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AffiFle hiSfOfJ/_-‘ Sparse sensor networks for Lamb wave-based structural health monitoring (SHM) can
Available online 29 October 2014 detect defects in plate-like structures. However, the limited number of sensor positions

provides little information to characterize the unknown scatterer. This can be achieved by

full wavefield analysis e.g. using Laser Doppler vibrometry measurements.

This paper proposes deconvolution processing that enhances the acoustic wavefield

interpretation by increasing the temporal resolution of the underlying ultrasound signals.

Applying this preprocessor to the whole wavefield allows improved non-destructive

assessment of the defect. This approach is verified experimentally through a case study

on an isotropic aluminum plate with four cracks.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC
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1. Introduction

Guided waves, such as Lamb waves, have demonstrated a high sensitivity towards defect detection in metallic and fiber-
reinforced structures. They can be easily generated and sensed by means of permanently installed and low-cost piezoelectric
wafer active sensors (PWAS). The geometry of the structure as well as the material properties and the bandwidth of the
excitation signal decide whether only the fundamental or also higher wave modes propagate simultaneously. In permanent
installations, the transducers are typically arranged in a sparse array configuration either in a distributed network [1,2] or
concentrated phased-array type arrangement [3]. Both approaches have in common that a relatively low number of PWAS
can be employed, which is advantageous in terms of system complexity, costs and weight considerations. A drawback of
this sparse array technique is the restricted ability to characterize the defect since only insufficient information about wave
scattering becomes available due to the limited number of measurement positions.

As soon as the location of the scatterer has been identified through a sparse array technique such as time-of-flight
analysis [4] or digital beamforming [5], the scatterer can be characterized by measuring the full wavefield at a high number
of scanning points in the direct neighbourhood of the scatterer. This can be achieved in a non-contact way by using either
Laser-Doppler vibrometry [6], scanning air-coupled ultrasound [7] or scanning laser-induced ultrasound [8]. In practical
applications, the existing PWAS can be exploited as wave sources. The full wavefield provides rich information about the
scatterer that can be used either for acoustic wavefield imaging (AWI) [9-12], frequency-wavenumber analysis [13,14], local
wave-number estimation techniques [8,15] or defect imaging via digital beamforming [16].

The motivation of this work is to enhance the performance of AWI by a compressed sensing (CS) deconvolution filter,
where each ultrasound signal is represented by a spike train with high resolution in the time-domain, leading to improved
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and simplified diagnostics of the wavefield. Therefore, a CS-based deconvolution framework has been established, where the
ultrasound signal is considered to be sparse in the domain of the excitation signal. Given by the model-based strategy, the
technique can be applied not only to signals from metallic structures where the dispersion relation of the Lamb modes is
well-known. By means of a suitable dictionary it is possible to apply the method to fiber-reinforced structures, too. In the
framework of SHM, deconvolution of guided wave signals have been demonstrated in [17,18]. In the context of ultrasound
non-destructive testing (NDT) several sparse deconvolution strategies have been proposed [19-21]. Recent developments in
sparse signal processing in ultrasound NDT are reviewed in [22].

The remainder of the paper is organized as follows: Section 2 presents the theoretical background of the proposed CS
deconvolution strategy and its numerical implementation. After that, Section 3 demonstrates its performance in a case study
performed on an aluminum plate using full wavefield data obtained from a scanning Laser-Doppler-vibrometer (SLDV). The
results from the CS-framework is compared against classical AWI-techniques, where the wavefield animation is based on
the radio-frequency and envelope-detected waveforms, respectively. Finally, the main achievements will be summarized in
the Conclusions.

2. Deconvolution of Lamb wave signals

The emerging field of compressed sensing (CS) is rather broad and has a multitude of applications [23,24]. Hence, it is
important to specify in what variant compressed sensing is used. In this paper, we will consider CS in terms of a sparse
signal reconstruction and deconvolution technique of time-varying Lamb wave signals.

2.1. Compressed sensing based deconvolution

Acoustic wave field imaging relies on a measured time-domain signal, denoted by §Xy = s(t), for every measurement
position (x, y) on the structure. In classical wavefield imaging, we arrive directly at snapshots of the wavefield, namely a
two-dimensional map for every point in time ¢ € {1, ..., M}. In this paper, we introduce however an intermediate processing
scheme that yields enhanced wavefield imaging.

