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Veröffentlichungen 135

Lebenslauf 137

Danksagung 139





Chapter 1

Foreword

In this thesis, we study the properties of excitations in the systems of interacting
fermions. These excitations can be bosonic such as collective modes which we handle
in the first part of this thesis or fermionic like quasi particles and quasi holes [1, 2].
One of the important points, to investigate the excitations is their damping which
corresponds to their life-time in the system. This thesis consists of two parts, where
in both parts, we use the field-theoretical methods to examine the problem.

The first part of this thesis is dedicated to spinless fermions in one dimension.
Here, we are interested in the behavior of a bosonic collective excitation which
is called zero sound and is associated with density fluctuations. To this end, we
calculate the dynamic structure factor S(ω, q) with the quadratic energy dispersion
and long range density-density interaction. We assume that the Fourier transform
fq of the long range interaction is dominated by small momentum-transfers q �
q0 � kF , where q0 is the momentum-transfer cutoff and kF is the Fermi momentum.
If the energy dispersion is linearized, the collective zero sound mode is undamped.
Other works have shown that the damping of zero sound is proportional to q2/m
for q → 0 [3, 4].

In this thesis, we develop a perturbative approach within functional bosoniza-
tion. In contrast to perturbation theory based on conventional bosonization, our
functional bosonization approach is not plagued by unphysical singularities, which
implement that close to a mass-shell the perturbation theory breaks down [5,6]. For
interactions which can be expanded as fq = f0 + f ′′0 q

2/2 + O(q4) with f ′′0 < 0 we
show that the momentum scale qc = 1/|mf ′′0 | separates two regimes characterized by
a different q-dependence of the width γq of the collective zero sound mode and other
features of S(ω, q). For qc � q � kF all integrations in our functional bosonization
result for S(ω, q) can be evaluated analytically; we find that the line shape in this
regime is non-Lorentzian with an overall width γq ∝ q3/(mqc) and a threshold sin-
gularity [(ω−ω−q ) ln2(ω−ω−q )]−1 at the lower edge ω → ω−q = vq−4γq/3, where v is
the velocity of the zero sound mode. Assuming that higher orders in perturbation
theory transform the logarithmic singularity into an algebraic one, we find for the
corresponding threshold exponent µq = 1−2ηq with ηq ∝ q2

c/q
2. Although for q . qc

we have not succeeded to explicitly evaluate our functional bosonization result for
S(ω, q), we argue that for any one-dimensional model belonging to the Luttinger

1



2 Chapter 1. Foreword

liquid universality class the width of the zero sound mode scales as q2/m for q → 0.
In the second part of this thesis we investigate the spectral function of impurity

d-electrons in the Anderson impurity model. In the Fermi liquid regime we obtain
the behavior of the Kondo peak which corresponds to the elementary quasi particle
excitation. Since Anderson impurity model exhibits a single correlated impurity, the
system is here zero-dimensional. In this part, we use the functional renormalization
group approach to study one-particle excitation in Fermi liquid regime. We use here
a strategy which is developed in Ref. [7], introducing bosonic Hubbard-Stratonovich
fields to work out the problem in a mixed Bose-Fermi system. In our renormaliza-
tion group scheme we impose a cutoff in the fermionic propagator and find a reliable
truncation to handle the problem. We also use Dyson-Schwinger equations to ex-
press the irreducible bosonic vertices in terms of the fermionic ones. We show that
within the transverse spin-singlet particle-hole channel the unphysical singularities
are removed and for U . 2π∆, our results are consistent with the accurate results
obtained via the numerical renormalization group. Here U is the one site Coulomb
repulsion and ∆ is the hybridization in the wide band limit. However, we are not
able to reproduce the exponential suppression of the Kondo scale for U � ∆. We
argue how this important feature can be obtained if we use a more complicated
approach.



Part I

Dynamic structure factor of
Luttinger liquids
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Chapter 2

Introduction

One-dimensional systems of interacting electrons have fascinated theorist and exper-
imental physicist in the last fifty years [8–10]. Correlated fermions in one dimension
are characterized by several exotic properties, stating the deviation from the Fermi
liquid behavior (which is described by the Landau theory [2]). In 1981, analogue
to the three dimensional electron gases, Haldane [10] introduced the term Luttinger
liquid for fermions in one dimension with the following features: the absence of a
discontinuity in the momentum distribution function at the Fermi surface, vanishing
density of states at the Fermi energy and unusual one particle spectral line shape
at low energies involving the separation between charge and spin excitations. The
last point implies that one particle excitations are prohibited in Luttinger liquids
and therefore only the collective excitations occur. Some of these non-Fermi liquids
feature are observed experimentally, in particular in Refs. [11–14] which are based
on photoemission spectroscopy.

For the examination of the Luttinger liquids behavior, a couple of exactly solvable
models have been found which describe the underlying physics of correlated fermions
in one dimension. According to Haldane all of these models are equivalent at low
energies [8, 10]. One of the most important representative models is the Tomonaga
Luttinger model (TLM) introduced by Tomonaga [15] and Luttinger [16] in the
1950s and 1960s. The exact solution of the TLM can be obtained through the
bosonization technique. Luttinger discovered also that there is no sharp step in the
momentum distribution at the Fermi surface. A bosonization formalism was used
by Mattis and Lieb [17], who confirmed the important result of Luttinger. The one
particle spectral line shape of Luttinger liquids was obtained by Luther and Peschel
in 1974 [18], who extended the bosonization theory. Finally the elegant approach
for constructive bosonization was presented by Haldane [8, 10].

Let us start with the Hamiltonian of spinless fermions in one dimension,

Ĥ = Ĥ0 + Ĥint , (2.1a)

Ĥ0 =
∑
k

εkĉ
†
kĉk , (2.1b)

Ĥint =
1

2V

∑
k1,k2,k3

U(k3)ĉ†k1+k3
ĉ†k2−k3

ĉk2 ĉk1 , (2.1c)

5



6 Chapter 2. Introduction

Figure 2.1: Linearizion of the energy dispersion around the Fermi points in one
dimensional fermionic system according to the TLM, where Λ denotes the bandwidth
cutoff.

where V is the volume of the one dimensional system. The crucial point is that the
Fermi surface consists of only two points kF and −kF , where kF is the the Fermi
momentum and

εF =
k2
F

2m
, (2.2)

represents the Fermi energy. Tomonaga assumed that one can linearize the energy
dispersion εk around these two Fermi points as follows,

εk ≈ εF + αvF q , α = ± , (2.3)

with

q = k − αkF , vF =
kF
m
, (2.4)

where vF = kF/m is called the Fermi velocity and the fermions are categorized into
the two classes right movers for α = + and left movers for α = −. Fig. 2.1 shows
schematically Tomonaga’s linearization. Note that this approximation is valid for
|qα| < Λ with a given bandwidth cutoff Λ. A finite value for Λ is necessary to avoid
unphysical singularities [19]. In order to make the calculations simpler we take the
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Figure 2.2: Different scattering processes in the TLM which are denoted by the
wavy lines. The solid lines represent the right mover electrons while the dashed
lines represent the left mover electrons.

limit Λ→∞, which is reliable for sufficiently weak interactions. We obtain for the
kinetic energy part of the Hamiltonian

Ĥ0 =
∑
α=±

∑
q

(εF + αvF q) ĉ
†
qαĉqα , (2.5)

where ĉ†qα and ĉqα are creation and annihilation operators of fermions with momen-
tum k = αkF + q. For noninteracting fermions, the chemical potential is given by
µ = εF . We obtain thus for the noninteracting Green functions of left and right
moving electrons in the TLM

Gα
0 (iω, k) =

1

iω + µ− εk =
1

iω − αvF q . (2.6)

By this construction the interaction (2.1c) can be expressed in terms of four coef-
ficients g1, g2, g3 and g4, identified in g-ology classification and represented in Fig.
2.2. In g-ology classification g1 represents the backward scattering, g2 and g4 to-
gether describe the forward scattering and g3 is the umklapp scattering. Note that
for spinless fermions g1- and g2-processes are the same but if we take the spin into
account these two scattering processes become different. The umklapp process g3 is
only relevant for half filled bands which give rise to isolators. In addition one can
show that in the TLM the backward scattering g1 becomes irrelevant in the renor-
malization group (RG) sense [19]. The interaction part of the TLM can therefore
be written as

Ĥint =
1

2

∑
q

fαα
′

q ρ̂−qαρ̂qα′ . (2.7)

where

ρ̂qα =
∑
α=±

∑
k

c†kαck+qα (2.8)
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is the density operator of the right moving ( for α = +) and the left moving (for
α = −) electrons in momentum space. We have defined the following matrix to
describe the interaction between the electrons with the indices α = (+,−),

fαα
′

q =

(
g4 g2

g2 g4

)
. (2.9)

For more simplification we demand that

g2 = g4 = fq , ⇔ fαα
′

q = fq ∀α, α′ ∈ {+,−} . (2.10)

In Sec. 2.2 we introduce a new model called forward scattering model which only
includes g2 and g4 and in comparison with the TLM the difference is that the energy
dispersion is not linearized.

2.1 Dynamic structure factor

We have pointed out that only collective excitations are well defined in Luttinger
liquids. In this section we show how density fluctuations generate a bosonic collective
excitation which is called zero sound [2,20]. Mathematically, the dynamic structure
factor S(ω, q) is defined as the spectral density of the density-density correlation
function,

S(ω, q) =
1

π
ImΠ(iω̄ → ω + i0, q) , ω̄ > 0 . (2.11)

Π(τ) = − 1

V

〈
T̂ [ρ̂q(τ)ρ̂−q(0)]

〉
(2.12)

where τ denotes the imaginary time while T̂ is the time ordering operator and

ρ̂q(τ) =
∑
k

ĉ†k(τ)ĉk+q(τ) (2.13)

is the density operator. The condition ω̄ > 0 ensures that we consider inelastic
scatterings.

Alternatively the one particle Green function obtained by means of the field-
theoretical bosonization, can be derived through the Ward identity, associated with
the conservation law at each Fermi point [21,22]. Within the Ward identity approach
one can show that the loop diagrams, involving more than two fermionic external
legs do not contribute to the density response function so that the random-phase
approximation (RPA) for the polarization

ΠRPA(iω̄, q) =
Π0(iω̄, q)

1 + fqΠ0(iω̄, q)
(2.14)

becomes exact. Here Π0(iω̄, q) represents the noninteracting polarization,

Π0(iω̄, q) = − 1

βV

∑
α=±

∑
k,iω

Gα
0 (iω, k)Gα

0 (iω + iω̄, k + q) , (2.15)
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Figure 2.3: Diagrams contributing to the density response function in RPA approx-
imation where the first diagram denotes the noninteracting polarization Π0(iω̄, q).
The thin wavy line denotes the bare interaction and the solid arrows represent non-
interacting fermionic single-particle Green functions.

where β is the inverse temperature. This statement is known as the closed loop
theorem, which we treat in the context of the functional bosonization in Chap. 3. In
the limit T → 0 and V →∞ the sums are replaced by integrals,

Π0(iω̄, q) = −
∑
α=±

∫ ∞
−∞

dk

(2π)2

∫ ∞
−∞

dω

[iω − αvFk] [iω + iω̄ − αvF (k + q)]
. (2.16)

Here the integration over the frequency can be carried out via the residue theorem,

Π0(iω̄, q) =
∑
α=±

∫ ∞
−∞

dk

2π

Θ(−αvFk)−Θ(−αvF (k + q))

iω̄ − αvF q

= −
∑
α=±

1

2π

αq

iω̄ − αvF q =
1

πvF

(vF q)
2

(vF q)2 + ω̄2
. (2.17)

Note that this exact result can be obtained using bosonization which generates from
(2.5) and (2.7) a Hamiltonian that is noninteracting in bosonic language [8,10,19,23–
25]. A graphical representation of RPA is shown in Fig. 2.3. As a consequence, the
dynamic structure factor of the TLM has only a single δ-function peak corresponding
to a collective zero sound (ZS) mode with infinite lifetime1. For spinless fermions
with long-range density-density interaction fq one obtains with small q,

STLM(ω, q) =
1

π
ImΠRPA(iω̄ → ω + i0, q) = Zqδ(ω − v0|q|) , (2.18)

where the velocity v0 and the weight Zq of the collective ZS mode can be written as

v0/vF =
√

1 + g0 , (2.19)

Zq =
vF q

2

2πv0|q| =
|q|

2π
√

1 + g0

. (2.20)

For later convenience we have introduced the relevant dimensionless interaction
at vanishing momentum-transfer,

g0 = ν0f0 , (2.21)

1We consider the neutral spinless fermions in this work. In charged Fermi systems the collective
excitation is called plasmon instead of ZS [2].
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where ν0 is the noninteracting density of states at the Fermi energy,

ν0 =
1

V

∑
k

δ

(
k2

2m
− k2

F

2m

)
=

∫ ∞
−∞

dk

2π
δ

(
k2

2m
− k2

F

2m

)
=

1

πvF
. (2.22)

The question is now how the line shape of S(ω, q) changes if we do not linearize the
energy dispersion.

2.2 Forward scattering model

Despite the exact solution of the TLM, it is not sufficient to understand quantita-
tively the dynamic structure factor in Luttinger liquids. The spectral line shape is
expected to depend on nonuniversal parameters of the model under consideration,
such as the nonlinear terms in the expansion of the energy dispersion εk around the
Fermi momentum kF , or the coefficients in the expansion of the Fourier transform
fq of the interaction for small momentum-transfers q. Because these parameters
correspond to the couplings which are irrelevant (in the RG sense) at the Luttinger
liquid fixed point, the line shape of S(ω, q) is hard to obtain using standard field-
theoretical methods, such as field-theoretical bosonization, which has otherwise been
very successful to obtain the infrared properties of Luttinger liquids [8,10,19,23–25].

In this section we use a functional integral formalism to analyze a model beyond
the TLM including quadratic energy dispersion. We consider nonrelativistic spinless
fermions interacting with long-range density-density forces in one spatial dimension.
The Hamiltonian of the system is of the same form as Eq. (2.1). The first part of
the Hamiltonian can be written as

Ĥ0 =
∑
k

εkĉ
†
kĉk , (2.23)

with

εk =
k2

2m
. (2.24)

Since according to the definition (2.4) we obtain

εk = εF + αvF q +
q2

2m
, (2.25)

the TLM is equivalent to the limit 1/m → 0. On the other hand, because of
the quadratic energy dispersion, all states on the right and left sides of the band
structure are included with k ∈ (−∞,+∞). The splitting of the fermions into the
right and left movers is therefore unnecessary. According to Eqs. (2.7, 2.10), the
interaction reduces to

Ĥint =
1

2

∑
q

fqρ̂−qρ̂q , (2.26)
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where ρ̂q is the total density operator which is defined in (2.13). Note that, in
contrast to the TLM, the forward scattering model does not require ultraviolet
regularization because the quadratic energy dispersion in one dimension renders all
loop integrations ultraviolet convergent. Hence the usual problems associated with
the removal of ultraviolet cutoffs and the associated anomalies [26,27] simply do not
arise in the forward scattering model.

Using path-integral formulation presented in [28] the ratio of the grand canonical
partition functions with and without interaction can be written as

Z
Z0

=

∫ D[c̄, c] e−SE[c̄,c]∫ D[c̄, c] e−S0[c,c̄]
, (2.27)

where

D[c, c̄] =
∏
k,iω

dc̄K dcK (2.28)

and the Grassmann-fields {cK , c̄K} are associated with the fermionic annihilation
and creation operators {ĉk(τ), ĉ†k(τ)}. The Euclidean action SE[c̄, c] is given by

SE[c̄, c] = S0[c̄, c] + Sint[c̄, c] , (2.29)

with

S0[c̄, c] = −
∫
K

(iω − εk + µ)c̄KcK , (2.30)

Sint[c̄, c] =
1

2

∫
Q

fqρ−QρQ , (2.31)

ρQ =

∫
K

c̄KcK+Q . (2.32)

The collective label K = (iω, k) denotes fermionic Matsubara frequencies iω and
wave-vectors k, while Q = (iω̄, q) depends on bosonic Matsubara frequencies iω̄.
The corresponding integration symbols are∫

K

=
1

βV

∑
ω,k

,

∫
Q

=
1

βV

∑
ω̄,q

. (2.33)

Eventually, we shall take the limit of infinite volume V →∞ and zero temperature
β →∞, where ∫

K

=

∫
dωdk

(2π)2
,

∫
Q

=

∫
dω̄dq

(2π)2
. (2.34)

We assume that the Fourier transform fq of the interaction is suppressed for mo-
mentum transfers q exceeding a certain cutoff q0 � kF . For explicit calculations it
is sometimes convenient to use a sharp cutoff [29],

fq = f0Θ(q0 − |q|) . (2.35)
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However, as will be discussed in detail in Chap. 8, the vanishing of all derivatives
of fq at q = 0 eliminates an important damping mechanism, so that it is better to
work with a more realistic smooth cutoff, such as a Lorentzian,

fq =
f0

1 + q2/q2
0

. (2.36)

Throughout this work we assume that the momentum-transfer cutoff q0 (which for
Lorentzian interaction can be identified with the Thomas-Fermi screening wave-
vector) satisfies

p0 ≡ q0

2kF
� 1 . (2.37)

The precise form of fq is not important for our purpose, as long as for small q we
may expand

fq = f0 +
1

2
f ′′0 q

2 +O(q4) , with f ′′0 6= 0 . (2.38)

By dimensional analysis, we may use the second derivative f ′′0 of the Fourier trans-
form of the interaction to construct a new momentum scale

qc =
1

m|f ′′0 |
, (2.39)

which will play an important role in this work. Note that for Lorentzian cutoff
f ′′0 = −2f0/q

2
0 < 0 and qc = q2

0/(2mf0), but in general the momentum scale qc is
independent of the momentum transfer cutoff q0. We assume that

qc � q0 � kF . (2.40)

For simplicity, we shall refer to the forward scattering model defined above as the
FSM. The noninteracting Green function in the FSM is given by

G0(K) =
1

iω − ξk , ξk =
k2

2m
− k2

F

2m
. (2.41)

In addition for the Fourier transform of the polarization defined by Eq. (2.12), we
get

Π(Q) =

∫ D[c̄, c] e−SE[c̄,c] ρQρ−Q∫ D[c̄, c] e−SE[c,c̄]
, (2.42)

where for fq → 0 we obtain

Π0(Q) = −
∫
K

G0(K)G0(K +Q) =

∫
Θ(−ξk+q)−Θ(−ξk)
iω̄ − ξk+q + ξk

dk

=
m

2πq
ln

[
ω̄2 +

(
vF q + q2

2m

)2

ω̄2 +
(
vF q − q2

2m

)2

]
. (2.43)
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Figure 2.4: Schematical representation of single particle-hole excitations arising in
one dimensional fermion systems. The shaded region corresponds to the excitation
energy spectrum as a function of q, where S0(ω, q) is finite.

Thus, the dynamic structure factor of the noninteracting fermion gases with quadratic
energy dispersion is characterized by a step function as follows,

S0(ω, q) =
1

π
ImΠ0(ω, q) =

m

2π|q|Θ
(
q2

2m
− ∣∣ω − vF |q|∣∣) . (2.44)

The region vF |q| − q2

2m
< ω < vF |q| + q2

2m
shown in Fig. 2.4 describes the allowed

excitation energies of particle-hole pairs. Note that in the limit 1/m → 0, Π0(Q)
reduces to Eq. (2.17).

Recently there have been many attempts to calculate the dynamic structure
factor of interacting fermions with nonlinear energy dispersion in Luttinger liq-
uids [3–6, 29–40]. Most successful works were done by Pustilnik et al. [3, 32] and
Pereira et al. [4, 35, 36], who showed independently that the width of the ZS mode
scales as q2/m. Pustilnik et al. expanded the full polarization Π(ω, q) in powers of
the bare interaction and found already at the first order in the bare interaction that
the correction to S(ω, q) diverges logarithmically if ω approaches a certain threshold
edge ω−q from above. They argued that via a resummation procedure analogue to
the X-ray problem [41] one can transform the logarithmic singularity into an alge-
braic one. These authors did not keep track of the finite zero sound velocity which
will be discussed in the context of this thesis. Pereira et al. [35,36] have focused on
an exactly solvable model belonging to the Luttinger liquid universality class. They
have confirmed numerically the existence of the algebraic singularities at lower edge



14 Chapter 2. Introduction

using Bethe ansatz. But this model obtained from the XXZ-chain [4,35,36] is differ-
ent from the FSM since it includes also backward scattering as well as momentum
transfers of the order of kF .

Let us now give a brief outline of the rest of the first part of this thesis. In
Chap. 3 we introduce the functional bosonization approach to the FSM, introducing
the irreducible polarization Π∗(ω, q) which consists of the free polarization Π0(ω, q)
and its corrections because of the band curvature. This approach will be then used
in Chap. 7 to derive a self-consistency equation for Π−1

∗ (ω, q) which does not exhibit
any mass-shell singularities. In Chap. 4 we outline briefly the theory of functional
renormalization group (FRG) and present furthermore a nonperturbative functional
renormalization group flow equation for the irreducible polarization of the FSM.
However, in this work we shall not attempt to further analyze this rather complicated
integro-differential equation. In Chap. 5 we will discuss the dynamic structure factor
of the FSM within the RPA and show that in this approximation the ZS mode is
not damped. But it is still instructive to start from the RPA because it allows us
to understand the origin of the mass-shell singularities encountered in conventional
bosonization. In Chap. 6, we derive explicit expressions for the symmetrized closed
fermion loops of the FSM which are associated with the interaction in the bosonized
model. In addition we show that for linearized energy dispersion (corresponding to
the TLM) the RPA becomes exact.

A perturbative expansion in powers of symmetrized fermion loops, in the context
of the functional bosonization approach from Chap. 3, is described in Chap. 7. We
introduce a reliable approximation and show that within this approximation the
mass-shell singularities at ω = vF q cancel each other out. In Chap. 8 we present an
evaluation of the irreducible polarization for sharp momentum-transfer cutoff (2.35),
using the approximation from Chap. 7. We show that for sharp momentum-transfer
cutoff our calculation suffer from a mass-shell singularity at ω = v0q. Finally, in
Chap. 9 we consider a general interaction fq of the type (2.38) and show that for our
forward scattering model there is a large intermediate regime qc . q � kF where
indeed the damping of ZS behaves as γq ∝ q3/(mqc). We also present explicit results
for the spectral line shape of S(ω, q). Due to the complexity of the integrations, in
the regime q � qc we cannot evaluate our functional bosonization result for S(ω, q).
However, at q ≈ qc our expression for ZS damping γq matches the result γq ∝ q2/m
obtained by several other authors for different model systems for Luttinger liquids
[3–5, 31]. In Chap. 10 we summarize our main results and present an outline for
further treatments.

Most of the results of this part of the thesis have been published in Ref. [42].



Chapter 3

Functional bosonization

For the treatment of the FSM we use a theoretical approach reproducing the exact
solution of the TLM by linearizing the energy dispersion. In the context of the
TLM, the functional bosonization idea has been introduced by Fogedby [43] as well
as Lee and Chen [44]. Later this technique has been used to bosonize interacting
fermions with dominant forward scattering in arbitrary dimensions [45, 46] and to
estimate the effect of the nonlinear energy dispersion on the single-particle Green
function [47,48]. For a review of this approach see Ref. [49].

In this chapter we describe briefly the functional bosonization approach to the
FSM. Performing the Hubbard-Stratonovich transformation, we obtain an effective
bosonized action Seff [∆φ] which depends on bosonic fields ∆φQ. In Sec. 3.2 we
construct a systematic expansion of irreducible polarization Π∗(ω, q) in powers of
bosonic loops which will be explained in Chap. 7. According to the closed loop
theorem we show that the density-density correlation function for the TLM is given
by the RPA-polarization. Here we keep track of Hartree corrections to the fermionic
self-energy, because these corrections contribute to the renormalization of the ZS
velocity.

3.1 Effective bosonized action

In this section we review the functional bosonization approach [45–47,49] which we
will use in Sec. 3.2 in order to calculate the dynamic structure factor. The Hubbard-
Stratonovich transformation [50, 51] which is the central concept of our functional
bosonization is based on the multidimensional Gaussian integral, i.e.,

∫ n∏
i=1

dz∗i dzi
2πi

e−
Pn
i,j=1 z

∗
i Aijzj+

Pn
i=1(J∗i zi+Jiz

∗
i ) = [detA]−1e

Pn
i,j=1 J

∗
i A
−1
ij Jj , (3.1)

where A is an arbitrary (n× n) matrix whose Hermitian part (i.e., (A+A†)/2) has
only positive eigenvalues.

Using the Gaussian integral (3.1) we can decouple the density-density interac-

15



16 Chapter 3. Functional bosonization

tion (2.31), by means of a real Hubbard-Stratonovich field φQ (φ∗Q = φ−Q)1

e−Sint[c̄,c] = e−
1
2

R
Q fqρ−QρQ =

∫ D[φ] e−S0[φ]−S1[c̄,c,φ]∫ D[φ] e−S0[φ]
, (3.2)

where ∫
D[φ] =

∏
q>0,iω̄

∫
dφ∗Q dφQ

2iπ
. (3.3)

Here the free fermionic action S0[c̄, c] is given in Eq. (2.30), the free bosonic part is

S0[φ] =
1

2

∫
Q

f−1
q φ−QφQ , (3.4)

and the Bose-Fermi interaction is

S1[c̄, c, φ] = i

∫
Q

ρ−QφQ = i

∫
Q

∫
K

c̄K+QcKφQ . (3.5)

According to (2.27), the ratio of the partition functions can be expressed in the
following form

Z
Z0

=

∫ D[c̄, c]
∫ D[φ] e−S0[c̄,c]−S0[φ]−S1[c̄,c,φ]∫ D[c̄, c]
∫ D[φ] e−S0[c̄,c]−S0[φ]

. (3.6)

The fermionic part of the action in the numerator of Eq. (3.6) can be written as

S0[c̄, c] + S1[c̄, c, φ] = −
∫
K

∫
K′
c̄K [G−1]KK′cK′ , (3.7)

where the infinite matrix G−1 is defined by

[G−1]KK′ = δK,K′ [iω − εk + µ]− iφK−K′ . (3.8)

At finite density, the field φQ has a nonzero expectation value,

φQ = −iδQ,0φ̄+ ∆φQ , (3.9)

where the δ-symbol is given by δQ,0 = βV δω̄,0δq,0 which reduces to (2π)2δ(ω̄)δ(q)
for β → ∞ and V → ∞. We fix the real constant φ̄ from the requirement that
the effective action Seff [φ] of the φ-field, which is obtained by integrating over the
fermionic fields in Eq. (3.6), does not contain a term linear in the fluctuation ∆φQ.
To do this, we define the matrix G−1

0 which includes the self-energy correction due
to the vacuum expectation value φ̄,

[G−1
0 ]KK′ = δK,K′ [iω − εk − φ̄+ µ] , (3.10)

1Because the the symbol ρQ denotes the Fourier components of the real density field, we obtain
ρ∗Q = ρ−Q. On the other hand, the Hubbard-Stratonovich field φQ should have the same symmetry,
since it couples to ρQ [49].
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and write
G−1 = G−1

0 −V , [V]KK′ = i∆φK−K′ . (3.11)

Integrating in Eq. (3.6) over the fermion fields, we obtain the formally exact expres-
sion,

Z
Z0

= e−β(Ω1−Ω0)

∫ D[∆φ]e−Seff [∆φ]∫ D[φ]e−S0[φ]
, (3.12)

where Ω1 − Ω0 is the change of the grand canonical potential due to the vacuum
expectation value ignoring fluctuations,

Ω1 − Ω0 =
1

β
Tr ln[G0(φ̄)G−1

0 (φ̄ = 0)]− V φ̄2

2f0

. (3.13)

Here we have used the “trace-log” formula, see Ref. [52],

detB = exp[Tr lnB] . (3.14)

The effective action for the fluctuations of the bosonic field is

Seff [∆φ] = S0[φQ → −iδQ,0φ̄+ ∆φQ] + βV
φ̄2

2f0

− Tr ln[1−G0V ]

=
1

2

∫
Q

f−1
q ∆φ−Q∆φQ − if−1

0 φ̄∆φ0 +
∞∑
n=1

Tr[G0V ]n

n
. (3.15)

We now fix the vacuum expectation value φ̄ from the saddle point condition

∂Ω1

∂φ̄
= −V φ̄

f0

+ V ρ0 = 0 , ⇒ φ̄ = f0ρ0 . (3.16)

Here ρ0 is the density and G0(K) the fermionic Green function in self-consistent
Hartree approximation, i.e.,

ρ0 =

∫
K

G0(K) =
1

V

∑
k

Θ(µ− εk − f0ρ0) , (3.17)

G0(K) =
1

iω − εk − f0ρ0 + µ
. (3.18)

Note that Eq. (3.18) agrees with Eq. (2.41) if we take into account that within
self-consistent Hartree approximation the Fermi momentum kF is defined via

k2
F

2m
= µ− f0ρ0 . (3.19)

Eq. (3.16) guarantees that the terms linear in the fluctuations ∆φQ in Eq. (3.15)
cancel, so that our final result for the effective action for the fluctuations of the
Hubbard-Stratonovich field is

Seff [∆φ] =
1

2

∫
Q

f−1
q ∆φ−Q∆φQ +

∞∑
n=2

Tr[G0V ]n

n
= S2[∆φ] + Sint[∆φ] , (3.20)
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with the Gaussian part given by

S2[∆φ] =
1

2

∫
Q

[f−1
q + Π0(Q)]∆φ−Q∆φQ , (3.21)

and the interaction part

Sint[∆φ] =
∞∑
n=3

1

n!

∫
Q1

. . .

∫
Qn

δQ1+...+Qn,0Γ
(n)
0 (Q1, . . . , Qn)∆φQ1 . . .∆φQn . (3.22)

The vertices Γ
(n)
0 (Q1, . . . , Qn) are proportional to the symmetrized closed fermion

loops L
(n)
S (Q1, . . . , Qn),

Γ
(n)
0 (Q1, . . . , Qn) = in(n− 1)!L

(n)
S (−Q1, . . . ,−Qn) , (3.23)

with symmetrized closed fermion loops given by

L
(n)
S (Q1, . . . , Qn) =

1

n!

∑
P (1,...,n)

∫
K

G0(K)G0(K −QP (1))

× G0(K −QP (1) −QP (2)) · · ·G0(K −
n−1∑
j=1

QP (j)) , (3.24)

where the sum is over all permutations P (1, . . . , n) of 1, . . . , n, and the fermionic
Green functions G0(K) should be calculated within the self-consistent Hartree ap-
proximation, see Eq. (3.18). Note that in Eq. (3.21) we have used

Γ
(2)
0 (Q1,−Q1) = L

(2)
S (−Q1, Q1) = −

∫
K

G0(K)G0(K +Q) = Π0(Q) . (3.25)

A graphical representation of Γ
(n)
0 (Q1, . . . , Qn) is shown in Fig. 3.1. The closed

loop theorem states that for the TLM [i.e., in the limit 1/m → 0, see Eq. (2.25)],
the symmetrized closed fermion loops with more than two external legs vanish [22,
45, 49, 53]. Therefore Seff [∆φ] reduces to the Gaussian approximation S2[∆φ], so
that the noninteracting bosonized system can be solved exactly. In Chap. 6 we give
explicit expressions for the symmetrized n-loops of the FSM [54–56] and show that

L
(n)
S ∝ (1/m)n−2 to leading order in 1/m.

