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1 Introduction

During the 2007-08 financial crisis, AIG became the first prominent example of an insurance

company to require and receive a government bailout. Its central role and interconnectedness as a

counterparty for other financial institutions made apparent the importance of insurance companies

for overall financial stability (Billio et al. (2012)). As large-scale financial investors, European in-

surance companies, for instance, have a volume more than 60% of Europe’s GDP in assets under

management (European Systemic Risk Board (2015)), which impressively highlights their poten-

tial influence on and exposure to market movements. Additionally, as financial intermediaries,

insurance companies provide essential services to the society and economy by assuming, pricing,

transferring and diversifying risks (Thimann (2014)). Comparing the insurance sector to the bank-

ing sector, the general size of its core business activities is substantial. While the written premiums

of European insurance companies amount to e1.2 trillion in 2015 with e1 trillion claim payments,

the European banking sector’s lending activity accumulates to e23.5 trillion and e16.8 trillion as

deposits (Insurance Europe (2016) and European Banking Federation (2016)).1 This large scale of

the insurance sector inevitably rises the potential of insurance companies being too-big-to-fail and

too-interconnected-to-fail, which both have proven their tremendous threat during the last global

financial crisis.

In this article, we study to what extent diversification of an insurance group’s traditional busi-

ness activities, in terms of life, non-life and reinsurance business, affects the propagation of economic

shocks by insurance companies.2 Insurance groups typically do not undertake exclusively life, non-

life, or direct reinsurance business, but often comprise several operating companies that conduct

life, non-life and reinsurance business. For example, AXA, the largest insurer in our sample accord-

ing to combined gross premiums written, collects roughly 65% of combined gross premiums in life

insurance and 3% in assumed reinsurance. Similarly, the Munich Re Group, that includes Munich

1For US insurers and banks the relation in size is similar, see Board of the Governors of the federal reserve system
(2016).

2Note that we usually refer to insurance companies as holdings of different sub-companies (i.e. operating compa-
nies). In this context, an insurance company (group) is able to pursue both life and non-life business, while this is
usually prohibited by law for direct insurers.
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Re, which is the largest reinsurer according to gross premiums in our sample, writes 53% in life and

only 53% in assumed reinsurance gross premiums.3 Due to the possibility to redistribute capital

within an insurance group, it is the financial condition of the consolidated insurance group that

ultimately determines the propagation of shocks, for example via counterparty credit risk. Due to

substantial differences in the risk of different insurance lines, the mix of business activities can have

a subtle impact on the propagation of shocks.

Previous studies do not allow for a potential risk diversification effect between different insurance

business activities but focus on the relation of single business activities with economic shocks (for

example Berdin and Sottocornola (2015), Weiß and Mühlnickel (2014) and Kaserer and Klein

(2016)). With this approach the immediate issue arises, how to classify insurance companies. For

example, Weiß and Mühlnickel (2014) split their sample in life and non-life companies. AXA

would be classified as direct life insurer, since life insurance is the largest business line. In a

similar reasoning, Munich Re would be classified as reinsurer. However, such an approach does

not adequately reflect the insurance group’s risks, as life insurance and reinsurance are only part

of the insurance activities of AXA and Munich Re, respectively. Due to fundamental differences in

insurance lines, it seems intuitive that conducting both life and non-life business can reduce risks

in comparison to exclusive life or non-life business. This intuition is also supported from a micro-

prudential perspective of the European regulatory regime Solvency II, which explicitly allows for risk

mitigation between life and non-life insurance business (European Commission (2015)). Confirming

this rationale, Berdin et al. (2016) find that the resilience of European insurance companies heavily

depends on product mix.

The rationale behind the diversification potential between life, non-life, and active reinsurance

business with respect to the propagation of shocks emerges from the fact that all three traditional

insurance activities are very different by nature. Life insurance contracts usually have a long dura-

tion with fixed annual premiums, while non-life insurance is more short-term oriented, commonly

with annual renewals of contracts. Since insurance companies typically try to match the charac-

teristics of assets and liabilities, investments of insurance companies share a similar duration with

their liabilities. Reinsurance business usually captures the tail risks originating from direct insur-

ance contracts. It can be characterized by contracts with a long-term orientation and a larger tail

3Note that reinsurance can be both life and non-life business.
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risk. Due to the heterogeneity of underwriting risks and premium volume, reinsurers are usually

able to obtain a better investment diversification by nature.

These substantial differences in insurance activities have a profound impact on the role of in-

surance companies as intermediaries and investors in the financial system. For example, business

volatility is smaller for life insurers due to the long-term nature of their assets and liabilities in

comparison to that of non-life insurers. However, this long-term nature also increases the persis-

tence of economic shocks for life insurers regarding the overall business performance. Reinsurance

in this context can be characterized by a mix between both, since it combines non-life and life

insurance features. Consequently, the propagation of economic shocks from insurers to and from

other financial institutions is heavily affected by the trade-off between long-term and short-term

(un-)certainty about the future business development.

We extend previous studies on the role of insurance companies for financial stability and the

propagation of economic shocks. Billio et al. (2012) show that the interconnectedness between

insurance companies and other financial institutions has been substantially increasing during the

last decades. In Section 3 we present a simple model of counterparty credit risk that is one possible

source of interconnectedness. Counterparty credit risk can lead to contagion between (financial)

institutions and is thus an important source for financial stability and systemic risk (Benoit et al.

(2017)). The model is based on the idea that life business increases the persistence of past shocks,

but decreases the future business volatility, which both determines the insurer’s ability to serve

a counterparty’s claim. We show that the exposure of a counterparty’s claim towards a stylized

insurance company critically depends on the ratio between life and non-life insurance business. The

model implies that a larger persistence of life business decreases the proportion of life business that

minimizes counterparty exposures, since persistence decreases future expected cash flows. Moreover,

a larger proportion of non-life business can reduce counterparty risk for more levered insurance

companies, since counterparties are willing to exchange less volatility with a larger expected cash

flow if leverage increases further.

In Section 4 we empirically test the implications of our theoretical model. For this purpose,

we examine the relation between commonly used spillover risk measures and insurance business

activities. We focus on the marginal expected shortfall (MES) as introduced by Acharya et al.

(2016), the dependence consistent conditional Value at Risk (∆CoVaR≤) as introduced by Mainik
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and Schaanning (2014) and Adrian and Brunnermeier (2016), the Average Excess Conditional

Shortfall Probability (CoSP) as introduced by Kubitza and Gründl (2017), and the beta-factor.

We distinguish between the spillover of equity shocks to and from the global financial sector and

the American non-financial sector. Our results strongly confirm the implications of our theoreti-

cal model. Life and non-life as well as assumed reinsurance and direct insurance business display

significant diversification effects. Our analysis suggests that long-term bond investments of life

subsidiaries are a main driver for this diversification. As such investments indicate a large persis-

tence of life business, this finding confirms our model’s intuition that persistence is a main cause

for diversification between insurance lines of business.

In a similar setting but without allowing for diversification between life and non-life business,

Berdin and Sottocornola (2015) find that life insurance significantly decrease financial stability,

while Weiß and Mühlnickel (2014) do not find any significant contribution of life business to it.

Bierth et al. (2015) examine the influence of insurers’ business characteristics on financial stability

and distinguish in their setting between life and non-life insurers via SIC classifications. However,

they do not study differences and interactions between these two traditional insurance activities

with regard to financial stability. Kaserer and Klein (2016) show as well that the impact of insurance

companies on financial stability differs with the insurance business they undertake, but they neglect

a diversification potential, too. We differ from these studies by allowing for an explicit potential

trade-off effect between life and non-life business as motivated by our model. Previous studies

about the interaction of different insurance business lines focused on the allocation of capital for

a given relative size of business lines (Dhaene et al. (2012). We extend this literature by studying

the relative size of business lines itself.

Moreover, our theoretical model provides an intuition for the cause of this trade-off. Thereby, we

extend the literature on balance sheet contagion by providing a simple model to study the impact

of persistence and volatility on counterparty credit risk. Benoit et al. (2017) provide an overview on

previous studies on balance sheet contagion between financial institutions. In contrast to previous

studies on network contagion, we model the balance sheet of a stylized insurance company and focus

our analysis on the impact of persistence on the ability of this company to serve counterparties’

claims.

The remainder of this article is structured as follows. Section 2 describes the related literature
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on the role of insurers for financial stability. Section 3 presents a stylized model for counterparty

credit risk to an insurance group that conducts life and non-life business. In Section 4 we test

the resulting theoretical implications by employing empirical measures for spillover risk. Section 5

concludes.

2 Insurance Business and Financial Stability

Although traditional insurance business is commonly not interpreted as a major source for

systemic risk (International Association of Insurance Supervisors (2011), European Systemic Risk

Board (2015)), there are substantial differences in the relation between insurance business activities

and financial stability. For example, life insurers tend to be more vulnerable to lapse risk and hence,

potentially face a higher liquidity risk (e.g. Cummins and Weiss (2014), Paulson et al. (2014)).

In a scenario where a considerable number of life insurance contracts is lapsed, life insurers might

also tend to fire-sale assets in response to shocks. The impact of such fire sales is controversially

disputed (Geneva Association (2016)).

Due to the longer investment horizon compared to non-life insurers, possible financial guarantees

and the resulting high importance of asset management, life insurers are more sensitive to market

risk and interest rate risk in particular. According to the European Systemic Risk Board (2015), the

scenario of a prolonged low-interest rate environment in conjunction with a drop in asset prices is

considered to be one of the most destabilizing event for European life insurers and the real economy

as well. Nonetheless, life insurance also stabilize future cash flows, since the underlying contracts

provide long-term liquidity to the insurance company, with typical durations of more than 15 years.

Thus life insurers also engage as important long-term investors for the real economy by providing

funding for long-term projects (as infrastructure projects) but also for the banking sector.

In contrast, non-life insurance contracts are mainly short-term oriented contracts that provide

short-term liquidity to the insurance company. On the one hand, non-life insurance business is thus

more volatile than life insurance business, but on the other hand it benefits from flexible contract

adjustments. Therefore, non-life insurance companies can typically react and adjust their business

faster. Furthermore, non-life insurance risks are usually not correlated with the economic business

cycle and financial market risks, and hence constitute a natural hedge. In contrast to life insurers,
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claim payments to policyholders require the occurrence of an insured event, which makes insurance

runs impossible (International Association of Insurance Supervisors (2011)). Thus, liquidity risk is

generally smaller than for life business.

Nevertheless, Cummins and Weiss (2014) argue that non-life insurance for individuals and

smaller businesses might be difficult to substitute in the short run.4 This difficulty in substitutabil-

ity involves in particular heavily specialized lines of insurance business due to the complexity of

their insurance products, e.g. medical malpractice or directors and officers liability insurance (Inter-

national Association of Insurance Supervisors (2011)). Moreover, the impairment of a large non-life

insurer can have a far-reaching impact on policyholders that, for example, financially depend on

the insurer’s payments from salary continuance policies or that require liability coverage to practice

a certain profession. An example is the collapse of the Australian insurance company HIH, that

lead to severe disruptions in medical services and salary payments (Autralian Government - The

Treasury (2015); Wenham (2001)).

Active reinsurance business, as a third major insurance activity, differs in several ways from

direct life and non-life insurance business. Reinsurance is an important and central element of

insurance markets by transferring underwriting risks from a primary insurers to (one or several)

reinsurers. For example, about 25 percent of U.S. property and casualty insurers have reinsur-

ance recoverables of more than 50 percent of surplus (Cummins and Weiss (2014)). However, the

economic impact of reinsurance on spillover risk is still ambiguous. On the one hand, Cummins

and Weiss (2014), Park and Xi (2014) and Baluch et al. (2011) argue that reinsurance business

increases interconnectedness and counterparty risk in the insurance sector. Since reinsurers usually

have business relations with various primary insurers, an impairment of a reinsurer could affect

many primary insurers simultaneously and thereby destabilize the financial system. On the other

hand, Lelyveld et al. (2009) highlight that risks originating at reinsurers do not necessarily spill

over to other sectors. Weiß and Mühlnickel (2014) find a stabilizing effect of active reinsurance

for non-life insurance companies. Baur et al. (2003) highlight that reinsurers are better able to

diversify and to monitor the risks they underwrite, which generally acts as a stabilizing feature of

reinsurance.

4For example, as a reaction to the terrorist attacks on the World Trade Center on September 11th, 2001, inter-
national (re-)insurers excluded or significantly restricted terrorism coverage from insurance policies.
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3 Model

3.1 Balance Sheet

The insurance company consists of two operating companies, one life and one non-life insurer.

We aggregate assets and liabilities at the holding company’s level since, eventually, the holding

company secures the solvency and stability of the operating companies.

Asset growth per business line in year t equals the weighted average of the past asset growth

in year t − 1 and a normally distributed stochastic term. The larger the persistence, r, of the

corresponding business line, the stronger is the impact of the past asset growth on the current asset

growth and the smaller is its level of volatility. These dynamics are motivated by the typical asset

structure of insurance companies. According to the German Insurance Association (GDV) (2016),

an average life insurer in Germany held 87% in bonds and debentures and an average non-life

insurer a fraction of 77% in 2015.5

The massive bond portfolios of life insurers typically consist of long-term bonds that are held

to maturity in order to decrease the duration gap between assets and liabilities.6 Thus, future

asset returns for life and non-life insurers are mainly comprised by regular and constant coupon

payments of purchased bonds. On the hand, this implies that the asset growth rate underlies a

smaller volatility. On the other hand, shocks on prices or coupons that affect current reinvestments

(for example resulting from a change in interest rates) have a very persistent impact on future asset

returns for life insurers. Due to the difference in durations, these effects are stronger for life than

for non-life business. In line with these empirical observations, we expect a larger persistence of

asset growth for life insurers than for non-life insurers, rL > rNL. Nonetheless, we assume that

both life and non-life insurers share the same asset return distribution since they belong to the

same insurance group and hence are likely to share the same risk appetite.