We consider a measured signal s(t) = ZQ":]N h(t)- x(t—1) to be the convolution of a pulse waveform h and an unknown
spike train ¥ of length N. This means that the signal is a superposition of the original excitation pulse and its echoes
that undergo attenuation and phase alteration during propagation through the structure. Due to attenuation and phase
uncertainty h can in general assume the shape of several different waveforms with varying amplitude and phase relations.
The convolution, involving several possible waveforms, can be specified as a linear system of equations s = A - x. Here,
the so-called dictionary A = (amn) = (dq ---dy) contains one distinct waveform at one distinct point in time in one of its
columns d,. The columns are referred to as atoms.

In general, the M x N matrix A can have the property of M < N. Moreover, measurement noise and unconsidered effects
might be present that require the addition of a noise term

S=A-}+17 (1)

We thus find that the linear system of equations is underdetermined, yielding no unique solution. Hereafter, the task of
recovering x is referred to as deconvolution. Sparse deconvolution based on compressed sensing mitigates these restrictions
by imposing additional constraints. If we assume the measured time-domain signal to contain only a small number K of
relevant pulses, the solution ¥ becomes sparse. We refer to K as sparsity or sparsity level that satisfies K <« N in order to
be considered sparse. This sparsity assumption is adequate for an experimental scenario where the original excitation pulse
is scattered and reflected only few times.

The sparsity assumption finally yields an optimization problem that is widely studied in the field of compressed sensing:

min|s—A-¥|; subjectto ¥ llo <K 2)
X

Here, || - |2 denotes the Euclidean norm and || - || denotes the £p-pseudonorm that corresponds to the number of non-zero
vector entries.

2.2. Numerical implementation

For a given signal, a suitable dictionary and a given sparsity level K, finding a solution of problem (2) requires in general
a combinatorial computational effort. Hence, there are numerous faster algorithm in compressed sensing to approximate
a solution to this problem. A main distinction can be drawn between relaxation and greedy approaches [25]. Relaxation
schemes replace the £p-norm with the ¢;-norm in order to arrive at an easier convex optimization task that nevertheless
delivers, under certain circumstances, suitable results. In this paper, we apply a greedy scheme. Orthogonal Matching Pursuit
(OMP) [26,27] is such a method that seeks in a greedy manner at each step a locally optimal solution. At each step an atom
is picked that correlates most with the measurement or subsequently with its residual. The OMP-algorithm is presented in
detail in Ref. [26].



C. Kexel, J. Moll / Case Studies in Nondestructive Testing and Evaluation 2 (2014) 77-83 79

1 T

- At=0
— At=2
— At=4
0.8 1
S
8
(0]
E 0.6 1
£
€
©
3
S o4l 1
©
£
[<]
=
0.2 b
0 A
0 50 100 150

time (us)

Fig. 1. Exemplary smoothed sparse solution (sparsity K = 3) for distinct parameters of the centered moving average filter. The lag At =0 corresponds to
the absence of any smoothing.

For a set of measurements and a given deconvolution algorithm, in our case OMP, the remaining task is to choose an
appropriate dictionary matrix A. Since the properties of the excitation pulse, such as the excitation spectrum and the pulse
duration (width), are known, we can model atoms of the dictionary to be similar pulses, but at different points of time. Since
the phase behaviour for scattered and reflected waves is rather less known, we resort to looking at amplitude envelopes
of signals. Hereafter, the amplitude envelope of a signal is denoted by Sepvelope(t) = IIs(t) + iH(s(t))|l2 where H(s(t)) is
the Hilbert transform of signal s(t). In our approach, the measured signal is replaced by its amplitude envelope and the
dictionary contains the amplitude envelope of time-varying, modeled excitation pulses.

The final step in our numerical implementation is a smoothing filter: The solution of the deconvolution via OMP is the
sparse spike train x. It is a sparse representation of the measured signal s. In order to get an enhanced wavefield image,
we replace the original measurement by its sparse counterpart. The resulting sharp intensity peaks in the wavefield image
of the monitored structure are sometimes hard to grasp visually. So we smooth the spike train using a standard moving
average filter to obtain a comfortable, more coherent wavefield image while keeping most of the improved visualization of
our approach. The centered moving average filter with discrete lag parameter At yields a smoothed spike train

A

X+ x(t£1) @)
2-At+1

where summation is also carried out over discrete time steps t. The impact of our filter on a sparse solution ¥ is shown

illustratively in Fig. 1 for different values of the lag At. A schematic representation (flowchart) of our whole implementation

is depicted in Fig. 2.