3.2 Irreducible polarization

In analogy with the RPA approximation (2.14), we define the irreducible polarization
as

Π(Q) =
Π∗(Q)

1 + fqΠ∗(Q)
=

1

fq + Π−1
∗ (Q)

. (3.26)
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P(n)
P(1)

P(2)

P(3)

P
Σ

1

2

3

n

= i
n

n

Figure 3.1: Boson vertex with n external legs in the interaction part Sint[∆φ] of the
bosonized effective action, see Eq. (3.22). The arrows denote the fermionic Green
functions G0(K) within self-consistent Hartree approximation, see Eq. (3.18). The
sum is taken over the n! permutations of the labels of the external legs. For linearized
energy dispersion all symmetrized closed fermion loops with more than two external
legs vanish.

Applying the Hubbard-Stratonovich transformation (3.2) to Eq. (2.42) we obtain

Π(Q) =

∫ D[c̄, c]
∫ D[φ] e−S0[c̄,c]−S0[φ]−S1[c̄,c,φ] ρQρ−Q∫ D[c̄, c]
∫ D[φ] e−S0[c̄,c]−S0[φ]−S1[c̄,c,φ]

= −(βV )2 ∂2F [φ̃]

∂φ̃−Q ∂φ̃Q

∣∣∣∣∣
φ̃=0

, (3.27)

where

F [φ̃] =

∫ D[c̄, c]
∫ D[φ] e−S0[c̄,c]−S0[φ]−S1[c̄,c,φ+φ̃]∫ D[c̄, c]
∫ D[φ] e−S0[c̄,c]−S0[φ]−S1[c̄,c,φ]

(3.28)

is a generating functional depending on the external real source fields φ̃Q. Performing
the transformation φQ → φQ − φ̃Q in the numerator of Eq (3.2), we get

F [φ̃] =

∫ D[c̄, c]
∫ D[φ] e−S0[c̄,c]−S0[φ−φ̃]−S1[c̄,c,φ]∫ D[c̄, c]
∫ D[φ] e−S0[c̄,c]−S0[φ]−S1[c̄,c,φ]

. (3.29)

We apply now the derivatives with respect to φ̃Q and φ̃−Q given in (3.27). After a
short calculation, it is easy to show that

1

f−1
q + Π∗(Q)

= f 2
q Π(Q)− fq

=

∫ D[c̄, c]
∫ D[φ] e−S0[c̄,c]−S0[φ]−S1[c̄,c,φ] φQφ−Q∫ D[c̄, c]
∫ D[φ] e−S0[c̄,c]−S0[φ]−S1[c̄,c,φ]

. (3.30)

Integrating the fermions out, the irreducible polarization can be obtained from the
fluctuation propagator of the Hubbard-Stratonovich field,

〈∆φQ∆φQ′〉 =

∫ D[∆φ]e−Seff [∆φ]∆φQ∆φQ′∫ D[∆φ]e−Seff [∆φ]
= δQ+Q′,0

1

f−1
q + Π∗(Q)

, (3.31)
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Figure 3.2: Diagrammatic definition of RPA interaction which is denoted by the
thick wavy line. The thin wavy lines have the same meaning as in Fig. 2.3 while the
solid arrows here represent the Hartree Green function defined in (3.18).

where the vacuum expectation value φ̄ is given by (3.16) and the effective action
Seff [∆φ] is defined in Eq. (3.20). We have pointed out that for the TLM (1/m→ 0)
the closed fermion loops with more than two external legs do not contribute to the
bosonized effective action Seff [∆φ] and consequently instead of Eq. (3.31), we get

〈∆φQ∆φQ′〉S2 = δQ+Q′,0
1

f−1
q + Π0(Q)

≡ δQ+Q′,0fRPA(Q) , (3.32)

where fRPA(Q) is called the RPA interaction. A diagrammatic representation of
fRPA(Q) is shown in Fig. 3.2.

We have shown that for a linearized energy dispersion the irreducible polarization
Π∗(Q) agrees with the noninteracting one Π0(Q) and therefore according to to Eq.
(3.26) the RPA polarization is exact.

For the quadratic energy dispersion, Π0(Q) will be replaced by the irreducible
polarization Π∗(Q). The corrections to the RPA can now be calculated system-
atically in powers of the interaction Sint[∆φ] using the Wick theorem. The RPA
interaction thereby plays the role of the Gaussian propagator, so that we naturally
obtain an expansion in powers of the RPA interaction.



Chapter 4

Functional renormalization group

In this chapter we give a short review of the functional renormalization group (FRG)
and its application to the FSM [7,57–63]. The renormalization group (RG) methods
are important to describe systems where fluctuations on many time and length
scales lead to divergencies within the perturbation theory. The FRG based on the
generating functionals is an elegant strategy to implement the Wilson’s idea of the
RG and to eliminate unphysical divergences via exact flow equations.

In the first section of this chapter we present a general formalism of FRG, in-
troducing generating functionals and irreducible vertices. In Sec. 4.2 we set up the
exact FRG expansions for the irreducible vertices such as one-particle self-energy. In
Sec. 4.3 we show how the FRG flow equations change in symmetry broken systems
where the field has a finite expectation value.

In Sec. 4.4 we apply the FRG to the FSM, using mixed Bose-Fermi fields. This
section is based on the FRG approach to one dimensional fermionic systems [7,57],
where we drop the spin indices and take into account that the Hubbard-Stratonovich
field φQ has a finite expectation value, see Ref. [58, 59]. However the evaluation of
the density-density correlation function in the context of the FRG requires extensive
numerical calculation which we have not been able to carry out.

4.1 Generating functionals

Lets assume that the action of the system is given in the following form

S[Φ] = S0[Φ] + S1[Φ] , (4.1)

where the Gaussian part is

S0[Φ] = −1

2

∫
α

∫
α′

Φα[G−1
0 ]αα′Φα′ ≡ −1

2
(Φ,G−1

0 Φ) . (4.2)

The super-field Φ consists of fermionic as well as bosonic elements Φα depending
on α. The super-label α includes in addition to the fields classification, all labels
necessary to specify the field configuration such as energy, momentum and spin.
The symbol

∫
α

represents summation (for discrete α) or integration (for continuous
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α) over all values of α. The Gaussian propagator is assumed to have following
symmetry,

GT
0 = ZG0 = G0Z , (4.3)

where the infinite diagonal matrix Z is defined by,

Zαα′ = δαα′ζα , with ζα =

{
1 if Φα denotes a boson,
−1 if Φα denotes a fermion.

(4.4)

As example we consider the bosonized FSM. Due to Eq. (3.6), we have

S0[Φ] = S0[c̄, c] + S0[φ] = −1

2
(Φ,G−1

0 Φ) , (4.5)

with Φ = [c, c̄, φ] and

G0 =

 0 Ĝ0 0

ζĜT
0 0 0

0 0 −F̂0

 , (4.6)

where ζ = −1 and Ĝ0 and F̂0 are infinite matrices in momentum and frequency
space,

[Ĝ0]K,K′ = δK,K′G0(K) , [F̂0]Q,Q′ = δQ+Q,0′fq . (4.7)

We start with the generating functional of the Green functions,

G[J ] =
1

Z
∫
D[Φ] e−S[Φ]+(J,Φ) , (4.8)

where

(J,Φ) =

∫
α

JαΦα (4.9)

and J is the super-source field whose components Jα for a fixed α have the same
character (bosonic or fermionic) as Φα. The coefficient Z represents here the parti-
tion function which is given by

Z =

∫
D[Φ] e−S[Φ] . (4.10)

The Green functions are the expectation value of the product of fields, i.e.,

G(n)
α1···αn = 〈Φαn · · ·Φα1〉 =

∫ D[Φ]e−S[Φ] Φαn · · ·Φα1∫ D[Φ]e−S[Φ]
=

δnG[J ]

δJαn · · · δJα1

∣∣∣∣∣
J=0

, (4.11)
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where the super-script denotes that the Green function has n external legs and δ
δJα

represents the functional derivative with respect to Jα. For FSM, it is convenient
to write

(J,Φ) = (̄, c) + (c̄, j) + (J∗, φ)

=

∫
K

̄KcK +

∫
K

c̄KjK +

∫
Q

J∗QφQ , (4.12)

where this notation is equivalent to the definition of source terms J = (̄, ζj, φ). A
comparison between Eqs. (4.9) and (4.12) shows that [see Eq. (2.33)],

δ

δJα
= βV

∂

∂Jα
. (4.13)

Eq. (4.11) is equivalent to the functional Taylor expansion,

G[J ] =
∞∑
n=0

1

n!

∫
α1

· · ·
∫
αn

G(n)
α1···αnJα1 · · · Jαn . (4.14)

Likewise we introduce the generating functional for the connected Green functions
(see Refs. [28,57] for a proof),

Gc[J ] = ln

( Z
Z0

G[J ]

)
= ln

(
1

Z0

∫
D[Φ] e−S[Φ]+(J,Φ)

)
, (4.15)

where

Z0 =

∫
D[Φ] e−S0[Φ] (4.16)

is the partition function without interaction. Analogous to Eq. (4.14) we obtain

Gc[J ] =
∞∑
n=0

1

n!

∫
α1

· · ·
∫
αn

G(n)
c,α1···αnJα1 · · · Jαn , (4.17)

where

G(n)
c,α1···αn =

δnGc[J ]

δJαn · · · δJα1

∣∣∣∣∣
J=0

. (4.18)

In particular the exact Green function can be generated by Gc[J ] as follows,

[G]αα′ = − δ2Gc[J ]

δJα δJα′

∣∣∣∣∣
J=0

= −G(2)
c,α′α . (4.19)

It is clear that the total Green function G = − δ2Gc[J ]
δJα δJα′

has the same symmetry as

the noninteracting one given by Eq. (4.3),

GT = ZG = GZ . (4.20)
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In order to derive the irreducible vertex functions, we perform a Legendre transfor-
mation of Gc[J ],

L[〈Φ〉] = (J [〈Φ〉],Φ)− Gc[J [〈Φ〉]] , (4.21)

where 〈Φ〉 is the expectation value of the super-field Φ which depends on the source
field via

〈Φα〉 =
δGc
δJα

, ⇔ 〈Φ〉 =
δGc
δJ

. (4.22)

Redefining
Φ ≡ 〈Φ〉 , (4.23)

from the chain role, it is evident that

δL
δΦα

= ζαJα +

(
δJ

δΦα

,Φ

)
−
∑
α′

δJα′

δΦα

δGc
δJα′

= ζαJα . (4.24)

Consequently, we obtain according to Eq. (4.4),

J = Z
δL
δΦ

. (4.25)

Additionally, using again the chain role, we have

1 =
δΦ

δΦ
=
δΦ

δJ

δJ

δΦ
=

δ2Gc
δJ δJ

Z
δ2L
δΦ δΦ

, (4.26)

which yields for vanishing fields Φ and J

δ2L
δΦ δΦ

∣∣∣∣∣
Φ=J=0

= −ZG−1 = −[G−1]T . (4.27)

To obtain the generating functionals of the irreducible vertices, it is suitable to
subtract the Gaussian action from the Legendre transformation (4.21),

Γ[Φ] = L[Φ]− S0[Φ] = L[Φ] +
1

2
(Φ,G−1

0 Φ) . (4.28)

Therefore, we get according to the Dyson’s equation,

δ2Γ

δΦ δΦ

∣∣∣∣∣
Φ=0

=
δ2L
δΦ δΦ

∣∣∣∣∣
Φ=0

+ G−1
0 = −G−1 + G−1

0 = Σ , (4.29)

where Σ is the self-energy matrix. Using the functional Taylor expansion, the gen-
erating functional Γ[Φ] can be expressed in terms of the irreducible vertices,

Γ[Φ] =
∞∑
n=0

1

n!

∫
α1

· · ·
∫
αn

Γ(n)
α1···αnΦα1 · · ·Φαn , (4.30)
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Figure 4.1: The irreducible vertices with n external legs defined in Eq. (4.31) are
shown with shaded circles. The external legs associated with the indices are either
bosonic or fermionic. The arrow on the circle shows the ordering of the indices
(α1 · · ·αn) in the vertex function. Note that for purely bosonic systems this arrow
can be omitted because the vertex is completely symmetric.

where the irreducible vertex functions with n external legs are given by

Γ(n)
α1···αn =

δnΓ[J ]

δΦαn · · · δΦα1

∣∣∣∣∣
J=0

. (4.31)

Fig. 12.5 shows a graphical representation of Γ
(n)
α1···αn .

Finally, we note that the connected Green functions can be expressed in terms
of the irreducible vertices as follows,

δ2Gc[J ]

δJ δJ
= −

∞∑
l=0

ZGT (UTGT )l , (4.32)

where

U =

[
δ2Γ

δΦ δΦ
− δ2Γ

δΦ δΦ

∣∣∣∣∣
Φ=0

]T
=

[
δ2Γ

δΦ δΦ

]T
−Σ

=
∞∑
n=0

1

n!

∫
α1

· · ·
∫
αn

Γ(n+2)
α1···αnΦα1 · · ·Φαn , (4.33)

with the matrix [
Γ(n+2)
α1···αn

]
αα′

= Γ
(n+2)
αα′α1···αn . (4.34)

The proof of Eq. (4.32) is not cumbersome. From definition (4.33) of U we obtain

δ2L
δΦ δΦ

= UT − [G−1]T , (4.35)

and therefore[
δ2L
δΦ δΦ

]−1

= −GT [1−UTGT ]−1 = −
∞∑
l=0

GT (UTGT )l . (4.36)
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We can hence drive Eq. (4.32) using (4.26) and (4.36). This equation gives rise to
the so-called tree expansion which we will not describe here.

4.2 Exact flow equations

The renormalization group idea was proposed in order to eliminate the infrared
divergences, arising in the context of the diagrammatic perturbation theory. As
Wilson has proposed, one starts with higher energy regimes and in the next steps it-
eratively one takes lower energies into account. In FRG we suppress the fluctuations
with low energies by imposing a cutoff scale in the free propagator of the action,

G0 → G0,Λ , ⇒ S0[Φ]→ S0,Λ[Φ] . (4.37)

There are two possibilities introducing the FRG cutoff:

G0,Λ = ΘΛG0 with ΘΛ ∼
{

1 for Λ→ 0 ,
0 for Λ→∞ (4.38)

or

G−1
0,Λ = G−1

0 −RΛ with |RΛ| ∼
{

0 for Λ→ 0 ,
∞ for Λ→∞ .

(4.39)

In any case we obtain the boundary conditions,

G0,Λ ∼
{

G0 for Λ→ 0 ,
0 for Λ→∞ .

(4.40)

These conditions are equivalent to the fact that for the low energy modes Λ the
Gaussian propagator is switched off, G0,Λ ≈ 0 while for high energy modes we
obtain the original Gaussian propagator, G0,Λ ≈ G0. By this construction, the
Green functions and the irreducible vertices depends also on the FRG cutoff Λ,

Gc[J ]→ Gc,Λ[J ] , Γ[Φ]→ ΓΛ[Φ] . (4.41)

The important point is that because in the limit Λ → ∞ the free propagator
vanishes, the generating functional of the irreducible vertices reduces to the non-
Gaussian part of the action in the original physical model, i.e.,

lim
Λ→∞

ΓΛ[Φ] = S1[Φ] . (4.42)

Now, we write the flow equation of the irreducible vertex functions without
proving this [7, 57],

∂ΛΓ
(n)
Λ,α1,··· ,αn = −1

2

∞∑
l=1

∞∑
m1=1

∞∑
m2=1

· · ·
∞∑

ml=1

δn,m1+...+ml

× Sα1,··· ,αm1 ;αm1+1,··· ,αm1+m2 ;··· ;αm1+···+ml−1+1,··· ,αn Tr
[
ZĠT

ΛΓ
(m1+2)T
Λ,α1,··· ,αm1

× GT
ΛΓ

(m2+2)T
Λ,αm1+1,··· ,αm1+m2

GT
Λ . . .Γ

(ml+2)T
Λ,αm1+···+ml−1+1,··· ,αn

]
, (4.43)
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Figure 4.2: Exact flow equations for the irreducible vertices: a) Γ
(2)
Λ,α1,α2

, b)

Γ
(3)
Λ,α1,α2,α3

. The dots above the vertices denote the derivative with respect to Λ.
The fat lines represent the propagator GΛ and the slashed fat lines display the
single scale propagators ĠΛ.

where n ≥ 1 and the so-called single scale propagator is defined by

ĠΛ = −GΛ

(
∂ΛG−1

0,Λ

)
GΛ = [1−ΣG0]−1 (∂ΛG−1

0,Λ

)
[1−ΣG0]−1 . (4.44)

Furthermore S is the symmetrization operator, i.e.,

Sα1,··· ,αm1 ;αm1+1,··· ,αm1+m2 ;··· ;αm1+···+ml−1+1 =
1∏l

i=1mi!

∑
P

sgnζ(P )AαP (1)···αP (n)
,

(4.45)
where P denotes any permutation and sgnζ(P ) is defined via the equation

Φα1Φα2 · · ·Φαn = sgnζ(P )ΦαP (1)
ΦαP (2)

· · ·ΦαP (n)
. (4.46)

It is clear that the vertices Γ
(n)
α1,··· ,αn are symmetric with respect to the exchange of

indices. According to Eq. (4.45), the operator S makes a total symmetric expression
from a partly symmetric one. The flow equation of a vertex function with n external
legs depends on other vertices whose external legs are bigger than n. Diagrammatic
representations of these flow equations for n = 2 and n = 3 are shown in Fig. 4.2.
We can now evaluate the differential equations given by (4.43), choosing Λ = Λ0 as
initial condition and taking eventually the limit Λ→ 0 to calculate the result.

4.3 FRG with symmetry breaking

In this section we generalize our FRG expansion for the case of nonvanishing expec-
tation value of the super-field Φ [58], i.e.,

δGc
δJα

∣∣∣∣
J→0

= 〈Φα〉
∣∣
J→0
≡ Φ0

α 6= 0 (4.47)
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The flow equation (4.43) was driven by assuming that Φα = 0. If the super-field
Φ has a finite expectation value, we define the generating functionals of irreducible
vertices as follows,

Γ[Φ] = L[Φ] +
1

2
(∆Φ,G−1

0 ∆Φ) , (4.48)

where
∆Φα = Φα − Φ0

α . (4.49)

Obviously by this construction Γ is extremal at Φα = Φ0
α,

δΓ[Φ]

δΦα

∣∣∣∣
Φ=Φ0

. (4.50)

The analogue functional Taylor expansion to Eq. (4.30) is given by

Γ[Φ] =
∞∑
n=0

1

n!

∫
α1

· · ·
∫
αn

Γ(n)
α1···αn∆Φα1 · · ·∆Φαn . (4.51)

Note that the vertices Γ
(n)
α1···αn implicitly depend on the vacuum expectation value

Φ0
α. In the symmetry breaking case, the FRG flow equation of irreducible vertex

function with one external leg is given by

∂ΛΓ
(1)
Λ,α = −1

2
Tr
[
ZĠT

ΛΓ
(3)T
Λ,α

]
−
∫
α′

[
G−1

Λ

]
αα′

(
∂ΛΦ0

Λ,α′

)− ∫
α′

[
∂ΛG−1

Λ

]
αα′

Φ0
Λ,α′ ,

(4.52)
while flow equations of irreducible vertices with more than one external legs are
similar to Eq. (4.43) with the difference that they contains an additional term
arising because of the finite value of Φ0

Λ,α,

∂ΛΓ
(n)
Λ,α1,··· ,αn =

∫
α

(
∂ΛΦ0

Λ,α

)
Γ

(n+1)
Λ,αα1,...,αn

− 1

2

∞∑
l=1

∞∑
m1=1

∞∑
m2=1

· · ·
∞∑

ml=1

δn,m1+...+ml

× Sα1,··· ,αm1 ;αm1+1,··· ,αm1+m2 ;··· ;αm1+···+ml−1+1,··· ,αn Tr
[
ZĠT

ΛΓ
(m1+2)T
Λ,α1,··· ,αm1

× GT
ΛΓ

(m2+2)T
Λ,αm1+1,··· ,αm1+m2

GT
Λ . . .Γ

(ml+2)T
Λ,αm1+···+ml−1+1,··· ,αn

]
. (4.53)

Note that the matrix Γ
(m+2)
Λ,α1···αm is defined as in Eq. (4.34). The parameter Φ0

Λ,α

describes the flowing order parameter. Demanding that the FRG does not generate
vertices with only one external leg (i.e., Γ

(1)
Λ,α = 0) and choosing GΛ,0 such that

G−1
0,ΛΦ0

Λ = 0 ,
[
∂ΛG−1

0,Λ

]
Φ0

Λ = 0 , (4.54)

we obtain for the flow equation of the order parameter due to Eq.(4.52),∫
α′

[ΣΛ]αα′∂ΛΦ0
Λ,α′ =

1

2
Tr
[
Γ

(3)
Λ,αĠΛ

]
. (4.55)

Fig. 4.3 shows diagrammatic representations of the flow equation for Γ
(1)
α and Γ

(2)
α1,α2

in the case of Φ0
α 6= 0 .
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Figure 4.3: Exact flow equations for a) Γ
(1)
Λ,α and b) Γ

(2)
Λ,α1α2

in the case of finite
vacuum expectation value. The symbols have the same meaning as in Fig. 4.2.
Because one-legged vertices are not generated by FRG, we set ∂ΛΓ

(1)
Λ,α = 0. The

smalls dotted circles with cross denote ∂ΛΦ0
Λ.

4.4 Application of FRG to the forward scattering

model

In this section we derive a formally FRG equation for the irreducible polarization
Π∗(Q) of the FSM. Demanding that the particle number is conserved, the Green
function matrix has the same block structure as the free propagator given by (4.6),

G = [G]αα′ = − δ
2Gc[J ]

δJα δJ ′α

∣∣∣∣∣
J=0

=

 0 Ĝ 0

ζĜT 0 0

0 0 −F̂

 , (4.56)

where the source field J is introduced in Eq. (4.12). Due to Dyson’s equation (4.29),
the self-energy Σ has the same block structure as the inverse Green function G−1.
It involves the fermionic self-energy as well as the the irreducible polarization as
follows,

Σ =

 0 ζ[Σ̂]T 0

Σ̂ 0 0

0 0 Π̂∗(Q)

 . (4.57)

Here, Ĝ, F̂ , Σ̂ and Π̂∗ are infinite matrices, which are defined by

[Ĝ]K,K′ = δK,K′G(K) , [F̂ ]Q,Q′ = δQ+Q′,0f∗(Q) , (4.58)

[Σ̂]K,K′ = δK,K′Σ(K) , [Π̂∗]Q,Q′ = δQ+Q′,0Π∗(Q) . (4.59)

Thus, we get

G(K) =
[
G−1(K)− Σ(K)

]−1
, (4.60)

f∗(Q) =
[
f−1
q + Π∗(Q)

]−1
. (4.61)
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We use the momentum-transfer cutoff scheme proposed in Ref. [7], where only
the free bosonic part S0[φ] is regularized by suppressing bosonic fluctuations with
momenta q smaller than a certain cutoff Λ. Considering the sharp momentum
transfer cutoff given in Eq. (2.35), one possibility is to introduce the cutoff as a
multiplicative Θ-function [64] by replacing in Eq. (3.4)

fq → Θ(|q| − Λ) fq = Θ(|q| − Λ) Θ(q0 − |q|) f0 . (4.62)

We see that Θ(|q| − Λ) satisfies the condition (4.38). Alternatively, we may insert
an additive cutoff RΛ(q) [see Eq. (4.39)] in the inverse propagator [65,66],

f−1
q → f−1

q +RΛ(q) , (4.63)

where RΛ(q) = ν0R(q2/Λ2) with R(0) = 1 and R(∞) = 0. A convenient choice is the
Litim regulator R(x) = (1−x)Θ(1−x), see Ref. [67]. All correlation functions then
depend on the cutoff Λ. Denoting the flowing irreducible polarization by Π∗,Λ(Q),
the true irreducible polarization of our model is recovered in the limit

lim
Λ→0

Π∗,Λ(Q) = Π∗(Q) . (4.64)

An exact hierarchy of FRG flow equations for the one-line irreducible vertices of
our model can then be obtained by differentiating the corresponding generating
functional ΓΛ[〈c̄〉, 〈c〉, 〈φ〉] with respect to Λ and expanding ΓΛ in powers of the
expectation values of the fields

ΓΛ[ψ̄, ψ, φ0 + δφ] =
∞∑
n=0

∞∑
m=0

1

(m!)2n!

∫
K′1

. . .

∫
K′m

∫
K1

. . .

∫
Km

∫
Q1

. . .

∫
Qn

× δK′1+...+K′m,K1+...+Km+Q1+...+Qn

× Γ
(2m,n)
Λ (K ′1, . . . , K

′
m;K1, . . . , Km;Q1, . . . , Qn)

× ψ̄K′1 · · · ψ̄K′mψK1 · · ·ψKm∆φQ1 · · ·∆φQn , (4.65)

where

ψ̄ = 〈c̄〉 , ψ = 〈c〉 , ∆φ = 〈φ〉 − φ0 . (4.66)

In our model, the vacuum expectation value φ0
Q in the absence of the sources is

related to the exact density ρ =
∫
K
〈c̄KcK〉 via the Poisson equation [58,59],

φ0
Q = δQ,0φ̄ , φ̄ = −if0ρ . (4.67)

Following Ref. [58,59], it is convenient to include the contribution (2βV f0)−1(∆φ0)2

arising from the fluctuation of the zero mode in the Gaussian part of the bosonic ac-
tion (3.4) into the definition of the irreducible vertex Γ

(0,2)
Λ (−Q,Q) with two external

bosonic legs, so that

Γ
(0,2)
Λ (−Q,Q) = (βV )−1δQ,0f

−1
0 + Π∗,Λ(Q) . (4.68)
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The flowing irreducible polarization Π∗,Λ(Q) then satisfies the exact flow equation
(4.53),

∂ΛΠ∗,Λ(Q) =
1

2

∫
Q′
ḞΛ(Q′)Γ

(4)
Λ (Q′,−Q′, Q,−Q) + Γ

(3)
Λ (Q,−Q, 0)∂Λφ̄Λ

−
∫
Q′
ḞΛ(Q′)FΛ(Q+Q′)Γ

(3)
Λ (−Q,Q+Q′,−Q′)Γ(3)

Λ (Q′,−Q−Q′, Q) .

(4.69)

Here for a sharp momentum-transfer cutoff the bosonic propagator is

FΛ(Q) = Θ(|q| − Λ)
fq

1 + fqΠΛ(Q)
, (4.70)

and the corresponding single-scale propagator is

ḞΛ(Q) = −δ(|q| − Λ)
fq

1 + fqΠΛ(Q)
. (4.71)

Alternatively, if we work with a smooth additive cutoff then

FΛ(Q) =
fq

1 + fq[ΠΛ(Q) +RΛ(q)]
, (4.72)

and
ḞΛ(Q) = [−∂ΛRΛ(q)][FΛ(Q)]2 . (4.73)

The vertices
Γ

(n)
Λ (Q1, . . . , Qn) ≡ Γ

(0,n)
Λ (Q1, . . . , Qn) (4.74)

are the totally symmetrized one-interaction-line irreducible vertices with n external
bosonic legs. A graphical representation of Eq. (4.69) is shown in Fig. 4.4. The flow
of the vacuum expectation value φ̄Λ of the bosonic field is determined by the exact
FRG equation

[f−1
0 + ΠΛ(0)]∂Λφ̄Λ = −1

2

∫
Q′
ḞΛ(Q′)Γ

(3)
Λ (Q′,−Q′, 0) , (4.75)

which follows from Eq. (4.55). A graphical representation of Eq. (4.75) is shown in
Fig. 4.5. We may use Eq. (4.75) to eliminate the derivative of the flowing vacuum
expectation value in the flow equation (4.69) to obtain the following exact FRG flow
equation for the irreducible polarization

∂ΛΠΛ(Q) =
1

2

∫
Q′
ḞΛ(Q′)Γ

(4)
Λ (Q′,−Q′, Q,−Q)

− 1

2

f0

1 + f0ΠΛ(0)
Γ

(3)
Λ (Q,−Q, 0)

∫
Q′
ḞΛ(Q′)Γ

(3)
Λ (Q′,−Q′, 0)

−
∫
Q′
ḞΛ(Q′)FΛ(Q+Q′)Γ

(3)
Λ (−Q,Q+Q′,−Q′)Γ(3)

Λ (Q′,−Q−Q′, Q) .

(4.76)
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= 1
2

+ −

Figure 4.4: Graphical representation of the exact FRG flow equation (4.69) for
the irreducible polarization in the momentum-transfer cutoff scheme. The shaded
circles represent the one-interaction-line irreducible vertices, the thick wavy lines
denote the exact cutoff-dependent boson propagator (effective interaction) defined
in Eq. (4.70), the small crossed circle is the flowing vacuum expectation value of
the bosonic field φ, and the small black dot denotes the derivative with respect to
the flow parameter Λ. The slashed wavy lines represent the single-scale propagator
given in Eqs. (4.71, 4.73).

= −1
2

Figure 4.5: Graphical representation of the exact FRG flow equation (4.69) for the
vacuum expectation value of the bosonic Hubbard-Stratonovich field. The symbols
are explained in the caption of Fig. 4.4.
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As shown in Refs. [58,59], in the momentum-transfer cutoff scheme the vertices at the
initial scale Λ = Λ0 ≡ q0 satisfy nontrivial initial conditions. The requirement that
the vertex Γ

(0,1)
Λ0

with one bosonic leg vanishes at Λ = Λ0 implies that the fermionic

self-energy ΣΛ0(K) = Γ
(2,0)
Λ0

(K,K) at the initial scale is given by the self-consistent
Hartree approximation,

ΣΛ0 = f0ρ0 , (4.77)

where the initial density ρ0 satisfies the Hartree self-consistency condition (3.17).

The initial conditions for the purely bosonic vertices Γ
(0,n)
Λ0
≡ Γ

(n)
Λ0

are for n = 2,

Γ
(0,2)
Λ0

(−Q,Q) = (βV )−1δQ,0f
−1
0 − L(2)

S (Q,−Q) , (4.78)

and for n > 2,

Γ
(0,n)
Λ0

(Q1, . . . , Qn) = in(n− 1)! L
(n)
S (−Q1, . . . ,−Qn) , (4.79)

where L
(n)
S (Q1, . . . , Qn) are the symmetrized closed fermion loops with n external

legs defined in Eq. (3.24). A graphical representation of Eq. (4.79) is shown in
Fig. 3.1. By definition, the symmetrized two loop is (up to a minus sign) given by
the noninteracting polarization Π0(Q),

L
(2)
S (−Q,Q) =

∫
K

G0(K)G0(K +Q) = −Π0(Q) . (4.80)

However, in contrast to Eq. (2.43), the fermionic Green functions in Eq. (4.80)
are self-consistent Hartree Green functions as defined in Eq. (3.18). Finally, in
the momentum-transfer cutoff scheme the initial value of the three-legged vertex
Γ

(2,1)
Λ0

(K ′;K;Q) is

Γ
(2,1)
Λ0

(K ′;K;Q) = i , (4.81)

which follows from Eq. (3.5). All other vertices vanish at the initial scale Λ = Λ0.
The above RG equation (4.76) is exact but not closed and should be augmented

by FRG flow equations for the vertices Γ
(3)
Λ and Γ

(4)
Λ which in turn involve higher

order bosonic vertices. Only for linearized energy dispersion, the closed loop the-
orem guarantees that Γ

(n)
Λ (Q1, . . . , Qn) = 0, so that we recover the well known

result that the RPA is exact for the Tomonaga-Luttinger model. To motivate a
sensible truncation procedure for quadratic energy dispersion, we note that the
vertices Γ

(n)
Λ with n ≥ 3 are irrelevant in the renormalization group sense: If we

assign to the momentum-independent part of the interaction f0 = fq=0 a vanishing

scaling dimension, then in D dimensions the vertices Γ
(n)
Λ have scaling dimensions

−(D + zφ)(n/2 − 1), where zφ is the dynamic exponent of the bosonic field me-
diating the forward scattering interaction. In one dimension zφ = 1 due to the
linear dispersion of the ZS mode, so that in D = 1 the vertex Γ(3) is irrelevant with
scaling dimension −1, while Γ(4) is irrelevant with scaling dimension −2. Because
the renormalization group flow of irrelevant couplings is usually not important, it
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is reasonable to truncate the infinite hierarchy of flow equations by approximating
the vertices Γ

(3)
Λ and Γ

(4)
Λ in Eq. (4.69) by their initial values at Λ = Λ0,

Γ
(n)
Λ (Q1, . . . , Qn) ≈ Γ

(n)
Λ0

(Q1, . . . , Qn) = in(n− 1)!L
(n)
S (−Q1, . . . ,−Qn) , (4.82)

where the symmetrized closed fermion loops are defined in Eq. (3.24). Then Eq. (4.76)
becomes a closed integro-differential equation for ΠΛ(Q), the solution of which gives
for Λ → 0 a nonperturbative estimate for the irreducible polarization. Note that
even with the truncation (4.82) the FRG flow equation (4.76) is nonperturbative,
because the renormalization of the polarization is self-consistently taken into ac-
count in the bosonic loop integrations. It should be interesting to analyze Eq. (4.76)
numerically and try to extract the spectral line shape. Possibly, one can check in this
way whether the resummation procedure proposed by Pustilnik et al. [3] is justified
also for nonintegrable models. But because of the difficult numerical calculation
we can not handle this equation anymore. On the other hand, the perturbative
approach which is derived in Chap. 3 [see Eq. (3.31)] will be evaluated analytically
in Chap. 7, using some approximations.



