restrict the potential routes using the concept of an embedding

rectangle as proposed by Stenger et al. (2012). In this way, we consider merely

exchanges of customers among routes that are close to each other.
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In the next step, a customer selection method is chosen and subsequently applied

to each of the routes involved in the shaking step in order to determine the

customers to be exchanged. Our AVNS-RN applies the general selection methods

described in Stenger et al. (2012) plus two problem-specific methods that aim at

reaching higher discount levels. In case of routes of the private fleet, we exchange

customer sequences of length x (determined by selecting the first customer), while

for subcontracted routes x individual customers are selected by iteratively applying

the selection method. We present the customer selection methods structured

according to their applicability to the different types of routes.

Applicable to all routes:

• Random: The selection probability is equal for all customers.

• Distance to next route: The probability of a customer or a customer sequence

being selected is inversely proportional to its distance to the center of gravity of

the target route, i.e., the route in which the customers will be inserted. In this

way, we bias towards customers that are close to the target route and thus more

likely to be part of distance-efficient routes.

Only applicable to subcontracting routes:

• Subcontracting cost: The selection probability of a customer is proportional to

its subcontracting cost. Customers with high subcontracting cost are more likely

to be served efficiently by the private fleet.

• Unit subcontracting cost: The selection probability of a customer is proportional

to the ratio between subcontracting cost and demand. This method targets at

biasing customers with high subcontracting cost and/or low demand towards

routes of the private fleet as they are likely to be efficiently served by them.

• Inverse demand: The selection probability of a customer is inversely propor-

tional to its demand. Since customers with low demand can be inserted more

easily into existing routes of the private fleet, we favor the removal of such

customers from subcontracted routes.

Only applicable to routes of self-owned vehicles:

• Distance to neighboring customers: The probability of selecting a customer is

inversely proportional to the sum of the distance between the first customer of

the sequence and its predecessor and the last customer and its successor in the

route. Customer sequences that are distant to other customers in a route are most

likely to be exchanged in a profitable way.

• Demand: The probability of a customer sequence of being selected in a route of

a self-owned vehicle is proportional to its demand. This favors the subcon-

tracting of customers with high demand, which potentially leads to higher

discount levels.

It is worth mentioning that a shaking move is capable of removing all customers

of a route. In case such a move is accepted by the algorithm, the number of routes is

reduced. In our computational studies, we found that this happens quite

frequently, in particular due to the possibility of profitably moving customers into
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subcontracted routes. Without further measures allowing the reopening of routes,

the search often gets stuck in low quality regions of the search space. To counteract,

we keep empty routes in the set of potential routes involved in the shaking. To be

more precise, for every depot that has at least one vehicle left, we add an empty

route. This allows the algorithm to open an additional route by inserting customers

in an empty route during shaking.

Adaptive mechanism

Our AVNS-RN involves a quite extensive set of route and customer selection

methods that clearly differ in their objective, i.e., they bias the shaking step in

different directions. Depending on the problem instance addressed and the current

state of the solution process, the success of individual methods will vary. Therefore,

AVNS-RN follows the approach of ALNS and chooses the selection method to be

used in each iteration based on associated probabilities that depend on the success of

the respective method in former iterations. To be more precise, each selection

method i is assigned a weight fi that represents the success of the method. Given a

set of s different methods, roulette wheel selection is applied in each shaking step to

determine the method to be used, where the probability of selecting method i is

equal to fiPs

j¼1 fj
: Note that route selection and customer selection are treated

separately in this process.

At the beginning of the search, all methods are assigned an equal weight f0.
During / iterations, the success of a method is evaluated by a scoring mechanism.

In case the shaking step using method i leads to a new overall best solution, the

score of the method is increased by the amount d1. If the obtained solution improves

on the incumbent, a somewhat lower score of d2 is assigned. Finally, if a solution is

worse than the incumbent but nevertheless accepted by the algorithm, the score is

increased by d3. After the evaluation period, the weights of all methods are updated

as follows: Let 1i denote the number of times method i was used during the

evaluation period and let li describe the obtained score of method i, then the new

weight fi is equal to foldi ð1� .Þ þ . l
1i
: Factor . [ [0,1] is used to balance between

the recent and the past success of a method when updating the weight (Pisinger and

Ropke 2007).