Based on these stylized facts, the asset return is given as a modified autoregressive process. The

5The corresponding amounts for U.S. life insurers are 59% and for non-life insurers 53% in the first quarter of
2017 (Board of the Governors of the federal reserve system (2017)). The difference to Germany can be explained by
the particularly large exposure of German life insurers to long-term contracts.

6The German Insurance Association (GDV) reports an average duration of German life insurer’s assets of 8.2
years and of German life insurer’s liabilities of 14.8 in 2013.
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operating companies’ assets evolve according to

RLA,t = rLRA,t−1 + (1− rL)(µA + σAε
L
A,t) (1)

RNLA,t = rNLRA,t−1 + (1− rNL)(µA + σAε
NL
A,t ), (2)

where R
()
A,t denotes the asset growth at time t for the life (L) and non-life (NL) operating company,

r() ∈ [0, 1] the level of persistence, µA and σA the mean and standard deviation of the asset growth

distribution and ε
()
t ∼ N (0, 1). Overall consolidated assets at the holding level at time t are given

as

At = αAt−1R
L
A,t + (1− α)At−1R

NL
A,t (3)

= At−1
(
αRLA,t + (1− α)RNLA,t

)
, (4)

where α is the proportion of life business.

Underwriting business volatility is usually smaller for life insurers than for non-life insurers, since

future life insurance liabilities (as for annuities or endowment life contracts) are more predictable

than non-life liabilities.7 The risks affecting the liability growth of insurance companies include

mortality and longevity risks, which particularly affect life insurers, and catastrophe as well as

premium and reserve risks, which particularly affect non-life insurers. Due to their long contract

duration, growth of life insurance liabilities is more persistently affected by a change in the nature

of these risks. Moreover, severe shocks in mortality and longevity (e.g. the outbreak of a major

disease or the introduction of new medicine) are generally more persistent than the occurrence of

severe catastrophes. Due to the long contract duration, a life insurer’s portfolio of contracts also

adjusts very slowly to such shocks and, therefore, shocks have a very persistent impact on liability

growth. In contrast, non-life contracts and premiums are usually adjusted annually, which implies

a fast adjustment to shocks and hence, a small persistence of liability growth.

In line with these stylized facts, the liability growth dynamics are similar to the asset growth

7For example, typical endowment life contracts comprise a fixed guaranteed annual return and a profit partici-
pation component that is usually adjusted annually by the insurer.
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dynamics and given by

RLL,t = rLRL,t−1 + (1− rL)(µLL + σLLε
L
L,t) (5)

RNLL,t = rNLRL,t−1 + (1− rNL)(µNLL + σNLL εNLL,t ), (6)

where R
()
L,t denotes the liability’s growth rate at time t for the life (L) and non-life (NL) operating

company, r() ∈ [0, 1] the liability’s growth rate’s level of persistence, µ
()
L and σ

()
L the mean and

standard deviation of the liability’s growth rate’s distribution. Insurers typically aim for matching

the duration between their assets and liabilities. Therefore, we assume that liabilities and assets

exhibit the same level of persistence, rL and rNL for the life and non-life company, respectively.

Since non-life and life insurance claims share little common factors, we assume that εLL,t and εNLL,t

are independent. Overall liabilities at time t are given as

Lt = Lt−1
(
αRLL,t + (1− α)RNLL,t

)
. (7)

The resulting equity capital at the holding company’s level is then given as

Et = At − Lt ∼ N (µt, σ
2
t ), (8)

where the expected equity at time t is given as

µt = At−1
(
α(rL − rNL)(RA,t−1 − µA) + rNLRA,t−1 + (1− rNL)µA

)
(9)

− Lt−1
(
α((rL − rNL)RL,t−1 + (1− rL)µLL − (1− rNL)µNLL ) + rNLRL,t−1 + (1− rNL)µNLL

)
,

and its variance at time t as

σ2t = A2
t−1
(
α2(1− rL)2 + (1− α)2(1− rNL)2 + 2ρα(1− α)(1− rL)(1− rNL)

)
σ2A (10)

+ L2
t−1
(
α2(1− rL)2(σLL)2 + (1− α)2(1− rNL)2(σNLL )2

)
.
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3.2 Counterparty Risk

In order to study the impact of an insurance company’s business allocation on counterparty

credit risk, we focus on the expected repayment of a counterparty’s claim D due at time t to the

insurance company. If the insurer is not able to provide sufficient funds to repay the claim, the

counterparty suffers a loss. This might amplify or cause a cascade of losses of multiple financial

institutions, which might result in a destabilization of financial stability. In order to approximate

the insurer’s sufficient funds to repay the claim D, we employ the insurer’s amount of equity capital

Ct as the difference between assets and liabilities at time t. For simplicity, we do not consider other

financial obligations of the insurer that might increase or decrease its equity position.8

The expected exposure E of a counterparty to the insurance company is given as the expected

loss of the counterparty. It is given by

E = D − E [min (D,Ct)] = (D − µt)Φ
(
D − µt
σt

)
+ σtϕ

(
D − µt
σt

)
. (11)

Intuitively, it is closely linked to the insurer’s default risk. For D = 0 the expected exposure E

resembles the value of a put option on the insurer’s equity that pays if equity is negative, which is

commonly referred to as default put option.9 The more volatile the equity is, the more likely are

small (negative) values and thus the more valuable is the put option and the larger is the exposure.

Similarly, a small expected level of equity, µt = E[Ct], increases the value of the put option and

thereby the exposure E. The following results are based on this trade-off between the volatility

and expected value of equity capital.

The derivative of the counterparty’s exposure with respect to the insurer’s fraction of life busi-

ness, α, is given as

dE

dα
= −dµt

dα
Φ

(
D − µt
σt

)
+
dσt
dα

ϕ

(
D − µt
σt

)
. (12)

The derivatives of the expected equity and its variance with respect to the fraction of life business

8Other obligations might reduce the available funds proportionally to γCt, 0 < γ < 1. This case would alter
neither our results nor the intuition of our model.

9In common option pricing prices are log normally distributed. However, we would not yield a log normal (or
other common probability) distribution for the equity as a sum of log normally distributed liabilities and assets.
Therefore, we employ a normal distribution as an approximation. We do not expect our main results to change for
a different probability distribution.
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are

dµt
dα

= At−1
(
(rL − rNL)RA,t−1 + (rNL − rL)µA

)
− Lt−1

(
(rL − rNL)RL,t−1 + (1− rL)µLL − (1− rNL)µNLL

)
(13)

and

dσt
dα

=
1

2σt

(
A2
t−12

(
α(1− rL) + (1− α)(1− rNL)

)
(rNL − rL)σ2A (14)

+ L2
t−1
(
2α(1− rL)2(σLL)2 − 2(1− α)(1− rNL)2(σNLL )2

))
.

Proposition 1. If r = rL = rNL, µL = µNLL = µLL, σL = σNLL = σLL, then α = 0.5 is minimizing

the counterparty’s expected exposure.

Proof: See Appendix A.

Proposition 1 is in line with intuition from standard portfolio theory suggesting that it is optimal

to split investments in half if these are independent and identically distributed. This benchmark

result emerges in a situation in that life and non-life business have the same levels of persistence as

well as asset and liability growth rate characteristics. The following propositions study the optimal

fraction of life business if, in contrast, the distributional properties differ between life and non-life

business.

Proposition 2. If only the volatility of liabilities between life and non-life business varies but

r = rL = rNL, µL = µNLL = µLL, the optimal fraction of life business is given as

α∗ = 1−
A2
t−1 (1− ρ)σ2A + L2

t−1σ
L
L
2

2A2
t−1 (1− ρ)σ2A + L2

t−1

(
σLL

2
+ σNLL

2
) . (15)

It is decreasing in higher levels of volatility of life liabilities (σLL)2, and increasing in higher levels of

volatility of non-life liabilities (σNLL )2. It is decreasing in higher levels of volatility of asset growth

σ2A if σNLL > σLL.

Proof: See Appendix A.

Propositions 1 and 2 study the optimal fraction of life business when expected asset and liability
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growth rates µ() do not differ between life and non-life business. In this case, a change in the

fraction of life business exclusively affects the volatility of the insurance company’s equity, but

not its expected value. While a 50% fraction is optimal if the different lines of business share the

same level of volatility (as in Proposition 1), Proposition 2 shows that an increase in the asset or

liability growth volatility of life (non-life) business decreases (increases) the optimal fraction of life

business. Intuitively, volatility of the insurer’s equity substantially impacts its ability to repay future

obligations, and thus the counterparty risk of other counterparties towards the insurer. The more

volatile the insurer’s assets σA or the non-life liability growth rate σNLL relative to the volatility

of the life liabilities σNLL , the larger is the optimal fraction of life business that minimizes the

counterparty’s exposure. However, if the persistence of life and non-life business differs, economic

shocks have an impact on the expected equity, as the next propositions shows.

Proposition 3. Assume that rL > rNL. If the previous year’s liability growth rate RL,t−1 and

the size of liabilities Lt−1 are large enough (i.e. financial distress), α∗ = 0 is optimal. If the

size of liabilities Lt−1 is sufficiently small and the asset growth rate satisfies a certain condition

RA,t−1 > max (µA, D/At−1), counterparty’s expected exposure is smaller for α = 1 than for α = 0.

Proof: See Appendix A.

The last proposition shows that non-life business decreases credit counterparty risk towards

insurance companies in financial distress (i.e. when liabilities are large) that face a severe liability

shock. Non-life business is less persistent and thus increases the expected equity available to

repay the claim in comparison to life business. But at the same time, it increases the equity’s

volatility as well. Furthermore, the proposition shows that during financial distress, the increase in

expected equity dominates the increase in business volatility, since counterparties usually receive the

remaining equity capital of the insurer in case of a insolvency. Hence, to increase the expected level

of equity is more valuable than decreasing the equity’s volatility in terms of minimizing the expected

counterparty exposure. This behavior might be related to a kind of gambling for resurrection.

On the contrary, insurance companies with small liabilities and a sufficiently large asset growth

rate are very likely to serve the claim. In such a situation, decreasing equity volatility is more valu-

able than increasing the expected level of equity to minimize the expected counterparty exposure.

Consequently, life business is preferred over non-life business since it is associated with a smaller
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volatility. In this case, such a behavior is related to a kind of insuring the claim’s repayment.

Figure 1 illustrates the previous findings. We also allow for different levels of volatility for life

and non-life business asset growth, σLA and σNLA . We compute an economic shock in the previous

year’s liability and asset growth rates as the Value-at-Risk at level q of the idiosyncratic asset and

liability growth rate for a 50% fraction of life business, i.e. RA,t−1 = µA + 1
2(σLA + σNLA )Φ−1(q) and

RL,t−1 = µL + 1
2(σLL + σNLL )Φ−1(q). We set the Value-at-Risk level to q = 0.05. Our results are

robust to other levels of q.

The smaller the liabilities, the larger the optimal fraction of life business, which is in line with

Proposition 3. A larger persistence of life business relates to less volatility of the expected equity.

Hence, an increase in persistence decreases the optimal level of life business.

0.8 0.82 0.84 0.86 0.88 0.9
0

0.2
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Lt-1/At-1

α
*

(a) Fixed persistence rL = 0.3.

1 1.2 1.4 1.6 1.8 2
0
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α
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(b) Fixed liability size Lt−1 = 88.

Figure 1: Optimal fraction of life business α for non-life persistence rNL = 0.2, expected growth
µA = µL = 1.05, underwriting volatility σLL = σNLL = 0.01, asset volatility σLA = σNLA = 0.02, and

asset size At−1 = 100.

In accordance with Proposition 2, Figure 2 shows the optimal fraction of life business for dif-

ferent levels of liability volatility. Intuitively, the more volatile life (non-life) liabilities, the smaller

(larger) the optimal fraction of life business. Similarly, Figure 3 shows that an increase in the volatil-

ity of life (non-life) asset investments is related to a decrease (increase) in the optimal fraction of

life business. However, if the volatility of life (non-life) asset investments is below the volatility

of non-life (life) asset investments, the optimal fraction of life business decreases (increases) again.

This illustrates that too small levels of asset growth volatility can imperil the repayment of the
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Figure 2: Optimal fraction of life business α∗ for different levels of underwriting volatility for
persistence rL = 0.3, rNL = 0.2, expected growth µA = µL = 1.05, asset volatility

σLA = σNLA = 0.02, asset size At−1 = 100, and liability size Lt−1 = 88.

claim since these values diminish the insurer’s chances to recover from a recent economic shock.
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(b) Different level of life and non-life asset volatility.

Figure 3: Optimal fraction of life business α∗ for different levels of asset volatility for persistence
rL = 0.3, rNL = 0.2, expected growth µA = µL = 1.05, underwriting volatility σLL = σNLL = 0.01,

asset size At−1 = 100, and liability size Lt−1 = 88.

15



The previous analysis shows that the fraction of life business has a substantial impact on

counterparty exposures. On the one hand, the large persistence of life business can stabilize future

cash flows. On the other hand, when shocks occur, less persistent non-life business provides the

chance of improving future returns. This trade-off does not exclusively affect counterparty risk, but

also the resilience of insurance companies in general as well as other types of business interrelations

with (financial) companies.