Chapter 5

RPA for the forward scattering
model

For the TLM, i.e., for a linearized energy dispersion, the symmetrized closed fermion
loops with more than two external legs vanish [22, 45, 49, 53]. Hence, in this limit
the RPA yields the exact dynamic structure factor and seems to be a reasonable
starting point for the perturbative calculation of S(ω, q) in the FSM. However we
will see in this chapter that the RPA result for S(ω, q) exhibits some unphysical
features which are related to the fact that the effect of interactions on the energy
scale of the single-pair particle-hole continuum is not included in the RPA. The first
section of this chapter is based on Ref. [29]. In this section we outline briefly the
RPA within the quadratic energy dispersion and show how the relative weight of
the ZS peak to particle-hole continuum changes by modifying the interaction. In
Sec. 5.2 we expand the inverse noninteracting polarization Π−1

0 (Q) in powers of the
inverse mass 1/m. This expansion gives rise to so-called mass-shell singularities.
We then use a simple procedure which was proposed by Samokhin [5] to regularize
these singularities.

5.1 Dynamic structure factor within RPA

In the context of RPA [see Eq. (2.14)], the irreducible polarization defined in (3.26)
is approximated by the noninteracting one,

ΠRPA(Q) =
1

fq + Π−1
0 (Q)

, (5.1)

where the noninteracting polarization Π0(Q) for quadratic energy dispersion is cal-
culated in (2.43),

Π0(Q) =
m

πq
ln

∣∣∣∣∣ iω̄ + vF q + q2

2m

iω̄ + vF q − q2

2m

∣∣∣∣∣ . (5.2)

35
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In the regime q � q0 [see Eqs. (2.35,2.36)], the corresponding RPA dynamic struc-
ture factor consists of two contributions,

SRPA(ω, q) =
1

π
ImΠRPA(Q) = Zqδ(ω − ωq) + Sinc

RPA(ω, q) , (5.3)

where the first term represents the undamped ZS mode with weight,

Zq ≈
[
f 2

0

∂ ReΠ0

∂ω

∣∣∣∣
ω=ωq

]−1

=
vF q

2

2πωq
Wq , (5.4)

and energy

ωq = vF |q|
√

1 +
q

kF
coth

(
q

kFg0

)
+

[
q

2kF

]2

= v0|q|
{

1 +
g0(4 + 3g0)

6x2
0

[
q

2kFg0

]2

+O(q4)

}
. (5.5)

Note that the dimensionless interaction g0 is defined in (2.21). The dimensionless
function

Wq =

[
q

kF g0

]2

sinh2
(

q
kF g0

) (5.6)

can be identified with the relative contribution of the ZS peak to the f -sum rule [29],∫ ∞
0

dωωS(ω, q) =
vF q

2

2π
. (5.7)

The second part Sinc
RPA(ω, q) in Eq. (5.3) represents the incoherent continuum due to

excitations involving a single particle-hole pair (single-pair continuum). For finite
g0, the shape of Sinc

RPA(ω, q) is modified as shown quantitatively in Fig. 5.1. It is
obvious that the ZS mode never touches the single-pair continuum and ZS mode
remains undamped or rather the so-called Landau damping [2] does not occur in the
FSM. The damping of the ZS mode is thus due to the excitations involving more
than a single particle-hole pair (multi-pair excitations) which are neglected in RPA.

For |q|/kF � g0, the relative weight of the single-pair continuum is negligibly
small, so that the ZS peak carries most of the spectral weight. For example, the
relative contribution of the single-pair continuum to the f -sum rule vanishes as
(q/g0kF )2 � 1 and the dynamic structure factor reduces to STLM(ω, q) which is
given by Eq. (2.18). Note that in the limit g0 → 0 the ZS mode disappears and the
incoherent part Sinc

RPA(ω, q) becomes a box function (for q < 2kF ) according to Eq.
(2.44).
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Figure 5.1: RPA dynamic structure factor for forward scattering model, q/kF = 0.1
and different values of g0 = ν0f0 according to Eq. (5.3). The arrows represent the
ZS mode Zqδ(ω − ωq), where the position of the arrows is given by the ZS energy
ωq and the length of the arrows is proportional to the weight Wq. Note that for
q/kF � g0 � 1, the distance between the upper edge of the single-pair particle-hole
continuum and the position of the ZS peak is g0/2 which is much larger than the
width of the particle-hole continuum or rather q2/m.

5.2 Expansion of inverse noninteracting polariza-

tion in powers of 1/m

It is instructive to see which features of SRPA(ω, q) are recovered if we expand the in-
verse noninteracting polarization Π−1

0 (Q) in powers of the inverse mass m−1. There-
fore we introduce the dimensionless variables,

iy =
iω̄

vF q
, p =

q

2kF
, (5.8)

and rewrite Eq. (5.2) as

Π0(iω, q) = ν0Π̃0(iy, p) , (5.9)

with the dimensionless function

Π̃0(iy, p) =
1

2p
ln

∣∣∣∣ iy + 1 + p

iy + 1− p
∣∣∣∣ =

1

4p
ln

[
y2 + (1 + p)2

y2 + (1− p)2

]
. (5.10)
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For an interaction with momentum-transfer cutoff q0 � kF the relevant dimension-
less momenta satisfy |p| � 1, so that we expand Π̃−1

0 (iy, p) in powers of p. From
Eq. (5.10) we find

Π̃−1
0 (iy, p) = 1 + y2 − p2

3

1− 3y2

1 + y2
+O(p4) . (5.11)

For later reference, we note that the correction of order p2 in Eq. (5.11) can be
written as

−p
2

3

1− 3y2

(1 + y2)
= p2

[
1− 4

3(1 + y2)

]
= p2 − 2p2

3

[
1

1− iy +
1

1 + iy

]
. (5.12)

For p→ 0 we recover the result for linearized dispersion,

lim
p→0

Π̃−1
0 (iy, p) ≡ Π̃−1

0 (iy) = 1 + y2 , (5.13)

which yields the dynamic structure factor of the TLM given in Eq. (2.18). How-
ever, after analytic continuation to real frequencies iy → x + i0 = ω

vF q
+ i0, the

correction term of order p2 in the expansion (5.11) is singular on the mass-shell
|ω| = vF |q|. Although in the noninteracting limit we know that this mass-shell sin-
gularity has been artificially generated by expanding the logarithm in Eq. (5.10), it
is not clear how to regularize a similar singularity in the interacting system. There-
fore, a formal expansion in powers of the band curvature 1/m using either a purely
fermionic approach [6] or conventional bosonization [38] is not reliable close to the
mass-shell after analytic continuation. Fortunately, within the functional bosoniza-
tion approach used in this work this problem does not arise, because the effective
expansion parameter in functional bosonization is not 1/m, but the combination
g0q0/(mvF ), see Refs. [45, 49]. In particular, in the noninteracting limit functional
bosonization yields the exact structure factor of the free Fermi gas with quadratic
dispersion, containing all orders in 1/m.

It is instructive to examine the RPA dynamic structure factor if we nevertheless
use the expansion (5.11) for the noninteracting polarization. Then we obtain after
analytic continuation iy → x+ i0 = ω/(vF q) + i0 for small |q| � g0kF ,

SRPA(ω, q) ≈ ν0

π
Im

[
1

g0 + Π̃−1
0 (x+ i0, p)

]
= Z+

q δ(ω − ω̃+
q ) + Z−q δ(ω − ω̃−q ) , (5.14)

where Z+
q and ω̃+

q reduce for small q to the corresponding expressions Zq and v0|q|
for linear dispersion [see Eq. (2.20)], and the weight and the dispersion of the other
mode ω̃−q is for |q| � kFg0,

Z−q ≈ 2|q|
3π

[
q

2kFg0

]2

, (5.15)

ω̃−q ≈ vF |q|
[

1− 2

3g0

(
q

2kF

)2
]
. (5.16)
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This peak is associated with the incoherent part Sinc
RPA(ω, q) of the dynamic structure

factor discussed above which in the approximation (5.11) is replaced by a single
peak with the same weight. From Eqs. (5.15) and (2.20) one easily verifies that for
|q| � g0kF the relative weight of the peak associated with the incoherent part is
indeed small,

Z−q
Z+
q

=
4x0

3

[
q

2kFg0

]2

=
4π2x0p

2
0

3

[
vF q

f0q0

]2

, (5.17)

where we have used p0 = q0/(2kF ), see Eqs. (2.37). Hence, for |q| � g0kF most of
the weight of SRPA(ω, q) is carried by the ZS mode ω̃+

q ≈ v0|q|, so that the incoherent
part corresponding to the mode ω̃−q ≈ vF |q| can be neglected. Note that the limits
q → 0 and g0 → 0 do not commute and that only for |q|/(2kF ) � g0 the weight of
the mode ω̃−q can be neglected.

Mathematically, the second peak in Eq. (5.14) is due to the pole arising from the
term of order p2 in the expansion (5.11) of the inverse free polarization. Although
after the analytic continuation iy → x + i0 this term is singular for x = 1, we
know from the exact result (5.10) how this singularity should be regularized: we
simply should smooth out the corresponding δ-function peak over an interval of
width wq ∝ q2/m. In fact, we can self-consistently calculate wq by noting that after
analytic continuation the singular term in the expansion (5.11) gives rise to the
following formally infinite imaginary part of the inverse noninteracting polarization,

ImΠ̃−1
0 (x+ i0, p) = −Γ0(x, p) = −2π

3
p2[δ(1− x)− δ(1 + x)] . (5.18)

Ignoring the renormalization arising from the (singular) real part of Π̃−1
0 (x + i0, p)

and approximating the resulting dynamic structure factor in this regime by a Lo-
rentzian centered at ω = vF |q|, we find for the full width at half maximum in the
limit g0 � 1,

wq =
vF |q|

2
Γ0(1, p = q/(2kF )) . (5.19)

To obtain a self-consistent estimate for wq we follow Samokhin [5] and regularize the
singularity in Γ0(1, p) by replacing δ(ω = 0) by the height of a normalized Lorentzian
of width wq on resonance,

δ(x− 1)|x=1 = vF |q| δ(ω − vF |q|)|ω=vF |q| →
vF |q|
πwq

. (5.20)

Hence, our self-consistent regularization is

Γ0(1, p)→ 2p2vF |q|
3wq

. (5.21)

Substituting this into Eq. (5.19) we obtain the self-consistency equation

wq =
1

3

(
q

2kF

)2
(vF q)

2

wq

, (5.22)
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which leads to the following estimate for the width of the single-pair particle-hole
continuum,

wq =
1

2
√

3

q2

m
. (5.23)

On the other hand, it is known [3, 4, 35] that the shape of the single-pair con-
tinuum cannot be approximated by a Lorentzian, but the order of magnitude of
its width obtained within the above regularization is correct for sufficiently small q.
Hence, the mass-shell singularity arising after analytic continuation iy → x+i0 in the
expansion of the inverse noninteracting polarization (5.11) in powers of p = q/(2kF )
is simply related to the single-pair particle-hole continuum. This singularity can
be regularized by smearing out the δ-function in the imaginary part over a finite
interval of width wq ∝ q2/m. However, the width wq should not be confused with
the damping of the ZS mode which remains sharp within RPA. Note that because
of the unphysical mass-shell singularities occurring within RPA, a better starting
point would be the so-called RPAE or “time-dependent Hartree-Fock approxima-
tion”, because it takes the renormalization of the single-pair particle-hole continuum
approximately into account [37,39].

In order to obtain the ZS damping, one should calculate interaction corrections
to the irreducible polarization. The finite overlap between the continuum due to
particle-hole excitations involving more than a single particle-hole pair (multi-pair
excitations) then determines the ZS damping. To this end, in the next chapter we
first calculate the symmetrized fermion closed loops arising in the bosonized effective
action Seff [∆φ]. In Chap. 7 we show that by expanding the inverse irreducible
polarization analogue to (5.11), our approach does not suffer from the mass-shell
singularities discussed above. Moreover, we show that the distinction between the
ZS energy v0|q| and the energy scale vF |q| associated with the single-pair continuum
shown in Fig. 5.1 is an unphysical artifact of the RPA which disappears once the
corrections to the RPA are self-consistently taken into account.



Chapter 6

Symmetrized fermion loops

For a perturbative expansion of the irreducible polarization Π∗(Q) in the bosonic
language, we need to determine symmetrized closed fermion loops which are defined
in (3.24). In the first section of this chapter we analyze these loops explicitly and
show that they vanish for a linearized energy dispersion, i.e., 1/m → 0. Secs. 6.2
and 6.3 are devoted to the calculation of the symmetrized three and four loops,
which we require in Chap. 7 to obtain perturbatively the dynamic structure factor.

The important point is that we would like to examine all corrections to the RPA
to second order of the small parameter p0 = q0/(2kF ) ∝ 1/m, which is naturally
generated using the functional bosonization approach [45, 49]. Therefore by the
diagrammatic expansion we consider only a few number of diagrams which behave
as p2

0 for p0 → 0. We have then to neglect contributions to the bosonic self-energy
which are proportional to pn0 with n > 2. But this calculation will be described
accurately in the next chapter.

6.1 Fermion loops for quadratic energy dispersion

For fermions with quadratic energy dispersion in one dimension, the symmetrized
fermion loops (3.24) can be calculated exactly. Neumayr and Metzner [54, 55] (see
also Ref. [56]) have derived reduction formulas for quadratic dispersion in D dimen-
sions which allow to express the nonsymmetrized loops

L̄(n)(Q̄1, . . . , Q̄n) =

∫
K

n∏
i=1

G0(K − Q̄i)

=

∫
K

G0(K − Q̄1)G0(K − Q̄2) · · ·G0(K − Q̄n) , (6.1)

for n > D+1 in terms of linear combinations of the more elementary loop L̄(D+1)(Q̄1

, . . . , Q̄D+1). In particular, in D = 1 the nonsymmetrized loops L̄(n)(Q̄1, . . . , Q̄n)
with n > 2 can be expressed in terms of the two loop,

L̄(2)(0,−Q) = L
(2)
S (−Q,Q) = −Π0(Q) . (6.2)

41
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Given explicit expressions for the nonsymmetrized loops L̄(n)(Q̄1, . . . , Q̄n), we may

construct the corresponding symmetrized loops L
(n)
S (Q1, . . . , Qn) by shifting the la-

bels,

Q̄1 = 0 ,

Q̄2 = Q1 ,

Q̄3 = Q1 +Q2 ,

. . .

Q̄n =
n−1∑
j=1

Qj , (6.3)

so that Q̄i+1 − Q̄i = Qi, and defining

L(n)(Q1, . . . , Qn) = L̄(n)(Q̄1, . . . , Q̄n) . (6.4)

Then the symmetrized loops are

L
(n)
S (Q1, . . . , Qn) =

1

n!

∑
P (1,...,n)

L(n)(QP (1), . . . , QP (n)) . (6.5)

In one dimension, the reduction formula for the nonsymmetrized loop L̄(n)(Q̄1

, . . . , Q̄n) given by Neumayr and Metzner [55] can be obtained using a straight-
forward partial fraction decomposition. Performing the frequency integration in
Eq. (6.1) and introducing the notation Q̄i = (iω̄i, q̄i) we obtain after some algebra,

L̄(n)(Q̄1, . . . , Q̄n) =
n∑
i=1

∫ kF

−kF

dk

2π

n∏
j=1

j 6=i

1

Ωij(k)
, (6.6)

where [see Eq.(3.19)],

Ωij(k) = i(ω̄i − ω̄j) + ξk − ξk+q̄i−q̄j , (6.7)

ξk =
k2

2m
+ f0ρ0 − µ =

k2 − k2
F

2m
. (6.8)

Defining

kij =
q̄j − q̄i

2
+ im

ω̄j − ω̄i
q̄j − q̄i , (6.9)

we may alternatively write Eq. (6.6) as

L̄(n)(Q̄1, . . . , Q̄n) =
n∑
i=1

∫ kF

−kF

dk

2π

n∏
j=1

j 6=i

m

(q̄j − q̄i)(k − kij) . (6.10)
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We can now perform another partial fraction expansion to obtain

L̄(n)(Q̄1, . . . , Q̄n) =
n∑

i,j=1

i 6=j

 n∏
l=1
l 6=i,j

Hijl


−1

m

q̄j − q̄i

∫ kF

−kF

dk

2π

1

k − kij , (6.11)

with

Hijl = −(q̄l − q̄i)(q̄l − q̄j)
2m

+ i(ω̄i − ω̄l) + i(ω̄j − ω̄i) q̄l − q̄i
q̄j − q̄i . (6.12)

In the special case n = 2 this yields

L̄(2)(Q̄1, Q̄2) =
m

π(q̄1 − q̄2)
ln

∣∣∣∣kF + k12

kF − k12

∣∣∣∣ . (6.13)

In order to give an explicit formula for the function L(n)(Q1, . . . , Qn) defined in
Eq. (6.4), which depends on the external momenta and frequencies Qi = (iωi, qi),
we introduce the notation

qij = q̄i − q̄j =

{ ∑i−1
l=j ql , i > j

−∑j−1
l=i ql , j > i

, (6.14)

and similarly for ωij = ω̄i−ω̄j. These quantities fulfill qij = qil+qlj and ωij = ωil+ωlj,
such that Hijl can be reexpressed as

Hijl =
1

qij

[
i(ωilqlj − qilωlj)− qliqljqij

2m

]
, (6.15)

which is manifestly symmetric under exchange of i and j, i.e., Hjil = Hijl. This
yields

L(n)(Q1, . . . , Qn) = −
n∑

i,j=1
i<j

 n∏
l=1
l 6=i,j

Hijl


−1

Π0(Qij) , (6.16)

with

Qij = (iωij, qij) . (6.17)

This result is equivalent with Eq. (19) of Ref. [55]. Finally, in order to obtain

the symmetrized loops L
(n)
S (Q1, . . . , Qn) in Eq. (6.5), an additional summation over

the n! permutations is necessary. Evidently, the resulting expressions are rather
complicated. In the following two sections we shall therefore discuss the symmetrized
three loop and the symmetrized four loop separately. However, without explicitly
evaluating the loops the following two general properties can be established:

1. The symmetrized n-loops L
(n)
S (Q1, . . . , Qn) are finite for all values of their

arguments [55]. This guarantees that in the perturbative expansion of the
irreducible polarization Π∗(Q) in powers of the RPA interaction no infrared
singularities are encountered.
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2. In the limit 1/m → 0 the symmetrized n-loop is proportional to (1/m)n−2.

More precisely, the dimensionless symmetrized n-loops L̃
(n)
S (Q1, . . . , Qn), de-

fined via

(n− 1)!L
(n)
S (Q1, . . . , Qn) =

ν0

(mv2
F )n−2

L̃
(n)
S (Q1, . . . , Qn) , (6.18)

have finite limits for 1/m → 0. For large m the vertices Γ
(n)
0 (Q1, . . . , Qn)

in the interaction part Sint[∆φ] of our effective action (3.22) are therefore
proportional to increasing powers of the small parameter 1/m, which justifies
the perturbative treatment of these vertices.

6.2 Symmetrized three loop

The explicit expression for the symmetrized three loop can be written as

L
(3)
S (iω1, q1; iω2, q2;−iω1 − iω2,−q1 − q2) = −Re

[
1

iω1q2 − iω2q1 − q1q2
q1+q2

2m

]
×
[
q1Π0(iω1, q1) + q2Π0(iω2, q2)− (q1 + q2)Π0(iω1 + iω2, q1 + q2)

]
. (6.19)

Introducing again the variables iy1 = iω1/(vF q1), p1 = q1/(2kF ) (and similarly for
iy2 and p2) and the dimensionless function Π̃0(iy, p) = ν−1

0 Π0(iω, q) [see Eqs. (5.8)
and (5.9)], we may write the symmetrized three loop in the dimensionless form
(6.18),

L
(3)
S (iω1, q1; iω2, q2;−iω1 − iω2,−q1 − q2) =

ν0

mv2
F

L̃
(3)
S (iy1, p1; iy2, p2) , (6.20)

with

L̃
(3)
S (iy1, p1; iy2, p2) =

1

(y1 − y2)2 + (p1 + p2)2

[
1

s2

Π̃0(iy1, p1) +
1

s1

Π̃0(iy2, p2)

−
(

1

s1

+
1

s2

)
Π̃0(iy1s1 + iy2s2, p1 + p2)

]
, (6.21)

where we have defined

s1 =
p1

p1 + p2

=
r

r + 1
, s2 =

p2

p1 + p2

=
1

r + 1
, (6.22)

with
r =

p1

p2

. (6.23)

For later convenience we also define

r1 =
p1

p1 − p2

=
r

r − 1
, r2 =

p2

p2 − p1

=
−1

r − 1
. (6.24)



6.2 Symmetrized three loop 45

Figure 6.1: Graph of the function L̃
(3)
S,0(iy1, iy2, r) given in Eq. (6.26) for y2 = 1 as a

function of y1 and r = p1/p2.

Note that by this construction s1 + s2 = r1 + r2 = 1.
At the first sight it seems that the symmetrized three loop diverges for |p1/p2| →

0 or |p2/p1| → 0. Moreover, the prefactor in Eq. (6.19) diverges in the special limit
p1 → −p2 and y1 → y2. It turns out, however, that all divergencies cancel and the
symmetrized three loop is everywhere of the order of unity. This nontrivial cancel-
lation cannot be obtained by power counting and can be viewed to be a consequence
of the asymptotic Ward identity associated with the separate conservation of left-
and right-moving particles for linearized energy dispersion [22, 53]. We shall show
in Sec. 6.3 that a similar cancellation protects also the symmetrized four loop from
divergencies. The symmetrization of the loops is crucial to cancel the divergencies.
In diagrammatic language, the symmetrization properly takes vertex and self-energy
corrections into account.

The limiting behavior of the function L̃
(3)
S (iy1, p1; iy2, p2) for p1 → 0 and p2 → 0

is not unique but depends on the ratio r = p1/p2. Using Eq. (5.13) we obtain after
some algebra,

lim
pi→0,p1/p2=r

L̃
(3)
S (iy1, p1; iy2, p2) = L̃

(3)
S,0(iy1, iy2, r) , (6.25)

with

L̃
(3)
S,0(iy1, iy2, r) = − 1− y1y2 − (y1 + y2)(s1y1 + s2y2)

[1 + y2
1][1 + y2

2][1 + (s1y1 + s2y2)2]
, (6.26)

which is manifestly finite for all values of its arguments. A graph of the function
L̃

(3)
S,0(iy1, iy2, r) is shown in Fig. 6.1. Note that a finite limit of the dimensionless

function L̃
(3)
S (iy1, p1; iy2, p2) for small momenta does not contradict the loop can-

cellation theorem [22, 45, 49, 53–55], because according to Eq. (6.20) the physical
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symmetrized three loop L
(3)
S (iω1, q1; iω2, q2;−iω1 − iω2,−q1 − q2) involves an extra

factor of 1/m, so that it vanishes for 1/m→ 0.

6.3 Symmetrized four loop

The symmetrized four loop is more complicated than the three loop. However, the
four loop determines the correction to the irreducible polarization to the first order
in the the RPA interaction [29], so that we need it for our calculation. Actually,
we shall see in the next chapter that we need the four loop only for the special
arguments Q3 = −Q1 and Q4 = −Q2. It is useful to introduce the notation

y± = y1 ± y2 , p± = p1 ± p2 , (6.27)

and the complex functions

C±(iy−, p1, p2) =
1

p1p2[iy− − p±]
, (6.28)

W (iy, p) =
1

2p

[
1

iy + 1 + p
− 1

iy + 1− p
]
. (6.29)

We also need

ReW (iy, p) =
y2 − 1 + p2

[y2 + (1 + p)2][y2 + (1− p)2]
, (6.30)

ImW (iy, p) =
2y

[y2 + (1 + p)2][y2 + (1− p)2]
. (6.31)

The functions C±(iy−, p1, p2) are singular for pi → 0, while W (iy, p) has a finite
limit for p→ 0,

lim
p→0

W (iy, p) = − 1

(1 + iy)2
. (6.32)

Using our general result (6.16) for the nonsymmetrized n-loops L(n)(Q1, . . . , Qn) and
performing the sum (6.5) over all permutations of the external labels, we obtain for
the dimensionless symmetrized four loop (as defined in Eq. (6.18) for n = 4) for the
special combination Q1 = −Q3 and Q2 = −Q4,

6L
(4)
S (iω1, q1;−iω1,−q1; iω2, q2;−iω2,−q2) =

ν0

(mv2
F )2

L̃
(4)
S (iy1, p1; iy2, p2) , (6.33)



6.3 Symmetrized four loop 47

with

L̃
(4)
S (iy1, p1; iy2, p2) =

p1

2
Re
[
p+C

2
+ + p−C

2
− + 2p1C

∗
+C−

]
Π̃0(iy1, p1)

+
p2

2
Re
[
p+C

2
+ − p−C2

− − 2p2C+C−
]

Π̃0(iy2, p2)

− p2
+[ReC+]2Π̃0(iy1s1 + iy2s2, p+)

− p2
−[ReC−]2Π̃0(iy1r1 + iy2r2, p−)

+
1

2
Im[C+ − C−]Im[W (iy1, p1)−W (iy2, p2)]

− Re[W (iy1, p1)W (iy2, p2)] , (6.34)

where we have written

C± = C±(iy−, p1, p2) . (6.35)

After some algebra Eq. (6.34) can be cast into the form

L̃
(4)
S (iy1, p1; iy2, p2) = 2

(p2
1 + 3p2

2)y4
− + 2(p2

1 − p2
2)2y2

− + (p2
1 − p2

2)3

p2
2[y2
− + p2

+]2[y2
− + p2

−]2
Π̃0(iy1, p1)

+ 2
(p2

2 + 3p2
1)y4
− + 2(p2

2 − p2
1)2y2

− + (p2
2 − p2

1)3

p2
1[y2
− + p2

+]2[y2
− + p2

−]2
Π̃0(iy2, p2)

− Π̃0(iy1s1 + iy2s2, p+)

s2
1s

2
2[y2
− + p2

+]2
− Π̃0(iy1r1 + iy2r2, p−)

r2
1r

2
2[y2
− + p2

−]2

+
2y−Im[W (iy1, p1)−W (iy2, p2)]

[y2
− + p2

+][y2
− + p2

−]

− Re[W (iy1, p1)W (iy2, p2)] . (6.36)

Naive power counting would suggest that this expression is singular for y1 → y2 or
|p1| → |p2|, or if p1/p2 approaches either zero or infinity. However, similar to the sym-
metrized three loop, all singularities cancel in Eq. (6.36), so that the symmetrized
four loop remains finite and of the order of unity for all values of its arguments.

For simplicity, consider again the limit p1 → 0 and p2 → 0 with constant r =
p1/p2. Then

lim
pi→0,p1/p2=r

L̃
(4)
S (iy1, p1, iy2, p2) = L̃

(4)
S,0(iy1, iy2, r) , (6.37)

with

L̃
(4)
S,0(iy1, iy2, r) =

1

(y1 − y2)4

[
2(r2 + 3)

1 + y2
1

+
2(r−2 + 3)

1 + y2
2

− 1

s2
1s

2
2[1 + (s1y1 + s2y2)2]

− 1

r2
1r

2
2[1 + (r1y1 + r2y2)2]

+
4y2
−[1− 2y1y2 − y1y2(y2

1 + y2
2 + y1y2)]

[1 + y2
1]2[1 + y2

2]2

]

+
4y1y2 − (1− y2

1)(1− y2
2)

[1 + y2
1]2[1 + y2

2]2
. (6.38)
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Figure 6.2: Graph of the function L̃
(4)
S,0(iy1, iy2, r) given in Eq. (6.38) for y2 = 1 as a

function of y1 and r = p1/p2.

The important point is now that the singular prefactor 1/(y1 − y2)4 in Eq. (6.38) is
compensated by a factor of (y1 − y2)4 arising from the sum of the five terms in the
square braces. In fact, we can explicitly cancel this singularity by combining these
terms differently,

L̃
(4)
S,0(iy1, iy2, r) = − [1− y2

1][1− y2
2]

[1 + y2
1]2[1 + y2

2]2

+
1

[1 + y2
1]2[1 + y2

2]2[1 + (s1y1 + s2y2)2][1 + (r1y1 + r2y2)2]

×
{
−1 + 6y1y2 + t1t2(y1 − y2)2[y2

1 + y2
2 + 6y1y2] + 2(t1y1 + t2y2)2y1y2(4− y1y2)

+2(t1y1 + t2y2)
[
(t1y1 − t2y2)(y2

1 − y2
2) + (t1y2 + t2y1)

]
+(t1y

2
1 + t2y

2
2)2 + (t1y

2
1 + t2y

2
2)(2− y2

1y
2
2) + (t1y

2
2 + t2y

2
1)

}
. (6.39)

where the coefficients r1 and r2 are defined in (6.24) and we have introduced

t1 = s1r1 =
p2

1

p2
1 − p2

2

=
r2

r2 − 1
, (6.40)

t2 = s2r2 =
p2

2

p2
2 − p2

1

=
−1

r2 − 1
. (6.41)

so that t1 + t2 = 1. A graph of the function L̃
(4)
S,0(iy1, iy2, r) is shown in Fig. 6.2.



Chapter 7

Calculation of S(ω, q) using
functional bosonization

In this chapter we use the bosonization approach developed in Chap. 3 to calculate
the propagator (3.31), where Π∗(Q)−Π0(Q) plays the role of the bosonic self-energy.
Therefore, we expand the irreducible polarization in powers of the RPA interaction,
which is the Gaussian propagator of our boson field ∆φQ.

In Sec. 7.1 we expand diagrammatically the irreducible polarization to second
order in the RPA interaction. We present furthermore a procedure to calculate the
dynamic structure factor by taking the renormalization of the ZS velocity into ac-
count. In this context, Schönhammer [37] has shown that within the so-called RPAE
approximation the relative position of the collective mode energy and the energy of
the single-pair particle-hole continuum is different from the RPA prediction for the
FSM. In Sec. 7.2 we expand similar to Eq. (5.11) the irreducible polarization to
second order in p0. To this end we introduce an approximation, where we replace
also the symmetrized fermion loops by their asymptotic limit for small momenta,
which we have calculated in Secs. 6.2 and 6.3. In addition we perform the approxi-
mation given by (5.13) to simplify the RPA interaction fRPA(Q). Fortunately in our
approach the frequency integrations can be carried out analytically. Eventually, in
Sec. 7.3 we show that the unphysical mass-shell singularities appearing in Eq.(5.11),
cancel each other out in our approximation, so that our expansion in powers of
p0 ∝ 1/m is reasonable.