Xsmooth (£) =

3. Case study

In this paper, we consider a circular PWAS with a diameter of 10 mm as wave source that is placed in the middle of an
aluminum plate that has the dimension 540 mm x 543 mm and a thickness of 1.5 mm. Four cracks each having a length
of 30 mm have been introduced. A standard SLDV-setup, which has been proposed in [9], records a total number of 32,942
ultrasound signals at an equidistant grid of approximately 3 mm in horizontal and vertical plate direction. The excitation
signal is a Hann-modulated tone-burst with five cycles at a carrier frequency of 120 kHz. This narrowband excitation signal
minimizes the effect of dispersion. At this product of frequency and thickness the out-of-plane component of the funda-
mental symmetric Lamb mode is too small to be measured with the SLDV, so that the subsequent analysis is limited to the
fundamental antisymmetric wave mode.

3.1. Deconvolution of Lamb-wave signals

To demonstrate the concept of the proposed technique, we first consider only a single measurement position on the plate
for exemplary purposes. The measured time-domain signal is depicted on the top right-hand side of Fig. 2. It consists mainly
of two waveforms of different amplitude and phase. Moreover, a low level of noise is present in the measurement. The
dictionary is constructed of envelopes of modeled 120 kHz pulses with suitable widths. Exemplary atoms are depicted on
the left-hand side of Fig. 2. Also pulses with slightly varying widths were tested and it was found that no close connection
to the overall results exists.



80 C. Kexel, J. Moll / Case Studies in Nondestructive Testing and Evaluation 2 (2014) 77-83

model —> amplitude envelope amplitude envelope «— measurement
1 . ‘ ' 1 :

bed
o

amplitude (a. u.)
o
_
amplitude (a. u.)
o

4
13

dictionary noise

|
ot
3}
|
o
(5,

n
>
+

50

150

.

100
time (us)

)
o
15

amplitude (a.
S
(4, o
_—
_—

R . used for AWI
sparse solution > thing >

amplitude (a. u.)
amplitude (a. u.)

0 50 100 150 0

50 100 150 0 50
time (us) time (ps)

100 150
time (ps)

Fig. 2. Illustrative sketch of our deconvolution approach. The terms of Eq. (1) are depicted by exemplary signals.

Deconvolution was carried out with OMP and a sparsity level K = 3. The result is shown on the bottom of Fig. 2. The
spike train consists of 3 non-zero entries. The smallest peak is almost completely smoothed out by the filter. We use a lag
At = 3 in our studies within this work. By this choice, on the one side a considerable smoothing is achieved in order to
yield a coherent resulting wavefield. On the other side the compact representation of the resulting wavefield is maintained,
which can be destroyed otherwise for larger lags. This corresponds to a time window of 1.56 ps before and 1.56 ps after a
certain point in time.

This example allows for two interesting observations: First, OMP accounts by default for the correct amplitudes during
deconvolution. The relative amplitude of different pulses in the measurement is also preserved in the deconvolved result.
Hence, there is no need to insert modeled pulses with different amplitudes into the dictionary matrix. The computational
performance of OMP is closely linked to the size of the dictionary. It is of great importance to keep this matrix as small as
possible.

Second, the sparsity K is a user-defined parameter and by setting K = 3, we overestimated the number of pulses in the
measurement. Since the exact number of echoes is usually not known in advance, such estimation problems occur quite
frequently in compressed sensing frameworks. How to set unknown parameters in similar applications, is object of current
research [28]. In our approach, the additional peak in the deconvolution result has a small value, because no obvious pulse
in the measurement corresponds to it. Via the subsequent smoothing operation, the additional peak finally disappears.
Mildly overestimating the sparsity of the scenario is not a critical issue in our approach. We also investigate and reconsider
this issue in Section 3.3.

3.2. Conventional acoustic wavefield methods

The whole wavefield is investigated using classical acoustic wavefield imaging (AWI) as shown in Fig. 3(a)-(b). The
scatterer on the top left and the scatterer on the bottom right generate reflections that show their position as well as their
orientation. The scatterer on the top right reflects the initial wave and thus the reflections interfers with the initial wave.
Due to the interference of both waves, at least a localization of the scatterer is possible. The scatterer at the bottom of the
left-hand side shows little interaction with the propagating Lamb-wave pulse.