4 Empirical Analysis

The central insight from our normative model-based analysis is, that due to differences in volatil-

ity and persistence of shocks neither conducting exclusively life nor exclusively non-life insurance

business is optimal for financial stability. In contrast, the model indicates that a non-trivial propor-

tion of life business, 0 < α∗ < 1, is minimizing an insurance company’s contribution to counterparty

credit risk. To test this prediction in a broader perspective on financial stability, we empirically

study the relation between insurance business diversification and several measures for spillover risk

and financial contagion.

Life insurance activities in general relate to a larger duration of assets and liabilities and, hence,

a larger persistence and smaller volatility of asset and liability growth than non-life insurance. We

expect reinsurance business to be somewhere in the middle between life and non-life business. On

the one hand, reinsurance contracts typically display a longer duration than non-life but smaller

than life insurance contracts. On the other hand, reinsurers face larger tail risks by insuring

catastrophes and extreme events. This might increase their business volatility in comparison to

non-life insurers (European Commission (2002)).

4.1 Spillover measures

We distinguish spillover measures for the contribution and exposure to the risk of a system of

institutions. All measures are based on equity returns. We employ the equity total return index rI

for each institution I and a value-weighted index rS of total returns of a system. For constructing

the system’s index, we follow Kubitza and Gründl (2017) as described in Appendix B.1 and exclude

the currently considered insurance company in order to prevent endogeneity.
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As our first measure, we employ an institution’s dependence-consistent ∆CoVaR≤, that ap-

proximates its short-term (simultaneous) contribution to the system’s tail risk. It is based on the

definition of Mainik and Schaanning (2014) and Ergün and Girardi (2013) of ∆CoVaR≤S|I by

∆CoVaR≤S|I(q) = CoVaRrI≤V aRI(q)(q)− CoVaRµI−σI≤rI≤µI+σI (q) (16)

where µI and σI are the mean and standard deviation of the distribution of the institution’s return

rI and q denotes the confidence level. The system’s VaR conditional on the institution I being in

distress, CoVaRS|I , is defined as the q-quantile of the system’s conditional return distribution

P
(
rS ≤ CoVaRS|I(q) | rI ≤ V aRI(q)

)
= q. (17)

Hence, the dependence-consistent ∆CoVaR≤S|I reflects the change in the system’s tail risk if the

institution is in distress (i.e. being in its tail). Thereby, the instituion’s contribution to spillover

risk is the difference between the system’s VaR conditional on the instituion being in distress and

the system’s VaR conditional on an institution’s benchmark state specified by a one-standard de-

viation around its mean return. By doing so, it captures the instantaneous share of a financially

distressed institution in the system’s financial distress, which is induced by a spillover of the insti-

tution’s distress to the system. This measure is an extension of the ∆CoVaR proposed by Adrian

and Brunnermeier (2016), who suggest to employ CoVaRrI=V aRI(q) instead of CoVaRrI≤V aRI(q).

Thereby, it is possible to take an institution’s financial distress event beyond its VaR into account.

However, Mainik and Schaanning (2014) show that the dependence-consistent CoVaR is a continu-

ous and increasing function of the dependence between the system’s and institution’s return, which

seems a desirable property to measure risk. Since ∆CoVaR≤ is inversely related to an institution’s

contribution to spillover risk, we use −∆CoVaR≤ in the panel regressions. Therefore, a higher

value indicates a higher contribution to spillover risk.

Kubitza and Gründl (2017) show that an institution’s distress may have a persistent impact on

a system, particularly in times of crises. Therefore, they suggest to aggregate the contribution to

spillover risk over time. They propose to approximate the time-lagged contribution to spillover risk

with the Conditional Shortfall Probability (CoSP), which is given as the likelihood of a shock in the
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system (i.e. the system being in its tail) τ days after an institution’s distress (i.e. the institution

being in its tail),

ψτ = P
(
rSτ ≤ V aRS(q) | rI0 ≤ V aRI(q)

)
. (18)

This definition of the CoSP allows for the interpretation that the financial distress of an institution

cascades through the system over time. For an increasing time period, the institution’s impact on

the system vanishes.10 The aggregation of the CoSP over a given time period yields the institution’s

Average Excess CoSP,

ψ =
1

τmax

∫ τmax

0
(ψτ − q)dτ, (19)

which is the average excess likelihood of the system being in distress conditional on the institu-

tion’s distress. We employ ψ as our second measure and interpret it as the institution’s long-term

contribution to spillover risk. We set the maximum considered time lag to τmax = 100 days. A

higher value indicates a higher contribution to spillover risk.

Both the ∆CoVaR≤ and Average Excess CoSP assess how a shock spreads from one institu-

tion to a system of institutions. Although both measures refrain from specifying the transmission

channel of such contagion, a prime example is counterparty risk as explained in Section 3.2. The

exposure of a counterparty’s claim towards the insurance company in our model reflects the insur-

ance company’s contribution to the counterparty’s risk of suffering losses. Thus, it is based on the

same rationale as ∆CoVaR≤ and the Average Excess CoSP for the measuring of spillover risk.

In contrast to the previous measures, we employ the marginal expected shortfall (MES) as a

measure of an institution’s exposure to a system’s distress. Acharya et al. (2016) define MES as

MES = −E
[
rI | rS ≤ V aRS(q)

]
, (20)

which is the negative expected value of the institution’s return conditional on the system being in

distress. Thus, it measures the instantaneous spill over of the market’s tail risk on the institution’s

return. Thereby, a higher value indicates a higher exposure to the system’s spillover risk. MES is

10For a derivation the measure’s statistical properties, we refer to Kubitza and Gründl (2017).
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closely related to the beta-factor (Benoit et al. (2017)), since both reflect by how much a company

is affected by market risk. We also include the beta factor in our analysis, as given by β = ρσI/σM ,

where σI and σM are the volatility of rI and rS , respectively.

For all measures we employ a confidence level of q = 5%, i.e. an institution’s and system’s stock

return below the 5%-quantile of the corresponding return distribution is interpreted as financial

distress in terms of a shock. The computation is based on 7-year rolling windows such that e.g.

ψy is based on observations years y − 6, ..., y − 1, y. For MES, ∆CoVaR≤ and beta we employ

Maximum-Likelihood estimates and a Generalized Linear Model for ψ, as suggested by Kubitza

and Gründl (2017).

4.2 Data

To compute the spillover measures we rely on daily total return indices provided by Thomson

Reuters Financial Datastream. We also include firms that are dead, but were listed in the considered

estimation window. For the value-weighted indices, we consider an index for the global financial

system by including all financial institutions from Datastream (FIN), as well as the Datastream

index for all American non-financial companies (AMC). We account for endogeneity by excluding

the currently considered insurer from the financial system’s index.

Yearly firm-level data in our baseline sample is retrieved from Thomson Reuters Worldscope,

SNL Financial, and ORBIS insurance focus. Where available, data is based on consolidated annual

statements. Due to data restrictions of firm-level data, the panel is restricted to the years subse-

quent to (including) 2006. We employ a time-lag of one year between dependent and independent

variables. Thus, the measures are computed for years 2007 to 2015. In order to mitigate currency

bias, all data is collected in U.S. dollar. After matching observations by year and ISIN number, our

initial sample consists of 72 insurance companies.11 In order to study the impact of assumed rein-

surance in Section 4.6, we exclude companies without any observations for premiums for assumed

reinsurance. The remaining 44 companies can be found in Table 13. The proportion of long-term

bond holdings for life insurance operating companies is retrieved from A.M. Best Company. It

reflects the proportion of investments in bonds with a maturity of at least 20 years. After matching

11The names of the companies in the sample can be found in Table 12.
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it with the baseline sample, 15 insurance companies remain in the sample.12

We employ gross premiums written in life business as a fraction of total gross premiums as an

indicator for an insurer’s engagement in life business. Note that this includes premiums for direct

as well as assumed reinsurance for life business. The absolute assumed reinsurance premiums

as a fraction of total gross premiums serve as an indicator for an insurer’s engagement in active

reinsurance business.

Since the spillover risk measures depend on equity returns, we control for an insurer’s market-to-

book equity value and return on equity (RoE) level as important factors for equity prices. Based on

theory of stock prices, higher market-to-book and RoE ratios should indicate a higher expectation

of growth rates and profitability. Thus, it should also increase the insurer’s resilience towards

shocks and lower its contribution and exposure to spillover risk.

These variables as well as an insurer’s size and leverage are also controls for an insurer’s financial

situation. Previous studies emphasize that an institution’s size is significantly related to its spillover

risk (Berdin and Sottocornola (2015), Pankoke (2014), Weiß and Mühlnickel (2014)). Therefore,

we include the logarithm of the insurer’s total assets as a measure for size. The evidence on the

relation of an insurance company’s leverage to financial stability is mixed. In general, leverage in

insurance is substantially different to that of banks due to the quasi-absence of debt (Thimann

(2014)). Nevertheless, Harrington (2009) and Chen et al. (2013) show that highly levered life

insurance companies tend to be more vulnerable to economic shocks. In line with our model, we

employ the ratio of total assets to the book value of equity as measure for leverage. By including

year fixed effects, we capture changes in the market as well as in the regulatory environment.

Descriptive statistics are reported in Table 1. The mean values of the Average excess CoSP

in our sample are 5.4 % and 5.5 % regarding the global financial and the American non-financial

market, respectively. This means that an average insurer in our sample increases the average

likelihood of a market’s shock within 100 days after the institution’s shock by 5.4 % (FIN) and 5.5

% (AMC), respectively. Regarding the ∆CoVaR≤, an average insurer increases the system’s loss

by about 3.7 % (FIN) and 3.8 % (AMC) during the days on which the institution was in distress

(i.e. being in its tail). The average values for MES correspond to an institution’s loss on its stock

return of about 3.1 % (FIN) and 3.0 % (AMC) simultaneously to the days on which the respective

12The names of the companies in the sample can be found in Table 14.
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market was in distress. Overall, the average values for MES and ∆CoVaR≤ are slightly larger

than the values for MES and ∆CoVaR in Bierth et al. (2015), who examine a larger time period,

and slightly smaller than in Weiß and Mühlnickel (2014), who solely examine the 2007-08 financial

crisis. Considering the average values of the beta-factor, they indicate that the average insurer’s

stock performance is less volatile than the market.

Statistic N Mean St. Dev. Min Max

Average Excess CoSP (ψ̄) (FIN) 517 0.054 0.022 0.001 0.118
Average Excess CoSP (ψ̄) (AMC) 516 0.055 0.022 0.001 0.115

- ∆CoVaR≤ (FIN) 517 0.037 0.009 0.008 0.047

- ∆CoVaR≤ (AMC) 516 0.038 0.013 0.004 0.053
MES (FIN) 517 0.031 0.017 0.002 0.093
MES (AMC) 516 0.030 0.020 0.001 0.106
beta (FIN) 517 0.992 0.471 0.190 2.646
beta (AMC) 516 0.881 0.526 0.103 2.806
Market Cap (in million) 517 11,650 15,309 328 97,086
Premiums Life 517 0.443 0.396 0.000 1.000
Reinsurance assumed 324 0.169 0.297 0.000 1.000
Log (Total Assets in thd) 517 17.815 1.439 13.805 21.554
Market-to-Book 517 1.323 0.698 0.192 4.022
RoE 517 0.096 0.109 −1.014 0.374
Leverage 517 10.774 6.804 1.582 39.014
Long-Term Bonds 118 58.326 20.919 18.000 95.900

Table 1: Descriptive statistics for spillover measures and company variables in the years 2007 to
2015 based on insurer-year observations, including the global financial (FIN), and American
non-financial (AMC) sector. Source: Thomson Reuters Worldscope, SNL Financial, ORBIS

insurance focus, A.M. Best Company and own calculations.

The ratios of life and non-life business of the average insurer in our sample are 44.3 % and 55.7

%, respectively. This indicates that on average, insurers in our sample are more focused on non-

life business than on life business. Considering the sub-sample with observations for reinsurance,

the average insurer assumed reinsurance on a level of 16.9 % regarding total premiums. These

reinsurance premiums can be collected for both, life and non-life business, but indicate that the

sub-sample consists mainly of pure direct insurers. The insurers’ market capitalization in the entire

sample ranges from 328 million U.S. dollar to 97.09 bn U.S. dollar, whereof the average insurer has

a market capitalization of about 11.65 bn U.S. dollar. Since we use the logarithm of total assets

as a measure for the insurer’s size, the average insurer has a size of 54.57 bn U.S. dollar and the
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entire band ranges from 0.99 bn U.S. dollar to 2,295 bn U.S. dollar. The mean value is in line with

the results of Bierth et al. (2015) and Weiß and Mühlnickel (2014). The insurers have on average a

Market-to-Book ratio of 1.32, a return on equity of about 9.6 % and a leverage ratio of 10.8. These

values are again in line with those given by Bierth et al. (2015) and Weiß and Mühlnickel (2014),

who show only slighty larger Market-to-Book ratios and return on equity values. Long-term bond

investments amount to an average fraction of 58.33 % to total investments for the corresponding

subsample, which underpins the general long-term investment behavior of insurance companies.

The geographical distribution of the 72 insurers in our sample shows that 46 % correspond to

insurers from Europe, 38 % to North America (U.S. and Canada), 8 % to ASIA, 7 % to Africa

and 1 % to Australia. Regarding Europe, the majority with six insurers is located in Switzerland,

followed by Italy with five and Germany with four insurers. Overall, only two insurers of our sample

(AIG and Lincoln National Corp.) got financial aid from government during the financial crisis.