7.1 One loop self-consistency equation for Π∗(Q)

The diagrams contributing to Π∗(Q) up to second order in the RPA interaction
are shown in Fig. 7.1. The relevant dimensionless parameter for this expansion
is the ratio p0 = q0/(2kF ), because by assumption the range of the interaction
in momentum space has a cutoff q0 � kF so that each additional bosonic loop
integration gives rise to a factor of p2

0. Hence, the diagram (d) involving two bosonic
loops is of order p4

0, because according to Eq. (6.18) the symmetrized fermion loop
with six external legs is proportional to 1/m4 and the two bosonic loop integrations
generate a factor of q4

0. Because the other three diagrams are proportional to p2
0, it

49
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(a) (b)

(d)(c)

Figure 7.1: Diagrams arising in the perturbative expansion of the irreducible po-
larization to second order in the RPA interaction. The shaded circles represent the
vertices of Seff [δφ], which are related to symmetrized closed fermion loops as defined
in Fig. 3.1. Diagram (a) is equivalent to the three fermionic diagrams shown in
Fig. 7.2 and diagram (b) is the so-called Aslamasov-Larkin diagram which corre-
sponds to the two fermionic diagrams in Fig. 7.3. Diagram (c) can be viewed as a
higher order self-energy correction which renormalizes the relation between density
and chemical potential while diagram (d) involving two bosonic loops and the sym-
metrized fermionic six loop is of fourth order in p0 = q0/(2kF ) and can be neglected
to order p2

0.

is consistent to neglect diagram (d) as long as we retain all terms up to order p2
0.

Evaluating the diagrams (a)–(c) in Fig. 7.1 we obtain the following expression for
the irreducible polarization,

Π∗(Q) ≈ Π0(Q) +
1

2

∫
Q′
fRPA(Q′)

{
6L

(4)
S (Q′,−Q′, Q,−Q)

+ 4fRPA(0)L
(3)
S (Q,−Q, 0)L

(3)
S (Q′,−Q′, 0)

+ 4fRPA(Q+Q′)L
(3)
S (−Q,Q+Q′,−Q′)L(3)

S (Q′,−Q−Q′, Q)

}
. (7.1)

The properties of the symmetrized three and four loops appearing in this expression
have been discussed in detail in Chap. 6. In addition the corresponding fermionic
diagrams are shown in Figs. 7.2 and 7.3.

It turns out, however, that in order to cure the unphysical features of the RPA
discussed at the end of Chap. 5 (in particular, within RPA the energy scale vF |q| of
the single-pair continuum erroneously involves the bare Fermi velocity), we should



7.1 One loop self-consistency equation for Π∗(Q) 51

Figure 7.2: Corrections to the irreducible polarization in an expansion to first or-
der in powers of the RPA interaction. The thick wavy lines denote fRPA(Q), see
Fig. 3.2. Diagrams (a) and (b) describe the self-energy correction while the diagram
(c) describe the vertex correction.

Figure 7.3: Aslamasov-Larkin contributions [68, 69] to the irreducible polarization
Π∗(Q). The thick wavy lines are the screened RPA interactions, see Fig. 3.2.

self-consistently dress the Gaussian propagator fRPA(Q) in Eq. (7.1) by self-energy
corrections. Formally, this amounts to replacing the RPA interaction by the exact
effective interaction,

fRPA(Q)→ f∗(Q) =
fq

1 + fqΠ∗(Q)
. (7.2)

In Sec. 4.4 we have justified this procedure using a functional renormalization group
approach [7, 58]. With this substitution, Eq. (7.1) becomes a complicated inte-
gral equation for the irreducible polarization, which cannot be solved analytically.
Fortunately, this integral equation can again be simplified by noting that on the
right-hand side it is not necessary to retain the full Q-dependence of Π∗(Q), but
to keep only those terms which contribute to the self-consistent renormalization of
the ZS velocity. To explain this, let us introduce again the dimensionless variables
iy = iω/(vF q) and p = q/(2kF ) and define the dimensionless irreducible polarization

Π∗(iω, q) = ν0Π̃∗(iy, p) . (7.3)

The corresponding dimensionless effective interaction is then

f̃∗(iy, p) =
gp

1 + gpΠ̃∗(iy, p)
, (7.4)

where gp = ν0fq=pkF , see also Eqs. (5.8) and (5.9). The dynamic structure factor
can then be written as

S(ω, q) =
1

π
Im

[
1

fq + Π−1
∗ (ω + i0, q)

]
=
ν0

π
Im

[
1

gp + Π̃−1
∗ (x+ i0, p)

]
, (7.5)
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where x = ω/(vF q). For our purpose it is now sufficient to approximate the dimen-
sionless inverse irreducible polarization by

Π̃−1
∗ (iy, p) = Z1 + Z2y

2 , (7.6)

where the dimensionless renormalization factors Z1 and Z2 should be determined
as a function of the interaction such that the approximation (7.6) yields the true
ZS velocity v. Within RPA, where the nonlinear terms in the energy dispersion do
not renormalizes the ZS velocity, the irreducible polarization is approximated by the
noninteracting one, so that Z1 = Z2 = 1. If we approximate the inverse polarization
in Eq. (7.5) by Eq. (7.6) we obtain for ω > 0 and q → 0,

S(ω, q) ≈ vF |q|
2πvZ2

δ(ω − v|q|) , (7.7)

where the renormalized ZS velocity is

v

vF
=

√
Z1 + g0

Z2

≡ x0 ≡
√

1 + g , (7.8)

with renormalized coupling constant

g =
g0 + Z1

Z2

− 1 . (7.9)

In order to avoid the unphysical splitting of the spectral weight in S(ω, q) (as dis-
cussed at the end of Chap. 5, this is an artifact of the RPA) it is crucial that the
true ZS velocity v appears in the bosonic propagators. Therefore, a naive expan-
sion in powers of the RPA interaction is not sufficient. However, we may further
reduce the complexity of the calculation by noting that Eq. (7.7) still contains the
correct velocity if we set Z2 → 1 in the prefactor. Within this approximation, the
velocity renormalization implied by Eq. (7.6) can be simply taken into account via a
redefinition of the coupling constant, g0 → g. It is therefore sufficient to replace the
RPA interaction in Eq. (7.1) by an effective interaction of the same form but with a
renormalized effective coupling g instead of g0, which should be chosen such that all
interaction corrections to the ZS velocity are self-consistently taken into account.

In field-theoretical language the constants Z1 and Z2 are counterterms which
guarantee that our Gaussian propagator depends on the true ZS velocity. In Chap. 8
we shall explicitly calculate the factors Z1, Z2 and the corresponding renormalized
ZS velocity v to second order in our small parameter p0. A similar procedure is
necessary to self-consistently calculate the true Fermi surface of an interacting Fermi
system [70,71]. The expansion of the modified dimensionless interaction g̃p for small
p is then [see Eq. (2.38)]

g̃p = g +
1

2
g′′0p

2 +O(p4) , (7.10)

where

g′′0 = (2kF )2ν0f
′′
0 = signf ′′0

2

πpc
, (7.11)
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with
pc ≡ qc

2kF
. (7.12)

In this approximation, our dimensionless effective interaction is

f̃∗(iy, p) ≈ f̃g(iy, p) =
g̃p

1 + g̃pΠ̃0(iy, p)
, (7.13)

which differs from the RPA interaction, because the function g̃p includes the renor-
malization of the ZS velocity due to fluctuations beyond the RPA.

Collecting all terms, our final result for the dimensionless irreducible polarization
to one bosonic loop can be written as

Π̃∗(iy, p) ≈ Π̃0(iy, p) + Π̃1(iy, p) + Π̃2(iy, p) , (7.14)

where the noninteracting polarization is given in Eq. (5.10), and the subscripts
indicate the powers of g̃p. The term Π̃1(iy, p) corresponding to diagram (a) in
Fig. 7.1 can be written as

Π̃1(iy, p) = −
∫ ∞
−∞

dp′|p′|
∫ ∞
−∞

dy′

2π
f̃g(iy

′, p′)L̃
(4)
S (iy, p, iy′, p′) , (7.15)

where the dimensionless symmetrized four loop L̃
(4)
S (iy, p, iy′, p′) is defined in Eq.

(6.36). The term Π̃2(iy, p) involving two powers of the effective interaction is of the
form

Π̃2(iy, p) = Π̃AL
2 (iy, p) + Π̃H

2 (iy, p) , (7.16)

where the contribution from the Aslamasov-Larkin (AL) diagram [68,69] in Fig. 7.1
(b) is

Π̃AL
2 (iy, p) = −

∫ ∞
−∞

dp′|p′|
∫ ∞
−∞

dy′

2π
f̃g(iy

′, p′)

× f̃g

(
iyp+ iy′p′

p+ p′
, p+ p′

)
[L̃

(3)
S (iy, p, iy′, p′)]2 , (7.17)

and the contribution from the Hartree diagram in Fig. 7.1 (c) can be written as

Π̃H
2 (iy, p) = − g

1 + g
L̃

(3)
S (iy, p, iy,−p)

∫ ∞
−∞

dp′|p′|
∫ ∞
−∞

dy′

2π

× f̃g(iy
′, p′)L̃

(3)
S (iy′, p′, iy′,−p′) . (7.18)

Here, the dimensionless symmetrized three loop L̃
(3)
S (iy, p, iy′, p′) is defined in Eq.

(6.21). The parameters Z1 and Z2 hidden in the effective interaction f̃g(iy, p) should
be determined self-consistently by evaluating Eqs.(7.14–7.18) and demanding that
the resulting renormalized ZS velocity is consistent with the result obtained from
Eq. (7.6). We emphasize again that the above expression for Π∗(Q) is not based on
an expansion in powers of 1/m: all functions appearing in Eqs. (7.15–7.18) depend
on 1/m in a rather complicated nonlinear manner.
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7.2 Approximation A: neglecting 1/m-corrections

to Π0(Q)

Eqs. (7.15–7.18) are still too complicated to admit an analytic evaluation. In order
to explicitly calculate the dynamic structure factor without resorting to elaborate
numerics, we shall further simplify the above expressions by making the following
approximation A: We replace the noninteracting polarization Π0(Q) appearing in the
effective interaction and the symmetrized closed fermion loops on the right-hand sides
of Eqs. (7.15–7.18) by its asymptotic limit for small momenta given in Eq. (5.13).
Keeping in mind that in one dimension the closed fermion loops with n > 2 external
legs can all be expressed in terms of Π0(Q), the symmetrized three and four loops are
then approximated by Eqs. (6.26) and (6.39). For consistency, we should also expand
the dimensionless free polarization Π̃0(iy, p) on the right-hand side of Eq. (7.14) to
second order in p, see Eq. (5.11).

It turns out that with this simplification the y′-integrations in Eqs. (7.15), (7.17)
and (7.18) can be done analytically for general g̃p using the method of residues.
The form of Eq. (7.5) suggests that it is natural to expand the inverse irreducible
polarization in powers of p and p0. This procedure can be formally justified within
functional bosonization [29, 49], where the interaction corrections to the inverse
irreducible polarization play the role of the self-energy corrections in the effective
bosonized theory. But it is usually better to expand the self-energy rather than
the Green function in powers of the relevant small parameter, because the direct
expansion of the Green function usually leads to unphysical singularities. Using
Eqs. (5.11) and (7.15–7.18) we obtain for the expansion of the inverse irreducible
polarization to order p2

0,

Π̃−1
∗ (iy, p) = 1 + y2 − p2

3

1− 3y2

1 + y2
− (1 + y2)2Π̃1(iy, p)− (1 + y2)2Π̃2(iy, p) +O(p3

0) ,

(7.19)
where p is assumed to be smaller than the dimensionless momentum-transfer cutoff
p0 = q0/(2kF ). It is convenient to introduce the notation

xp =
√

1 + g̃p , (7.20a)

ap = xp + 1 =
√

1 + g̃p + 1 , (7.20b)

bp = xp − 1 =
√

1 + g̃p − 1 , (7.20c)

so that apbp = g̃p. The contribution involving the symmetrized four loop can then
be written as

−(1 + y2)2Π̃1(iy, p) = Re

∫ ∞
0

dp′

{
|p′|
xp′

p′4F1(iy, p′) + p′2p2F2(iy, p′) + p4F3(iy, p′)

[a2
p′p
′2 − (1 + iy)2p2][b2

p′p
′2 − (1− iy)2p2]

−p′2g̃p′(1 + iy)2
[ 2p′

p(1− iy)
+ 1
] |p+ p′|
x2
p′p
′2 − [(1− iy)p+ p′]2

+ (p′ → −p′)
}
, (7.21)
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with

F1(iy, p) = 4g̃p(xp + iy)2 + g̃2
p

[
8xp

1− iy − 4xp − g̃p − (2 + xp − g̃p
2

)(1 + y2)

]
, (7.22)

F2(iy, p) = g̃p
[−(1 + iy)4 + g̃p(2− y2 + y4)− 4bpiy(1− y2)

]
−2b2

pxp
1 + iy

1− iy (3− 6y2 − y4) , (7.23)

F3(iy, p) = −4b2
p(1 + y2)

[
1− 1 + y2

2
− (1 + y2)2

8

]
. (7.24)

Both functions F1(iy, p) and F2(iy, p) contain a singular term proportional to (1 −
iy)−1, which after analytic continuation give rise to a mass-shell singularity at the
energies ±vF q associated with the bare Fermi velocity. Fortunately, these singu-
larities cancel when Eq. (7.21) is combined with the corresponding contributions
from the expansion of Π̃−1

0 (iy, p) in Eq. (7.19) and from the AL diagram given in
Eq. (7.31) below. To show this explicitly, it is useful to isolate the singular term in
Eqs. (7.22) and (7.23) by setting

F1(iy, p) =
8g̃2

pxp

1− iy + F̃1(iy, p) , (7.25)

F2(iy, p) = −8b2
pxp

(1 + iy)2

1− iy + F̃2(iy, p) . (7.26)

F̃1(iy, p) and F̃2(iy, p) are now analytic functions of y,

F̃1(iy, p) = 4g̃p(xp + iy)2 − g̃2
p

[
4xp + g̃p + (2 + xp − g̃p

2
)(1 + y2)

]
, (7.27)

F̃2(iy, p) = g̃p

[
−(1 + iy)4 + g̃p(2− y2 + y4) + 4bpiy(1 + 2iy + y2)

]
+ 2b2

p(1 + iy)
[
xp(1 + iy)(1 + y2)− 4iy

]
. (7.28)

Eq. (7.21) can then be written as

−(1 + y2)2Π̃1(iy, p) = Re

∫ ∞
0

dp′

{
p′5F̃1(iy, p′) + p′3p2F̃2(iy, p′) + p′p4F3(iy, p′)

xp′ [a2
p′p
′2 − (1 + iy)2p2][b2

p′p
′2 − (1− iy)2p2]

+
8p′

1− iy +
8p′p2(1− iy)

b2
p′p
′2 − (1− iy)2p2

− p′2g̃p′(1 + iy)2
[ 2p′

p(1− iy)
+ 1
]

× |p′ + p|
x2
p′p
′2 − [p′ + (1− iy)p]2

+ (p→ −p)
}
. (7.29)

Next, consider the contribution Π̃AL
2 (iy, p) from the Aslamasov-Larkin diagram in

Eq. (7.17). Adopting again approximation A, the symmetrized three loop L̃
(3)
S (iy, p,
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iy′, p′) is replaced by its limit L̃
(3)
S,0(iy, iy′, p/p′) for 1/m→ 0 given in Eq. (6.26). Then

we obtain

−(1 + y2)2Π̃AL
2 (iy, p) =

∫ ∞
−∞

dp′|p′|g̃p′ g̃p′+p

×
∫ ∞
−∞

dy′

2π

[
1− yy′ − (y + y′)py+p′y′

p+p′

]2

[
1 + y′2

][
x2
p′ + y′2

][
1 +

(
py+p′y′

p+p′

)2][
x2
p′+p +

(
py+p′y′

p+p′

)2] . (7.30)

The y′-integration can now be carried out using the theorem of residues. The result
can be cast into the following form,

−(1 + y2)2Π̃AL
2 (iy, p) = Re

∫ ∞
0

dp′p′
|p′ + p|

2

×
{

g̃p′+p|p′ + p|
[
(p′ + p)(1 + 2iyxp′ + x2

p′)− p(y2 + x2
p′)
]2

xp′
[
(p′ + p)2−(xp′p′ + iyp

)2][
x2
p′+p(p

′ + p)2 − (xp′p′ + iyp
)2]

+
g̃p′p

′
[
p′(1 + 2iyxp′+p + x2

p′+p) + p(y2 + x2
p′+p)

]2

xp′+p
[
p′2−(xp′+p(p′ + p)− iyp)2][

x2
p′p
′2 − (xp+p′(p+ p′)− iyp)2]

−
[ 2(p′ + p)

p(1− iy)
− 1
] g̃p′+p|p′ + p|(1 + iy)2

x2
p′+p(p

′ + p)2 − [p′ + p− (1− iy)p]2

+
[ 2p′

p(1− iy)
+ 1
] g̃p′p

′(1 + iy)2

x2
p′p
′2 − [p′ + (1− iy)p]2

}
+ (p→ −p) . (7.31)

Finally, the contribution (7.18) of the Hartree-type of diagram (c) in Fig. 7.1 is1

−(1 + y2)2Π̃H
2 (iy, p) = IH(1− y2) , (7.32)

with

IH = − 2g

1 + g

∫ ∞
0

dpp

[
1 + g̃p

2√
1 + g̃p

− 1

]
= − g

1 + g

∫ ∞
0

dpp
(xp − 1)2

xp
. (7.33)

For Θ-function cutoff this reduces to

IH = − p2
0g

1 + g

[
1 + g

2√
1 + g

− 1

]
, (7.34)

1The three loop L̃
(3)
S (iy, p, iy,−p) appearing in the Hartree-type of contribution (7.18) to the

irreducible polarization is ambiguous for the required combination of arguments: The value of
limy′→y ,p′→p L̃

(3)
S (iy, p, iy′, p′) depends on order of limits. Because Hartree interactions should be

static, we define L̃(3)
S (iy, p, iy,−p) as the limit of L̃(3)

S (iy, p, iy′, p′) where we first set the frequency
sum ω + ω′ = vF (qy + q′y′) equal to zero and then take the limit p′ → −p.
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while for Lorentzian cutoff,

IH = − p2
0g

1 + g

[
1 +

g

2
−
√

1 + g
]
. (7.35)

Combining all terms we obtain the following expansion of the inverse irreducible
polarization to second order in p2

0,

Π̃−1
∗ (iy, p) = 1+y2+p2−2p2

3

[
1

1− iy +
1

1 + iy

]
+IH(1−y2)+I(iy, p)+O(p3

0) , (7.36)

where we have used Eqs. (5.11) and (5.12) to clearly exhibit the mass-shell singular-
ity generated by the expansion of the inverse free polarization. The dimensionless
integral I(iy, p) can be written as

I(iy, p) =
1

2

∫ ∞
0

dp′p′ [J(iy, p, p′) + J(−iy, p, p′)] , (7.37)

where the complex function J(iy, p, p′) is given by

J(iy, p, p′) =
p′4F̃1(iy, p′) + p′2p2F̃2(iy, p′) + p4F3(iy, p′)

xp′ [a2
p′p
′2 − (1 + iy)2p2][b2

p′p
′2 − (1− iy)2p2]

+
8

1− iy +
8p2(1− iy)

b2
p′p
′2 − (1− iy)2p2

+
|p′ + p|

2

×
{ g̃p′+p|p′ + p|

[
(p′ + p)(1 + 2iyxp′ + x2

p′)− p(y2 + x2
p′)
]2

xp′
[
(p′ + p)2 − (xp′p′ + iyp)2

][
x2
p′+p(p

′ + p)2 − (xp′p′ + iyp)2
]

+
g̃p′p

′
[
p′(1 + 2iyxp′+p + x2

p′+p) + p(y2 + x2
p′+p)

]2

xp′+p
[
p′2−(xp′+p(p′ + p)− iyp)2][

x2
p′p
′2 − (xp+p′(p+ p′)− iyp)2]

−
[ 2(p′ + p)

p(1− iy)
− 1
] g̃p′+p|p′ + p|(1 + iy)2

x2
p′+p(p

′ + p)2 − [p′ + p− (1− iy)p]2

−
[ 2p′

p(1− iy)
+ 1
] g̃p′p

′(1 + iy)2

x2
p′p
′2 − [p′ + (1− iy)p]2

}
+ (p→ −p) . (7.38)

Although it is not obvious from Eq. (7.38), the function J(iy, p, p′) vanishes as g̃2
p′

for p′ � p0, so that the integral (7.37) is ultraviolet convergent as long as g̃p vanishes
faster than 1/p for p→∞.

7.3 Cancellation of the mass-shell singularities at

ω = ±vFq
We now show that the mass-shell singularities at iy → x = ±1 (corresponding to
frequencies ω = ±vF q) arising from the expansion of the noninteracting polarization
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in Eq. (7.36) are exactly cancelled by corresponding singularities in I(x, p), because
for x→ ±1 the integral I(x, p) diverges as

I(x, p) ∼ 2p2

3

1

1∓ x, x→ ±1. (7.39)

To proof this, it is sufficient to calculate the residues

R±(p) = lim
x→±1

[(1∓ x)I(x, p)] =
1

2

∫ ∞
0

dp′p′ lim
x→±1

[(1∓ x)J(±x, p, p′)] . (7.40)

Using x2
p − 1 = g̃p we find from Eq. (7.38),

lim
x→±1

[(1∓ x)J(±x, p, p′)] = 8− 4
|p′ + p| − |p′ − p|

p
= 8Θ(|p| − p′) (1− p′/|p|) .

(7.41)
Hence,

R±(p) = 4

∫ |p|
0

dp′p′ (1− p′/|p|) =
2p2

3
, (7.42)

which proofs Eq. (7.39). We conclude that the expansion (7.36) of the inverse
irreducible polarization to second order in p2

0 does not exhibit any mass-shell singu-
larities at frequencies ω = ±vF q corresponding to the excitation energy of noninter-
acting particle-hole pairs. This cancellation also corrects the unphysical feature of
the RPA that the single particle-hole pair continuum is centered at the energy vF |q|
involving the bare Fermi velocity vF .

It is convenient to explicitly cancel the mass-shell singularities arising from the
expansion of the free polarization in Eq. (7.36) against the corresponding singulari-
ties in I(iy, p). Therefore we use the identity

2p2

3

[
1

1− iy +
1

1 + iy

]
=

1

2

∫ ∞
0

dp′p′[J0(iy, p, p′) + J0(−iy, p, p′)] , (7.43)

where

J0(iy, p, p′) =
8

1− iy
[
1− p′ + p+ |p′ + p|

2p
+ (p→ −p)

]
, (7.44)

to write Eq. (7.36) as follows,

Π̃−1
∗ (iy, p) = 1 + y2 + p2 + IH(1− y2) + Ĩ(iy, p) +O(p3

0) . (7.45)

The integral Ĩ(iy, p) can again be written as

Ĩ(iy, p) =
1

2

∫ ∞
0

dp′p′
[
J̃(iy, p, p′) + J̃(−iy, p, p′)

]
, (7.46)

with
J̃(iy, p, p′) = J(iy, p, p′)− J0(iy, p, p′) . (7.47)
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We may now explicitly cancel the mass-shell singularities in the regularized integrand
J̃(iy, p, p′) and obtain after some algebra,

J̃(iy, p, p′) =
p′4F̃1(iy, p′) + p′2p2F̃2(iy, p′) + p4F3(iy, p′)

xp′ [a2
p′p
′2 − (1 + iy)2p2][b2

p′p
′2 − (1− iy)2p2]

+
8p2(1− iy)

b2
p′p
′2 − (1− iy)2p2

+
g̃p′+p(p

′ + p)2
[
(p′ + p)(1 + 2iyxp′ + x2

p′)− p(y2 + x2
p′)
]2

2xp′
[
(p′ + p)2 − (xp′p′ + iyp)2

][
x2
p′+p(p

′ + p)2 − (xp′p′ + iyp)2
]

+
g̃p′ |p′ + p|p′

[
p′(1 + 2iyxp′+p + x2

p′+p) + p(y2 + x2
p′+p)

]2

2xp′+p
[
p′2−(xp′+p(p′ + p)− iyp)2][

x2
p′p
′2 − (xp+p′(p+ p′)− iyp)2]

+
(p′ + p)

[
8(p′ + p)− 4(1− iy)p+ g̃p′+p(p

′ + p)
[
p′+p
p

(3 + iy) + 1
2
(1 + iy)2

]]
x2
p′+p(p

′ + p)2 − [p′ + p− (1− iy)p]2

+
|p′ + p|

[
−8p′ − 4(1− iy)p+ g̃p′p

′[p′
p

(3 + iy)− 1
2
(1 + iy)2

]]
x2
p′p
′2 − [p′ + (1− iy)p]2

+ (p→ −p) .(7.48)

Despite the cancellation of the mass-shell singularities at x = ±1, the interaction
with sharp momentum transfer generates a new mass-shell singularity at x = ±x0.
However we shall argue in Chap. 9 that the above approximation A is not sufficient
to calculate the line shape of the dynamic structure factor for momenta q . qc =
1/(m|f ′′0 |) [see Eq. (2.39)], because in this regime the spectral line shape is dominated
by the terms neglected in approximation A. On the other hand, for q & qc the line
shape of S(ω, q) is essentially determined by the quadratic term in the expansion of
fq for small q, so that in this regime A is justified.





Chapter 8

Interaction with sharp
momentum-transfer cutoff

In this chapter we assume that the dimensionless interaction gp is of the form

gp = g0Θ(p0 − |p|) . (8.1)

In this case the p′-integration in Eq. (7.37) is elementary and can be carried out
exactly. Note that all derivatives of the interaction (8.1) vanish at p = 0 so that
f ′′0 = 0, which is certainly an unphysical feature of the Θ-function cutoff. The length
qc defined in Eq. (2.39) is then formally infinite, so that the regime (2.40) does not
exist. In the next chapter we will show that for such an interaction approximation
A discussed in Sec. 7.2 (i.e., replacing Π̃0(iy, p) ≈ Π̃0(iy, 0) = [1 + y2]−1 in loop
integrations) is never justified. But it is still interesting to evaluate Eq. (7.45),
because it allows us to explicitly see the partial cancellation between contributions
arising from the first-order diagram in Fig. 7.1 (a) and the AL diagram in Fig. 7.1
(b). We show in the first section of this chapter that the irreducible polarization
exhibits a new mass-shell singularity at ω = v|q| if we use the interaction defined in
(8.1). This feature is an artifact of the non-analyticity of step function. In Sec. 8.2
we calculate the renormalization of the ZS velocity according to Eq. (7.8) for q → 0
and in Sec. 8.3 we use again the Samokhin regularization method for the mass-shell
singularity, which we have applied in Sec. 5.2 to estimate the ZS damping.

8.1 Explicit evaluation of the irreducible polar-

ization

In order to clearly exhibit the cancellation of mass-shell singularities, it is instructive
to evaluate the contributions Π̃1(iy, p) (first-order in the effective interaction) and
Π̃2(iy, p) (second order in the effective interaction) separately. Therefore, we specify
g̃p = gΘ(p0 − |p|) in Eqs. (7.37,7.38) and perform the p′-integration exactly. Recall
that the effective coupling constant g is defined as a function of the bare coupling g0

via Eq. (7.9). The p→ 0 limits of the coefficients xp, ap and bp given in Eqs. (7.20a–

61
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7.20c) are now denoted by

x0 =
√

1 + g , (8.2a)

a = x0 + 1 , (8.2b)

b = x0 − 1 . (8.2c)

Note that for small g,

a = 2 +
g

2
− g2

8
+
g3

16
+O(g4) , (8.3)

b = a− 2 =
g

2
− g2

8
+
g3

16
+O(g4) . (8.4)

After some tedious algebra we find that the contribution from the diagram (a) in
Fig. 7.1 to the expansion (7.19) can be written as

−(1 + y2)2Π̃1(iy, p) = −p2
0

b2(3 + x0)

2ax0

(2 + g −∆)

+ p2

{
2

3

1− 3y2

1 + y2
+

(2 + g)

g
(4− g)− 4∆

g2

[
4 + g − g2

4

]

+
∆− g
x0

Re

[
−a

2

b3
(1− iy)(x0 + iy) ln

(
1 + iy

x0 + iy

)

+
b2

a3
(1− iy)(x0 − iy) ln

(
p2

0a
2 − p2(1 + iy)2

p2(1 + iy)(x0 − iy)

)]}
, (8.5)

where we have defined
∆ = 1 + g + y2 = x2

0 + y2 . (8.6)

If we neglect at this point the contribution Π̃2(iy, p) involving two powers of the
effective interaction,

Π̃−1
∗,1(iy, p) ≡ ν0Π−1

∗,1(iω, q) = 1 + y2 − p2

3

1− 3y2

1 + y2
− (1 + y2)2Π̃1(iy, p) , (8.7)

we recover from Eq. (7.5) the previous estimate [29] of the dynamic structure factor
for ω close to v|q| and q → 0

S(q, ω ≈ v|q|) =
ν0

π
Im

[
Π∗,1(ω + i0, q)

1 + fqΠ∗,1(ω + i0, q)

]
=

Zqγq

π
[
(ω − v|q|)2 + γ2

q

] , (8.8)

where the last logarithmic term in Eq. (8.5) gives rise to the ZS damping

γq = ImΠ∗,1(q, v|q|)
[
∂ ReΠ∗,1
∂ω

∣∣∣∣
ω=v|q|

]−1

≈ π

8

g3

x0a4

|q|3
vFm2

. (8.9)
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In view of the discussion at the end of Sec. 5.2 this result should not be surprising:
within our approximation the ZS mode is located at higher energy than the single-
pair continuum and is immersed in the multi-pair continuum, whose spectral weight
Zq is generated by the logarithmic terms in Eq. (8.5). The overlap of the multi-
pair continuum with the ZS mode leads to the q3-damping, in agreement with the
arguments by Teber [6].