Local search

After the shaking, greedy local search is used to determine a local optimum with

respect to the applied neighborhood operators. Note that the local search is only

performed on the routes involved in shaking. For intra-route moves, we use the

well-known edge-exchange operator 2-opt, that exchanges two existing edges with

two new ones (Lin 1965). For inter-route moves, a relocate and a swap operator are

applied. Relocate removes a single customer from a route and inserts it into the

other route at the cost-optimal position. The swap operator simply exchanges

the position of two customers from different routes. The inter-route moves are
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applied to all routes of the private fleet and the virtual routes of the subcontractors.

A more detailed description of the local search process is provided in pseudocode in

Fig. 3.

During the local search and the shaking phase, we accept infeasible solutions in

order to diversify the search. Solutions can be infeasible because they violate

capacity limits of vehicles or the demand served by the private fleet falls below the

mandatory lower limit. For both types of violations, a penalty term is added to the

objective function:

f ðsÞ ¼ cðsÞ þ a � overCap þ b � prizeDeficit;

where c(s) is the original value of the objective function, a and b are penalty factors,
which are positive weights in the interval [Penmin, Penmax], overCap denotes the

overcapacity and prizeDeficit the difference between the mandatory demand to be

served by the private fleet and the actual value. Penalty factors are initialized with

value Peninit, and updated after each iteration without violation (with violation) of

the respective constraint by dividing (multiplying) by 1.5. Note that we do not allow

to violate the constraint on the maximum delivery radius of a subcontractor.

Acceptance criterion

Contrary to standard VNS approaches, where only improving solutions are

accepted, we use a simulated annealing-based acceptance criterion, whose

improvement potential has been shown in recent works (see, e.g., Pirkwieser and

Fig. 3 Pseudocode of the local search
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Raidl 2008; see, e.g., Hemmelmayr et al. 2009; see, e.g., Stenger et al. 2012). The

solution x00 obtained in the local search is compared to the currently best solution x
and accepted if it improves the latter. Additionally, we accept deteriorating moves

according to the Metropolis probability e
�ðf ðx00 Þ�f ðxÞÞ

h ; where f ð�Þ denotes the objective

function value and h the current temperature, which is used to control the degree of

diversification. Starting from an initial value hinit[ 0, the temperature is decreased

by the factor gdec after each AVNS iteration. In this way, the probability of

accepting deteriorating solutions is reduced during the search ending in an

intensification phase rejecting all non-improving solutions.

Computational studies

We perform extensive numerical tests to assess the performance of the proposed

AVNS-RN algorithm and to study the influence of several problem parameters. We

design new benchmark sets for PCMDVRPNL and its single-depot version as we

are, to the best of our knowledge, the first dealing with these problems in their given

form (see section ‘‘Generation of benchmark instances’’). To find the best parameter

values for our algorithm, we performed numerous tests on new benchmark instances

(see section ‘‘Parameter setting’’). Our first experiments assess the performance of

our AVNS-RN on the generated benchmark instances and investigate the influence

of the non-linear cost function on the routing solutions obtained (see section

‘‘Performance of AVNS-RN on PC(MD)VRPNL and the influence of non-linear

subcontracting cost’’). This is achieved by a comparison with the results realized

with a linear cost function. In Section ‘‘Varying the minimum demand to be

delivered by the private fleet’’, we study the impact of different values of the

mandatory demand to be served by the private fleet T and show that this parameter

significantly influences the subcontracting decisions and hence the overall solutions.

Finally, to substantiate the competitive performance of our AVNS-RN, we present

results obtained on benchmark instances proposed for the MDVRPPC by Stenger

et al. (2012), which is closely related to the PCMDVRPNL (see section ‘‘Evaluating

the algorithmic performance on benchmark instances of related problems’’) and on

standard test instances of the VRPPC, which is closely related to the single-depot

PCVRPNL.

All numerical tests were conducted on a desktop computer with an Intel i5

Processor clocked at 2.67 GHz and 4GB RAM. The algorithm is implemented in

Java.

Generation of benchmark instances

To generate test problems for the PCMDVRPNL, we use the MDVRPPC instances

proposed by Stenger et al. (2012) as a base. The subcontracting price plj of these
instances depends mainly on the customer demand and can thus be used for our

problem. The minimum demand T to be served by the private fleet is set to 0:7 � ~q: In
addition, we give an upper bound which represents a high quality solution without
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subcontracting, i.e., a high quality MDVRP solution (Cordeau et al. 1997). The

upper bound provides a simple comparison value to evaluate the solution quality of

our algorithm on the newly generated instances.