4.3 Life Business

Based on the intuition from the previous section, we compute the relation between the propo-

ertion of life business and spillover risk measures in the following baseline OLS panel regression

Yi,t = β0 + βlife,1life
2
i,t + βlife,2lifei,t + βCCi,t−τ + βt + εi,t (21)

for insurer i and year t. Yi,t is the respective spillover measure with respect to the global financial

or American non-financial sector. lifei,t refers to the insurer’s fraction of gross life premiums to

total gross premiums, and C to the insurer’s control variables as log total assets, market-to-book

ratio, return on equity, and leverage. The squared term of the life business ratio is introduced to

test for a potential nonlinear u-shaped relationship between life insurance business and spillover

risk. We include time-fixed effects βt and compute insurer-clustered standard errors.

The results are presented in Tables 2 and 3. Taking both life insurance coefficients into con-

sideration, life insurance business is basically positively related to all spillover measures and to the

beta-factor. Thus, an increase in life business is related to an increase in the insurer’s likelihood

to cause the markets’ subsequent tail returns within 100 days after its own shock, as well as its

contribution and exposure to the markets’ tail risk. Furthermore, since the coefficients are signif-
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icant regarding all measures on both markets, it indicates that an u-shaped relation between life

business and spillover risk exists, which gives the foundation for a diversification effect to emerge.

The relation of our control variables with the spillover measures is in line with the results of Weiß

and Mühlnickel (2014), Berdin and Sottocornola (2015), Bierth et al. (2015) and the intuition pre-

sented above. Size tends to be positively related, whereas market to book, return on equity and

leverage are negatively related to spillover risk.

Dependent variable:

ψ̄ −∆CoVaR≤ MES beta

(1) (2) (3) (4)

I(Premiums.Lifê 2) 0.800∗∗∗ 0.317∗∗ 1.180∗∗∗ 1.140∗∗∗

(0.260) (0.146) (0.369) (0.344)
Premiums.Life −0.874∗∗∗ −0.317∗ −0.968∗∗ −0.972∗∗∗

(0.288) (0.171) (0.386) (0.368)
Log.Total.Assets 0.017 0.031∗∗∗ 0.070∗∗ 0.092∗∗∗

(0.018) (0.009) (0.028) (0.027)
Market.to.Book −0.044 −0.046∗ −0.159∗∗ −0.167∗∗

(0.032) (0.024) (0.071) (0.067)
RoE −0.149 −0.043 −1.334∗∗∗ −1.026∗∗

(0.299) (0.073) (0.505) (0.478)
Leverage 0.0002 −0.003 0.0003 −0.001

(0.004) (0.002) (0.007) (0.006)
Constant 0.428 0.026 −0.312 −0.430

(0.286) (0.153) (0.475) (0.447)

Year Fixed Effects Y Y Y Y
Akaike Inf. Crit 53.2 −554 439.4 374.6
Observations 517 517 517 517
R2 0.565 0.624 0.422 0.379
Adjusted R2 0.553 0.614 0.406 0.362

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Baseline OLS Regression for Insurance Business: Global Financial Sector.

The table presents the estimated coefficients, standard errors, and significance of panel regressions of the Average
Excess CoSP (1), dependence-consistent ∆CoVaR≤ (2), MES (3), and beta (4) on insurance activities. All spillover

measures are standardized. Insurer-clustered standard errors are provided in parentheses.
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Dependent variable:

ψ̄ −∆CoVaR≤ MES beta

(1) (2) (3) (4)

I(Premiums.Lifê 2) 0.961∗∗∗ 0.702∗∗∗ 2.019∗∗∗ 1.981∗∗∗

(0.256) (0.221) (0.396) (0.402)
Premiums.Life −1.012∗∗∗ −0.736∗∗∗ −1.783∗∗∗ −1.790∗∗∗

(0.285) (0.263) (0.407) (0.413)
Log.Total.Assets 0.025 0.075∗∗∗ 0.070∗ 0.093∗∗∗

(0.018) (0.014) (0.036) (0.035)
Market.to.Book −0.059∗ −0.074∗ −0.183∗∗ −0.198∗∗

(0.034) (0.039) (0.093) (0.089)
RoE −0.080 −0.093 −1.511∗∗ −1.058∗

(0.289) (0.147) (0.633) (0.559)
Leverage −0.001 −0.010∗∗∗ −0.005 −0.010

(0.004) (0.004) (0.008) (0.008)
Constant 0.281 −0.666∗∗∗ −0.244 −0.427

(0.293) (0.233) (0.646) (0.621)

Year Fixed Effects Y Y Y Y
Akaike Inf. Crit 37.9 −111.6 587.4 550
Observations 516 516 516 516
R2 0.557 0.560 0.434 0.390
Adjusted R2 0.544 0.548 0.418 0.373

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Baseline OLS Regression for Insurance Business: American Non-Financial Sector.

The table presents the estimated coefficients, standard errors, and significance of panel regressions of the Average
Excess CoSP (1), dependence-consistent ∆CoVaR≤ (2), MES (3), and beta (4) on insurance activities. The

spillover measures are scaled. Insurer-clustered standard errors are provided in parentheses.
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The optimal fraction of life business that minimizes the respective spillover measures results

from the first-order-condition with respect to the relative size of life premiums in Regression 21,

α∗ = −
βlife,2
2βlife,1

. (22)

For all measures we find a significant and convex u-shaped relationship between life business

and spillover risk, as βlife,1 > 0 and βlife,2 < 0. In Table 4 we report the resulting optimal fractions

of life business α∗. There is a clear ranking of α∗ with respect to the spillover measures. In line with

our intuition and the theoretical model, measures for the contribution to spillover risk (Average

Excess CoSP and ∆CoVaR≤) are associated with a larger optimal fraction of life business (roughly

54% and 51%, respectively) than measures for the exposure to spillover risk (MES and beta; roughly

42% and 44%, respectively). Differences between the global financial and American non-financial

market are negligible, which adds to the robustness of our result.

Spillover Measure FIN AMC

Average Excess CoSP 0.55 0.53

∆CoVaR≤ 0.50 0.52

MES 0.41 0.44

beta 0.43 0.45

Table 4: Optimal fraction of life premiums α∗ implied by panel regression with respect to the
global financial and American non-financial sector.

Interestingly, the fraction of life business that minimizes spillover risk varies between the mea-

sures. It is clearly larger for measures for the contribution to spillover risk (as the Average Excess

CoSP and ∆CoVaR≤) than for measures for the exposure to spillover risk (as MES and beta). This

indicates that non-life insurance business is more beneficial for decreasing an insurance company’s

exposure to a system’s risk, but not for its contribution to it. This finding is in line with our model

in Section 3. In contrast to a counterparty’s exposure, that resembles a put option, the shareholder

value of a company mirrors a call option, V = E[max(Ct, 0)], where Ct is the expected equity value

at time t. This option increases with the expected equity and its volatility. In our model, upon a

shock, both the equity’s mean and volatility increase with non-life insurance activities, since these
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are less persistent and more volatile than life activities. Consequently, the shareholder value is

larger for a higher level of non-life business. As MES and beta reflect the average change in the

company’s shareholder value (i.e. in equity returns) upon a market shock, a higher fraction of

non-life business minimizes these measures compared to measures for the contribution to spillover

risk (as ∆CoVaR≤ and the Average Excess CoSP).

Our empirical findings confirms our theoretical model’s intuition that life insurance activities

do not in general increase spillover risk. In contrast, a mix of life and non-life business is able to

diversify spillover risk. Then, an insurer’s contribution and exposure to spillover risk benefits from

diversification of persistence of economic shocks and volatility.

In addition to the intuition of our model, business characteristics other than persistence and

volatility might impact diversification between life and non-life business. As discussed in Section

2, life and non-life activities differ in several other ways that are not incorporated in our model of

counterparty risk. For example, life insurance is subject to a potentially larger liquidity risk than

non-life insurance, while non-life insurers might be more difficult to substitute in the short run.

These risks might add to the interaction between life and non-life insurance. Nonetheless, in the

following section we show that persistence of business activities is indeed significantly related to

the diversification of life and non-life insurance activities with respect to financial stability.

4.4 Persistence

Our theoretical model suggests that the optimal fraction of life business that minimizes spillover

risk decreases with the persistence of life business. The intuition is that with a larger persistence of

life business, less life business is necessary to reach an optimal level of diversification. This result

is at the core of our model and suggests that persistence is a main driver for the trade-off between

life and non-life business with respect to counterparty risk.

To proxy the persistence of life business, we employ the fraction of life insurers’ investments in

long-term bonds (i.e. bonds with a maturity of at least 20 years) as provided by AM Best for US

life insurance companies.13 Bonds are the most common asset class in an insurer’s asset portfolio

and are typically held until maturity. Thus, a large proportion of long-term bonds indicates a

13In case AM Best reports the proportion of long-term bond investments for different life subsidiaries of the same
insurance group, we employ the mean value in the regression. However, our results do not change when employing
the maximum or minimum value.
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large asset duration. Since life insurers aim for matching durations of assets and liabilities, asset

duration reflects the duration of an insurer’s liabilities. In line with the intuition developed in

Section 3, a large asset or liability duration is related to a large persistence of asset or liability

growth, respectively.14

We interact long-term bond investments with the proportion of life business in order to test for

an impact of persistence on the diversification between life and non-life business. The regression

model is given as15

Yi,t =β0 + βlife,1life
2
i,t + βlife,LTBonds,1life

2
i,t ∗ LTBondsi,t + βlife,2lifei,t (23)

+ βlife,LTBonds,2lifei,t ∗ LTBondsi,t + βLTBondsLTBondsi,t

+ βlevleverage+ βCCi,t−τ + βt + εi,t.

where LTBondsi,t is the fraction of long-term bonds to total investments of insurer i at time t.

The results can be found in Appendix B.3 in Tables 16 and 17. As expected, long-term bond

investments have a significant impact on most spillover risk measures. Based on this regression

model, the ratio of life business that minimizes the respective risk measure is given as

α∗ = −
βlife,2 + βlife,LTBonds,2LTBonds

2(βlife,1 + βlife,LTBonds,1LTBonds)
. (24)

The optimal ratio of life business, α∗, is then decreasing with investments in long-term bonds if its

derivative is negative,

dα∗

dLTBonds
=
βlife,LTBonds,1βlife,2 − βlife,LTBonds,2βlife,1

2(βlife,1 + βlife,LTBonds,1LTBonds)2
< 0. (25)

Table 5 reports the derivative (in hundreds) of Equation (25) for the median level of long-

term bond investments as in our sample (which roughly equals 58.6%). The results confirm the

implications of the theoretical model in Section 3 that an insurance company’s optimal fraction of

life business that minimizes spillover risk is smaller for more persistent life business. This finding

14Due to data limitations, our sample shrinks to 15 insurance companies in this analysis. These are reported in
Table 14. The other independent variables’ empirical distributions in this subsample match the empirical distributions
of the entire baseline sample.

15An unreported regression in that we interact long-term bond investments only with the linear term of life business
yields very inconclusive results. Therefore, we interact it with both life terms.
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is particularly strong for the global financial market.

The difference in our finding between the financial and non-financial sector can be explained

by the different role of insurers for these sectors. Since insurers are important counterparties for

transactions in the financial sector, counterparty credit risk towards insurers plays an important

role for financial stability, which is at the core of our model. Insurers directly engage with the non-

financial sector mainly by providing actual insurance coverage and investing. For this business,

counterparty credit risk is far less important than the long-term stability of cash-flows. Conse-

quently, with respect to the stability of non-financial markets a smaller (or no) increase in non-life

business is optimal upon an increase in the persistence of life business.

Spillover Measure FIN AMC

Average Excess CoSP -0.29 -0.05

∆CoVaR≤ -0.01 0.03

MES -0.27 -0.11

beta -0.23 -0.09

Table 5: First derivatve (in hundreds) of the optimal fraction of life premiums α∗ with respect to
fraction of long-term bonds as implied by panel regression (24), regarding the global financial

(FIN) and American non-financial sector (AMC) for the median level of long-term bond
investments in our sample (58.6%). If the reported number is negative, α∗ is decreasing with the

fraction of long-term bonds (persistence).

In an unreported regression we perform the same analysis with the proportion of long-term

investments on the level of the insurance group. In contrast to the previous findings, neither is

the interaction between long-term investments and life business significant, nor does the optimal

proportion of life business decrease with long-term investments. This result is again in line with

our model that does not imply an effect of the group’s level of business persistence, but an effect

of different levels of persistence between life and non-life business.

4.5 Leverage

Our theoretical model suggests that a smaller ratio of life business minimizes counterparty

risk for a highly levered insurance company. The intuition is that a decrease in volatility, as it is

associated with more life business, becomes less important than an increase in expected equity, as
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it is associated with more non-life business, the less likely the repayment of a claim is. We test this

hypothesis by interacting leverage and life business in the following regression

Yi,t =β0 + βlife,1life
2
i,t + βlife,2lifei,t + βlife,lev,2lifei,t ∗ leveragei,t

+ βlevleveragei,t + βCCi,t−τ + βt + εi,t. (26)

The results can be found in Appendix B.3 in Tables 18 and 19. The optimal ratio of life business

that minimizes the respective risk measure is given as

α∗ = −
βlife,2 + βlife,lev,2leverage

2βlife,1
. (27)

Table 6 reports α∗ for an insurer with either very low or high leverage (as given by the minimum

or maximum leverage ratio observed in our sample, respectively).