Unfortunately, the term in Eq. (8.5) which is responsible for the ZS damping
given by (8.9) is exactly cancelled by a similar term in −(1+y2)Π̃AL

2 (iy, p). Explicitly
carrying out the p′-integration in Eq. (7.31) and adding the contribution (7.32) from
the Hartree-type of term, we obtain for |p| < p0,

−(1 + y2)2Π̃2(iy, p) = p2
0

b2

2x3
0

g(2 + g −∆)

+p0(p0 − |p|) b
2

ax3
0

[
g(2 + g)− b(1 +

g

4

)−∆x2
0

]
+p2

{
− 1− 3y2

3(1 + y2)
+

g

2x0

− (2 + g)

2g

[
4− g +

4

x0

]
+

2∆

g2

[
4 + g − g2

4
+

3g2

4x0

+ x0(4− g)
]
− (4 + g)2 + 8g(2 + g −∆)

12x0∆

+
g2∆

16x5
0

ln

(
4p0(p0 − |p|)x2

0 + p2∆

p2∆

)
+

∆− g
x0

Re

[
a2

b3
(1− iy)(x0 + iy) ln

(
1 + iy

x0 + iy

)

− b
2

a3
(1− iy)(x0 − iy) ln

(
p0(p0 − |p|)a2 + p2(1 + iy)(x0 − iy)

p2(1 + iy)(x0 − iy)

)]}
. (8.10)

Adding Eqs. (8.5) and (8.10) and rearranging terms, we obtain for the expansion
(7.19) of the inverse irreducible polarization for sharp momentum-transfer cutoff

Π̃−1
∗ (iy, p) = 1 + p2

0g1 + (1 + p2
0g2)y2 + p0|p|[g3 + g4y

2]

+
p2

2

{
4g

3x0

− 2 +
b

gx0

[8 + 4g − g2] +
∆

g2

[
16b− 4ga+ g2(1 + 3/x0)

]
− (4 + 3g)2

6x0∆
+
g2∆

8x5
0

ln

(
4p0(p0 − |p|)x2

0 + p2∆

p2∆

)
− (1 + y2)

b2

a3x0

2Re

[
(1− iy)(x0 − iy) ln

(
p0a− |p|(x0 − iy)

p0a+ |p|(1 + iy)

)]}
,

(8.11)
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where

g1 = − b2

2x3
0

[
3 +

g

2

x0 + 3

x0 + 1

]
− 3

8
g2 +

5

8
g3 +O(g4) , (8.12a)

g2 =
b2

2x3
0

=
1

8
g2 − 1

4
g3 +O(g4) , (8.12b)

g3 =
b2

ax3
0

[
x0 +

g

4
b
]

=
1

8
g2 − 7

32
g3 +O(g4) , (8.12c)

g4 =
b2

ax0

=
1

8
g2 − 5

32
g3 +O(g4) . (8.12d)

Eq. (8.11) has three important properties:

• The logarithmic term in Eq. (8.5) which is responsible for the q3-dependence
of γq in Eq. (8.9), is exactly cancelled by a similar term with opposite sign
arising from the AL diagram.

• The mass-shell singularity at ω = ±vF q associated with the expansion of
the free polarization Π0(ω, q) in Eq. (7.36) has disappeared in Eq. (8.5), in
agreement with our general considerations in Chap. 7.

• Eq. (8.11) contains a term proportional to 1/∆, which after analytic continu-
ation gives rise to a mass-shell singularity at the physical energy ω = ±vq of
the ZS mode.

The mass-shell singularity at ω = ±vq is an artifact of the sharp momentum-
transfer cutoff used in this chapter in combination with approximation A discussed
in Sec. 7.2. In fact, we shall show in the next chapter that a more realistic interac-
tion fq with finite f ′′0 does not lead to any mass-shell singularities, even if we still
use approximation A to evaluate Eqs. (7.15–7.18).

8.2 Renormalized ZS velocity

To calculate the renormalized ZS velocity it is sufficient to set p = 0 in Eq. (8.11),
so that the problems related to the mass-shell singularity do not arise. Comparing
Eq. (8.11) at p = 0 with the defining equation (7.6) of the renormalization constants
Z1 and Z2, we find to order p2

0,

Zi = 1 + p2
0gi , i = 1, 2 , (8.13)

which are nonlinear self-consistency equations for Z1 and Z2, because g1 and g2 are
defined in terms of the renormalized coupling g = (g0 + Z1 − Z2)/Z2, see Eq. (7.9).
However, keeping in mind that the difference g − g0 is proportional to p2

0 and that
Eq. (8.13) is only valid to order p2

0, we may ignore the self-consistency condition and
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set Z1 = Z2 = 1 in the expressions for g1 and g2 on the right-hand side of Eq. (8.13).
From Eq. (7.8) we then obtain for the renormalized ZS velocity,

v

vF
=

√
Z1 + g0

Z2

=
√

1 + g , (8.14)

where
g = g0 − p2

0g5 , (8.15)

with

g5 = x2
0g2 − g1 =

b2

x3
0

[
2 +

g

4

(
3 +

2

a

)]
=

1

2
g2 − 3

4
g3 +O(g4) . (8.16)

To order p2
0 we thus obtain for the energy of the ZS mode

ωq ≈ v|q| , (8.17)

with renormalized ZS velocity,

v = vF

√
1 + g0 − p2

0g5 = v0

[
1− p2

0

g5

2x2
0

+O(p4
0)

]
, (8.18)

where v0 = vF
√

1 + g0 is the RPA result for the ZS velocity. A graph of the relative
change of the ZS velocity as a function of the interaction strength g is shown in
Fig. 8.1. Obviously, even for large g and p2

0 = O(1) the correction to the RPA result
v0 never exceeds more than a few percent.

8.3 Spectral line shape

Although for sharp momentum-transfer cutoff the dynamic structure factor exhibits
(within approximation A discussed in Sec. 7.2) a mass-shell singularity at the ZS
energy v|q|, it is nevertheless instructive to follow Samokhin [5] and regularize the
singularity by hand using the procedure outlined in Sec. 5.2. Because the nat-
ural scale for the momentum dependence is not 2kF but the scale q0 set by the
momentum-transfer cutoff, it is convenient to express the momentum dependence
via q̃ = q/q0. Setting p = p0q̃ and writing

S(ω, q) =
ν0

π
Im

[
1

g0 + Π̃−1
∗ (x+ i0, q̃)

]
, (8.19)

we obtain on the imaginary frequency axis

g0 + Π̃−1
∗ (iy, q̃) = ∆

[
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0(g2 + g4|q̃|)
]− p2

0g6|q̃|

+p2
0q̃

2

{
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∆
+ ∆

[
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(
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4x2
0(1− |q̃|)
q̃2∆

)]

+(g −∆)
b2

a3x0

Re

[
(1− iy)(x0 − iy) ln

(a− |q̃|(x0 − iy)

a+ |q̃|(1 + iy)

)]}
, (8.20)
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ZS velocity in units of p2
0 as a function of the interaction strength g, see Eq. (8.18).

where

g6 = x2
0g4 − g3 =

b2

ax3
0

g

[
2 + g − b

g

(
1 +

g

4

)]
=

3

16
g3 +O(g4) , (8.21a)
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1

2
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3

2x0
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4
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=

1

8
g2 − 11

64
g3 +O(g4) , (8.21b)

g8 =
g2

16x5
0

=
1

16
g2 − 5

32
g3 +O(g4) , (8.21c)

h0 = −1 +
2g

3x0

+
b

2gx0

[8 + 4g − g2] = 1 +
1

6
g − 1

12
g2 +O(g3) , (8.21d)

h1 =
(1 + 3x2

0)2

12x0

=
(4 + 3g)2

12x0

=
4

3
+

4

3
g +

1

4
g2 +O(g3) . (8.21e)

From Eq. (8.20) it is obvious that our functional bosonization approach yields a
systematic expansion of the inverse irreducible polarization in powers of the small
parameter p0 = q0/(2kF ). Note that only h0 and h1 have finite limits for g → 0,
whereas the other couplings g1, . . . , g8 vanish at least as g2 (the coupling g6 vanishes
even as g3).

In the limit g → 0 Eq. (8.20) correctly reduces to the expansion of the noninter-
acting inverse polarization given in Eq. (5.11). However, the term h1/∆ generates
a mass-shell singularity at the true collective mode energy ω = ±vq. Fortunately,
this singularity can be avoided if we use a more physical interaction whose Fourier
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Figure 8.2: Graph of the factor Zw defined in Eq. (8.23), which estimates the
interaction-induced relative change of the width of ZS resonance for q � qc, see
Eqs. (8.22,8.23).

transform fq is analytic for small q, as will be shown explicitly in Chap. 9. In
this section we shall simply regularize the mass-shell singularity by hand using the
self-consistent regularization procedure proposed by Samokhin [5], which we have
already described in detail in Sec. 5.2. Repeating the steps leading from Eq. (5.18)
to Eq. (5.23), we obtain from the self-consistent regularization of the singular term
proportional to h1/∆ in Eq. (8.20) the following estimate for the width of the ZS
mode,

wq =

√
h1

2x0

q2

2m
= Zw

q2

2
√

3m
, (8.22)

where we have factored out the corresponding estimate in the absence of interactions
given in Eq. (5.23), and the dimensionless factor Zw is given by

Zw =

√
3h1

4x2
0

=
1 + 3

4
g

[1 + g]3/4
. (8.23)

Note that Zw ∼ 1 + 3
32
g2 + O(g3) for g → 0, and Zw ∼ 3

4
g1/4 for g → ∞. A graph

of Zw as a function of the interaction strength g is shown in Fig. 8.2. The estimate
(8.22) for the width of the ZS resonance on the frequency axis scales as q2, which
is for small q much larger than our previous estimate (8.9) based on the evaluation
of only the first-order diagram (a) in Fig. 7.1. The q2-scaling of the width of the
ZS resonance has already been found by Samokhin [5] and has been confirmed later
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Figure 8.3: Graph of the dynamic structure factor S(ω, q) as a function of x −
x0 = (ω − vq)/(vF q) for fixed q = 0.08kF . The line shape has been calculated
from Eqs. (8.19 ,8.20, 8.22) and (8.24). The distance between the local maxima is
proportional to wq ∝ q2/m.

in Refs. [3, 4, 31]. However, the derivation of Eq. (8.22) is based on a rather ad hoc
regularization prescription of the mass-shell singularity in Eq. (8.20), which ignores
in particular the divergent real part of the term h1/∆. Let us nevertheless proceed
and calculate the corresponding dynamic structure factor, which can be obtained
by replacing the term h1/∆ = h1/(x

2
0 + y2) on the right-hand side of Eq. (8.20) by

h1

∆
→ h1

x2
0 − (ω+iwq)2

(vF q)2

. (8.24)

The finite imaginary part wq in this expression is a rough estimate of the modi-
fication of the spectral line shape due to the terms which have been neglected by
making the approximation A discussed in Sec. 7.2. The typical form of the dynamic
structure factor in the regime p � p0 implied by Eqs. (8.20, 8.22) and (8.24) is
shown in Fig. 8.3. Obviously, within our approximation the dynamic structure fac-
tor does not exhibit any threshold singularities, which according to Refs. [3, 4] are
a generic feature of the dynamic structure factor of Luttinger liquids. It turns out
that the absence of threshold singularities in Fig. 8.3 is an artifact of the rather
simple regularization prescription (8.24) of the unphysical mass-shell singularity in
Eq. (8.20). In the following chapter we shall show how to recover the threshold
singularities within our functional bosonization approach.



Chapter 9

Interaction with regular
momentum dependence

In this chapter we show that for a more realistic interaction whose Fourier transform
is for small momenta of the form

fq = f0 +
1

2
f ′′0 q

2 +O(q4) , with f ′′0 6= 0 . (9.1)

we do not encounter any mass-shell singularities. In fact, we believe that even for
sharp momentum-transfer cutoff, fq = f0Θ(q0−q), our perturbative result (7.1) does
not suffer from mass-shell singularities as long as we do not rely on the approximation
A discussed in Chap. 7; in other words, the mass-shell singularity h1/∆ in Eq. (8.20)
is an artifact of the sharp momentum-transfer cutoff in combination with our neglect
of curvature corrections to the free polarization in loop integrations. While we are
not able to evaluate Eqs. (7.15–7.18) analytically without relying on approximation
A, we shall in this chapter abandon the sharp momentum-transfer cutoff and assume
that the interaction fq can be expanded for small q as in Eq. (2.38). Later we shall
argue that as long as we rely on approximation A, our result for S(ω, q) can only
be trusted for q & qc = 1/(m|f ′′0 |), see Eq. (2.39). But if f ′′0 is sufficiently large,
then there exists a parametrically large regime qc � q � kF of wave-vectors where
our calculation is valid. In the last section of this chapter we use a resummation
procedure proposed by Pustilnik et al. [3] to obtain from a logarithmic singularity
in our calculation an algebraic one.

9.1 Imaginary part of Π−1
∗ (ω, q)

Let us first calculate the imaginary part of the dimensionless inverse polarization
Π̃−1
∗ (x + i0, p) given in Eq. (7.45) assuming for simplicity p > 0. From Eqs. (7.46)

and (7.48) we obtain

ImΠ̃−1
∗ (x+ i0, p) = ImĨ(x+ i0, p)

=
1

2

∫ ∞
0

dp′p′Im
[
J̃(x+ i0, p, p′) + J̃(−x− i0, p, p′)

]
.(9.2)

69
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In order to calculate the imaginary part of J̃(x+ i0, p, p′), we first perform a partial
fraction decomposition of Eq. (7.48). We then transform some parts of J̃(iy, p, p′)
using iy → −iy, because Ĩ(iy, p) defined in Eq. (7.46) is symmetric under this
transformation. We obtain

J̃(iy, p, p′) =
1

4xp′

[
A2(iy, p, p′) + A1(−iy, p, p′)

ap′p′ + p(1− iy)
+
A2(iy, p, p′)− A1(iy, p, p′)

bp′p′ − p(1− iy)

]
+

1

4xp′+p

[
B2(iy, p, p′) +B1(−iy, p, p′)
ap′+p(p′ + p)− p(1 + iy)

− B2(iy, p, p′)−B1(iy, p, p′)

bp′+p(p′ + p) + p(1− iy)

]
− 1

4xp′xp′+p

[
C2(iy, p, p′) + C1(−iy, p, p′)

(xp′ + xp′+p)p′ + p(xp′+p − iy)
+

C2(iy, p, p′)− C1(iy, p, p′)

(xp′ − xp′+p)p′ − p(xp′+p − iy)

]
+ (p→ −p) , (9.3)

where

A1(iy, p, p′) =
p′

p′ + p

[
2gp′xp′(5 + 2iy + y2)− 4(1 + 2iyxp′ − y2)− g2

p′(−2 + y2)
]

+
p′p

p′ + p

[− 32x2
p′ + 2gp′(1− y2)[ap′ − bp′(1− iy)] ,

+ 2gp′(1 + iy)(10 + iy + y2) + 4bp′(1 + iy)(−5− y2)
]

+
p2

p′ + p

[
(1 + y2)2[b2

p′ + 1]− 4xp′(1 + iy)(4 + y2 − iy)− 4b2
p′

]
,(9.4a)

A2(iy, p, p′) = |p′ + p|
[
− 16− 8(1− iy)

p

p′
+ gp′

[p′
p

(6 + 2iy)− (1 + iy)2
]]
,(9.4b)

B1(iy, p, p′) =
[
16(p′ + p)− 8(1− iy)p

+ gp′+p(p
′ + p)

[p′ + p

p
(6 + 2iy) + (1 + iy)2

]]
, (9.4c)

B2(iy, p, p′) = |p′ + p|
[
(1 + 2iyxp′+p + x2

p′+p) +
p

p′
(y2 + x2

p′+p)
]2

, (9.4d)

C1(iy, p, p′) =
1

p′ + p

[
(p′ + p)(1 + 2iyxp′ + x2

p′)− p(y2 + x2
p′)
]2

, (9.4e)

C2(iy, p, p′) = B2(iy, p, p′) . (9.4f)

If we now carry out the analytic continuation to the real frequency axis iy →
x+ i0, we can take the imaginary part via the relation

Im
1

x− a± i0 = P 1

x− a ∓ iδ(x− a) , (9.5)
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where P denote the Cauchy principal value. We get after some algebra,

Im
[
p′J̃(x+ i0, p, p′)

]
=

−(1 + x)2(2p′ + p− px)2

4p′2xp′

[
χp,p′δ

(
ap′p

′ + p(1− x)
)

+ ψp,p′δ
(
bp′p

′ − p(1− x)
)]

−(1 + x)2(2p′ + p+ px)2

4(p′ + p)2xp′+p

×
[
χp,p′δ

(
ap′+p(p

′ + p)− p(1− x)
)− ψp,p′δ(bp′+p(p′ + p) + p(1− x)

)]
−
[
p(1 + x2 − 2xxp′) + p′(1− 2xxp′ + x2

p′)
]2

4(p′ + p)2xp′xp′+p
×[

χp,p′δ
(
p′(xp′ + xp′+p) + p(xp′+p − x)

)
+ ψp,p′δ

(
p′(xp′ − xp′+p)− p(xp′+p − x)

)]
+(p→ −p) , (9.6)

where

χp,p′ = p′(p′ + p) + p′|p′ + p| , (9.7)

ψp,p′ = p′(p′ + p)− p′|p′ + p| . (9.8)

We have used here

f(x) δ(x− a) = f(a) δ(x− a) . (9.9)

Applying the transformation p′ → p′ − p and then p → −p to the first term of Eq.
(9.6), it is clear that the first four δ-functions cancel each other out and we can write

ImJ̃(x+ i0, p, p′) = − π|p
′ + p|

2xp′xp′+p

×
{

Θ(p′ + p)
[
1− xp′xp′+p − x(xp′ − xp′+p)

]2

δ
(
p′(xp′ + xp′+p)− p(x− xp′+p)

)
+Θ(−p′ − p)

[
1 + xp′xp′+p − x(xp′ + xp′+p)

]2

δ
(
p′(xp′ − xp′+p)− p(x+ xp′+p)

)}
−(p→ −p)
= − π|p

′ + p|
2xp′xp′+p

[
1− xp′x̃p′+p − x(xp′ − x̃p′+p)

]2

δ
(
p′(xp′ + x̃p′+p)− p(x− x̃p′+p)

)
−(p→ −p) , (9.10)

where we have defined
x̃p+p′ = sgn(p+ p′)xp+p′ . (9.11)

In order to perform the p′-integration in Eq. (9.2), we use the fact that by assumption
both p and p′ are small compared to unity so that we may expand xp to first order
in p2,

xp =
√

1 + g̃p =

√
1 + g +

g′′0
2
p2 +O(p4) = x0 +

x′′0
2
p2 +O(p4) , (9.12)
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where from Eq. (7.11),

x′′0 ≈
g′′0
2x0

=
sgnf ′′0
πx0pc

. (9.13)

Note that for small pc the coefficient x′′0 is large compared to unity. The δ-functions
in Eq. (9.10) can then be approximated by

δ
(
p′(xp′ + xp′+p)− p(x− xp′+p)

)
≈ 1

2xp
δ
(
p′ − px− xp

2xp

)
, (9.14)

δ
(
p′(xp′ − xp′+p)− p(x+ xp′+p)

)
≈ 2

3|x′′0p|
δ
(
p′2 + p′p+

2(x+ xp)

3x′′0

)
. (9.15)

In Eq. (9.14) we have expanded the argument of the δ-function to linear order
in p and p′, assuming that both dimensionless momenta are small. On the other
hand, due to the cancellation of the leading term in the difference xp′ − xp′+p in
the δ-function of Eq. (9.15), the corresponding expansion has to be carried out to
cubic order in the momenta. The integration in Eq. (9.10) can now be carried out
analytically and we obtain for small p > 0,1

ImΠ̃−1
∗ (x+ i0, p) = −π2pc

[
Θ(x− xp)g̃2

pγ̃p
x2 − x2

p

6x4
0

+ h1(x)CI

(
−sgnf ′′0

x− xp
γ̃p

)]
,

(9.16)
where

γ̃p =
3p2

8πx0pc
, (9.17)

and the functions h1(x) and CI(u) are given by

h1(x) =
(1 + 2xxp + x2

p)
2

12xp
, (9.18)

CI(u) = Θ(u)Θ(1− u)
u√

1− u . (9.19)

Because the Θ-functions in Eq. (9.19) confirm that |x−xp| < γ̃p, we can replace for
γ̃p � 1

h1(x)→ h1(xp) ≈ h1 =
(1 + 3x2

0)2

12x0

. (9.20)

The coefficient h1 has also appeared for sharp momentum-transfer cutoff [see Eq.
(8.21e)] in form of the residue of the mass-shell singularity h1/∆ in our expression
(8.20) for the irreducible polarization. A graph of CI(u) is shown as the dashed line
in Fig. 9.1. Mathematically, the square-root singularity of CI(u) for u→ 1 originates
from the special point x−xp = −sgnf ′′0 γ̃p where the argument of the Dirac δ-function

1There are two mistakes in the expression for ImΠ̃−1
∗ (x+ i0, p) given in Eq. (7.7) of Ref. [42].

The factor 6 must be replaced by a factor 12 in denominator of the first part of this equation and
the coefficient −sgnf ′′0 should be in the argument of the function CI in the second part of this
equation. The correct result for ImΠ̃−1

∗ (x+ i0, p) is given in Eq. (9.16) of this thesis.



9.2 Real part of Π−1
∗ (ω, q) 73

−2 −1 0 1 2 3 4

−4

−2

0

2

4

u

 

 

C
I
(u)

C
R

(u)

Figure 9.1: Graph of the functions CI(u) and CR(u) defined in Eqs. (9.19) and
(9.22). The dotted lines indicate asymptotic limits.

on the right-hand side of Eq. (9.14) has a double root. We believe that the divergence
of CI(u) for u → 1 is unphysical and indicates that the approximations leading
to Eq. (9.14) are not sufficient in this regime. Hence, within our approximations
we can only obtain reliable results for the spectral line shape as long as the ratio
−sgnf ′′0 (x− xp)/γ̃p is not too close to unity.

9.2 Real part of Π−1
∗ (ω, q)

For pc � 1 and p� 1 we can obtain the contribution from ReĨ(x+i0, p) analytically
from Eqs. (7.46) and (7.48) using the fact that among the corrections of order p2

only terms proportional to p2/pc should be retained. We obtain for x > 0 and p > 0
after a some lengthy algebra,

ReĨ(x+ i0, p) ≈
∫ ∞

0

dp′2

2

[
2− gp′

xp′
− (1 + x2

p′)
2

2x3
p′

− 2u2(
1

xp′
− 1)− u2 gp′

xp′

]

+
h1(x)

x′′0

[
2− CR

(
−sgnf ′′0

x− xp
γ̃p

)]
+
h1(−x)

x′′0

[
2− CR

(
−sgnf ′′0

x+ xp
γ̃p

)]
, (9.21)

where

CR(u) =
u√|1− u|

[
Θ(1− u) ln

∣∣∣∣1 +
√

1− u
1−√1− u

∣∣∣∣− 2Θ(u− 1) arctan

(
1√
u− 1

)]
,

(9.22)
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and the function h1(x) is defined in (9.18). A graph of CR(u) is shown in Fig. 9.1
(solid line). Because for positive p one has (x+ xp)/γ̃p � 1 we obtain

ReĨ(x+ i0, p) = I1 − x2I2 + πpch1sgnf ′′0CR

(
−sgnf ′′0

x− xp
γ̃p

)
, (9.23)

with

I1 = −
∫ ∞

0

dp p
(xp − 1)2

2x3
p

(3x2
p + 2xp + 1) + 2πpch1sgnf ′′0 , (9.24)

I2 =

∫ ∞
0

dpp
(xp − 1)2

xp
, (9.25)

Note that CR(u) and CI(u) can be written as

CR(u) = ReC(u+ i0) , (9.26)

CI(u) = ImC(u+ i0) , (9.27)

where the complex function C(z) is

C(z) =
z

i
√

1− z ln

(√
1− z + 1√
1− z − 1

)
. (9.28)

The real part of our dimensionless inverse polarization can be written as

ReΠ̃−1
∗ (x+ i0, p) = Z1 − Z2x

2 + πpch1sgnf ′′0CR

(
−sgnf ′′0

x− xp
γ̃p

)
, (9.29)

where

Z1 = 1 + I1 + IH , (9.30)

Z2 = 1 + I2 − IH . (9.31)

By assumption, the bare interaction fq is negligibly small for momentum-transfers
exceeding q0 � kF , so that the integrals I1, I2 and IH are proportional to p2

0 =
[q0/(2kF )]2 � 1 and hence Zi = 1 + O(p2

0). Keeping in mind the self-consistent
definition (7.8) of x0, we finally obtain for positive x and p,

gp + ReΠ̃−1
∗ (x+ i0, p) = Z2

[
x2
p − x2 +R(x, p)

]
, (9.32)

where

R(x, p) =
πpch1

Z2

sgnf ′′0CR

(
−sgnf ′′0

x− xp
γ̃p

)
. (9.33)
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9.3 Spectral line shape of S(ω, q)

To discuss the line shape of the dynamic structure factor, it is convenient to introduce
also the imaginary part of the effective self-energy via

ImΠ̃−1
∗ (x+ i0, p) = −Z2Γ(x, p) , (9.34)

or explicitly,

Γ(x, p) =
π2pc
Z2

[
Θ(x− xp)g̃2

pγ̃p
x2 − x2

p

6x4
0

+ h1CI

(
−sgnf ′′0

x− xp
γ̃p

)]
. (9.35)

The dynamic structure factor can then we written as

S(ω, q) =
ν0

πZ2

Γ(x, p)

[x2 − x2
p −R(x, p)]2 + Γ2(x, p)

. (9.36)

The resulting line shape for f ′′0 � 1 and p � pc is shown in Fig. 9.2. In this case,
S(ω, q) exhibits a threshold singularity at x = xp, corresponding to the threshold
frequency at the lower edge

ω−q ≡ vF qxp ≈ vq +
sgnf ′′0
2πx0

q3

2mqc
= vq − 1

2πx0

q3

2mqc
. (9.37)

Moreover, most of the spectral weight is smeared out over the interval 0 < x− xp <
γ̃p, or equivalently ω−q < ω < ω−q + γq, where the energy scale γq is defined by

γq = vF qγ̃p =
3

8πx0

q3

2mqc
≈ 3

4
|ω−q − vq| . (9.38)

The energy γq can be identified with the width of the ZS resonance on the frequency
axis. The crucial point is now that for q � qc Eq. (9.38) is much larger than the
estimated broadening wq ∝ q2/m of the ZS resonance due to the terms which we have
neglected by making the approximation A discussed in Sec. 7.2 (which amounts to
ignoring in bosonic loop integrations nonlinear terms in the energy dispersion). Our
approximation A is therefore only justified in the regime where the broadening γq
due to the q-dependence of the interaction fq is large compared with the broadening
wq due to the nonlinear energy dispersion in bosonic loop integrations. We thus
conclude that the calculations in this chapter are only valid as long as γq & wq. A
comparison of γq and wq is shown in Fig. 9.3. Obviously, the condition wq = γq
defines a characteristic crossover scale q∗ where the q-dependence of the width of
the ZS resonance changes from q2 to q3. Using Eqs. (8.22) and (9.38) we obtain the
following estimate for the crossover momentum scale,

q∗ =
8πZwx0

3
√

3
qc , (9.39)

which has the same order of magnitude as qc = 1/(m|f ′′0 |). We conclude that the
results for S(ω, q) presented in this chapter are only valid for q & q∗, and hence
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Figure 9.2: Graph of the dynamic structure factor S(ω, q) given in Eq. (9.36) as a
function of x − xp for f ′′0 � 1, p = 0.04 = 25pc and g = 1. For simplicity we have
set Z2 ≈ 1, which is accurate for p0 � 1. For p� pc most of the spectral weight is
carried by the main shoulder whose lower edge x → xp is bounded by a threshold
singularity. The width of the main shoulder on the x axis scales as γ̃p ∝ p2/pc.
Recall that x = ω/(vF q), so that the corresponding width on the frequency axis
scales as γq = vF qγ̃p ∝ q3/(mqc). For p � pc the small “satellite peak” emerging
above the upper edge of the main shoulder carries negligible spectral weight and is
probably an artifact of our approximations.

do not describe the asymptotic q → 0 regime. But the scale q∗ can be quite small
for some interactions. For example, if the interaction fq can be approximated by
a Lorentzian (2.36) with screening wave-vector q0 � kF , then qc = q2

0/(2mf0) is
quadratic in q0. For long-range interactions the regime q∗ . q � q0 where our
calculation is valid can therefore be quite large and physically more relevant than
the asymptotic long-wavelength regime q � q∗.

The small “satellite peak” slightly above the main shoulder in Fig. 9.2 is probably
an artifact of our approximations, in particular of approximation A discussed in
Sec. 7.2. It is easy to show that the satellite peak is located at a distance δx ∝
p3
c/p

2 � γ̃p above the upper edge xp + γ̃p of the main shoulder and its width is
proportional to p2γ̃p ∝ p4/pc � δx� γ̃p. Note that in the regime q � qc where our
calculation is valid the threshold singularity is located at ω−q ≈ vq − 4γq/3 (up to
corrections of the order q2/m � γq), while the energy scale of the satellite peak is
vq +O(q2/m). However, as discussed after Eq. (9.19), in the regime |(x− xp)/γ̃p −
1| � 1 our approximation A is not reliable, so that the detailed line shape in the
vicinity of the satellite peak is probably incorrect. Fortunately, for p � pc the
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Figure 9.3: Solid line: dimensionless ZS damping γ̃p = γq/(vF q) defined in Eq. (9.38)
as a function of p/p∗. Dashed line: estimate of the width w̃p = wq/(vF q) =
(Zw/

√
3)p of the ZS resonance given in Eq. (8.22).

satellite peak carries negligible weight, so that our calculation reproduces the main
features of the spectral line shape. We speculate that a more accurate evaluation of
our self-consistency equation for Π∗(ω, q) derived in Sec. 7.1, which does not rely on
approximation A in Sec. 7.2, will generate additional weight in the dip between the
upper edge of the main shoulder and the satellite peak, resulting in a single local
maximum at the upper edge of the main shoulder. The spectral line shape looks
then qualitatively similar to the line shape proposed in Refs. [3, 4].

Let us next consider the tails of the spectral function. For x � xp we obtain
from Eqs. (9.35) and (9.36),

S(ω, q) ∼ ν0

πZ2

Γ(x, p)

x4
, (9.40)

Γ(x, p) ∼ π2pc
6Z2x4

0

g̃2
pγ̃px

2. (9.41)

Inserting our result (9.17) for γ̃p we obtain

S(ω, q) ∼ ν0g̃
2
p

16Z2
2x

5
0

[
q2

2mω

]2

, (9.42)

in agreement with Refs. [4, 6, 35, 38]. Note that the tail of S(ω, q) is determined
by the first term on the right-hand side of the damping function Γ(x, p) given in
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Eq. (9.35), whereas the regime close to the ZS resonance is determined by the second
term involving the complex function C(z). This is the reason why the spectral line
shape close to the ZS resonance cannot be simply obtained via extrapolation from
the tails assuming a Lorentzian line shape.

Finally, Eqs.(9.33, 9.36) state that for f ′′0 > 0 the threshold singularity appears
at the upper edge x = xp, so that the resulting spectral line shape does not resemble
the line shape obtained in Refs [3,4]. On the other hand, an interaction with f ′′0 > 0
seems to be unphysical and does not describe a stable Luttinger liquid.

9.4 Transformation of logarithmic singularity into

an algebraic one

Let us consider the line shape in the vicinity of the threshold singularity x → xp.
Assuming that that f ′′0 � 0, for 0 < (x− xp)/γ̃p � 1 we may approximate

Γ(x, p) ≈ π2pch1

Z2

x− xp
γ̃p

= 2πx0ηp(x− xp) , (9.43)

R(x, p) ≈ πpch1

Z2

x− xp
γ̃p

ln

[
4γ̃p

x− xp

]
= −2x0ηp(x− xp) ln

[
4γ̃p

x− xp

]
, (9.44)

where we have defined

ηp = − πpch1

2Z2x0γ̃p
=

4π2h1

3Z2

p2
c

p2
=

3p2
∗

4p2
. (9.45)

In the last line we have approximated Z2 ≈ 1. From the above discussion it is clear
that this expression can only be trusted for p & p∗. A graph of ηp as a function of
p/p∗ is shown in Fig. 9.4. In the regime ηp ln[4γ̃p/(x− xp)]� 1, which is equivalent
with

0 < x− xp � 4γ̃p exp [−1/ηp] , (9.46)

the dynamic structure factor can thus be approximated by

S(ω, q) ∼ ν0

2x0Z2ηp

1

(x− xp) ln2
[

4γ̃p
x−xp

] . (9.47)

According to Pustilnik et al. [3], the logarithmic singularity can be resummed to all
orders, so that it is transformed into an algebraic one. Assuming that this is indeed
correct, we can replace

x2 − x2
p −R(x, p) ≈ 2x0(x− xp)

{
1 + ηp ln

[
4γ̃p

x− xp

]}
→ 2x0(x− xp)

[
4γ̃p

x− xp

]ηp
.