As PCVRPNL is an extension of the CVRP, we use the VRP benchmark

instances proposed by Christofides and Eilon (1969) and Golden et al. (1998) as

basis for designing a new benchmark set for our single depot problem. The

benchmark design is inspired by the procedure for generating VRPPC instances

described in Bolduc et al. (2008). However, utilization of the VRPPC instances

presented there is not appropriate since their subcontracting costs mainly depend on

the customers’ distance to the depot, whereas in real-world small package shipping,

prices charged by a subcontractor are based on customer demand.

Of the original CVRP instances, we utilize the depot and customer coordinates,

the customer demand values and the vehicle capacities. The fixed vehicle cost F and

the standard subcontracting price pi for each customer are computed as follows. Let

C(x*) be the objective function value and k* the number of vehicles of a high-quality

solution to the respective CVRP base instance.

The fixed usage cost of a vehicle is then computed as F = C(x*)/k* rounded

down to the nearest integer. The standard subcontracting price of customer j [ J is
calculated to

pj ¼ 1:5 � qj �
ðF � k�Þ þ Cðx�Þ

~q
;

where qj denotes the demand of customer j and ~q ¼
P

i2J qi the total demand of all

customers of the problem instance. We restrict the number of vehicles available at

the depot to k* and the minimum demand T to be served by the private fleet is set to

0:7 � ~q: In this way, we generate 34 single-depot benchmark problems with up to 483

customers, which are divided into two sets. Set CEP is based on the CVRP instances

of Christofides and Eilon (1969), and the second set, named GP, contains large-scale

instances adapted from the CVRP problems presented by Golden et al. (1998).

Finally, similar to the multi-depot case, we compute a simple upper bound for all

benchmark instances by adding the vehicle fixed cost, calculated as described

above, to a high-quality solution of the corresponding CVRP instance. More pre-

cisely, for the instances proposed by Christofides and Eilon (1969), detailed solu-

tions are available at http://neumann.hec.ca/chairedistributique/data/vrp/old/, while

for the instances of Golden et al. (1998), we use the solutions presented by Mester

and Bräysy (2007). These VRP solutions correspond to high-quality solutions

without subcontracting.

Parameter setting

We conducted a reasonable amount of parameter tuning using a randomly chosen

subset of the PCMDVRPNL instances described above. The tuning procedure

follows the approach described in Ropke and Pisinger (2006): Starting from a base

parameter setting adopted from the AVNS in Stenger et al. (2012), we fine tune

each parameter in turn, always keeping the best setting found for a parameter and
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proceeding with the next one. In this way, we conducted tests with different values

for the simulated annealing starting temperature hinit, the cooling factor gdec, the

lower (Penmin) and upper bound (Penmax) of the penalty factors used in the cost

function, the . reaction factor of the adaptive mechanism, the number of iterations /
in an evaluation period of the adaptive mechanism and finally different value

combinations for the scores d1, d2 and d3. For each parameter setting, we conducted

ten runs and used average solution costs to assess the performance. Table 1 reports

for all parameter settings the percentage deviation Davg to the average result

obtained with the base parameter setting (shown in the first column). The best

results obtained and thus the final setting are marked in bold. Moreover, the final

setting uses a penalty initialization factor of Peninit = 100. The search is stopped

after 1,500 iterations without improvement or after 2,500 s of computing time. This

provided a good tradeoff between solution quality and computation times.

Performance of AVNS-RN on PC(MD)VRPNL and the influence of non-linear

subcontracting cost

Our problem considers a stepwise cost function that models the real-world scenario

of the small packaging market, where subcontractors offer discounts depending on

the assigned package volume (see section ‘‘Mathematical model of the

PCMDVRPNL’’). In our benchmark instances for PCMDVRPNL and PCVRPNL,

we set the maximal discount emax given by a subcontractor to 0.4. A new discount

step is reached every time the subcontracted demand gl
sub exceeds 0 = 0.8 of the

vehicle capacity Q. In order to evaluate the impact of the non-linear cost function,

Table 1 Results obtained on a subset of PCMDVRPNL instances with different parameter settings

Simulated annealing

hinit 20 0 50

Davg 0.0 % 0.87 % -0.17 %

gdec 0.9995 0.999 0.9998

Davg 0.0 % 0.03 % -0.34 %

Penalties

Penmin 1 10 100

Davg 0.0 % 0.11 % 0.45 %

Penmax 1,000 500 2,500

Davg 0.0 % -0.05 % -0.10 %

Adaptive mechanism

. 0.3 0.5 0.7

Davg 0.0 % -0.16 % -0.08 %

/ 30 15 45

Davg 0.0 % -0.55 % -0.02 %

d1/d2/d3 9/2/1 9/5/1 9/2/0

Davg 0.0 % -0.13 % -0.14 %
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we additionally performed tests on the benchmark instances using a linear cost

function 1� emax

~q�T � gsubl (see Fig. 4).