Spillover Measure FIN (low lev.) AMC (low lev.) FIN (high lev.) AMC (high lev.)

Average Excess CoSP 0.61 0.56 0.30 0.40

∆CoVaR≤ 0.53 0.50 0.38 0.63

MES 0.39 0.42 0.53 0.58

beta 0.41 0.43 0.57 0.60

Table 6: Optimal fraction of life premiums α∗ implied by panel regression (26) if leverage is either
low (as given by the minimum observed leverage ratio in our sample) or high (as given by the
maximum observed leverage ratio in our sample) regarding the global financial and American

non-financial sector.

As implied by our model, the optimal ratio of life business is smaller for highly levered insurers

with respect to the two measures for the contribution to spillover risk, the Average Excess CoSP and

∆CoVaR. This result is in line with the rationale that high leverage increases the probability of not

being able to serve claims. In this case, the more volatile and less persistent non-life business reduces

counterparty risk by increasing expected future cash flows. We do not find the interaction between

life business leverage to be significant in the regression. However, the difference in the optimal ratio

for the least and most levered insurer is 31% (16%) for the Average Excess CoSP with respect to

the global financial sector (American non-financial sector), and 15% for the dependence-consistent
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∆CoVaR≤ with respect to the global financial sector, and thereby economically significant.

Our finding is in line with our model from Section 3, where leverage impacts the counterparty

exposure to an insurer and, thereby, its contribution to spillover risk. As we discuss in Section 3

and particularly in Proposition 3, leverage decreases the likelihood that counterparties’ claims are

fully paid. Thereby, from a counterparty’s perspective, leverage shifts weight from the volatility of

equity to expected equity. Since expected equity is increasing with non-life business, the optimal

fraction of life business decreases with leverage. In contrast, Table 6 indicates that the measures

for an insurer’s exposure to spillovers, the marginal expected shortfall (MES) and beta, are related

to a larger optimal ratio of life business. Again, this confirms the intuition that counterparty credit

risk in our model is reflected by spillover measures for the contribution but not necessarily exposure

to economic shocks. In contrast, the exposure to economic shocks might be driven by other factors,

in particularly the level of systematic exposure of business activities.

4.6 Reinsurance Business

For reinsurance business we do not find a significant u-shaped relation with spillover measures.16

This finding suggests that assumed (i.e. active) reinsurance business and direct insurance business

does not have a diversification effect similar to non-life and life business. This result is not surprising,

considering that direct insurance and reinsurance liabilities are strongly correlated - in contrast to

life and non-life liabilities, which are usually very loosely correlated. Therefore, there is no apparent

diversification benefit between direct insurance and reinsurance business.

However, given that reinsurance, non-life, and life business have different business character-

istics, we expect a diversification effect between the three. In particular, reinsurance tends to be

more persistent but also exposed to larger tail risks than non-life business. On the one hand, this

might decrease the optimal fraction of life business, since shocks are rather persistent already. On

the other hand, reinsurance might increase the optimal fraction of life business to account for the

higher level of volatility.

In order to examine the impact of reinsurance, we interact life business with reinsurance business

16Tables 21 and 20 in Appendix B.3 report the results of the OLS regression

Yi,t = β0 + βreins,1reins
2
i,t + βreins,2reinsi,t + βCCi,t−τ + βt + εi,t. (28)

We do not find that βreins,2 is in general significantly different from zero.
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in the following regression model

Yi,t = β0 + βlife,1life
2
i,t + βlife,2lifei,t + βlife,reins,2lifei,t ∗ reinsurancei,t

+ βreinsreinsi,t + βCCi,t−τ + βt + εi,t. (29)

The results can be found in Tables 8 and 7. Although we do not find a significant interac-

tion between reinsurance, life, and non-life business, we find that reinsurance tends to increase

diversification benefits of life insurance business as βlife,reins,2 is negative.

Dependent variable:

ψ̄ −∆CoVaR≤ MES beta

(1) (2) (3) (4)

I(Premiums.Lifê 2) 0.686∗∗ 0.148 0.985∗∗ 0.921∗

(0.347) (0.174) (0.491) (0.471)
Premiums.Life −0.597 −0.096 −0.320 −0.388

(0.429) (0.232) (0.601) (0.565)
Reinsurance.assumed 0.113 0.044 0.014 0.069

(0.141) (0.050) (0.215) (0.208)
Log.Total.Assets 0.038 0.027∗∗∗ 0.055 0.077∗

(0.025) (0.010) (0.045) (0.041)
Market.to.Book −0.018 −0.015 −0.110 −0.106

(0.066) (0.025) (0.148) (0.136)
RoE −0.358 −0.056 −1.382∗∗∗ −1.131∗∗

(0.278) (0.079) (0.485) (0.447)
Leverage −0.010 −0.003 −0.012 −0.010

(0.009) (0.003) (0.016) (0.014)
Premiums.Life:Reinsurance.assumed −0.139 −0.053 −0.508 −0.455

(0.186) (0.060) (0.412) (0.368)
Constant −0.001 −0.011 −0.102 −0.243

(0.430) (0.170) (0.761) (0.673)

Year Fixed Effects Y Y Y Y
Akaike Inf. Crit 80.3 −415.9 264.6 239.2
Observations 324 324 324 324
R2 0.520 0.627 0.465 0.389
Adjusted R2 0.495 0.607 0.437 0.357

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7: Baseline OLS Regression for Insurance and Reinsurance Business: Global Financial
Sector.

The table presents the estimated coefficients, standard errors, and significance of panel regressions of the Average
Excess CoSP (1), dependence-consistent ∆CoVaR≤ (2), MES (3), and beta (4) on insurance activities. The

spillover measures are scaled. Insurer-clustered standard errors are provided in parentheses.

In Table 9 we compare the optimal fraction of life insurance for a direct insurer without any

assumed reinsurance with that for a pure reinsurance company without any direct insurance busi-

ness. The optimal fraction of life insurance business is larger for a pure reinsurer for all spillover
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Dependent variable:

ψ̄ −∆CoVaR≤ MES beta

(1) (2) (3) (4)

I(Premiums.Lifê 2) 0.881∗∗∗ 0.554∗∗ 2.074∗∗∗ 2.117∗∗∗

(0.337) (0.277) (0.615) (0.619)
Premiums.Life −0.803∗ −0.522 −1.514∗∗ −1.674∗∗

(0.429) (0.346) (0.749) (0.708)
Reinsurance.assumed 0.074 0.172 0.044 0.076

(0.150) (0.137) (0.244) (0.234)
Log.Total.Assets 0.046∗ 0.070∗∗∗ 0.043 0.060

(0.025) (0.017) (0.053) (0.049)
Market.to.Book −0.049 −0.090∗ −0.196 −0.198

(0.074) (0.048) (0.189) (0.177)
RoE −0.283 −0.198 −1.582∗∗∗ −1.155∗∗

(0.269) (0.134) (0.570) (0.472)
Leverage −0.009 −0.007 −0.006 −0.005

(0.010) (0.005) (0.021) (0.019)
Premiums.Life:Reinsurance.assumed −0.041 −0.179 −0.413 −0.342

(0.194) (0.143) (0.526) (0.475)
Constant −0.140 −0.642∗∗ 0.206 0.037

(0.435) (0.277) (0.941) (0.853)

Year Fixed Effects Y Y Y Y
Akaike Inf. Crit 62.5 −112.2 384.1 342.3
Observations 324 324 324 324
R2 0.523 0.579 0.458 0.423
Adjusted R2 0.499 0.557 0.430 0.393

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8: Baseline OLS Regression for Insurance and Reinsurance Business: American
Non-Financial Sector.

The table presents the estimated coefficients, standard errors, and significance of panel regressions of the Average
Excess CoSP (1), dependence-consistent ∆CoVaR≤ (2), MES (3), and beta (4) on insurance activities. The

spillover measures are scaled. Insurer-clustered standard errors are provided in parentheses.
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measures and sectors. This finding suggests that the larger tail risk of reinsurance business domi-

nates potential positive effects from more long-term oriented business of reinsurance with respect

to financial stability. The larger tail risk can be diversified in terms of spillover risk by assuming

more life business in order to decrease overall business volatility.

Spillover Measure FIN (direct) AMC (direct) FIN (reins.) AMC (reins.)

Average Excess CoSP 0.44 0.46 0.54 0.48

∆CoVaR≤ 0.33 0.47 0.50 0.63

MES 0.16 0.36 0.42 0.46

beta 0.21 0.40 0.46 0.48

Table 9: Optimal fraction of life premiums α∗ for direct insurers (no reinsurance assumed) and
reinsurers (no direct insurance) implied by panel regression with respect to the global financial

and American non-financial sector.

4.7 Robustness Checks

We examine the robustness of our findings by employing several other model specifications. The

results are available from the authors upon request.

First, we change the time-lag between dependent and independent variables from one year to

two years. This decreases the number of observations. However, the main findings remain the same.

Second, we employ an additional model set-up for the regression analysis, namely generalized linear

models (GLMs) with logarithmic link-function and either normally distributed errors. The general

results remain the same and can be found in Tables 22 and 23 in Appendix B.3. Results of a GLM

for other regressions as well as a GLM with gamma distributed errors also provide the same main

results and are available on request by the authors.

Third, to assess the robustness of our finding of Section 4.5 which shows that leverage decreases

the optimal ratio of life business, we also interact the quadratic term of the relative size of life

business with an insurer’s leverage in the following model

Yi,t =β0 + βlife,1life
2
i,t + βlife,lev,1life

2
i,t ∗ leverage+ βlife,2lifei,t (30)

+ βlife,lev,2lifei,t ∗ leveragei,t + βlevleveragei,t + βCCi,t−τ + βt + εi,t.

33



The results can be found in Appendix B.3 in Tables 25 and 24. In this model, the ratio of life

business that minimizes the respective risk measure is given as

α∗ = −
βlife,2 + βlife,lev,2leverage

2(βlife,1 + βlife,lev,1leverage)
. (31)

The optimal ratio of life business, α∗, is decreasing with leverage if

dα∗

dleverage
=
βlife,lev,1βlife,2 − βlife,lev,2βlife,1
2(βlife,1 + βlife,lev,1leverage)2

< 0. (32)

Table 10 reports the derivative (in hundreds) as from Equation (32) for the median level of leverage

(808%) in our sample. A positive value relates to an increase in the optimal ratio of life business for

increasing leverage. The results confirm our findings from the theoretical model in Section 3 and

the previous empirical analysis in Section 4.5 that leverage decreases the fraction of life insurance

business that minimizing an insurer’s contribution to spillover risk, but not its exposure.

Spillover Measure FIN AMC

Average Excess CoSP -0.70 -0.38

∆CoVaR≤ -0.14 0.29

MES 1.84 1.57

beta 1.54 1.44

Table 10: First derivatve (in hundreds) of the optimal fraction of life premiums α∗ with respect to
leverage as implied by panel regression (31), with respect to the global financial (FIN) and

American non-financial sector (AMC) for the median level of leverage in our sample (808%). If
the reported number is negative, α∗ is decreasing with leverage.

To assess the robustness of our finding of Section 4.6 that assumed reinsurance increases the

optimal ratio of life business, we also interact the quadratic term of the relative size of life business

with the relative size of the assumed reinsurance business in the following model

Yi,t =β0 + βlife,1life
2
i,t + βlife,reins,1lifei,t ∗ reinsi,t + βlife,2lifei,t (33)

+ βlife,reins,2lifei,t ∗ reinsi,t + βlevleveragei,t + βCCi,t−τ + βt + εi,t.
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The results can be found in Appendix B.3 in Tables 27 and 26. Analogously to the former analysis,

the ratio of life business that minimizes the respective risk measure is given as

α∗ = −
βlife,2 + βlife,reins,2reins

2(βlife,1 + βlife,reins,1reins)
. (34)

The optimal ratio of life business, α∗, is increasing with reinsurance if

dα∗

dreins
=
βlife,lev,1βlife,2 − βlife,lev,2βlife,1

2(βlife,1 + βlife,lev,1reins)2
> 0. (35)

Table 11 reports the derivative (in hundreds) from Equation (35) for the median fraction of rein-

surance business (3%) in our sample. A positive value relates to an increase in the optimal ratio

of life business for an increasing fraction of reinsurance business. The results confirm our findings

from the previous empirical analysis in Section 4.6 that an insurance company’s optimal fraction

of life business tends to increase with assumed reinsurance business with respect to the insurance

company’s contribution and exposure to spillover risk.

Spillover Measure FIN AMC

Average Excess CoSP 4.70 4.30

∆CoVaR≤ -31.58 16.76

MES 7.16 8.19

beta -7.14 4.31

Table 11: First derivative (in hundreds) of the optimal fraction of life premiums α∗ with respect
to assumed reinsurance business as implied by panel regression (34), with respect to the global

financial (FIN) and American non-financial sector (AMC) for the median ratio of assumed
reinsurance business in our sample (3%). If the reported number is positive, α∗ is increasing with

reinsurance.

5 Conclusion

In this article we examine the relation between diversification of insurance business activities and

financial stability. For this purpose, we develop a theoretical balance sheet model of an insurance

group to examine the diversification potential between life and non-life insurance for counterparty
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credit risk exposure. The model implies that diversification between life and non-life business

decreases counterparty exposures. This results from the stylized fact that life business is more

persistent but less volatile than non-life business.