(9.48)
For x→ xp the dynamic structure factor then diverges as

S(ω, q) ∼ ν0

2x0Z2

ηp
(4γ̃p)2ηp

1

[x− xp]µp , (9.49)
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Figure 9.4: Solid line: graph of ηp defined in Eq. (9.45) as a function of p/p∗ for
f ′′0 < 0. The dashed line is the weak coupling result ηp ≈ 1/2 − p/(4πpc) obtained
by Pustilnik et al. in Ref. [3]. The dashed dotted curve is a simple parabolic
interpolation.

with the threshold exponent

µp = 1− 2ηp = 1 + signf ′′0
3p2
∗

2p2
. (9.50)

Note that for f ′′0 < 0 and p� 1 the weak coupling estimate for µp given by Pustilnik
et al. [3] is in our notation

µp ≈ p

2πpc
, (9.51)

implying

ηp =
1

2
[1− µp] =

1

2

[
1− p

2πpc

]
. (9.52)

As shown in Fig. 9.4, this is consistent with a smooth crossover to our result (9.45)
at p/p∗ = O(1). Qualitatively, we expect that the behavior of ηp in the crossover
regime resembles the dashed-dotted interpolation curve in Fig. 9.4. Note that ηp ≤
1/2 for all p, so that µp ≥ 0. For some integrable models where ηp has recently
been calculated exactly [32, 33] the momentum dependence of ηp looks different
from our result for the FSM. For example, in the Calogero-Sutherland model ηp is
independent of p, see Ref. [32]. However, the Fourier transform fq of the interaction
in the Calogero-Sutherland model vanishes for q = 0, while in the integrable XXZ-
chain considered in Refs. [4, 33, 35, 36] the effective interaction of the equivalent
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one-dimensional fermion system involves also momentum-transfers of the order of
kF . Moreover, in the XXZ-chain there exists no crossover scale qc satisfying qc =
(m|f ′′0 |)−1 � kF , so that the intermediate regime qc � q � kF where γq ∝ q3/qc
simply does not exist. The existence of such an intermediate regime seems to be a
special feature of the FSM considered here, where fq involves only small momentum-
transfers and has a finite limit for q = 0.

Within our perturbative approach we cannot justify the resummation procedure
(9.48). Possibly a careful analysis of the functional renormalization group flow
equation for the irreducible polarization discussed in Sec. 4.4 will shed some light
onto this difficult problem. This seems to require extensive numerics, which is
beyond the scope of this thesis.



Chapter 10

Summary of part I

In the first part of this thesis we have used a functional bosonization approach to
calculate the dynamic structure factor S(ω, q) of a generalized Tomonaga-Luttinger
model (which we have called forward scattering model), consisting of spinless fermions
in one dimension with quadratic energy dispersion and an effective density-density
interaction involving only momentum-transfers which are small compared to kF .

In our construction we have used a Hubbard-Stratonovich transformation within
the path integral formalism to build up a bosonized theory. The resulting bosonized
action Seff [∆φ] includes then interaction in the form of symmetrized fermion loops
and reduces to its Gaussian part (or noninteracting part) for a linearized energy
dispersion.

In Chap. 5, we have used our bosonic perturbative approach from Chap. 3 and
have derived a self-consistency equation for the irreducible polarization Π∗(ω, q)
which does not suffer from the mass-shell singularities encountered in other pertur-
bative expansions. For the explicit evaluation of S(ω, q) we had to make some drastic
approximations. In particular, in bosonic loop integrations we have neglected curva-
ture corrections to the free polarization, see approximation A discussed in Sec. 7.2.
In Chap. 8, it has been shown that because of the sharp-momentum transfer cutoff,
our approximation exhibit a new mass-shell singularity at the renormalized energy
vq. Nevertheless in Chap. 9 we have found a regime of wave-vectors qc � q � kF
where an explicit analytic calculation of the spectral line shape is possible. The
crossover scale qc = 1/(m|f ′′0 |) is determined by the second derivative f ′′0 of the
Fourier transform of the interaction at q = 0. For interactions whose Fourier trans-
form can be approximated by a Lorentzian with screening wave-vector q0 � kF , the
crossover scale qc is proportional to q2

0, so that the regime qc � q � kF is quite
large and can be experimentally more relevant than the asymptotic long-wavelength
regime q � qc.

We have shown that for qc � q � kF the width of the ZS resonance on the
frequency axis scales as γq ∝ q3/(mqc). Our result is consistent with a smooth
crossover at q ≈ qc to the asymptotic long-wavelength result γq ∝ q2/m obtained by
other authors [3–5]. The spectral line shape is non-Lorentzian, with a main hump
whose low-energy side for f ′′0 < 0 is bounded by a threshold singularity at ω = ω−q ≈
vq− 4γq/3, a small local maximum around ω ≈ vq− γq/3, and a high-frequency tail
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which scales as q4/ω2. Considering f ′′0 < 0, for ω → ω−q +0 the threshold singularity is

within our approximation logarithmic, S(ω, q) ∝ [(ω−ω−q ) ln2(ω−ω−q )]−1. Assuming
that higher orders in perturbation theory exponentiate the logarithm, we obtain an
algebraic threshold singularity with exponent µq = 1 − 2ηq and ηq ∝ q2

c/q
2 for

q � qc. This features agree also with the results of Pustilnik et al. [3] and Pereira
et al. [4] who have shown independently that the dynamic structure factor exhibits
a threshold singularity at the lower edge, ω = ω−q .

It is by now established that, at least in integrable models, S(ω, q) indeed exhibits
algebraic threshold singularities [4,32,33,35,36]. However, for generic nonintegrable
models there is no proof that the logarithmic singularities generated in higher orders
of perturbation theory indeed conspire to transform the logarithm encountered at
the first order into an algebraic singularity, as suggested by Pustilnik et al. [3].
This would require a thorough analysis of the higher-order terms in perturbative
expansion, which so far has not been performed.

On the other hand, for the explicit evaluation of the self-consistency equation for
the irreducible polarization Π∗(ω, q) derived in Sec. 7.1 we had to rely in this work on
approximation A discussed in Sec. 7.2. We have argued that this approximation is
not sufficient to calculate the dynamic structure factor for q . qc, because it neglects
the dominant damping mechanism in this regime. Moreover, for sharp momentum-
transfer cutoff our approximation A breaks down for frequencies in the vicinity of
the mass-shell singularity. It would be interesting to evaluate the self-consistency
equation for the irreducible polarization Π∗(ω, q) derived in Sec. 7.1 without relying
on approximation A. We believe that in this case our functional bosonization result
for S(ω, q) does not exhibit any mass-shell singularities even for sharp cutoff.

In Chap. 4 we have presented a functional renormalization group equation [see
Eq. (4.76)] for the irreducible polarization which goes beyond the self-consistent per-
turbation theory based on functional bosonization used here. A thorough analysis of
Eq. (4.76) using numerical methods still remains to be done. Possibly, this equation
will be a good starting point for addressing some of the open problems mentioned
above.



Part II

Application of FRG to the
Anderson impurity model
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Chapter 11

Introduction

The Anderson impurity model (AIM), which was proposed by Anderson, to describe
the magnetic impurities in metals is one of the basic models in the condensed matter
theory [72–74]. The model Hamiltonian is characterized by free conduction electrons,
which are coupled to a single interacting impurity,

Ĥ =
∑
kσ

(εk − σh)ĉ†kσ ĉkσ +
∑
σ

(Ed − σh)d̂†σd̂σ

+ Ud̂†↑d̂↑d̂
†
↓d̂↓ +

∑
kσ

(V ∗k d̂
†
σ ĉkσ + Vkĉ

†
kσd̂σ) . (11.1)

Here ĉkσ and ĉ†kσ denote the annihilation and the creation operators of a conduction

electron with momentum k, spin σ and energy dispersion εk respectively. d̂σ and d†σ
annihilate and create an impurity electron in the d-orbital with spin σ and atomic
energy Ed. The scattering potential Vk is the hybridization between the conduction
electrons and the impurity while U is the screened Coulomb potential between two
impurity electrons with different spins. Finally h represents the Zeemann energy
arising from the magnetic field.

The thermodynamical and spectral properties of the AIM can be obtained with
the help of the Wilson’s numerical renormalization group (NRG) [74–78]. Despite
this progress and the confirmation of NRG results via Bethe Ansatz [79, 80], there
is no analytical method, describing the spectral properties of the AIM. In addition
the investigation of the spectral function A(ω) of d-electrons for all frequencies in
context of the NRG needs some computational effort while the calculation of A(ω)
for arbitrary frequencies ω is desirable by means of the dynamical mean field theory
describing strong correlation in a realistic three-dimensional fermion system.

11.1 Elementary theory of the AIM

Firstly we formulate the AIM in the language of functional integrals. The action S
is a function of the fermionic Grassmann fields {ckσ, c̄kσ} describing the conduction
electrons and {dσ, d̄σ} describing the impurities. Carrying out the integrations over
the fields associated with the conduction electrons, the ratio of the interacting and
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noninteracting partition function can be determined,

Z
Z0

=

∫ D[d̄, d] e−S0[d̄,d]−SU [d̄,d]∫ D[d̄, d] e−S0[d̄,d]
, (11.2)

where the Gaussian part of the action is

S0[d̄, d] = −
∫
ω

∑
σ

[iω − ξσ0 −∆σ(iω)]d̄ωσdωσ , (11.3)

with

ξσ0 = Ed − µ− σh , (11.4)

∆σ(iω) =
∑
k

|Vk|2
iω − εk + µ+ σh

. (11.5)

∆σ is called the hybridization function. In Eq. (11.3)
∫
ω

= 1
β

∑
iω represents the

summation over the fermionic Matsubara frequencies where β is the inverse of the
temperature T . Note that we work in the grand canonical ensemble where β and the
chemical potential µ are constant. Furthermore, µ can be controlled by the filling
of the conduction band. The non-Gaussian part of the action is given by

SU [d̄, d] = U

∫
ω1

∫
ω2

∫
ω3

∫
ω4

βδω1+ω3,ω2+ω4 d̄ω1↑dω2↑d̄ω3↓dω4↓ . (11.6)

The Kronecker delta βδω1+ω3,ω2+ω4 ensures the energy conservation during the inter-
action. At zero temperature (β →∞), we use the replacement∫

ω

=
1

β

∑
iω

−→
∫
dω

2π
, (11.7)

βδω1+ω3,ω2+ω4 −→ 2πδ(ω1 + ω3 − ω2 − ω4) . (11.8)

Considering the AIM without magnetic field, the total energy of the system is Ed
if the d-level is single occupied. On the other hand, the total energy of the system
for the double occupied d-states is given by 2Ed + U . Therefore, in the case of the
vanishing magnetic field we distinguish between three different regimes characterized
by the relative positions of µ, Ed and Ed + U (see Ref. [81]):

• Local moment regime: Ed � µ� Ed + U .
The d-level is located below the Fermi energy and therefore is occupied by an
impurity electron. On the other hand, the double occupancy is forbidden be-
cause of the strong interactions. The d level retains thus the single occupancy.
In this regime spin fluctuations play an important role.

• Mixed valence regime: Ed ≈ µ� Ed + U or Ed � µ ≈ Ed + U .
In the first case d-level can be empty or occupied by a single electron while in
the second case the d-level fluctuates between the single and the double occu-
pancy. In both cases charge fluctuations as well as spin fluctuations become
important.
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Figure 11.1: Different occupancy regimes which are described by the relative posi-
tions of µ, Ed and Ed+U . The shaded region corresponds to the number of occupied
states. Graph (a) represents the local moment regime while graphs (b) and (c) cor-
respond to the mixed valence regime. Graphs (d) and (e) represent empty orbital
and double occupancy regime, respectively.

• Empty orbital and double occupancy regime:
In the empty orbital regime µ � Ed ≤ Ed + U the interaction between im-
purity electrons is weak so that the d-level remains empty and in the double
occupancy regime Ed ≤ Ed + U � µ the d-level becomes double occupied.
Note that in both regimes neither charge nor spin fluctuations are important.

A graphical representation of these regimes is shown in Fig. 11.1. In this thesis
we are interested in the local moment regime, where the occupancy of only one
impurity state is allowed. In the local moment regime and at low energies the AIM
is equivalent to the Kondo model, which contains only the spin degrees of freedom
of the impurity.

In the context of the AIM and the Kondo model, one can study the effect of
magnetic impurities on the resistivity of metals. In the early 1930s it was known
that the magnetic impurities in metals cause a resistance decreasing by decreasing
temperature at high temperatures. However, this resistance reaches a local minimum
at a certain temperature and increases for T → 0 [82]. Kondo showed perturbatively
that there is one logarithmic part ln(T ), which contributes to the resistivity and
increases as T → 0 [83]. Nevertheless, because of the divergence of the logarithmic
function, the perturbation theory fails at low temperatures. Soon experimental
works discovered the deviation from the perturbation theory in this regime and this
issue became known as the Kondo Problem. Indeed, there is one temperature, called
the Kondo temperature TK , which describes the limit of the validity of the Kondos
result. This means that the perturbation theory applied by Kondo is correct only
at T � TK .
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11.2 Self-consistent Hartree-Fock approximation

In this section we estimate the magnetization within the mean field theory. We
determine for the renormalized quasi particle energy,

ξσ = ξσ0 + δξσ, (11.9)

δξσ = U

∫
ω

Gσ̄
0 (iω) = UNσ̄ =

U

2
[N − σµHF] , (11.10)

where Nσ is the average of the occupation number of the impurity fermions with the
spin σ and N = N↑+N↓ is the total average of the occupation number. Furthermore,
µHF = N↑ − N↓ represents the corresponding magnetization in the self-consistent
Hartree-Fock approximation. The self-consistent Hartree-Fock Green function is
given by

Gσ
0 (iω) =

1

iω − ξσ −∆σ(iω) + σh
. (11.11)

Here we focus on the wide band limit, where we may approximate

∆σ(iω) = −i∆σsgn(ω) . (11.12)

According to Eq. (11.5), the hybridization function ∆σ = ∆ becomes indepen-
dent of the spin projection if the magnetic field vanishes. For more simplicity we also
assume that this independence remains valid for h 6= 0. The Hartree-Fock Green
function for the impurity electrons can therefore be written as

Gσ
0 (iω) =

1

iω − ξσ + i∆ sgn(ω) + σh
, (11.13)

and the ratio of the total partition function to the Hartree-Fock partition function
will be given by

Z
ZHF

=

∫ D[d̄, d] e−S0[d̄,d]−SU [d̄,d]∫ D[d̄, d] e−SHF[d̄,d]
, (11.14)

with

SHF[d̄, d] = −
∫
ω

∑
σ

[
Gσ

0 (iω)
]−1

d̄ωσdωσ . (11.15)

11.3 Fermi liquid behavior

We take the limit h→ 0 and anticipate that there is no spontaneous magnetization.
In the particle-hole symmetric case, where Ed − µ = U/2 and N = 1, the Hartree-
Fock Green function for vanishing magnetic field simplifies to

Gσ
0 (iω) =

1

iω + i∆sgn(ω)
. (11.16)
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Figure 11.2: Exact NRG results for the spectral function of d-electrons in the particle
hole symmetric AIM at zero magnetic field. This graph is extracted from Ref. [85]
and shows that if the interaction U increases, the weight of Kondo peak, appearing
at ω = 0 becomes exponentially smaller.

Note that the analytical continuation (iω → ω + i0) maps sgnω to −1. The
Hartree-Fock spectral function thus exhibits a quasi particle peak with the width
∆. Nozières [84] has obtained as the first one low energy features in the context of
the Fermi liquid theory. Figure 11.2, extracted from a work done by Hewson [85],
displays the variation of the exact spectral function by changing of the interaction
U . Note that these results are based on the NRG. For U 6= 0 the spectral line shape
involves a sharp resonance which arises at ω = 0 and is called Kondo peak as well as
two shoulders (on both sides of the Kondo peak) which correspond to the Hubbard
bands [86]. Yosida and Yamada [87, 88] have built up a perturbative approach for
small U/(π∆) and shown that in the atomic limit, i.e., ∆→ 0 these schoulders carry
the entire weight of the spectrum and their position is given by ω = ±U/2. However
this perturbation theory is well defined only for U/(π∆) < 2.5. On the other hand,
the exact result via the Bethe ansatz [79,80] shows that at strong coupling (U →∞)
the weight of the Kondo peak exhibits the same exponential behavior as the Kondo
temperature TK ,

ZKP ≈
√

8U

π2∆
e−

πU
8∆ , (11.17)

where the Kondo temperature is described in Sec. 11.1.
As we have mentioned above, we intend to develop an analytical tool, to calculate

the spectral line shape of A(ω). Recently there have been many attempts to handle
this problem [89–101]. This part of the thesis extends the work done by Bartosch
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et al. [101], using the exact functional renormalization group (FRG) approach to
the AIM (see also Refs. [96, 100]). The general theory of the exact FRG is already
known from Chap. 4. The only distinction between this part and Ref. [101] is that
we try to improve the FRG approach using the magnetic field as the RG cutoff. Our
aim is to gain a well defined FRG expansion even in the strong coupling limit.

The rest of this part is organized as follows. In Chap. 12, we show that we
encounter an unphysical instability within the self-consistent Hartree-Fock approxi-
mation. We introduce thus the spin-singlet particle-hole channel decoupling the in-
teraction (11.6) via a complex Hubbard-Stratonovich field which is associated with
transverse spin-flip fluctuations. We handle also the spectral properties of the system
within ladder approximation which we obtain at the level of the Gaussian approxi-
mation. Finally we give an introduction to the general formalism of the exact FRG
to the AIM with mixed boson-fermion fields. In Chap. 13 we build up the FRG
flow equations in bosonic and fermionic sector, introducing an additive cutoff only
in the fermionic propagator, called magnetic field cutoff. We adopt a proper trun-
cation whereby the flow equation will not remain exact and use Dyson-Schwinger
equations to derive the skeleton equation in the bosonic sector. In Chap. 14 we
choose the simplest case of additive cutoff, where the cutoff is already the magnetic
field itself. We show that the FRG approach in the spin-singlet particle-hole channel
removes the singularity which occurs due to the Hartree-Fock approximation. On
the other hand, we find that the mean field magnetic moment is not a suitable initial
condition for the self-energy. To overcome this problem, we have to dilute the effect
of the magnetic field. We use therefore in Chap. 15 a modified magnetic field cutoff.
Finally, we show that for sufficiently weak interaction U/(π∆) . 2 our solution for
the quasi particle weight agrees with the exact results from NRG. But we are not
able to reproduce the Kondo-scaling given by Eq. (11.17). In Chap. 16 we present
a conclusion and an outline of this part.
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Spin-singlet particle-hole channel

In this chapter we proceed with some perturbative approaches to the AIM and
prove how the Hartree-Fock approximation causes a singularity known as the Stoner
instability. To this end, we describe shortly the transverse particle-hole channel
that couples the fermionic fields to new bosonic fields. Thereby one carries out the
Hubbard-Stratonovic transformation which is known from Chap. 3. In addition,
we explain the ladder approximation (LA) associated with the given channel and
show that because of the arising singularity, the functional renormalization group is
required for further treatments. The first two sections of this chapter follow closely
Ref. [101].

12.1 Partial bosonization in the spin-singlet par-

ticle-hole channel

We have used already the Hubbard-Stratonovich transformation in Chap. 3. We
will apply here a similar procedure to bosonize the AIM. According to Eq. (11.13)
the integration (11.10) is performable at zero temperature and one obtains for mean
field magnetization in the case of the particle-hole symmetric AIM,

Gσ
0 (iω) =

1

iω + i∆sgnω + σUµHF

2
+ σh

, (12.1)

µHF =

∫
ω

∑
σ

σGσ
0 (iω) =

2

π
arctan

[
πu0

2
µHF +

h

∆

]
, (12.2)

where

u0 =
U

π∆
. (12.3)

However, it turns out that by taking the limit h → 0, the above equation leads
to a value µHF 6= 0 if u0 > 1. This behavior is known as the Stoner instability and
is an artifact of the Hartree-Fock approximation [74]. According to Refs. [93, 95],
transverse spin fluctuations will help us to remove the Stoner instability in the strong
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coupling limit. In the spin-singlet particle-hole channel, we decouple the fermionic
d-fields via the bosonic Hubbard-Stratonovic fields χω̄ and χ̄ω̄ as follows,

Z
ZHF

=

∫ D[Φ]e−S0[Φ]−S1[Φ]∫ D[Φ]e−S0[Φ]
, (12.4)

where the super-field Φ = [d↑, d̄↑, d↓, d̄↓, χ, χ̄] contains four fermionic and two bosonic
components. The Gaussian and interacting parts of the action in this construction
are given by

S0[Φ] = −
∫
ω

∑
σ

[Gσ
0 (iω)]−1 d̄ωσdωσ +

∫
ω̄

U−1χ̄ω̄χω̄ , (12.5)

S1[Φ] =

∫
ω̄

[s̄ω̄χω̄ + sω̄χ̄ω̄]−
∫
ω

∑
σ

δξσd̄ωσdωσ , (12.6)

where

sω̄ =

∫
ω

d̄ω↓dω+ω̄↑ , s̄ω̄ =

∫
ω

d̄ω+ω̄↑dω↓ , (12.7)

are density fields. In this notations, ω and ω̄ represent the fermionic and bosonic
Matsubara frequencies respectively. Note that the second term in (12.6) subtracts
the renormalization part from the Hartree-Fock Green function and this subtractions
gives rise to the bare noninteracting Green function of d-fermions in (12.5). The
first term in (12.6) describes the coupling between the fermionic and the bosonic
field in the action and can be written as∫

ω̄

[s̄ω̄χω̄ + sω̄χ̄ω̄] =

∫
ω̄

∫
ω

[
Γ
d̄↑d↓χ
0 (ω + ω̄, ω, ω̄)d̄ω+ω̄↑dω↓χω̄

+Γ
d̄↓d↑χ̄
0 (ω − ω̄, ω, ω̄)d̄ω−ω̄↓dω↑χ̄ω̄

]
, (12.8)

where the three-legged spin-flip vertices are given by

Γ
d̄↑d↓χ
0 (ω + ω̄, ω, ω̄) = Γ

d̄↓d↑χ̄
0 (ω − ω̄, ω, ω̄) = 1 . (12.9)

Figure 12.1 shows the graphical representation of these vertices. In FRG approach,
the flow equations give rise to a modification of these parameters from their initial
value of unity.

12.2 Ladder approximation

In this section we handle the bosonized theory on the level of the Gaussian ap-
proximation. Similar to the bosonization of the Luttinger liquid, the fermions in
Eq. (12.4) can be integrated out, so that we get an effective action Seff [χ̄, χ], which
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Figure 12.1: Graphical representation of the coupling between the fermions and

bosons in the Hubbard-Stratonovich action S1[Φ] for a) Γ
d̄↑d↓χ
0 (ω + ω̄, ω, ω̄) and b)

Γ
d̄↓d↑χ̄
0 (ω − ω̄, ω, ω̄). The ingoing solid arrows denote dωσ and the outgoing ones

denote d̄ωσ. Similarly, the ingoing and outgoing wavy arrows represent χω̄ and χ̄ω̄
respectively.

only depend on the spin-flip fields χω̄ and χ̄ω̄. In the Gaussian approximation, the
expansion of this effective action to the quadratic order of bosonic fields leads to

Seff [χ̄, χ] ≈
∫
ω̄

[
U−1 − Π⊥0 (iω̄)

]
χ̄ω̄χω̄ , (12.10)

where Π⊥0 (iω̄) is called the noninteracting dynamic spin-flip susceptibility and is
given by

Π⊥0 (iω̄) = −
∫
ω

G↑0(iω)G↓0(iω − iω̄) . (12.11)

Here Gσ
0 (iω) represents as before the Hartree-Fock Green function defined in (11.13).

For h = 0 the integration above can be carried out in the particle-hole symmetric
case and we obtain

lim
h→0

Π⊥0 (iω̄) =
1

π∆
f⊥0

( |ω̄|
∆

)
, (12.12)

where

f⊥0 (x) =
ln[1 + x]

x(1 + x/2)
, (12.13)

and the subscript indicates the zero magnetic field h = 0. In ladder approximation
(LA) we resum infinite terms in perturbation series [20],

Π⊥LA(iω̄) = Π⊥0 (iω̄) + Π⊥0 (iω̄)UΠ⊥0 (iω̄)

+ Π⊥0 (iω̄)UΠ⊥0 (iω̄)UΠ⊥0 (iω̄) + · · · = Π⊥0 (iω̄)

1− UΠ⊥0 (iω̄)
. (12.14)

The dynamic structure factor describing here transverse spin fluctuations is de-
fined similar to Eq. (2.11),

S⊥(ω) = Im Π⊥(iω̄ → ω + i0) . (12.15)
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Figure 12.2: Graph of the spectral density of transverse spin fluctuations for the
particle-hole symmetric AIM within ladder approximation. Here we set h = 0 and
u0 = U/(π∆) = 0.9 and the characteristic energy scale in this approximation is
given by ω∗ = ∆(1− u0).

.

Keep in mind that the analytical continuation ω̄ → ω + i0 maps the expression |ω̄|
to −iω. A graph of S⊥(ω) within LA is shown in Fig. 12.2. For ω̄ � ∆ we use the
expansion f⊥0 (x) = 1− x+O(x2) and we get

Π⊥LA ≈
1

π

1

ω∗ + u0|ω̄| , ⇔ S⊥LA(ω) ≈ 1

π

u0ω

ω2
∗ + u2

0ω
2
, (12.16)

where ω∗ = ∆(1− u0) is the characteristic energy scale. Obviously for u0 → 1 this
parameter vanishes, which is an artifact of the Stoner instability discussed in the
previous section.

In order to understand the problem better, we consider the fermionic Green
function within the ladder approximation. The leading diagrams contributing to
the self-energy in this approach are shown in Fig. 12.3. The first diagram in this
figure does not depend on frequency and has the value of δξσ. We have

Σσ(iω) = δξσ + U2

∫
ω̄

Π⊥LA(iω̄)Gσ̄
0 (iω − iσω̄) . (12.17)

We consider now the weight of the quasi particle residue which is defined by

Z =
1

1− ∂Σσ(iω)
∂(iω)

∣∣∣
ω=0

. (12.18)
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Figure 12.3: Diagrams occurred in the particle-hole ladder approximation of the
fermionic self-energy. The solid lines with arrows denote the Hartree-Fock Green
function and the wavy lines denote the coupling U .

.

Using sgnω̄ = 2Θ(ω̄)− 1, we get

∂Σσ(iω)

∂(iω)

∣∣∣
ω=0

= U2 lim
ω→0

∂

∂(iω)

∫
ω̄

Π⊥LA(iω̄)Gσ̄
0 (iω − iσω̄)

= − lim
ξ→0

U2

∫
ω̄

Π⊥LA(iω̄)[1 + 2∆ δ(ω̄)]

(iω̄ + i∆ sgnω̄ + ξ)2

= −U2

∫
ω̄

[
Π⊥LA(iω̄)

[iω̄ + i∆ sgn(ω̄)2]
− lim

ξ→0

2Π⊥LA(iω)

∆

δ(ω̄)

[sgn(ω̄)− i ξ
∆

]2

]
,

(12.19)

where ξ is an additive convergence factor. Here, we have naively assumed that we
can carry out the partial differentiation ∂

∂(iω)
before the given frequency integration.

The integration over the part with the delta function can be performed using the
method which was proposed before by Morris [64] for any function f(Θ(x)) of the
step function multiplied with δ(x),

δ(x) f(Θ(x)) = δ(x)

∫ 1

0

dt f(t) . (12.20)

We find that

lim
ξ→0

δ(ω̄)

[sgn(ω̄)− i ξ
∆

]2
= lim

ξ→0

δ(ω̄)

[2Θ(ω̄)− 1− i ξ
∆

]2
= −δ(ω̄) , (12.21)

and consequently we obtain

∂Σσ(iω)

∂(iω)

∣∣∣
ω=0

=
U2

2π

[∫ ∞
−∞

dω̄
Π⊥LA(iω̄)

[|ω̄|+ ∆]2
− 2Π⊥LA(0)

∆

]

= u2
0

[∫ ∞
0

dx
f⊥0 (x)

[1− u0f⊥0 (x)](1 + x)2
− f⊥0 (0)

1− u0f⊥0 (0)

]
.(12.22)

The remaining integration can be carried out numerically. The result is shown in
Fig. 12.4. Clearly, for u0 → 1 the weight of the quasi particle peak goes to zero.
This hints at the breakdown of the LA if the interaction U increases. However, as
will be discussed in detail in Chap. 14 the Stoner instability can be eliminated, if
we use the functional renormalization group to go beyond the LA.
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Figure 12.4: Wave function renormalization factor or the weight of the quasi particle
residue of the particle-hole symmetric AIM as a function of the coupling U at h = 0
and in ladder approximation. Within LA, the wave function renormalization factor
vanishes if u0 = U/(π∆) reaches 1. The given perturbative approach thus fails by
increasing interaction.

12.3 Generating functionals for the FRG

In this section, we describe the application of the FRG to the AIM. Since the
Euclidean action given by Eqs. (12.5, 12.6) does not exhibits any momentum de-
pendence, the problem is here 0 + 1-dimensional. Hence, we apply the cutoff Λ to
the frequency label of the propagators. We use the same procedure as in Ref. [101],
but we introduce the RG cutoff in the fermionic propagator instead of the bosonic
one. In Chap. 4, we have described the general formalism for the functional renor-
malization group. In order to apply an appropriate FRG approach to the AIM, it is
therefore useful to express the Gaussian part of the action given by (12.5) in form
of Eq. (4.2),

S0[Φ] = −1

2
(Φ, [G0]−1Φ) , G−1

0 =

 [G↑0]−1 0 0

0 [G↓0]−1 0
0 0 −U−1

 ,(12.23)

where the block matrices Gσ
0 and U are given by,

Gσ
0 =

(
0 Ĝσ

0

ζ[Ĝσ
0 ]T 0

)
, U =

(
0 Û[
Û
]T

0

)
, (12.24)
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Figure 12.5: The flowing irreducible vertices are shown with shaded three angles,
where the label (2m,n+ n′) explains that the vertex has 2m fermionic, n incoming
bosonic and n′ outgoing bosonic external legs.

with ζ = −1 and the label α involving the frequencies and the spins,

[Ĝσ
0 ]ω,ω′ = βδω,ω′G

σ
0 (iω) , [Û ]ω̄,ω̄′ = βδω̄,ω̄′U . (12.25)

The generating functionals of the AIM resemble those of the bosonized one-
dimensional electron system explained in Chap. 4, with an important difference
that the bosonic fields are complex here. The irreducible vertices obey the frequency
conservation and are symmetric with respect to the exchange of labels involving the
same type of fields. Because of the particle conservation, the number of incoming
and outgoing fermion legs which are associated respectively with the fields dσ and
d̄σ must be the same. The generating functional for the irreducible vertices reads

ΓΛ[Φ] =
∞∑

n′,n,m=0

1

(m!)2n!n′!