In the following, we present the results obtained with our AVNS-RN on the

newly designed benchmark sets of PCMDVRPNL and PCVRPNL in their original

form and with a linearized cost function. For all problem instances, we present the

upper bound computed as explained above (CostUB and the number of vehicles

kUB), the best solution found in ten runs (Costbest and kbest), the deviation of this

solution from the upper bound in percentage (Dbest), the average solution cost over

the ten runs plus the deviation from the upper bound (Costavg and Davg) and finally

the average percentage of subcontracted customers (SCavg). For the original

instances, we additionally report the average computing time in seconds (CPU(s)),

computing times for the linearized instances are not reported due to their similarity.

Table 2 reports the results obtained on the benchmark instances for the

PCMDVRPNL. Since the values of CostUB and kUB correspond to a very

competitive solution of the specific instance without subcontracting, the results

show that our algorithm is clearly able to identify those customers that can be

profitably subcontracted and to determine efficient vehicle routes. On average, our

algorithm proves able to find solutions that improve the upper bound by more than

11 %. This result also holds if the average solution quality Costavg is considered,

which proves the robustness of AVNS-RN. The deviations from the upper bound as

well as the number of vehicles required are almost equal for both cost functions,

while the number of subcontracted customers is higher for linear costs. This can be

explained by the fact that in case of the stepwise function, the algorithm tries to

reach a discount step. If only a few customers are left within the delivery radius,

subcontracting additional customers is most likely not profitable. By contrast, the

linear function rewards each additionally subcontracted customer by an increased

discount.

Table 3 depicts the results obtained on the single-depot PCVRPNL instances.

1

0.6

0

Cost Factor
(1-e)

q-T~ Subcontracted 

Demand gsub
l

Fig. 4 Example of the linear
discount function used as
comparison method
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For both discount functions, the solutions improve the VRP-based upper bound

by more than 12 % while requiring moderate computing times. In addition, the

number of vehicles required is reduced by more than 30 %. This shows again that

our algorithm is able to identify customers that can be profitably subcontracted and

to construct cost-efficient vehicle routes. Comparing the solutions obtained with the

two different cost functions, the deviation from the upper bound CostUB as well as

the number of vehicles required are almost equal for both cost functions. However,

almost 7 % less customers are subcontracted when the stepwise cost function is

considered. This can be explained by the fact that the stepwise function reaches emax

earlier, i.e., with less subcontracted demand. In case of the linear function,

increasing the subcontracted demand can always be profitable up to ~q� T units as

the discount factor continuously increases.

Compared to the multi depot case, the average improvement of the upper bound

is higher. In the multi-depot problem different subcontractors with a limited

delivery radius and capacity exist. Thus, the demand of outsourced customers is

distributed among several subcontractors and maximal possible discounts are not

reached. Our algorithm tries to maximize the discount by filling the vehicles of a

subcontractor but the restricted delivery radiuses often counteracts this objective.

Varying the minimum demand to be delivered by the private fleet

One of the main characteristics of prize-collecting problems is the lower bound on

the prize to be collected or, in our case, the minimum customer demand T that has to

be served by the private fleet. Since the value of T strongly influences the

outsourcing decision, we perform tests with different values of T to quantify the

effect on the overall solution value. In detail, we used the generated PCMDVRPNL

benchmark instances with the standard subcontracting price pi and without any

discount function. We varied the value of T between 0:5~q and 0:9~q in steps of 0:1~q
and solved each instance 10 times with this parameter setting. Figure 5 depicts the

average gap of the best solutions found to the upper bound as well as the average

number of subcontracted customers for each value of T
~q on the PCMDVRPNL

instances.