We employ spillover risk measures in order to empirically test the implications of our model. The

empirical analysis confirms the intuition from our model that the interaction between persistence

and volatility of life and non-life business has a significant and strong impact on the contribution of

insurance companies to the global financial system’s as well as the American non-financial system’s

risk. The diversification potential arising from this interaction is less pronounced for the exposure

of insurance companies to a system’s risk. An intuitive reason is that measures for exposure are

related to the shareholder value, which is increasing with volatility.

Overall, our findings contribute to a more detailed understanding of the spillover risk related

to insurance companies’ business activities. In particular, they argue in favor of an activity-based

macro-prudential regulation approach and might also have practical implications for a re-evaluation

of the IAIS indicator-based model (International Association of Insurance Supervisors (2016)). Our

results suggest that an activity-based regulation should acknowledge the differences in persistence

of insurance activities and the resulting risk diversifying effect. In this sense, a regulatory approach

might not generally penalize certain activities (as life insurance) but missing diversification between

insurance activities.

Finally, our results carry over to other institutions that engage in activities with different levels

of persistence. In the most general sense, we find that financial stability is not generally positively

related to the volatility of business activities, but volatility can also be a chance to recover faster

from past shocks.
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A Proofs

Proposition 1. If r = rL = rNL, µL = µNLL = µLL, σL = σNLL = σLL, then α = 0.5 is minimizing

the counterparty’s expected exposure.

Proof. Under the conditions above, expected equity capital is equal to

µt = At−1(µA + r(RA,t−1 − µA))− Lt−1(µL + r(RL,t−1 − µL)), (36)

which is independent from α. The variance of equity is equal to

σ2t = A2
t−1
(
α2(1− r)2(σA)2 + (1− α)2(1− r)2(σA)2 + 2ρα(1− α)(1− r)2)σ2A

)
(37)

+ L2
t−1(1− r)2σ2L

(
α2 + (1− α)2

)
,

which is dependent from α. Thus, the marginal expected exposure from equation 12 is given as

dE

dα
=
dσt
dα

ϕ

(
D − µt
σt

)
. (38)

Since ϕ > 0, the first-order-condition for an optimal fraction of life business α is dE
dα = 0, which is

equivalent to

dσt
dα

= 0. (39)

Since dσt
dα = 1

2σ
−1
t

dσ2
t

dα it is sufficient that
dσ2
t

dα = 0, which is equivalent to

A2
t−1
[
(1− r)2σ2A(4α− 2) + 2ρ(1− r)2σ2A(1− 2α)

]
+ L2

t−1(1− r)2σ2L(4α− 2) = 0. (40)

The unique solution is α = 0.5. The second-order derivative of the expected counterparty’s exposure

is

d2E

dα2
=

1

2

dσ−1t
dα

dσ2t
dα

ϕ(
D − µt
σt

)− (−1

2

1

σt

d
dσ2
t

dα

dα
ϕ(
D − µt
σt

)) (41)

− (−1

2

1

σt

dσ2t
dα

(−(
D − µt
σt

)ϕ(
D − µt
σt

)
dD−µtσt

dα
)),
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which is equivalent to

d2E

dα2
=

1

2
ϕ

(
D − µt
σt

)(
d(σ2t )

− 1
2

dα
+

1

σt

d
dσ2
t

dα

dα
+

1

2

(D − µt)2

σ5t
(
dσ2t
dα

)2

)
, (42)

and comprises to

d2E

dα2
=

1

2
ϕ

(
D − µt
σt

)((
dσ2t
dα

)2
D − µt − σ2t

2σ5t
+

1

σt

d2σ2t
dα2

)
, (43)

where

d2σ2t
dα2

=
d

dα

(
A2
t−1
[
(1− r)2σ2A(4α− 2) + 2ρ(1− r)2σ2A(1− 2α)

]
+ L2

t−1(1− r)2σ2L(4α− 2)
)

(44)

= 2A2
t−1(2− ρ)(1− r)2σ2A + 4L2

t−1(1− r)2σ2L (45)

is always positive. For α = 0.5 the term (
dσ2
t

dα )2 = 0 and it follows that d2E
dα2 > 0. Thus, α = 0.5

minimizes the exposure E.

Proposition 2. If only the volatility of liabilities between life and non-life business varies but

r = rL = rNL, µL = µNLL = µLL, the optimal fraction of life business is given as

α∗ = 1−
A2
t−1 (1− ρ)σ2A + L2

t−1σ
L
L
2

2A2
t−1 (1− ρ)σ2A + L2

t−1

(
σLL

2
+ σNLL

2
) . (46)

It is decreasing in higher levels of volatility of life liabilities (σLL)2, and increasing in higher levels of

volatility of non-life liabilities (σNLL )2. It is decreasing in higher levels of volatility of asset growth

σ2A if σNLL > σLL.

Proof. Under the conditions above, the expected equity µt is again independent from α and its

variance is given by

σ2t = A2
t−1
(
1− r)2(α2(σLA)2 + (1− α)2(σNLA )2 + 2ρα(1− α)σLAσ

NL
A

)
(47)

+ L2
t−1(1− r)2

(
α2(σLL)2 + (1− α)2(σNLL )2

)
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The marginal expected exposure is given as

dE

dα
=
dσt
dα

ϕ

(
D − µt
σt

)
. (48)

Since dσt
dα = 1

2σ
−1
t

dσ2
t

dα , the first order condition is equivalent to
dσ2
t

dα = 0, which is equivalent to

A2
t−1(1− r)2(2α((σNLA )2 + (σLA)2 − 2ρσLAσ

NL
A )− 2(σNLA )2 + 2ρσLAσ

NL
A ) (49)

+ L2
t−1(1− r)2(2α((σLL)2 + (σNLL )2)− 2(σNLL )2) = 0.

This leads to the optimal fraction of life business α∗ given by

α∗ =
A2
t−1σ

NL
A

(
σNLA − ρσLA

)
+ L2

t−1σ
NL
L

2

A2
t−1

(
σNLA

2
+ σLA

2 − 2ρσLAσ
NL
A

)
+ L2

t−1

(
σLL

2
+ σNLL

2
) (50)

=
A2
t−1σ

2
A (1− ρ) + L2

t−1σ
NL
L

2

2A2
t−1 (1− ρ)σ2A + L2

t−1

(
σLL

2
+ σNLL

2
) (51)

= 1−
A2
t−1 (1− ρ)σ2A + L2

t−1σ
L
L
2

2A2
t−1 (1− ρ)σ2A + L2

t−1

(
σLL

2
+ σNLL

2
) (52)

Define α∗ = 1− X
Y , where 0 < X < Y . A marginal increase in the asset’s volatility relates to

dα∗

dσ2A
= −X

′Y −XY ′

Y 2
(53)

= −
A2
t−1(1− ρ)Y −X2A2

t−1(1− ρ)

Y 2
(54)

= −A2
t−1(1− ρ)

Y − 2X

Y 2
, (55)

which is negative for Y > 2X, such that

2A2
t−1 (1− ρ)σ2A + L2

t−1

(
σLL

2
+ σNLL

2
)
> 2A2

t−1 (1− ρ)σ2A + 2L2
t−1σ

L
L
2

(56)

⇒ σNLL > σLL. (57)
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A marginal increase in the volatility of life insurance’s liabilities relates to

dα∗

d(σLL)2
= −X

′Y −XY ′

Y 2
= −L2

t−1
Y −X
Y 2

, (58)

which is negative since Y −X = A2
t−1 (1− ρ)σ2A + L2

t−1σ
NL
L

2
> 0.

A marginal increase in the volatility of non-life liability growth relates to

dα∗

d(σNLL )2
= −X

′Y −XY ′

Y 2
=
XL2

t−1
Y 2

> 0, (59)

which is positive.

Proposition 3. Assume that rL > rNL. If the previous year’s liability growth rate RL,t−1 and

the size of liabilities Lt−1 are large enough (i.e. financial distress), α∗ = 0 is optimal. If the

size of liabilities Lt−1 is sufficiently small and the asset growth rate satisfies a certain condition

RA,t−1 > max (µA, D/At−1), counterparty’s expected exposure is smaller for α = 1 than for α = 0.

Proof. For Lt−1 and RL,t−1 sufficiently large, we have that Φ
(
D−µt
σt

)
≈ 1 and ϕ

(
D−µt
σt

)
≈ 0, since

lim
Lt−1→∞

D − µt
σt

=
α((rL − rNL)RL,t−1 + (1− rL)µLL − (1− rNL)µNLL ) + rNLRL,t−1 + (1− rNL)µNLL√

α2(1− rL)2(σLL)2 + (1− α)2(1− rNL)2(σNLL )2
,

(60)

which is increasing unrestrictedly in RL,t−1.

Therefore, the first term D − µt dominates the exposure in equation 11 if Lt−1 and RL,t−1 are

large enough. Since rL > rNL, µt is monotonic decreasing in α for sufficiently large Lt−1 (equation

13). Therefore, α = 0 is the optimal fraction of life business which maximizes the insurer’s expected

equity and hence minimizes the counterparty’s exposure towards the insurance company.

For Lt−1 = 0, the limit is expressed by

lim
Lt−1→0

D − µt
σt

(61)

=
D −At−1

(
α((rL − rNL)RA,t−1 + (rNL − rL)µA) + rNLRA,t−1 + (1− rNL)µA

)√
A2
t−1
(
α2(1− rL)2σ2A + (1− α)2(1− rNL)2σ2A + 2ρα(1− α)(1− rL)(1− rNL)σ2A

) ,
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which is decreasing in RA,t−1. In case of α = 0, the expected exposure for a sufficiently small value

of liabilities (i.e. no financial distress) converges to

lim
Lt−1→0

E(0) = (D −At−1
(
rNLRA,t−1 + (1− rNL)µA

)
)Φ

(
D −At−1

(
rNLRA,t−1 + (1− rNL)µA

)
At−1(1− rNL)σA

)
(62)

+At−1(1− rNL)σAϕ

(
D −At−1

(
rNLRA,t−1 + (1− rNL)µA

)
At−1(1− rNL)σA

)
.

In case of α = 1, it converges to

lim
Lt−1→0

E(1) = (D −At−1
(
rLRA,t−1 + (1− rL)µA

)
)Φ

(
D −At−1(rLRA,t−1 + (1− rL)µA)

At−1(1− rL)σA

)
(63)

+At−1(1− rL)σAϕ

(
D −At−1(rLRA,t−1 + (1− rL)µA)

At−1(1− rL)σA

)
.

The fraction α = 1 is preferred over α = 0 if

lim
Lt−1→0

E(1) < lim
Lt−1→0

E(0). (64)

We have that At−1(1− rL)σA < At−1(1− rNL)σA, so the conditions 65 and 67 must hold

D −At−1
(
rLRA,t−1 + (1− rL)µA

)
< D −At−1

(
rNLRA,t−1 + (1− rNL)µA

)
(65)

(66)

and

D −At−1(rLRA,t−1 + (1− rL)µA)

At−1(1− rL)σA
<
D −At−1

(
rNLRA,t−1 + (1− rNL)µA

)
At−1(1− rNL)σA

. (67)

(68)

This is the case forRA,t−1 > µA andRA,t−1 > D/At−1, respectively. Thus, ifRA,t−1 > max (µA, D/At−1)

and Lt−1 is sufficiently small, E(1) is smaller than E(0). Hence, the insurance company minimizes

the counterparty’s exposure by undertaking a maximum of life insurance business.

41



B Empirical Analysis

B.1 System’s Index

As in Kubitza and Gründl (2017), we compute the index of a system of institutions by excluding

the currently considered institution j. By weighting the total (divident-adjusted) return index of

institution i, TR, by the relative market capitalization (in USD) of institution i at time t, MC,

the index for a system S of institutions is given as

INDEX
S|j
t = INDEX

S|j
t−1

∑
s∈S\{j}

MCs,t−1∑
i∈S\{j}MCi,t−1

TRs,t
TRs,t−1

. (69)

To compute the return based spillover measures, we employ the log return, log(INDEX
S|j
t /INDEX

S|j
t−1).

B.2 Data

B.3 Regressions
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Name Name

1 AEGON MARKEL
2 AFLAC MENORA MIV HOLDING
3 ALLEGHANY METLIFE
4 ALLIANZ MGIC INVESTMENT
5 ALLSTATE MIGDAL INSURANCE
6 AMERICAN FINL.GP.OHIO MMI HOLDINGS
7 AMERICAN INTL.GP. MUENCHENER RUCK.
8 AMTRUST FINL.SVS. PERMANENT TSB GHG.
9 ANADOLU HAYAT EMEKLILIK PHOENIX INSURANCE 1
10 ASSICURAZIONI GENERALI PRINCIPAL FINL.GP.
11 ASSURED GUARANTY PROGRESSIVE OHIO
12 AXA QBE INSURANCE GROUP
13 AXIS CAPITAL HDG. REINSURANCE GROUP OF AM.
14 BALOISE-HOLDING AG SAMPO ’A’
15 CATTOLICA ASSICURAZIONI SANLAM
16 CHINA LIFE INSURANCE ’H’ SANTAM
17 CLAL INSURANCE SCOR SE
18 CNA FINANCIAL STOREBRAND
19 CNO FINANCIAL GROUP SUN LIFE FINL.
20 DELTA LLOYD GROUP SWISS LIFE HOLDING
21 DISCOVERY SWISS RE
22 EULER HERMES GROUP TOPDANMARK
23 FAIRFAX FINL.HDG. TORCHMARK
24 FBD HOLDINGS TRAVELERS COS.
25 GREAT WEST LIFECO TRYG
26 GRUPO CATALANA OCCIDENTE UNIPOL GRUPPO FINANZIARI
27 HANNOVER RUCK. UNIPOLSAI
28 HANOVER INSURANCE GROUP UNIQA INSU GR AG
29 HAREL IN.INVS.& FNSR. UNUM GROUP
30 HELVETIA HOLDING N VAUDOISE ’B’
31 INTACT FINANCIAL VIENNA INSURANCE GROUP A
32 LIBERTY HOLDINGS VITTORIA ASSICURAZIONI
33 LINCOLN NATIONAL W R BERKLEY
34 LOEWS WHITE MOUNTAINS IN.GP.
35 MANULIFE FINANCIAL WUESTENROT & WUERTT.
36 MAPFRE ZURICH INSURANCE GROUP

Table 12: List of all insurance companies included in regressions without reinsurance business or
long-term bonds as independent variable.