∫
ω′1

· · ·
∫
ω′m

∫
ω1

· · ·
∫
ωm

∫
ω̄′1

· · ·
∫
ω̄′
n′

∫
ω̄1

· · ·
∫
ω̄n

×βδω′1+···+ω′m+ω̄′1+···+ω̄′
n′ ,ω1+···+ωm+ω̄1+···+ω̄n

×Γ
(d̄σ′1
···d̄σ′mdσ1 ···dσm χ̄1···χ̄n′χ1···χn)

Λ (ω′1, · · · , ω′m;ω1, · · · , ωm; ω̄′1, · · · , ω̄′n′ ; ω̄1, · · · , ω̄n)

×d̄ω′1σ′1 · · · d̄ω′mσ′mdω1σ1 · · · dωmσmχ̄ω̄′1 · · · χ̄ω̄′n′χω̄1 · · ·χω̄n . (12.26)

Fig. 12.5 shows a graphical representation of the irreducible vertices. For the
super-field Φ = [d↑, d̄↑, d↓, d̄↓, χ, χ̄] we define the associated source super-field J =
[̄↑, j↑, ̄↓, j↓, J̄ , J ], i.e.,

(J,Φ) =
∑
σ

∫
ω

[̄ωσdωσ + d̄ωσjωσ] +

∫
ω̄

[J̄ω̄χω̄ + Jω̄χ̄ω̄] . (12.27)

The generating functionals for the connected Green function can therefore be written
as

GΛ
c [J ] =

∞∑
n′,n,m=0

1

(m!)2n!n′!

∫
ω′1

· · ·
∫
ω′m

∫
ω1

· · ·
∫
ωm

∫
ω̄′1

· · ·
∫
ω̄′
n′

∫
ω̄1

· · ·
∫
ω̄n

×βδω′1+···+ω′m+ω̄′1+···+ω̄′
n′ ,ω1+···+ωm+ω̄1+···+ω̄n

×G(̄σ′1
···̄σ′mjσ1 ···jσm J̄1···J̄n′J1···Jn)

c (ω′1, · · · , ω′m;ω1, · · · , ωm; ω̄′1, · · · , ω̄′n′ ; ω̄1, · · · , ω̄n)

×̄ω′1σ′1 · · · ̄ω′mσ′mjω1σ1 · · · jωmσm J̄ω̄′1 · · · J̄ω̄′n′Jω̄1 · · · Jω̄n . (12.28)
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Similar to the one-dimensional fermionic systems, because of the particle conserva-
tion, the matrix of the full Green function has the same block structure as the free
propagator containing the fermionic and bosonic propagators,

GΛ = −δ
(2)Gc,Λ
δJ δJ

∣∣∣∣∣
J=0

=

 G↑Λ 0 0

0 G↓Λ 0
0 0 −F⊥Λ

 . (12.29)

Likewise the self-energy ΣΛ consists of one line irreducible fermionic self-energy and
the irreducible spin-flip susceptibility,

ΣΛ =

 Σ↑Λ 0 0

0 Σ↓Λ 0
0 0 Π⊥Λ

 , (12.30)

where

Σσ
Λ =

(
0 ζ[Σ̂σ

Λ]T

Σ̂σ
Λ 0

)
, Π⊥Λ =

(
0 Π̂⊥Λ[

Π̂⊥Λ ]T 0

)
, (12.31a)

Gσ
Λ =

(
0 Ĝσ

Λ

ζ[Ĝσ
Λ]T 0

)
, F⊥Λ =

(
0 F̂⊥Λ[

F̂⊥Λ
]T

0

)
, (12.31b)

and

[Σ̂σ
Λ]ω,ω′ = βδω,ω′Σ

σ
Λ(iω) , [Π̂⊥Λ ]ω̄,ω̄′ = βδω̄,ω̄′Π

⊥
Λ(iω̄) , (12.32a)[

Ĝσ
Λ

]
ω,ω′

= βδω,ω′G
σ
Λ(iω) , [F̂⊥Λ ]ω̄,ω̄′ = βδω̄,ω̄′F

⊥
Λ (iω̄) . (12.32b)

The flow equations of the system are given by the general equation (4.43). In the
following chapter we discuss the FRG expansion to the AIM and find a simple
truncation to numerically solve the coupled flow equations of irreducible vertices.



Chapter 13

FRG approach to the AIM:
frequency cutoff scheme

In this chapter, we describe the FRG approach for our mixed boson-fermion theory,
which was introduced accurately in the previous chapter. We derive FRG flow
equations for the two-legged vertices, using a cutoff which is included in the flowing
fermionic Green function. This cutoff is different from other ones used in previous
works within FRG formalism [96,100,101]. As will be discussed in detail, this cutoff
represented by hΛ(iω) corresponds to the magnetic field and is called magnetic field
cutoff.

In Sec. 13.2 we truncate the exact FRG flow equation for the self-energy of d-
electrons, setting the irreducible three-legged and four-legged vertex functions equal
to their initial values. Furthermore, we use Dyson-Schwinger equations to prove
the skeleton equation for the flowing spin-flip susceptibility Π⊥Λ(iω̄). In Sec. 13.3 we
expand the fermionic self-energy to second order in the frequency to close the set of
flow equations.

13.1 Cutoff in fermionic propagator

As we have pointed out, the spectral properties of the AIM is known from the
numerical renormalization group method [74]. Furthermore, one can obtain the
spectral function of the d-electrons for U � ∆ analytically, using perturbation
theory [87,88]. But this perturbative approach fails in strong coupling regime (U �
∆). Because the system exhibits no momentum dependence, we cannot use the
momentum cutoff, which is common for the development of the FRG flow equations.
Therefore, in order to work beyond the LA, we can impose a cutoff in frequency
space, which behaves as a large magnetic field. We introduce a smooth cutoff in the
fermionic part of the Gaussian action S0[Φ] given in Eq. (12.5),

[Gσ
0,Λ(iω)]−1 = [Gσ

0 (iω)]−1 + σhΛ(iω). (13.1)

As the simplest case if we choose hΛ(iω) = Λ, it is obvious that this cutoff satisfies
the properties of RΛ defined in (4.39). The irreducible self-energy for particles

99
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with spin σ and the irreducible transverse spin susceptibility Π⊥Λ(iω̄) are defined in
(12.32a). We obtain for d-electron propagator,

[Gσ
Λ(iω)]−1 = [Gσ

0 (iω)]−1 − Σσ
Λ(iω) + σhΛ(iω) (13.2)

and for the bosonic spin-flip operator,

F⊥Λ (iω̄) = [U−1 − Π⊥Λ(iω̄)]−1 =
U

1− UΠ⊥Λ(iω̄)
. (13.3)

According to the general FRG formalism given by Eq. (4.43), the exact FRG flow
equation for the spin-σ self-energy in the frequency cutoff scheme can be obtained
easily. We have

∂ΛΣσ
Λ(iω) =

∑
σ′

∫
ω′
Ġσ′

Λ (iω′)Γ
(d̄σdσ d̄σ′dσ′ )
Λ (ω, ω, ω′, ω′) +

∫
ω̄

F⊥Λ (iω̄)Ġσ̄
Λ(iω − iσω̄)

× Γ
(d̄σdσ̄χσ)
Λ (ω, ω − σω̄, ω̄) Γ

(d̄σ̄dσχσ̄)
Λ (ω − σω̄, ω, ω̄) . (13.4)

Where Ġσ
Λ(iω) is the corresponding fermionic single scale propagator, which is de-

fined by

Ġσ
Λ(iω) = [σ̄∂ΛhΛ(iω)][Gσ

Λ(iω)]2 . (13.5)

A graphical representation of the exact FRG flow equation of the self-energy is

shown in Fig. 13.1. Γ
(d̄σdσ d̄σ′dσ′ )
Λ , Γ

(d̄σdσ̄χσ)
Λ and Γ

(d̄σ̄dσχσ̄)
Λ are flowing irreducible vertex

functions, where the first one has four fermionic external legs and the last two have
two fermionic and one bosonic external legs. We have used for the three-legged
vertices the short notations

χ↑ = χ , χ↓ = χ̄ , (13.6)

that means,

Γ
(d̄↑d↓χ↑)
Λ (ω, ω − ω̄, ω̄) = Γ

(d̄↑d↓χ)
Λ (ω, ω − ω̄, ω̄) , (13.7a)

Γ
(d̄↓d↑χ↓)
Λ (ω − ω̄, ω, ω̄) = Γ

(d̄↓d↑χ̄)
Λ (ω − ω̄, ω, ω̄) . (13.7b)

Note that because of the particle conservation the number of fermionic legs of any
vertex function is always even (for any outgoing leg there is one incoming leg and
vice versa). Due to Eqs. (12.6-12.9), inertial values of this vertices at Λ = Λ0 are
characterized by

Γ
(d̄σdσ d̄σ′dσ′ )
Λ0

(ω, ω, ω′, ω′) = 0 , (13.8a)

Γ
(d̄↑d↓χ)
Λ0

(ω + ω̄, ω, ω̄) = 1 , (13.8b)

Γ
(d̄↓d↑χ̄)
Λ0

(ω − ω̄, ω, ω̄) = 1 . (13.8c)
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Figure 13.1: Exact flow equation of the fermionic self-energy Σσ
Λ(iω) (σ =↑, ↓) in

frequency cutoff scheme. Within our calculation, the fermionic propagator is regu-
larized by the smooth magnetic field cutoff hΛ(ω). The thick solid lines with arrow
(without slash) denote the fermionic propagator given by Eq. (13.2) while the thick
solid lines with arrow and slash display the fermionic single scale propagator defined
in Eq. (13.5). In addition, the thick wavy lines with arrow represent the flowing
bosonic propagator given by Eq. (13.3). The dot over the self-energy on the left
hand side denote the derivative with respect to the RG cutoff Λ.

Since the action is hermitian, we have

Γ
(d̄↑d↓χ)
Λ (ω, ω − ω̄, ω̄) = Γ

(d̄↓d↑χ̄)
Λ (ω − ω̄, ω, ω̄) . (13.9)

Similarly the FRG flow equation of the spin-flip susceptibility is represented dia-
grammatically in Fig. 13.2. The analytical expression of this equation is

∂ΛΠ⊥Λ(iω̄) =
∑
σ′

∫
ω

Ġσ′

Λ (iω′)Γ
(χ̄χd̄σ′dσ′ )
Λ (ω̄, ω̄, ω′, ω′)−

∫
ω

[Ġ↑Λ(iω)G↓Λ(iω − iω̄)

+ G↑Λ(iω)Ġ↓Λ(iω − iω̄)]Γ
(d̄↑d↓χ)
Λ (ω, ω − ω̄, ω̄)Γ

(d̄↓d↑χ̄)
Λ (ω − ω̄, ω, ω̄).(13.10)

In addition, the initial value of the irreducible polarization is given by

Π⊥Λ0
(iω̄) = −

∫
ω

G↑Λ0
(iω)G↓Λ0

(iω − iω̄) . (13.11)

As the initial value of the fermion self-energy one chooses usually ΣΛ0(iω) = 0.
On the other hand, the self-consistent Hartree-Fock contribution, determined by
(11.10) can be obtained from the FRG and it will be reproduced by expanding the
right-hand side of Eq. (13.4) to the first order in U and setting the irreducible
vertices equal to their initial values given by (13.8). It is therefore helpful to include
this first-order term from the beginning into the fermionic self-energy,

Σσ
Λ0

(iω) = δξσ =
U

2
[N − σµHF] (13.12)
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Figure 13.2: Graphical representation of the exact flow equation for the spin-flip
susceptibility in frequency cutoff scheme, given by Eq. (13.10).The thick solid and
wavy lines with arrow have the same meaning as in Fig. 13.1. The thin wavy lines
with arrow denote the external legs.

Since in the particle-hole symmetric case, N = 1 and ξ0 = Ed − µ also cancels
exactly U/2, we can write

Gσ
Λ0

(iω) =
1

iω + i∆ sgn(ω) + σUµHF

2
+ σhΛ0(iω)

. (13.13)

Consequently, we obtain for the flowing fermionic Green function and the single
scale propagator,

Gσ
Λ(iω) =

1

iω + i∆ sgn(ω)− δΣσ
Λ(iω) + σhΛ(iω)

, (13.14)

Ġσ
Λ(iω) =

∂ΛhΛ(iω) σ̄

[iω + i∆ sgn(ω)− δΣσ
Λ(iω) + σhΛ(iω)]2

, (13.15)

where

δΣσ
Λ(iω) = Σσ

Λ(iω)− UN

2
. (13.16)

13.2 Truncation via skeleton equation for bosonic

self-energy

The FRG is given formally by exact RG flow equations. However, we know that
because of the infinite number of coupled integro-differential equations, one needs
a truncation to handle the problem. The flow equations of the two-legged vertex
functions given in Eqs. (13.4, 13.10) are expressed via the four-legged and three-
legged boson-fermion vertices. The expression for the flow equations of the three-
legged and four-legged vertex functions are in turn given by the higher legged vertices
like five-legged and six-legged vertices. For the cutoff in bosonic propagator flow
equations of three-legged vertices are given in Ref. [102]. In our case, we can obtain
equivalent flow equations using again Eq. (4.43). Fig. 13.3 shows graphically flow
equations of the three-legged boson-fermion vertex functions. The vertices with a
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Figure 13.3: Exact FRG flow equation for the three-legged boson-fermion vertex

functions a) Γ
(d̄↑d↓χ)
Λ (ω, ω − ω̄, ω̄) and b) Γ

(d̄↓d↑χ̄)
Λ (ω − ω̄, ω, ω̄). The solid and wavy

lines with arrow have the same meaning as in Fig. 13.2.

sufficiently large number of legs at some order become also irrelevant in the RG
sense. It is thus reasonable to replace the three and four-legged vertices by their
initial values, which are known from (13.8),

Γ
(d̄σdσ d̄σ′dσ′ )
Λ (ω, ω, ω′, ω′) ≈ Γ

(d̄σdσ d̄σ′dσ′ )
Λ0

(ω, ω, ω′, ω′) = 0 , (13.17a)

Γ
(d̄↑d↓χ)
Λ (ω, ω − ω̄, ω̄) ≈ Γ

(d̄↑d↓χ)
Λ0

(ω, ω − ω̄, ω̄) = 1 , (13.17b)

Γ
(d̄↓d↑χ̄)
Λ (ω − ω̄, ω, ω̄) ≈ Γ

(d̄↓d↑χ̄)
Λ0

(ω − ω̄, ω, ω̄) = 1 . (13.17c)

Furthermore, to truncate the hierarchy of flow equations in the bosonic section,
we use Dyson-Schwinger equations [57,101] which are given by(

ζαJα − δS

δΦα

[
δ

δJα

])
G[Jα] = 0 , (13.18)

to express the irreducible spin-flip susceptibility Π⊥Λ(iω̄) in terms of fermionic Green
functions. Eq. (13.18) can be proven easily, using the invariance of Eq. (4.8) with
respect to the shift Φ+∆, where ∆→ 0. The expansion which is used here is called
skeleton equation and for one-dimensional fermion systems (see Part I) is obtained in
appendix B of Ref. [7]. Setting Φα = χω̄ or Φα = χ̄ω̄ in Eq.(13.18), and considering
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the action known from (12.5, 12.6) we obtain(
J̄ω̄ − U−1 δ

δJω̄

)
GΛ − ζ

∫
ω

δ2GΛ

δjω+ω̄↑δ̄ω↓
= 0 , (13.19a)(

Jω̄ − U−1 δ

δJ̄ω̄

)
GΛ − ζ

∫
ω

δ2GΛ

δjω↓δ̄ω+ω̄↑
= 0 . (13.19b)

GΛ can be expressed in terms of the generating functionals of the connected Green
functions Gc,Λ via the definition (4.15). Using Eqs. (4.25) and (4.28), the Dyson-
Schwinger equations can be written in the following form,

δΓ

δχω̄
−
∫
ω

[
d̄ω+ω̄↑dω↓ +

δ2Gc,Λ
δ̄ω↓δjω+ω̄↑

]
= 0 , (13.20a)

δΓ

δχ̄ω̄
−
∫
ω

[
d̄ω↓dω+ω̄↑ +

δ2Gc,Λ
δ̄ω+ω̄↑δjω↓

]
= 0 . (13.20b)

The dynamic spin susceptibility can be obtained by taking the first functional deriva-
tives of Eq. (13.20a) with respect to χ̄ω̄ and setting the fields equal to zero,

Π⊥Λ(iω̄) =
δ2Γ

δχω̄ δχ̄ω̄

∣∣∣∣∣
Φ=0

=

∫
ω

δ2Gc,Λ
δχ̄ω̄ δ̄ω↓ δjω+ω̄↑

∣∣∣∣∣
Φ=J=0

. (13.21)

In addition, one can express Gc,Λ in terms of the irreducible vertices, using the tree
expansion which is given by Eq. (4.32). Considering the l = 1 term in the tree
expansion, it is easy to see that

δ2Gc,Λ
δχ̄ω̄ δ̄ω↓ δjω+ω̄↑

∣∣∣∣∣
Φ=J=0

= −
∫
ω

G↑Λ(iω)G↓Λ(iω − iω̄)Γ
(d̄↓d↑χ̄)
Λ (ω − ω̄, ω, ω̄) . (13.22)

so that we get

Π⊥Λ(iω̄) = −
∫
ω

G↑Λ(iω)G↓Λ(iω − iω̄)Γ
(d̄↓d↑χ̄)
Λ (ω − ω̄, ω, ω̄) (13.23)

Likewise, we can obtain another skeleton expansion for the spin susceptibility, ap-
plying the first functional derivatives of Eq. (13.20b) with respect to χω̄ and setting
the fields equal to zero,

Π⊥Λ(iω̄) = −
∫
ω

G↑Λ(iω)G↓Λ(iω − iω̄)Γ
(d̄↑d↓χ)
Λ (ω, ω − ω̄, ω̄) . (13.24)

Graphical representations of the skeleton expansions for Π⊥Λ(iω̄) are shown in Fig.
13.4, where the minus signs are omitted. Note that the skeleton equation can be
derived for every irreducible vertex (in particular for the fermionic self-energy),
following the same scheme as in the above derivation of Eqs. (13.23) and (13.24).
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Figure 13.4: Two equivalent graphical representations of the skeleton equation for
spin-flip susceptibility (without minus signs). The fat dots are the bare vertex
functions shown in Fig. 12.1. The left diagram represents Eq. (13.23) and the right
diagram represents Eq. (13.24).

Combining this equations with the approximations given in (13.17a-13.17c), we
obtain

Π⊥Λ(iω̄) = −
∫
ω

G↑Λ(iω)G↓Λ(iω − iω̄) . (13.25)

The flow equation of the fermionic self-energy given by (13.4) simplifies after above
truncations to

∂ΛΣσ
Λ(iω) =

∫
ω̄

F⊥Λ (iω̄)Ġσ̄
Λ(iω − iσω̄) . (13.26)

13.3 Low energy approximation

Obviously, Eqs. (13.3, 13.14, 13.15, 13.25, 13.26) generate a closed system of integro-
differential equations. To complete the truncations given in the previous section, we
approximate the fermionic Green function by its low energy behavior. The following
expansion is therefore reliable,

δΣΛ(iω) = −σMl + (1− 1

Zl
)iω +O(ω2) . (13.27)

The index l denotes the flow parameter

l = − ln

(
Λ

Λ0

)
⇔ Λ = Λ0e

−l , (13.28)

The initial conditions therefore are given at l = 0 and in the limit l→∞ (Λ→ 0), we
obtain the solution of the underlying model. Ml is here the flowing magnetization
and Zl is called the wave function renormalization factor which is related to the
weight of the quasi particle residue. According to Eq. (13.12), the initial conditions
are given by

Ml=0 =
UµHF

2
=
π∆u0

2
µHF , (13.29)

Zl=0 = 1, (13.30)
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where as we know µHF is the mean field contribution to the magnetization. The
flowing d-electron propagator and the corresponding single scale propagator can
therefore be written as

Gσ
Λ(iω) =

Zl
iω + i∆l sgn(ω) + σZl(hΛ(iω) +Ml)

, (13.31)

Ġσ
Λ(iω) =

∂ΛhΛ(iω) σ̄ Z2
l

[iω + i∆l sgn(ω) + σZl(hΛ(iω) +Ml)]2
, (13.32)

where

∆l = Zl∆ (13.33)

is the renormalized flowing hybridization. Introducing now the flowing anomalous
dimension,

ηl = −∂l ln(Zl) , (13.34)

we obtain from Eqs. (13.26, 13.27),

∂lMl = σΛ∂ΛΣσ
Λ(0) = σΛ

∫
ω̄

F⊥Λ (iω̄)Ġσ̄
Λ(iσ̄ω) , (13.35)

where we used ∂l = −Λ∂Λ. Similarly, we find

ηl = −∂Zl
Zl

= ZlΛ lim
ω→0

∂

∂(iω)
∂ΛΣσ

Λ(iω)

= ZlΛ lim
ω→0

∂

∂(iω)

∫
ω̄

F⊥Λ (iω̄)Ġσ̄
Λ(iω − iσω̄) . (13.36)

The Eqs. (13.3, 13.25, 13.31, 13.32, 13.35, 13.36) build up a coupled system of
differential equations, whose solution will be discussed in the next chapter.



Chapter 14

Magnetic field cutoff

The flow equations of different parts of the fermionic self-energy are given by Eqs.
(13.35) and (13.36). To calculate the spectral properties of the AIM, we use in this
chapter the magnetic field as a cutoff, i.e.,

hΛ(iω) = Λ . (14.1)

We shall show how to remove the Stoner instability known from Chap. 12 using
the functional RG. In contrast to Ref. [101] we will not linearize the irreducible
transverse spin-flip susceptibility given in (13.25), because for U � ∆ the value of
the full polarization in Eq. (13.3) becomes more important than the value of the
inverse interaction. Since at the end Λ→ 0 and the spin-rotational invariance is not
spontaneously broken, we expect that the magnetization along with the magnetic
field vanishes. However it turns out that, the mean field contribution as initial
condition (that means Ml=0 = UµHF/2) will not satisfy this condition. The initial
condition of the magnetization will thus be altered by hand.

14.1 Fermionic and bosonic propagators

Introducing the magnetic field cutoff as defined by (14.1), we determine for the
flowing fermionic Green function and the single scale propagator according to Eqs.
(13.31, 13.32),

Gσ
Λ(iω) =

Zl
iω + i∆l sgn(ω) + σZl(Λ +Ml)

, (14.2)

Ġσ
Λ(iω) =

σ̄ Z2
l

[iω + i∆l sgn(ω) + σZl(Λ +Ml)]2
. (14.3)

Inserting Eq. (14.2) into the skeleton equation for the spin susceptibility (13.25),
and performing an elementary integration we obtain

Π⊥Λ(iω̄) =
Zl
π∆

f⊥Λ

( |ω̄|
∆l

,
[Λ +Ml

∆

]
sgnω̄

)
, (14.4)
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with

f⊥Λ (x,M) =
ln
[
1 + x

1+iM

]
(x− 2iM)(1 + x/2− iM)

− 2i arctanM

x− 2iM
. (14.5)

It is clear that for M → 0 (vanishing magnetic field and magnetization) f⊥Λ (x,M)
reduces to f⊥0 (x), given by Eq. (12.13). In order to perform the given integrations
analytically, the first attempt is the expansion of the function f⊥Λ (x,M) to linear
order in x, which can be identified with the expansion of the dynamic spin-flip
susceptibility for small frequencies ω̄/∆,

f⊥Λ (x,M) =
arctanM

M
+

ix

2M

[
1

(1− iM)2
− arctanM

M

]
+O(x2) . (14.6)

Nevertheless we can estimate the integro-differential equations numerically without
this approximation.

14.2 Flow equations

Now, we consider the approximated Eqs. (13.35, 13.36) obtained in the previous
chapter. Using the expression (14.3), the flow equation of the magnetization reads

∂lMl = Z2
l Λ

∫
ω̄

F⊥Λ (iω̄)

[iσ̄ω̄ + iσ̄∆l sgn(ω̄) + σ̄Zl(Λ +Ml)]2

= −2Z2
l Λ Re

∫ ∞
0

dω̄

2π

F⊥Λ (iω̄)

[ω̄ + ∆l − iZl(Λ +Ml)]2
. (14.7)

The calculation of the anomalous dimension is more complicated. According to
(13.36) we obtain

ηl = −2Z3
l Λ lim

ω→0

∫
ω̄

σF⊥Λ (iω̄)[1 + 2∆l δ(ω + σ̄ω)]

[i(ω + σ̄ω̄) + i∆l sgn(ω + σ̄ω̄) + σ̄Zl(Λ +Ml)]3

= 2Z3
l Λ

∫
ω̄

[
F⊥Λ (iω̄)

[iω̄ + i∆l sgn(ω̄) + Zl(Λ +Ml)]3

+
2∆lF

⊥
Λ (0) δ(ω̄)[

i∆l sgn(ω̄) + Zl(Λ +Ml)
]3
]
. (14.8)

Where we have used again sgn(x) = 2Θ(x) − 1. The second part of the above
expression can be obtained through the relation (12.20) and we derive after some
algebra,

ηl = −4Z3
l Λ

[
Im

∫ ∞
0

dω̄

2π

F⊥Λ (iω̄)

[ω̄ + ∆l − iZl(Λ +Ml)]2

− F⊥Λ (0)

2π

∆lZl(Λ +Ml)

[∆2
l + Z2

l (Λ +Ml)2]2

]
. (14.9)
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Using now the relation (13.3), we get

F⊥Λ (iω̄) = U + Π⊥LA,Λ(iω̄) , (14.10)

where

Π⊥LA,Λ(iω̄) =
Π⊥Λ(iω̄)

1− UΠ⊥Λ(iω̄)
, (14.11)

We find that the terms linear in the coupling U cancel in Eq. (14.9) and ηl assumes
the same form as Eq. (12.22),

ηl = −4Z3
l Λ
U2

2π

[
Im

∫ ∞
0

dω̄
Π⊥LA,Λ(iω̄)

[ω̄ + ∆l − iZl(Λ +Ml)]3

− Π⊥LA,Λ(0)
∆lZl(Λ +Ml)

[∆2
l + Z2

l (Λ +Ml)2]2

]
. (14.12)

14.3 Numerical estimate

In this section we examine the coupled differential equations (13.34, 14.7, 14.12)
numerically. We compare our results with the exact result (11.17) for the wave
function renormalization factor, obtained via the Bethe ansatz. For the numerical
calculation, it is convenient to express the flow equations (14.7, 14.12) in form of
the following dimensionless parameters,

λl =
Λ

∆l

=
Λ0

Zl∆
e−l , ml =

Ml

∆
, ul =

U

π∆l

=
u0

Zl
. (14.13)

We obtain

∂lml = −Zlλlul Re

∫ ∞
0

dx

[1− ulf⊥Λ (x, Zlλl +ml)][1 + x− i(Zlλl +ml)]2
,(14.14)

ηl = −2Zlλlu
2
l

[
Im

∫ ∞
0

dx
f⊥Λ (x, Zlλl +ml)

[1− ulf⊥Λ (x, Zlλl +ml)][1 + x− i(Zlλl +ml)]3

− f⊥Λ (0, Zlλl +ml) (Zlλl +ml)

[1− ulf⊥Λ (0, Zlλl +ml)][1 + (Zlλl +ml)2]2

]
, (14.15)

where the function f⊥Λ (x,M) is defined in Eq. (14.5). The initial values of ml =
Ml/∆ and Zl are given by Eqs. (13.29, 13.30) where the Hartree-Fock magnetic
moment is known from Chap. 12 [see Eq. (12.2)],

µHF =

∫
ω

∑
σ

σGσ
Λ0

(iω) =
2

π
arctan

[
πu0

2
µHF +

Λ0

∆

]
. (14.16)
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Figure 14.1: Typical flow of the magnetization in the magnetic field cutoff scheme
for u0 = U/(π∆) = 1 and different initial values, where ml = Ml/∆ and we set here
µHF = 1. The magnetization remains finite, if we choose Ml=0 = UµHF/2 (dashed
line) but for the modified initial value Ml=0 =MΛ0 the magnetization flows to zero
(solid line). Note that for u0 = 1 we obtainMΛ0/(∆π) ≈ 0.428. At the scale l∗ the
running cutoff Λ becomes equal to the hybridization, i.e., Λ0e

l∗ = ∆. Because for
l < 0 we set ml = m0, there are small nonanalytical kinks shown by arrows.

In the ultraviolet limit we have

lim
Λ0→∞

µHF = 1 . (14.17)

This value implies that according to the mean field approximation, for high magnetic
fields in the ground state all spins point in the same direction. However by using
∂lZl = −ηlZl our numerical results show that the magnetization approaches a finite
limit for l→∞ (Λ→ 0) and this disagrees with the fact that there is no spontaneous
magnetization. To remove this problem, we choose a suitable initial value

Ml=0 =MΛ0 . (14.18)

of the magnetization such that at the end Ml→∞ vanishes. Requiring that ml→∞ = 0,
the value of MΛ0 can differ from the mean field result UµHF/2. For example, the
flowing magnetization for u0 = 1 and two different initial conditions is shown in
Fig. 14.1. The ratio of MΛ0 to UµHF/2 as a function of the bare coupling u0 is
shown in Fig. 14.2. It is obvious that the renormalized initial value MΛ0 is always
smaller than the expected initial value or rather the Hartree-Fock contribution to
the magnetization. In addition these two initial conditions deviate significantly for
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Figure 14.2: The ratio between the different initial values given by (13.29) and
(14.18), where we set again µHF = 1. For u0 � 1 these two coefficients are very
close to each other but by increasing U the difference becomes bigger. The value of
MΛ0 is choosen such that ml→∞ vanishes, if ml=0 =MΛ0/∆.

u0 � 1. In Chap. 15 we will show how to regularize the smooth cutoff such that the
difference between MΛ0 and UµHF/2 becomes smaller.

Next, we choose as the initial values Ml=0 = MΛ0 and Zl=0 = 1. The flowing
wave function renormalization factor can be obtained numerically and the solution
for different values of the bare coupling U is shown in Fig. 14.3. It is clear that
in the limit l → ∞ the wave function renormalization factor remains finite for
all values of u0 and in contrast to the ladder approximation discussed in Chap.
12 we can obtain Z = liml→∞ Zl in the strong coupling regime. The unphysical
Stoner instability is therefore removed by the FRG approach including spin-singlet
fluctuations. The results which we have obtained via FRG for Z = liml→∞ Zl as a
function of the bare coupling u0 are shown in Fig. 14.4. For comparison we show
also the prediction of the ladder approximation as well as the precise results within
Wilson’s numerical renormalization Group obtained by Karrash et al. [100]. It is
clear that for u0 = U/(π∆) . 2 our results agree with a good approximation with
the exact results in the context of NRG. On the other hand, in the strong coupling
regime the numerical solution for Z does not exhibit the same exponential manner,
which we expect because of Eq. (11.17). According to our numerical solution from
the FRG with the magnetic field cutoff, the weight of the quasi particle residue in
strong coupling regime varies linearly in 1/U , where we estimate

Z = lim
l→∞

Zl ≈ 0.71

u0

, u0 � 1 . (14.19)
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Figure 14.3: Numerical solution of the coupled differential equations (14.14-14.15)
for m0 =MΛ0/∆ and different values of the bare coupling u0 = U/(π∆). The scale
l∗ is defined by Λ0e

l∗ = ∆.
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Figure 14.4: FRG solution for the wave function renormalization factor which is
compared with the results obtained within ladder approximation and with the exact
NRG results.
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Modified magnetic field cutoff

Because the frequency independent magnetic field cutoff hΛ(iω) = hΛ(0) = Λ does
not guarantee that the flowing magnetization with the initial condition Ml=0 =
UµHF/2 vanishes for l → ∞, we need another magnetic field cutoff which suppress
the former tendency due to the magnetic field. To this end we introduce a cutoff
which prohibits that the magnetic field affects the frequencies exceeding the RG
parameter Λ,

hΛ(iω) = (Λ− |ω|)Θ(Λ− |ω|) . (15.1)

We obtain thus for the flowing fermion Green function and the single scale propa-
gator,

Gσ
Λ(iω) =

Zl
iω + i∆l sgn(ω) + σZl[(Λ− |ω|)Θ(Λ− |ω|) +Ml]

, (15.2)

Ġσ
Λ(iω) =

σ̄Θ(Λ− |ω|)Z2
l

[iω + i∆l sgn(ω) + σZl(Λ− |ω|+Ml)]2
. (15.3)

Let us first derive the irreducible polarization within the approximation given by
the skeleton equation (13.25). According to Eq. (15.2) the calculation of the spin
susceptibility in this case is much more cumbersome than for the constant magnetic
field [see Eq. (14.4)]. Because of the cutoff defined by (15.1), we are interested in
the frequencies which are smaller than Λ. After a tedious algebra we find that,

Θ(Λ− |ω̄|) Π⊥Λ(iω̄) =
Zl
π∆

f⊥hΛ

( |ω̄|
∆l

,
Λ

∆l

,
Ml

∆l

, Zlsgnω̄

)
, (15.4)
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where the complicated function f⊥hΛ
is given by

f⊥hΛ
(x, λ,M, z) =

[izx+ iz(1 + λ− izM)] ln
[
1 + x

1+λ−izM

]
(x− 2izM)[(iz − 1)x+ iz(1 + λ+ 2M − izM)]

+
[iz(iz − 1)x+ iz(1 + λ+ izM)] ln

[
1 + (iz−1)x

1+λ+izM

]
[2iz(1 + λ+M)− (1 + z2)x][(iz − 1)x+ iz(1 + λ+ 2M − izM ]

−
2[iz(iz + 1)x+ 1 + 2iz + z2(λ+M)] ln

[
1 + (iz+1)x

1−iz(λ+M)

]
(iz + 1)[2− 2iz(λ+M) + (1 + iz)x][2iz(1 + λ+M)− (1 + z2)x]

− 2i[2iz(1 + λ)− z2x] arctan
[
zM
1+λ

]
(x− 2izM)[2iz(1 + λ+M)− (1 + z2)x]

+
2i arctan [z(λ+M)]

2iz(1 + λ+M)− (1 + z2)x
.(15.5)

Taking the limit x→ 0, which is equivalent to ω̄ → 0, we obtain

f⊥hΛ
(0, λ,M, z) =

(1 + λ) arctan
[
zM
1+λ

]
+M arctan [z(λ+M)]

zM(1 + λ+M)
. (15.6)

Next, we consider the Hartree-Fock contribution to the magnetization and show how
it changes in the modified magnetic field cutoff scheme.