With increasing value of T
~q ; the flexibility to outsource customers decreases and

the solution quality clearly suffers. Similarly, the number of subcontracted

customers decreases when the minimum demand to be served by the private fleet

is increased. However, reducing T below 0:7~q has only a very slight influence on the

gap to the upper bound while still significantly increasing the number of

subcontracted customers. This indicates that after the most unprofitable customers

have been outsourced, a high number of solutions with similar solution quality exist.

Their quality only slightly depends on further subcontracting customers.

Although the rough tendency of the outcome of this study appears expectable, the

results show the strong influence of the important real-world constraint defining a

lower bound on the demand served by the private fleet. In addition, the results prove

again the suitability of our algorithm to handle the subcontracting decision while

paying attention to the prize-collecting constraint.
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Evaluating the algorithmic performance on benchmark instances of related

problems

To prove the performance of the proposed AVNS-RN, we apply the algorithm to

benchmark instances of the closely related MDVRPPC and the VRPPC. The

MDVRPPC test instances are described in Stenger et al. (2012) and are available for

download. We compare the results obtained with our AVNS-RN to those of the

AVNS of Stenger et al. (2012) (abbreviated as SVES in the table). Table 4 reports

for each instance the best known solution (BKS), either taken from Stenger et al.

(2012) or found during the overall testing of our algorithm. For both algorithms, we

report the best solution found in ten runs (Costbest) and its percentage deviation from

the BKS (Dbest), the average solution cost over the ten runs and its deviation from

the BKS (Costavg and Davg) and the average computing time in seconds (CPU(s)). If

the BKS is found by one of the two algorithms during the ten runs this is indicated

in bold.

Although our AVNS-RN is specifically adapted to the PCMDVRPNL and the

parameter tuning is carried out on PCMDVRPNL instances, it obtains competitive

results that even slightly improve on the average solution quality, requiring

basically identical run-time. Furthermore, we found new best solutions for two

benchmark instances during these 10 runs (BKS marked bold) and a total of 16 new

best solutions during our overall testing (BKS marked in italics). These results

further confirm the competitiveness of the proposed method.

For the VRPPC, Bolduc et al. (2008) designed 34 benchmark instances that can

be downloaded at http://www.mcbolduc.com/VRPPC/tests.htm. The benchmark

instances are based on the same VRP instances as those proposed for PCVRPNL.
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However, the number of available vehicles is reduced such that the total vehicle

capacity is not sufficient to serve the demand of all customers. As comparison

methods, we use the tabu search with ejection chains described in Potvin and Naud

(2011), the tabu search proposed by Côté and Potvin (2009) and the AVNS algo-

rithm of Stenger et al. (2012). Table 5 presents for all algorithms the deviation of

the best solution found in ten runs from the best known solution as well as the

average computing time in seconds. For our AVNS-RN, we additionally report the

deviation of the average solution found to the best known solution. Since Potvin and

Naud (2011) mentions only the best solution found, a comparison of the average

solution quality is not possible.

The results obtained on the VRPPC instances show again the high efficiency of

the AVNS-RN algorithm. Compared to the currently best performing algorithm, the

TS with ejection chains of Potvin and Naud (2011), the average gap is slightly

worse, but we require significantly less computing time. Furthermore, we are able to

improve the results of the AVNS presented in Stenger et al. (2012), while the

computing time remains on an equal level. It is also worth mentioning that we are

able to find a new overall best solution on instance G-06. Moreover, the average

results obtained with AVNS-RN confirm the robustness of the algorithm.

Conclusion

In this paper, we proposed a single and multi-depot version of the PCVRPNL to

model an important route planning problem arising in small package shipping. To

solve the proposed NP-hard problems, we presented a powerful AVNS algorithm

applying cyclic-exchange neighborhoods, which bases on the framework of Stenger

et al. (2012). To tackle the requirements of the PCVRPNL, we designed specific

route and customer selection methods. In addition, we implemented a random

ordering of the neighborhoods used in shaking. Both extensions proved their

positive impact on solution quality during testing.

For the computational studies, we designed a set of 34 benchmark instances for

the single depot problem and 33 instances for the multi-depot problem. Numerical

studies are performed on the newly designed benchmark instances to investigate the

suitability of the algorithm for the proposed problems. The tests further demonstrate

the strong influence of the value chosen for the minimum demand to be served by

the private fleet. In addition, we solved benchmark instances of the closely related

VRPPC and MDVRPPC. The results clearly prove the high performance of the

proposed algorithm.
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