The sample is constructed by matching firm-level data from Thomon Reuters Worldscope, SNL Financial and
ORBIS Insurance Focus by year and ISIN number.
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Name Name

1 ALLEGHANY MARKEL
2 ALLIANZ METLIFE
3 ALLSTATE MGIC INVESTMENT
4 AMERICAN INTL.GP. MUENCHENER RUCK.
5 AMTRUST FINL.SVS. PRINCIPAL FINL.GP.
6 ASSICURAZIONI GENERALI QBE INSURANCE GROUP
7 ASSURED GUARANTY REINSURANCE GROUP OF AM.
8 AXA SAMPO ’A’
9 AXIS CAPITAL HDG. SCOR SE
10 BALOISE-HOLDING AG SWISS LIFE HOLDING
11 CATTOLICA ASSICURAZIONI SWISS RE
12 CHINA LIFE INSURANCE ’H’ TRAVELERS COS.
13 CNA FINANCIAL UNIPOL GRUPPO FINANZIARI
14 CNO FINANCIAL GROUP UNIPOLSAI
15 EULER HERMES GROUP UNIQA INSU GR AG
16 FAIRFAX FINL.HDG. VAUDOISE ’B’
17 GRUPO CATALANA OCCIDENTE VIENNA INSURANCE GROUP A
18 HANNOVER RUCK. VITTORIA ASSICURAZIONI
19 HANOVER INSURANCE GROUP W R BERKLEY
20 HELVETIA HOLDING N WHITE MOUNTAINS IN.GP.
21 LINCOLN NATIONAL WUESTENROT & WUERTT.
22 MAPFRE ZURICH INSURANCE GROUP

Table 13: List of all insurance companies included in regressions with reinsurance business as
independent variable.

The sample is constructed by matching firm-level data from Thomon Reuters Worldscope, SNL Financial and
ORBIS Insurance Focus by year and ISIN number.

Name Name

1 AEGON
2 AFLAC
3 ALLIANZ
4 ALLSTATE
5 AMERICAN INTL.GP.
6 ASSURED GUARANTY
7 AXA
8 GREAT WEST LIFECO
9 LINCOLN NATIONAL
10 PHOENIX INSURANCE 1
11 PRINCIPAL FINL.GP.
12 SCOR SE
13 TRAVELERS COS.
14 UNUM GROUP
15 W R BERKLEY

Table 14: List of all insurance companies included in regressions with the proportion of long-term
bond investments as independent variable.

The sample is constructed by matching firm-level data from AM Best, Thomon Reuters Worldscope, SNL Financial,
ORBIS Insurance Focus and AM Best by year and ISIN number.
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Variable name Definition Data source

Dependent variables

Average Excess CoSP (ψ) Average extent to which an institution’s distress Datastream, own calc.
increases the likelihood of a market distress within
100 days after the institution’s distress event.

Dependence-consistent ∆CoVaR≤ Difference between VaR of the market conditional Datastream, own calc.
on institution being in distress and the VaR of the
market conditional on the institution’s benchmark state.

MES Expected return of an institution when market faces Datastream, own calc.
distress.

Independent variables

Life premiums Ratio of gross life premiums to total gross premiums. ORBIS
Reinsurance assumed Ratio of reinsurance premiums assumed to total gross premiums. ORBIS
Total assets Natural logarithm of total assets in thousands. Worldscope (WC02999)
MarketCap Market capitalization in millions. Worldscope (WC 8001)
Book leverage Ratio of total assets to book value of equity. Worldscope (WC02999,

WC03501)
Market-to-Book Ratio of market value equity to book value equity. Worldscope (WC07210,

WC03501)
RoE Return on Equity per share. Worldscope (WC08372)
Long-term Bonds Fraction of long-term bond investments with a maturity of at least 20 A.M. Best Company

years on total investments.

Table 15: List of variables used in the regression model.

The table lists the definitions and data sources of all variables implemented in the regression model. Data is
retrieved from Thomson Reuters Financial Datastream, Thomson Worldscope SNL Financial and ORBIS Insurance

Focus.
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Dependent variable:

ψ̄ −∆CoVaR≤ MES beta

(1) (2) (3) (4)

I(Premiums.Lifê 2) −2.423∗ 0.035 1.757 0.663
(1.287) (0.316) (1.226) (1.263)

Premiums.Life 2.592∗∗ −0.041 −1.626 −0.779
(1.288) (0.328) (1.063) (1.150)

Long.Term.Bonds −0.0004 −0.001 −0.009∗∗∗ −0.011∗∗∗

(0.001) (0.001) (0.003) (0.003)
Log.Total.Assets 0.009 0.023 0.153∗∗∗ 0.127∗∗

(0.030) (0.015) (0.046) (0.053)
Market.to.Book 0.048 0.005 −0.322∗∗ −0.307∗∗

(0.049) (0.022) (0.142) (0.129)
RoE −0.324 −0.013 −0.009 0.363

(0.546) (0.195) (0.454) (0.415)
Leverage −0.003 −0.003 −0.012 −0.011

(0.003) (0.003) (0.009) (0.010)
I(Premiums.Lifê 2):Long.Term.Bonds 0.048∗∗ 0.003 −0.005 0.010

(0.022) (0.005) (0.018) (0.020)
Premiums.Life:Long.Term.Bonds −0.052∗∗ −0.003 0.009 −0.003

(0.022) (0.006) (0.017) (0.019)
Constant 0.450 0.089 −1.242 −0.423

(0.564) (0.254) (0.931) (0.995)

Year Fixed Effects Y Y Y Y
Akaike Inf. Crit −73.4 −284.4 16.6 −0.2
Observations 118 118 118 118
R2 0.765 0.900 0.727 0.681
Adjusted R2 0.725 0.882 0.681 0.626

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 16: OLS Regression (24) for insurance and long-term bond investments: Global Financial
Sector.

The table presents the estimated coefficients, standard errors, and significance of panel regressions of the Average
Excess CoSP (1), dependence-consistent ∆CoVaR≤ (2), MES (3), and beta (4) on insurance activities and

long-term bond investments. All spillover measures are standardized. Insurer-clustered standard errors are provided
in parentheses.
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Dependent variable:

ψ̄ −∆CoVaR≤ MES beta

(1) (2) (3) (4)

I(Premiums.Lifê 2) −1.829 0.260 2.803∗∗ 2.253
(1.296) (0.488) (1.368) (1.424)

Premiums.Life 1.971 −0.206 −2.452∗∗ −2.005
(1.301) (0.493) (1.190) (1.274)

Long.Term.Bonds −0.001 −0.002 −0.006∗∗ −0.007∗∗

(0.001) (0.001) (0.003) (0.003)
Log.Total.Assets 0.019 0.093∗∗∗ 0.131∗∗∗ 0.115∗∗

(0.027) (0.028) (0.047) (0.053)
Market.to.Book 0.076∗ 0.012 −0.310∗ −0.295∗

(0.046) (0.033) (0.160) (0.166)
RoE −0.429 0.103 0.284 0.556

(0.500) (0.198) (0.477) (0.469)
Leverage −0.002 −0.016∗∗∗ −0.016∗∗ −0.020∗

(0.003) (0.004) (0.008) (0.010)
I(Premiums.Lifê 2):Long.Term.Bonds 0.042∗ 0.009 −0.007 0.001

(0.022) (0.008) (0.021) (0.022)
Premiums.Life:Long.Term.Bonds −0.046∗∗ −0.009 0.008 0.001

(0.022) (0.009) (0.020) (0.020)
Constant 0.232 −1.080∗∗ −1.049 −0.545

(0.514) (0.463) (1.008) (1.075)

Year Fixed Effects Y Y Y Y
Akaike Inf. Crit −95.4 −226.4 32.7 33.7
Observations 118 118 118 118
R2 0.789 0.915 0.704 0.632
Adjusted R2 0.753 0.901 0.654 0.569

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 17: OLS Regression (24) for insurance and long-term bond investments: American
Non-Financial Sector.

The table presents the estimated coefficients, standard errors, and significance of panel regressions of the Average
Excess CoSP (1), dependence-consistent ∆CoVaR≤ (2), MES (3), and beta (4) on insurance activities and long-term
bond investments. The spillover measures are scaled. Insurer-clustered standard errors are provided in parentheses.
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Dependent variable:

ψ̄ −∆CoVaR≤ MES beta

(1) (2) (3) (4)

I(Premiums.Lifê 2) 0.662∗∗ 0.288∗ 1.299∗∗∗ 1.277∗∗∗

(0.260) (0.164) (0.404) (0.374)
Premiums.Life −0.827∗∗∗ −0.308∗ −1.008∗∗∗ −1.019∗∗∗

(0.281) (0.171) (0.373) (0.357)
Leverage −0.008 −0.005 0.007 0.007

(0.008) (0.004) (0.012) (0.011)
Log.Total.Assets 0.020 0.031∗∗∗ 0.067∗∗ 0.089∗∗∗

(0.018) (0.010) (0.029) (0.028)
Market.to.Book −0.039 −0.045∗ −0.163∗∗ −0.172∗∗∗

(0.032) (0.024) (0.070) (0.066)
RoE −0.180 −0.050 −1.308∗∗∗ −0.996∗∗

(0.298) (0.076) (0.500) (0.473)
Premiums.Life:Leverage 0.011 0.002 −0.010 −0.011

(0.009) (0.006) (0.017) (0.015)
Constant 0.412 0.023 −0.298 −0.413

(0.291) (0.155) (0.480) (0.451)

Year Fixed Effects Y Y Y Y
Akaike Inf. Crit 51.7 −552.4 440.2 374.8
Observations 517 517 517 517
R2 0.568 0.625 0.423 0.382
Adjusted R2 0.555 0.614 0.406 0.363

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 18: OLS Regression (26) for Insurance Business and Leverage: Global Financial Sector.

The table presents the estimated coefficients, standard errors, and significance of panel regressions of the Average
Excess CoSP (1), dependence-consistent ∆CoVaR≤ (2), MES (3) and beta (4) on insurance activities. The spillover

measures are scaled. Insurer-clustered standard errors are provided in parentheses.
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Dependent variable:

ψ̄ −∆CoVaR≤ MES beta

(1) (2) (3) (4)

I(Premiums.Lifê 2) 0.868∗∗∗ 0.769∗∗∗ 2.253∗∗∗ 2.231∗∗∗

(0.265) (0.236) (0.406) (0.391)
Premiums.Life −0.981∗∗∗ −0.758∗∗∗ −1.863∗∗∗ −1.874∗∗∗

(0.282) (0.254) (0.374) (0.380)
Leverage −0.006 −0.006 0.009 0.004

(0.008) (0.006) (0.011) (0.011)
Log.Total.Assets 0.027 0.074∗∗∗ 0.065∗ 0.088∗∗

(0.018) (0.015) (0.038) (0.036)
Market.to.Book −0.055 −0.076∗∗ −0.192∗∗ −0.207∗∗

(0.034) (0.038) (0.092) (0.087)
RoE −0.101 −0.078 −1.459∗∗ −1.003∗

(0.288) (0.150) (0.623) (0.549)
Premiums.Life:Leverage 0.007 −0.005 −0.019 −0.020

(0.009) (0.010) (0.019) (0.019)
Constant 0.270 −0.658∗∗∗ −0.216 −0.397

(0.298) (0.231) (0.653) (0.624)

Year Fixed Effects Y Y Y Y
Akaike Inf. Crit 38.3 −110.8 585.8 547.7
Observations 516 516 516 516
R2 0.558 0.561 0.437 0.395
Adjusted R2 0.545 0.548 0.421 0.377

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 19: OLS Regression (26) for Insurance Business and Leverage: American Non-Financial
Sector.

The table presents the estimated coefficients, standard errors, and significance of panel regressions of the Average
Excess CoSP (1), dependence-consistent ∆CoVaR≤ (2), MES (3) and beta (4) on insurance activities. The spillover

measures are scaled. Insurer-clustered standard errors are provided in parentheses.
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Dependent variable:

ψ̄ −∆CoVaR≤ MES beta

(1) (2) (3) (4)

I(Reinsurance.assumed 2̂) 0.053 0.007 0.941∗ 0.814
(0.412) (0.179) (0.510) (0.506)

Reinsurance.assumed −0.039 0.010 −1.070∗∗ −0.892∗

(0.400) (0.163) (0.513) (0.502)
Log.Total.Assets 0.049∗ 0.031∗∗∗ 0.102∗∗∗ 0.117∗∗∗

(0.025) (0.010) (0.039) (0.037)
Market.to.Book −0.016 −0.017 −0.157 −0.143

(0.059) (0.022) (0.135) (0.125)
RoE −0.440∗ −0.069 −1.401∗∗∗ −1.164∗∗∗

(0.261) (0.058) (0.429) (0.399)
Leverage −0.014∗ −0.003 −0.005 −0.006

(0.007) (0.003) (0.011) (0.010)
Constant −0.141 −0.066 −0.779 −0.801

(0.432) (0.156) (0.599) (0.570)

Year Fixed Effects Y Y Y
Akaike Inf. Crit 100 −411.5 335.2
Observations 324 324 324 324
R2 0.483 0.617 0.326 0.268
Adjusted R2 0.460 0.600 0.296 0.234

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 20: OLS Regression (28) for Reinsurance Business: Global Financial Sector.