15.1 Self-consistent Hartree-Fock approximation

By definition, the Hartree-Fock self-consistency equation for the magnetic moment
is given by

µHF =

∫
ω

∑
σ

σGσ
Λ0

(iω)

=

∫
ω

∑
σ

σ

iω + i∆l sgn(ω) + σ[(Λ0 − |ω|)Θ(Λ0 − |ω|) + UµHF

2
]

=

∫
ω

∑
σ

[
σΘ(Λ0 − |ω|)

iω + i∆l sgn(ω) + σ
[
Λ0 − |ω|+ UµHF

2

]
+

σΘ(|ω| − Λ0)

iω + i∆l sgn(ω) + σUµHF

2

]
. (15.7)

Carrying out the integrations, after some algebra we obtain

µHF =
1

π
arctan

[
πu0

2
µHF +

Λ0

∆

]
+

1

π
arctan

[
πu0

2
µHF

1 + Λ0

∆

]

+
1

2π
ln

[
1 +

(
πu0

2
µHF + Λ0

∆

)2(
1 + Λ0

∆

)2
+
(
πu0

2
µHF

)2

]
. (15.8)
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Finally, if we take the limit Λ0 →∞, we estimate

lim
Λ0→∞

µHF =
1

2
. (15.9)

This value arising due to the diluted magnetic field is the half of the magnetic
moment which is obtained in (14.17). This expression yields for the initial value of
the magnetization Ml=0 ≈ U/4.

15.2 FRG flow equations

The flow equation for the magnetic moment can again be obtained analytically,
inserting the expression (15.3) in Eq. (13.35). We have

∂lMl = Z2
l Λ

∫
ω̄

F⊥Λ (iω̄) Θ(Λ− |ω̄|)
[iσ̄ω̄ + iσ̄∆l sgn(ω̄) + σ̄Zl(Λ− |ω̄|+Ml)]2

= −2Z2
l Λ Re

∫ Λ

0

dω̄

2π

F⊥Λ (iω̄)

[ω̄ + ∆l − iZl(Λ− ω̄ +Ml)]2
. (15.10)

Now, we consider the anomalous dimension ηl. Similar to Eq. (14.8) we obtain
according to Eqs. (15.3) and (13.36),

ηl = 2Z3
l Λ

∫
ω̄

[
F⊥Λ (iω̄) [1 + isgn(ω̄)Zl] Θ(Λ− |ω̄|)

[iω̄ + i∆l sgn(ω̄) + Zl(Λ− |ω̄|+Ml)]3

+
2∆lF

⊥
Λ (0) δ(ω̄)[

i∆l sgn(ω̄) + Zl(Λ +Ml)
]3 − F⊥Λ (iω̄) δ(Λ− |ω̄|)

[iω̄ + i∆l sgn(ω̄) + Zl(Λ− |ω̄|+Ml)]2

]
, (15.11)

where we have again used sgn(x) = 2Θ(x)−1. Applying the relations (12.20, 14.10),
we find that the linear terms in U cancel each other out and we obtain after some
algebra,

ηl = −4Z3
l Λ
U2

2π

[
Im

∫ Λ

0

dω̄
Π⊥LA,Λ(iω̄) (1 + iZl)

[ω̄ + ∆l − iZl(Λ− ω̄ +Ml)]3

+ Im
Π⊥LA,Λ(iΛ)

2[Λ + ∆l − iZlMl]2
− Π⊥LA,Λ(0)

∆lZl(Λ +Ml)

[∆2
l + Z2

l (Λ +Ml)2]2

]
. (15.12)
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Finally, if we introduce the dimensionless coefficients defined by (14.13), the differ-
ential equations can be written in the following form,

∂lml = −Zlλlul Re

∫ λl

0

dx

[1− ulf⊥hΛ
(x, λl,ml/Zl, Zl)][1 + x− i(Zlλl − Zlx+ml)]2

,

(15.13)

ηl = −2Zlλlu
2
l

[
Im

∫ λl

0

dx
f⊥hΛ

(x, λl,ml/Zl, Zl)

1− ulf⊥hΛ
(x, λl,ml/Zl, Zl)

1 + iZl
[1 + x− i(Zlλl − Zlx+ml)]3

+Im
f⊥hΛ

(λl, λl,ml/Zl, Zl)

1− ulf⊥hΛ
(λl, λl,ml/Zl, Zl)

1

2[1 + λl − iml]2

− f⊥hΛ
(0, λl,ml/Zl, Zl)

1− ulf⊥hΛ
(0, λl,ml/Zl, Zl)

Zlλl +ml

[1 + (Zlλl +ml)2]2

]
, (15.14)

15.3 Numerical results

We demand again that, by the initial condition Ml=0 =MΛ0 , the magnetic moment
Ml in the limit l → ∞ flows to zero. A graph of the ratio between the estimated
value MΛ0 and UµHF/2 as a function of u0 = U/(π∆) is shown in Fig. 15.1.
For comparison we depict also the results obtained in the previous chapter, using
frequency independent magnetic field cutoff. It is obvious that the value MΛ0 for
the modified magnetic field cutoff is closer to UµHF/2 than for the usual magnetic
field cutoff. Note that in the case of hΛ(iω) = Λ the magnetic moment could not
become larger than UµHF/2 (where µHF = 1), otherwise the physical magnetization
would be bigger than unity where the whole spins point in the same direction.

Setting now Ml=0 = MΛ0 and Zl=0 = 1, the numerical evaluation of the wave
function renormalization factor yields again Z = liml→∞ Zl is finite for the whole
values of the bare coupling u0 = U/(π∆). The determined numerical solution of Z
for the modified magnetic field cutoff is shown in Fig. 15.2. This results are com-
pared with the prediction of the ladder approximation, the result for the frequency
independent magnetic field cutoff from Chap. 14 and the exact results obtained via
NRG in Ref. [100]. Obviously, our new results for Z do not deviate essentially from
the results obtained for the frequency independent cutoff hΛ(iω) = Λ. In Fig. 15.3,
we show that our results for u0 . 2 are improved, because the difference between
FRG and NRG results decreases slightly.

However, in the limit u0 → ∞, we cannot again recover the exponential sup-
pression given by Eq. (11.17). Furthermore, in Fig. 15.4 we show the data in Fig.
15.2 by plotting 1/Z on a logarithmic scale. Note that at strong coupling the exact
results obtained by NRG behave as a linear function on the logarithmic scale. In
Fig. 15.5 we compare on the same scale our final results with the results obtained
by Bartosch et al. [101], who studied the same problem using FRG in two channels,
transverse and longitudinal spin channels and introduced the RG cutoff in bosonic
propagators. Obviously for u0 . 2 our results coincide better with the exact re-
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Figure 15.1: The ratio ofMΛ0 to UµHF/2 for the magnetic field cutoff (dashed line)
and for the modified magnetic field cutoff (solid line). For hΛ(iω) = hΛ(0) = Λ, we
set as before µHF = 1 while for hΛ(iω) = (Λ− |ω|)Θ(Λ− |ω|) we set µHF = 1/2 [see
Eq. (15.9)] . It is obvious that for the modified magnetic field cutoff the determined
value of MΛ0 is closer to UµHF/2 than for the usual magnetic field cutoff.

sults. On the other hand, in the strong coupling regime, the cutoff in the bosonic
propagator and calculation in two channels lead to a more suitable approach than
the modified magnetic field cutoff, because the wave function renormalization factor
becomes smaller.

Eventually it is instructive to treat the spectral density of d-electrons, defined
by

A(ω) = − 1

π
ImGσ(iω → ω + i0) , (15.15)

where Gσ(iω) is approximated by Gσ
Λ=0(iω). We obtain thus,

π∆A(ω) =
1

1 + ( ω
Z∆

)
, (15.16)

where Z = liml→∞ Zl is obtained within FRG using modified magnetic field cutoff.
A graph of the spectral density for different values of the coupling u0 = U/(π∆) is
shown in Fig. 15.6.

Within our low energy approximation (13.27), we can obtain the behavior of
the quasi particle peak (here the Kondo resonance) in the context of the Fermi
liquid theory. But, we cannot recover the line shape for ω > ∆, in particular the
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Figure 15.2: Numerical solution for Z = liml→∞ Zl as a function of the bare coupling
u0 = U/(π∆) for the modified magnetic field cutoff, which is shown by solid line.
The new results resemble the results from the previous chapter which are obtained
within the frequency independent magnetic field cutoff scheme and are shown by
dashed line.

broadened Hubbard peaks. For further investigation, it is therefore necessary to
take into account that in the limit u0 →∞, the weight of the Kondo peak becomes
negligibly small and therefore the spectral function is not more characterized by
the Kondo resonance but rather by the Hubbard-band peaks. On the other hand,
the study of the AIM considering transverse as well longitudinal spin fluctuations
is described in Refs. [103–107]. The authors of Ref. [101] have also applied FRG in
both the transverse and the longitudinal channel. It is thus useful to work with two
types of channels to obtain better results.
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Figure 15.3: Comparison of the FRG results within different cutoff schemes with the
accurate NRG solution at regime u0 = U/(π∆) < 2. The results for the modified
magnetic field cutoff are closer to the exact NRG results than for hΛ(iω) = Λ.
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Figure 15.4: Redrawing of Fig. 15.2 by plotting the inverse wave function renormal-
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cutoff represents in this graph the “modified” magnetic field cutoff i.e., hΛ(iω) =
(Λ− |ω|)Θ(Λ− |ω|).
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Chapter 16

Summary of part II

In the second part of this thesis, we applied the exact FRG approach to the particle-
hole symmetric Anderson impurity model at zero temperature. We have worked out
the spectral properties of the Anderson impurity model and mapped the fermionic
problem onto a mixed Bose-Fermi theory to handle the challenge in the transverse
spin-flip channel. This strategy was proposed before in Ref. [101] and is based on the
partial bosonization within FRG [7, 57, 58, 60–63]. In the transverse spin channel
one can thus remove the unphysical Stoner instability which is an artifact of the
Hartree-Fock approximation.

For our FRG approach we have employed the magnetic field cutoff as a cutoff
in the fermionic propagator. We have developed the flow equation for the self-
energy and used the skeleton equation following from the Dyson-Schwinger equations
to express the irreducible spin-flip susceptibility in terms of the fermionic Green
functions. For more simplicity we have also approximated the irreducible three- and
four-legged vertices by their initial values. Because the four-legged vertices vanish
at the beginning, we have neglected these parameters throughout this work. This
truncations are reasonable because the vertices with higher number of legs becomes
irrelevant in the RG sense. Furthermore we have expanded the self-energy in powers
of the frequency so that we have obtained two separated terms, where the first one
denotes the flowing magnetization and the second one describes the wave function
renormalization factor. Note that this expansion is only good for ω < ∆. If we
use the modified magnetic field cutoff, the initial condition of the self-energy is
given with a good approximation by the Hartree-Fock approximation. According
to our results, the evaluated wave function renormalization factor Z agrees very
well in the regime u0 = U/(π∆) . 2 with the exact results obtained via the NRG
method. However, in the strong coupling regime U → ∞ we could not reproduce
the exponential suppression for the weight of the Kondo peak given by Eq. (11.17).

Finally, we point out that in order to improve these results in the strong coupling
regime, we should solve the coupled differential equations (13.25, 13.26), by taking
into account that the Fermi liquid approximations given by Eqs. (13.31, 13.32) are
not more reliable, as the weight of the Kondo peak becomes exponentially small.
Indeed, in the strong coupling regime, two high energy Hubbard band peaks (see
Fig. 11.2) become important. We expect thus, due to the agreement of our results
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with the accurate NRG results for the small value of U , in the strong coupling regime
the problem becomes treatable without linearizing the fermionic self-energy.
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Deutsche Zusammenfassung

In dieser Arbeit untersuchen wir niedrigenergetische Anregungen in niedrigdimen-
sionalen Fermi-Systemen. Diese Dissertation besteht aus zwei Teilen. In dem ersten
Teil studieren wir die Eigenschaften der bosonischen Anregung nullter Schall in
eindimensionalen Fermigasen während wir im zweiten Teil Einteilchen-Anregungen
der Störelektronen im Anderson-Störstellen-Modell betrachten.

I. Dynamischer Strukturfaktor von Luttingerflü-

ssigkeiten

Das Verhalten der eindimensionalen Elektronensystemen zeigt einige exotische Ei-
genschaften, die von der Fermi-Flüssigkeitstheorie nach Landau [2] abweichen. Diese
Eigenschaften die auch experimentell nachgewiesen worden sind [11–14], fasst man
unter Luttinger-Flüssigkeitstheorie zusammen [8, 10]. Eines der wichtigen Modelle,
welches solche Systeme beschreibt ist das Tomonaga-Luttinger-Modell (TLM) [15,
16]. Da die Fermi-Fläche in eindimensionalen Fermigasen nur aus zwei Punkten kF
und −kF besteht, linearisiert man in diesem Modell die Energiedispersion um diese
beiden Fermi-Punkte.

Im ersten Teil der Dissertation interessieren wir uns für die bosonische Anre-
gung, die der nullte Schall heißt und durch Dichte-Fluktuationen erzeugt wird. Da
das TLM exakt lösbar ist, ist die Dichte-Dichte-Korrelationsfunktion Π(Q), durch
die RPA-Näherung gegeben. Der dynamische Strukturfaktor besitzt deshalb einen
Delta-Peak STLM(ω, q) = Zqδ(ω − ωq), wobei ωq = v0|q| der Energie des nullten
Schalls entspricht.

Die Frage ist es nun, wie sich der dynamische Strukturfaktor ändert wenn wir
die quadratische Energiedispersionen auch in die Rechnung einbeziehen. Bis jetzt,
hat es mehrere Versuche gegeben um diese Frage zu beantworten. Die erfolgreich-
sten Arbeiten stammen von Pereira et al. [4, 35, 36], die ein exakt lösbares Modell
betrachtet haben, sowie Pustilnik et al. [3,32], die eine Störungstheorie ohne Boson-
isierung durchgeführt haben. In den beiden Arbeiten wurde gezeigt, dass der dy-
namische Strukturfaktor sich für q → 0 wie q2/m verbreitet und die Linienform eine
sogenannte Schwelle-Singularität an der unteren Grenze aufweist.

Im Teil I haben wir den Effekt der quadratischen Korrekturen zu der Energiedis-
persion betrachtet. Ferner haben wir mit einer Wechselwirkung gearbeitet, die
durch die Vorwärtsstreuung g2 = g4 = fq gegeben ist, wobei fq von kleinen Im-
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pulsüberträge q < q0 dominiert ist. Der Hamilton-Operator hat also folgende Form

Ĥ = Ĥ0 + Ĥint ,

Ĥ0 =
∑
k

εkĉ
†
kĉk ,

Ĥint =
1

2

∑
q

fqρ̂−qρ̂q ,

wobei εk = k2/2m und ρ̂q =
∑

k ĉ
†
kĉk+q ist die Dichte-Operator. Das so konstruierte

Modell nennen wir dann Vorwärts-Streuung-Modell (FSM). Das exakt lösbare Mod-
ell, das von Pereira et al. studiert wurde, beschreibt in Wirklichkeit die Heisenberg
XXZ Spin-Kette, die äquivalent zu einem eindimensionalen fermionischen System
ist. Dieses Modell besitzt jedoch neben Vorwärtsstreuung, Rückwärtsstreuung und
auch Wechselwirkungen mit großen Impulsüberträgen. Das von Pereira et al. betra-
chtete Modell ist deshalb verschieden von unserem FSM. Anderseits haben Pustilnik
et al. nicht die Renormierung der Geschwindigkeit des nullten Schalls berücksichtigt.
Außerdem, haben Pustilnik et al. nicht die höhere Störungsreihe analysiert sowie
angenommen dass durch eine Resummation die logarithmische Divergenz in erster
Ordnung der Störungsreihe in einer algebraischen Divergenz umwandelbar ist. Trotz
dieser Fortschritte, ist deshalb eine genaue Angabe der Linienform des dynamischen
Strukturfaktors für nicht exakt lösbare Modelle noch nicht bekannt.

In dieser Arbeit benutzen wir die funktionale Bosonisierung um die Dichte-Dichte
Wechselwirkung mittels eines bosonischen Hubbard-Stratonovich Feldes φQ zu en-
tkoppeln. Integrieren wir über die fermionischen Felder {cK , c̄K}, erhalten wir ein
rein bosonisches Modell, wobei die bosonisierte effektive Wirkung Seff [∆φ] für die
linearisierte Energiedispersion quadratisch ist. Die Wechselwirkungsterme werden
deshalb von der Band-Krümmung erzeugt und sie werden durch die symmetrisierten
Fermion-Schleifen L

(n)
S (Q1, . . . , Qn) mit n > 2 beschrieben. Hier ∆φQ = φQ+ iδQ,0φ̄,

mit Q = (iω̄, q), δQ,0 = βV δω̄,0δq,0 und φ̄ ist der Erwartungswert des Feldes φ für
Q = 0. Im Kapitel 4, leiten wir die funktionale Renormierungsgruppe für das
FSM her, indem wir gemischte Bose-Fermi-Felder einführen. Damit erhalten wir die
Flussgleichung für die irreduzibele Polarisierung. In Kapitel 6 kommen wir jedoch
wieder auf die funktionale Bosonisierung zurück. Für eine Störungsreihe müssen
wir nämlich auch die symmetrisierten Fermion-Schleifen bestimmen. Zur führenden
Ordnung in 1/m zeigen wir

L
(n)
S (Q1, . . . , Qn) ∝ (1/m)n−2 ,

so dass für die linearisierte Energiedispersion (d.h. 1/m → 0) der Wechselwirkun-
ganteil von Seff [∆φ] verschwindet. Im Rahmen der bosonisierten Störungstheorie er-
halten wir eine selbst konsistente Gleichung für die irreduzibele Polarisierung Π∗(Q).

In unserer Störungsreihe entwickeln wir Π∗(Q) nach der zweiten Potenz von

q0 ∝ 1/m. Deshalb tauchen nur L
(3)
S und L

(4)
S in unserer Rechnung auf. Um je-

doch S(ω, q) zu bestimmen, müssen wir einige weitere Näherungen machen: Wir
ersetzen die nicht-wechselwirkende Polarisierungen Π0(Q) in den Fermion-Schleifen
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L
(3)
S und L

(4)
S durch ihre Beiträge für 1/m→ 0. Ein wichtiges Zwischenergebnis un-

serer Rechnung ist, dass die von uns entwickelte Methode im Gegensatz zu anderen
störungstheoretischen Methoden keine Mass-Shell-Singularität erzeugt. Diese un-
physikalischen Singularitäten tauchten in den anderen Arbeiten in Zusammenhang
mit der konventionellen Bosonisierung auf.

Unsere Rechnung ist jedoch für den Bereich qc � q � kF gültig, wobei der
Übergangsparameter qc = 1/(mf ′′0 ) durch die zweite Ableitung f ′′0 der Fourier-
Transformation der Wechselwirkung an der Stelle q = 0 gegeben ist. Wenn die
Fourier-Transformation der Wechselwirkung durch eine Lorentz-Kurve mit der Bre-
ite q0 approximiert werden kann, erhalten wir qc ∝ q2

0, so dass der Bereich qc �
q � kF breit genug ist um experimentelle Untersuchungen durchzuführen. Das
wichtigste Ergebnis unserer Rechnung zeigt, dass die Breite des nullten Schalls sich
für qc � q � kF wie γq ∝ q3/(mqc) verhält. Im Übergangbereich q ≈ qc ist
unser Ergebnis konsistent mit dem asymptotischen Verhalten für lange Wellenlängen
γq ∝ q2/m, das bereits von den anderen Autoren gezeigt worden ist [3–5]. Für
f ′′0 < 0, ist die spektralen Linienform nicht Lorentz-förmig und sie besitzt eine
Schwelle-Singularität an der Stelle ω = ω−q ≈ vq − 4γq/3, ein kleines lokales Max-
imum um ω ≈ vq − γq/3, und einen Schwanz bei den hohen Frequenzen, der wie
q4/ω2 skaliert. Hier ist v die renormierte Geschwindigkeit des nullten Schalls. Für
f ′′0 < 0 und für ω → ω−q + 0 verhält sich die Schwelle-Singularität innerhalb unserer
Näherung logarithmisch, d.h.,

S(ω, q) ∝ 1

ηq(ω − ω−q ) ln2(ω − ω−q )
.

Nehmen wir an, dass die höheren Ordnungen in der Störungsreihe den Logarithmus
potenzieren, dann bekommen wir eine algebraische Singularität mit dem Exponent
µq = 1− 2ηq, wobei ηq ∝ q2

c/q
2 für q � qc.

Von anderen Autoren ist es schon nachgewiesen worden dass S(ω, q) für die exakt
lösbare Modelle algebraische Schwelle-Singularitäten besitzt [4,32,33,35,36]. Jedoch
gibt es immernoch keinen Beweis dafür, dass die logarithmischen Divergenzen bei
der Summation in der höheren Ordnung der Störungtheorie in die algebraischen
Singularitäten übergehen (Dies wurde zuerst in Ref. [3] vorgeschlagen und in unserer
Rechnung angenommen). Dieser Beweis benötigt einige analytische Rechnungen bei
der Entwicklung der Störungsreihe, die wir nicht durchgeführt haben.

Anderseits haben wir für die explizite Bestimmung der Selbtskonsistenz-Glei-
chung der irreduzibelen Polarisierung Π∗(ω, q), die wir im Abschnitt 7.1 hergeleitet
haben, die Approximation A vom Abschnitt 7.2 benutzt. Wir haben aber gezeigt,
dass die Approximation A nicht ausreicht, um den dynamischen Strukturfaktor für
q . qc zu bestimmen, da die Dämpfung in diesem Bereich von anderen Termen
dominiert ist. Außerdem versagt unsere Approximation A, für Wechselwirkungen
mit scharfem Impuls-Cutoff d.h. fq = f0Θ(q0 − |q|). Es wäre deshalb interessant
die Selbtskonsistenz-Gleichung für die irreduzibele Polarisierung Π∗(ω, q) in Ab-
schnitt 7.1 ohne die Approximation A zu betrachten. Wir erwarten dass in diesem
Fall unser Ergebnis für S(ω, q) keine Mass-Shell-Singularität besitzt, sogar wenn der
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Impuls-Cutoff der Wechselwirkung scharf ist.
In Kapitel 4 haben wir im Zusammenhang der FRG eine Flussgleichung für die

irreduzibele Polarisierung hergeleitet. Vielleicht kann die FRG ein guter Startpunkt
sein, um noch offene Probleme in diesem Teil der Arbeit zu klären.

II. Anwendung der FRG auf das Anderson-Stör-

stellen-Modell

Das Anderson-Störstellen-Modell (AIM) wurde von Anderson vorgeschlagen um
magnetische Störstellen in Metallen zu beschreiben. Der Hamiltonoperator besteht
hier aus nicht wechselwirkenden Leitungselektronen, die an eine einzige wechselwirk-
ende magnetische Störstelle im d-Orbital gekoppelt sind,

Ĥ =
∑
kσ

(εk − σh)ĉ†kσ ĉkσ +
∑
σ

(Ed − σh)d̂†σd̂σ

+ Ud̂†↑d̂↑d̂
†
↓d̂↓ +

∑
kσ

(V ∗k d̂
†
σ ĉkσ + Vkĉ

†
kσd̂σ) ,

wobei εk die Energiedispersion der Leitungselektonen mit Impuls k darstellt und
Ed der atomaren Energie der d-Elektronen entspricht. Die örtliche Abstoßung zwis-
chen den Störelektronen bezeichnen wir hier mit U und die Hybridisierungsenergie
zwischen den Leitungselektronen und den d-Elektronen mit Vk .

Wir interessieren uns für den Bereich der lokalen Impulse, wo der Grundzustand
durch die einfache Besatzung gegeben ist. Weiterhin setzen wir die Teilchen-Loch-
Symmetrie voraus, die durch N = 1 und Ed − µ = −U/2 charakterisiert ist. Dabei
bezeichnen wir die durchschnittliche Besetzungszahl mit N und µ ist das chemische
Potential. Wir erhalten die effektive Wirkung für die d-Elektronen indem wir die
Leitungselektronen integrieren. Die Kopplung an die Leitungselektronen führt dann
zu einer effektiven Selbstenergie für die d-Elektronen,

∆σ(iω) =
∑
k

|Vk|2
iω − εk + µ+ σh

.

Für ein verschwindendes Magnetfeld und im Grenzwert breiter Bänder, können wir
außerdem einsetzen: ∆σ(iω) = ∆.

Im Teil II haben wir mit Hilfe der FRG die Spektralfunktion A(ω) von d-
Elektronen im Teilchen-Loch-symmetrischen AIM bei verschwindender Temperatur
bestimmt. Wir bemerken, dass die Spektralfunktion der d-Elektronen bereits aus
der numerischen Renormierungsgruppe bekannt ist [74, 85]. Man weiß, dass das
Spektrum eine scharfe Resonanz bei verschwindender Frequenz besitzt, die man als
Kondo-Peak bezeichnet. Ferner gibt es zwei Schultern auf beiden Seiten des Kondo-
Peaks die den Hubbard-Bändern entsprechen [86]. Wenn die Hybridisierungsenergie
Vk zwischen den Leitungselektronen und den d-Elektronen verschwindet, dann tra-
gen die beiden Hubbard-Band-Peaks das Gewicht des ganzen Spektrums, wobei die
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Positionen der Hubbard-Band-Peaks durch ±U/2 gegeben sind [88]. Mit Hilfe des
Bethe-Ansatzes ist es außerdem gezeigt worden, dass für U/∆� 1 das Gewicht des
Kondo-Peaks exponentiell abfällt [79,80],

ZKP ≈
√

8U

π2∆
e−

πU
8∆ .

Eine “analytische Bestimmung” der Spektralfunktion A(ω) für jede beliebige Fre-
quenz ω fehlt jedoch. Für weitere Untersuchungen der reellen dreidimensionalen
fermionischen Systeme im Zusammenhang der dynamischen Molekularfeldtheorie
ist außerdem die genaue Kenntnis über das Verhalten von A(ω) erforderlich.

An dieser Stelle benutzen wir wieder Hubbard-Stratonovich Transformation um
das fermionische System auf ein gemischtes Bose-Fermi-System abzubilden und das
Problem in einem transversalen Spin-Flip-Kanal zu behandeln. Diese Strategie ist
in Ref. [101] vorgeschlagen worden und basiert auf der partiellen Bosonisierung in-
nerhalb der FRG [7,57,58,60–63]. Es ist bekannt, dass es durch die Bosonisierung
im transversalen Spin-Kanal möglich ist, die unphysikalische Stoner-Instabilität zu
eliminieren, die man durch die Hartree-Fock Näherung erhält.

In unserer FRG-Rechnung, benutzen wir das Magnetfeld als ein Cutoff im fer-
mionischen Propagator. Zur Lösung der FRG Flussgleichungen verwenden wir
die Dyson-Schwinger Gleichungen um die irreduzibele Polarisierung mit Hilfe der
fermionischen Greenfuntionen darzustellen. Die entstehende Gleichung nennt man
die Skelett-Gleichung im bosonischen Sektor. Zur weiteren Vereinfachung, ver-
nachlässigen wir außerdem den Fluss der irreduzibelen Vertices mit drei Beinchen.
Da die irreduzibelen Vertex-Funktionen mit vier Beinchen am Anfang verschwinden,
können wir sie ganz vernachlässigen. Diese Trunkierungen sind deshalb plausibel,
weil die Vertex-Funktionen mit einer höheren Anzahl von Beinchen irrelevant in
RG-Sinn sind. Wir entwickeln auch die Selbstenergie bis zur ersten Potenz der Fre-
quenz, wobei die nullte Potenz der fließenden Magnetisierung Ml entspricht. Aus
der ersten Potenz erhalten wir den Wellenfunktions-Renormierungsfaktor Zl, der
äquivalent zu dem Gewicht des Kondo-Peaks ist. Der Parameter l = − ln(Λ/Λ0) ist
durch den RG-Koeffizienten Λ gegeben, so dass die Anfangsbedingung an der Stelle
l = 0 (Λ = Λ0) definiert ist. In dieser Näherung, vernachlässigen wir das Gewicht
der Hubbard-Bänder und es ist klar, dass diese Entwicklung nur für ω . ∆ gültig
sein kann. Es zeigt sich, dass die Anfangsbedingung so gewählt sein muss, dass die
Magnetisierung Ml→∞ am Ende gegen Null fließt da der RG-Cutoff verschwindet.
Wenn wir einen veränderten Magnetfeld-Cutoff einführen, der es nicht erlaubt, dass
die höheren Frequenzen von dem Magnetfeld beeinflusst werden, sehen wir, dass
der Anfangswert für die fließende Selbstenergie mit sehr guter Näherung durch den
Hartree-Fock-Wert gegeben ist.

Unsere Ergebnisse zeigen, dass die berechneten Werte für die Wellenfunktions-
Renormierungsfaktor Z = Zl→∞ im Bereich u0 = U/(π∆) < 2 sehr gut mit den
exakten Werten, die man aus NRG kennt übereinstimmen. Trotzdem konnten wir
im Bereich der starken Kopplung U → ∞ die exponentielle Unterdrückung vom
Kondo-Peak nicht reproduzieren.
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Um unsere Ergebnisse bei der starken Kopplung zu verbessern, sollten wir die
gekoppelte Flussgleichungen auswerten ohne die gegebene Entwicklung für die flie-
ßende Selbstenergie durchzuführen. In der Tat, wenn die Wechselwirkung U wächst,
fällt das Gewicht des Kondo-Peaks exponentiell ab. Deshalb benötigen wir für weit-
ere Untersuchungen eine andere Approximation die auch das Gewicht der Hubbard-
Bänder berücksichtigt.
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