3.3. Enhanced acoustic wavefield imaging via compressed sensing based deconvolution
Next, the wavefield using the enhanced imaging scheme is studied. We employ the aforementioned method based on de-

convolution and replace the measured signal with its smoothed sparse representation. Different choices of the user-defined
parameter K are tested, namely K =3 as well as K =5 and K = 7. The results are depicted in Fig. 3(c)-(e).
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Fig. 3. Comparing the time-evolution of wavefields using different methods. Row a: Classical wavefield imaging using the amplitude envelope instead of
original measured signal. Row b: Classical wavefield imaging using the raw radio-frequency signals. Row c: Enhanced wavefield imaging with sparsity K = 3.
Row d: Enhanced wavefield imaging with sparsity K = 5. Row e: Enhanced wavefield imaging with sparsity K =7.
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The enhanced AWI method, for all three choices of the sparsity parameter, exhibits a narrower localization of the wave-
front and the echoes. The propagation of the wavefront can thus readily be tracked by eye or image processing tools,
because a sharp contrast of the wavefront to its surrounding is achieved. Imaging results of the enhanced scheme exhibit
considerably less noise and speckles throughout the region of interest. This successful suppression of noise is an eminent
improvement in imaging quality compared to the conventional schemes. Results for the enhanced AWI method appear
qualitatively similar, regardless of the sparsity parameter, although for larger K additional speckles occur. Since the repre-
sentation of the wavefield is compact, any perturbation of the wavefront due to reflections or interference can be detected
easily. Due to the sensitivity of the enhanced scheme some pre-echoes emerge, for example in the first column (from the
left) in Fig. 3. Since the smoothing during our signal processing involves future data points with respect to time these early
echoes are generated. A disadvantage of all approaches employing an amplitude envelope is the loss of the ability to resolve
the internal structure of the wavefront. For example in the fifth, most right column in Fig. 3 the position of the top right
scatterer is best visualized by the classical AWI technique. Nevertheless, the orientation of this very same scatterer can also
be deduced from the reflections, which are appreciable in the third, fourth and fifth columns (from the left) generated by
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Fig. 4. Cross-section through wavefield snapshots at 84 ps (left) and 118 ps (right). Comparison of cross-sections for the classical method with amplitude
envelope and the enhanced method with sparsity K =3 and K = 7. The location of the cross-section is depicted by white lines in Fig. 3. The amplitude of
the three distinct cross-sections is normalized.

the enhanced imaging scheme, especially in the lower row where K = 7. All methods considered here, fail however to make
the bottom left scatterer visible, due to its orientation parallel to the propagation direction of the wavefront.

In order to highlight the improvement of our enhanced method, Fig. 4 illustrates the wavefield cross-sections of the
classical method (employing amplitude envelopes) and the enhanced wavefield imaging with different sparsity levels. These
diagonal cross-sections are taken from the first and the last column of Fig. 3. In general, the sparse time-domain represen-
tation within the enhanced framework leads to a spatial wavefield with less spread and thus to an improved localization. At
the same time the improved scheme suppresses noise. However, for larger K some clutter emerges. On the left-hand side
of Fig. 4 the third highest peak for the enhanced methods corresponds to one of the aforementioned pre-echoes, which are
visible due to temporal smoothing and the high spatial resolution. On the right-hand side of Fig. 4 the compact reflection
due to the bottom right scatterer, which is appreciable in the fifth column of Fig. 3, is not present in the cross-section,
because it does not lie exactly on the diagonal.

4. Conclusions

In this paper, we proposed a wavefield deconvolution technique that improves the assessment of structural defects in
Lamb wave based structural health monitoring. The technique is formulated as a compressed sensing problem and gener-
ates spike trains of the measured narrowband ultrasound A-scans. It was shown that spurious peaks with small amplitudes,
which are a side-effect of the orthogonal matching pursuit method, can be smoothed out by a moving average filter. Hence,
the user-defined parameter is of minor importance here. The robustness of the deconvolution preprocessor was demon-
strated by 32,942 SLDV measurements on an aluminum plate having four cracks of different orientation. In comparison
to the wavefield animation with the conventional radio-frequency and envelope-detected waveforms, a clearer view of the
defect was demonstrated.

A characteristic property of the method is the model-based nature so that it can be applied non-only to aluminum but
also to composite structures using a suitable dictionary. Moreover, the method does not require a well understanding of the
structure to be monitored, which is generally required for frequency-wavenumber methods. In the future, we will perform
parametric studies to evaluate various defects in metallic and composite structures. Furthermore, we will explore the ability
to reduce drastically the amount of measurement data needed within the enhanced approach.
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