The table presents the estimated coefficients, standard errors, and significance of panel regressions of the Average
Excess CoSP (1), dependence-consistent ∆CoVaR≤ (2), MES (3) and beta (4) on insurance activities. The spillover

measures are scaled. Insurer-clustered standard errors are provided in parentheses.
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Dependent variable:

ψ̄ −∆CoVaR≤ MES beta

(1) (2) (3) (4)

I(Reinsurance.assumed 2̂) 0.082 −0.290 0.521 0.386
(0.441) (0.338) (0.650) (0.640)

Reinsurance.assumed −0.065 0.317 −0.683 −0.514
(0.409) (0.305) (0.639) (0.626)

Log.Total.Assets 0.058∗∗ 0.074∗∗∗ 0.091∗ 0.102∗∗

(0.026) (0.016) (0.048) (0.047)
Market.to.Book −0.044 −0.084∗ −0.217 −0.209

(0.065) (0.049) (0.176) (0.163)
RoE −0.398 −0.272∗∗ −1.783∗∗∗ −1.383∗∗∗

(0.250) (0.116) (0.516) (0.424)
Leverage −0.015∗∗ −0.011∗∗ −0.011 −0.013

(0.007) (0.005) (0.013) (0.012)
Constant −0.296 −0.701∗∗∗ −0.472 −0.546

(0.462) (0.263) (0.791) (0.775)

Year Fixed Effects Y Y Y
Akaike Inf. Crit 96.7 −93 481.3
Observations 324 324 324 324
R2 0.464 0.548 0.259 0.203
Adjusted R2 0.439 0.527 0.226 0.167

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 21: OLS Regression (28) for Reinsurance Business: American Non-Financial Sector.

The table presents the estimated coefficients, standard errors, and significance of panel regressions of the Average
Excess CoSP (1), dependence-consistent ∆CoVaR≤ (2), MES (3) and beta (4) on insurance activities. The spillover

measures are scaled. Insurer-clustered standard errors are provided in parentheses.
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Dependent variable:

ψ̄ exp
(
−∆CoVaR≤

)
exp(MES) exp(beta)

(1) (2) (3) (4)

I(Premiums.Lifê 2) 0.931∗∗∗ 0.012∗∗∗ 0.042∗∗∗ 1.427∗∗∗

(0.121) (0.002) (0.006) (0.200)
Premiums.Life −1.012∗∗∗ −0.012∗∗∗ −0.034∗∗∗ −1.237∗∗∗

(0.134) (0.003) (0.007) (0.222)
Log.Total.Assets 0.009 0.001∗∗∗ 0.002∗∗∗ 0.067∗∗∗

(0.010) (0.0002) (0.001) (0.017)
Market.to.Book −0.041∗∗ −0.002∗∗∗ −0.006∗∗∗ −0.121∗∗∗

(0.020) (0.0004) (0.001) (0.032)
RoE −0.180∗ −0.002 −0.048∗∗∗ −1.542∗∗∗

(0.105) (0.003) (0.006) (0.209)
Leverage 0.002 −0.0001∗∗ 0.00001 0.003

(0.002) (0.0001) (0.0001) (0.004)
Constant −0.578∗∗∗ 0.963∗∗∗ 0.957∗∗∗ −0.099

(0.187) (0.004) (0.009) (0.295)

Year Fixed Effects Y Y Y Y
Akaike Inf. Crit 42.3 −3930.8 −3014.5 628.9
Observations 517 517 517 517
Akaike Inf. Crit. 42.280 -3,930.843 -3,014.472 628.870

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 22: Robustness GLM Regression with normally distributed errors for Insurance Business:
Global Financial Sector.

The table presents the estimated coefficients, standard errors, and significance of panel regressions of the Average
Excess CoSP (1), dependence-consistent ∆CoVaR≤ (2), MES (3), and beta (4) on insurance activities. All spillover

measures are standardized. Insurer-clustered standard errors are provided in parentheses.
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Dependent variable:

ψ̄ exp
(
−∆CoVaR≤

)
exp(MES) exp(beta)

(1) (2) (3) (4)

I(Premiums.Lifê 2) 1.070∗∗∗ 0.028∗∗∗ 0.073∗∗∗ 1.972∗∗∗

(0.120) (0.004) (0.007) (0.233)
Premiums.Life −1.125∗∗∗ −0.029∗∗∗ −0.065∗∗∗ −1.665∗∗∗

(0.133) (0.004) (0.008) (0.260)
Log.Total.Assets 0.019∗ 0.003∗∗∗ 0.002∗∗∗ 0.046∗∗

(0.010) (0.0003) (0.001) (0.020)
Market.to.Book −0.061∗∗∗ −0.003∗∗∗ −0.007∗∗∗ −0.117∗∗∗

(0.020) (0.001) (0.001) (0.038)
RoE −0.114 −0.004 −0.056∗∗∗ −1.543∗∗∗

(0.108) (0.004) (0.007) (0.244)
Leverage 0.001 −0.0004∗∗∗ −0.0002 −0.008∗

(0.002) (0.0001) (0.0001) (0.005)
Constant −0.764∗∗∗ 0.935∗∗∗ 0.961∗∗∗ 0.195

(0.186) (0.006) (0.010) (0.344)

Year Fixed Effects Y Y Y Y
Akaike Inf. Crit 29 −3440.6 −2826.4 787.8
Observations 516 516 516 516
Akaike Inf. Crit. 29.025 -3,440.627 -2,826.377 787.828

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 23: Robustness GLM Regression with normally distributed errors for Insurance Business:
American Non-Financial Sector.

The table presents the estimated coefficients, standard errors, and significance of panel regressions of the Average
Excess CoSP (1), dependence-consistent ∆CoVaR≤ (2), MES (3), and beta (4) on insurance activities. The

spillover measures are scaled. Insurer-clustered standard errors are provided in parentheses.
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Dependent variable:

ψ̄ −∆CoVaR≤ MES beta

(1) (2) (3) (4)

I(Premiums.Lifê 2) 0.242 −0.083 −0.132 0.023
(0.447) (0.294) (0.612) (0.563)

Premiums.Life −0.404 0.067 0.437 0.248
(0.464) (0.301) (0.566) (0.552)

Leverage −0.002 0.001 0.028∗∗ 0.025∗∗

(0.008) (0.005) (0.011) (0.011)
Log.Total.Assets 0.017 0.029∗∗∗ 0.058∗ 0.081∗∗∗

(0.019) (0.010) (0.030) (0.029)
Market.to.Book −0.035 −0.041∗ −0.147∗∗ −0.158∗∗

(0.031) (0.023) (0.065) (0.062)
RoE −0.185 −0.054 −1.325∗∗∗ −1.011∗∗

(0.281) (0.072) (0.438) (0.420)
I(Premiums.Lifê 2):Leverage 0.038 0.033∗ 0.129∗∗∗ 0.113∗∗∗

(0.030) (0.020) (0.043) (0.043)
Premiums.Life:Leverage −0.030 −0.034 −0.149∗∗∗ −0.133∗∗∗

(0.032) (0.022) (0.045) (0.046)
Constant 0.413 0.024 −0.293 −0.409

(0.303) (0.158) (0.492) (0.464)

Year Fixed Effects Y Y Y Y
Akaike Inf. Crit 49.4 −561.5 417.8 355.6
Observations 517 517 517 517
R2 0.572 0.633 0.450 0.406
Adjusted R2 0.558 0.621 0.432 0.387

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 24: OLS Regression (31) for Insurance Business and Leverage: Global Financial Sector.

The table presents the estimated coefficients, standard errors, and significance of panel regressions of the Average
Excess CoSP (1), dependence-consistent ∆CoVaR≤ (2), MES (3) and beta (4) on insurance activities. The spillover

measures are scaled. Insurer-clustered standard errors are provided in parentheses.
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Dependent variable:

ψ̄ −∆CoVaR≤ MES beta

(1) (2) (3) (4)

I(Premiums.Lifê 2) 0.486 0.618 1.449∗∗ 1.613∗∗

(0.455) (0.416) (0.713) (0.676)
Premiums.Life −0.595 −0.605 −1.049∗ −1.249∗∗

(0.464) (0.415) (0.628) (0.626)
Leverage −0.0005 −0.004 0.020 0.013

(0.008) (0.008) (0.015) (0.015)
Log.Total.Assets 0.025 0.073∗∗∗ 0.060 0.084∗∗

(0.019) (0.015) (0.038) (0.037)
Market.to.Book −0.051 −0.075∗∗ −0.183∗∗ −0.201∗∗

(0.033) (0.037) (0.090) (0.086)
RoE −0.106 −0.080 −1.469∗∗ −1.010∗

(0.273) (0.147) (0.589) (0.524)
I(Premiums.Lifê 2):Leverage 0.034 0.014 0.072 0.056

(0.029) (0.026) (0.051) (0.053)
Premiums.Life:Leverage −0.030 −0.020 −0.098∗ −0.081

(0.030) (0.029) (0.053) (0.056)
Constant 0.271 −0.657∗∗∗ −0.212 −0.394

(0.307) (0.234) (0.657) (0.629)

Year Fixed Effects Y Y Y Y
Akaike Inf. Crit 36.6 −109.5 582.1 546
Observations 516 516 516 516
R2 0.561 0.561 0.444 0.399
Adjusted R2 0.547 0.547 0.426 0.380

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 25: OLS Regression (31) for Insurance Business and Leverage: American Non-Financial
Sector.

The table presents the estimated coefficients, standard errors, and significance of panel regressions of the Average
Excess CoSP (1), dependence-consistent ∆CoVaR≤ (2), MES (3) and beta (4) on insurance activities. The spillover

measures are scaled. Insurer-clustered standard errors are provided in parentheses.
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Dependent variable:

ψ̄ −∆CoVaR≤ MES beta

(1) (2) (3) (4)

I(Premiums.Lifê 2) 0.699∗ 0.173 1.492∗∗ 1.402∗∗

(0.418) (0.185) (0.626) (0.591)
Premiums.Life −0.611 −0.124 −0.877 −0.916

(0.496) (0.241) (0.715) (0.669)
Reinsurance.assumed 0.100 0.021 −0.453∗ −0.373

(0.144) (0.059) (0.272) (0.261)
I(Premiums.Lifê 2):Reinsurance.assumed −0.060 −0.113 −2.285∗∗ −2.165∗∗

(0.679) (0.229) (1.040) (0.975)
Premiums.Life:Reinsurance.assumed −0.071 0.074 2.046∗ 1.963∗

(0.768) (0.267) (1.233) (1.167)
Constant 0.005 0.0003 0.117 −0.035

(0.443) (0.170) (0.798) (0.711)

Insurer Controls Y Y Y Y
Year Fixed Effects Y Y Y Y
Akaike Inf. Crit 82.2 −414.2 251.4 226.5
Observations 324 324 324 324
R2 0.520 0.627 0.489 0.416
Adjusted R2 0.493 0.606 0.461 0.384

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 26: OLS Regression (34) for Insurance and Reinsurance Business: Global Financial Sector.

The table presents the estimated coefficients, standard errors, and significance of panel regressions of the Average
Excess CoSP (1), dependence-consistent ∆CoVaR≤ (2), and MES (3) on insurance activities. All spillover measures

are standardized. Insurer-clustered standard errors are provided in parentheses.
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Dependent variable:

ψ̄ −∆CoVaR≤ MES beta

(1) (2) (3) (4)

I(Premiums.Lifê 2) 0.893∗∗ 0.529 2.607∗∗∗ 2.614∗∗∗

(0.401) (0.322) (0.800) (0.802)
Premiums.Life −0.816∗ −0.495 −2.099∗∗ −2.221∗∗∗

(0.489) (0.389) (0.891) (0.860)
Reinsurance.assumed 0.063 0.195 −0.446 −0.382

(0.131) (0.140) (0.321) (0.301)
I(Premiums.Lifê 2):Reinsurance.assumed −0.055 0.111 −2.401∗ −2.241∗

(0.708) (0.616) (1.269) (1.187)
Premiums.Life:Reinsurance.assumed 0.021 −0.304 2.270 2.163

(0.783) (0.682) (1.465) (1.360)
Constant −0.135 −0.652∗∗ 0.436 0.252

(0.448) (0.291) (0.994) (0.907)

Insurer Controls Y Y Y Y
Year Fixed Effects Y Y Y Y
Akaike Inf. Crit 64.5 −110.3 374.6 332.9
Observations 324 324 324 324
R2 0.523 0.579 0.477 0.443
Adjusted R2 0.497 0.556 0.448 0.412

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 27: OLS Regression (34) for Insurance and Reinsurance Business: American Non-Financial
Sector.

The table presents the estimated coefficients, standard errors, and significance of panel regressions of the Average
Excess CoSP (1), dependence-consistent ∆CoVaR≤ (2), and MES (3) on insurance activities. The spillover

measures are scaled. Insurer-clustered standard errors are provided in parentheses.
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