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Hadronic polarization and the related anisotropy of the dilepton angular distribution are studied for 
the reaction π N → Ne+e−. We employ consistent effective interactions for baryon resonances up to 
spin-5/2, where non-physical degrees of freedom are eliminated, to compute the anisotropy coefficients 
for isolated intermediate baryon resonances. It is shown that the spin and parity of the intermediate 
baryon resonance is reflected in the angular dependence of the anisotropy coefficient. We then compute 
the anisotropy coefficient including the N(1520) and N(1440) resonances, which are essential at the 
collision energy of the recent data obtained by the HADES Collaboration on this reaction. We conclude 
that the anisotropy coefficient provides useful constraints for unraveling the resonance contributions to 
this process.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Dilepton production in hadronic reactions provides information 
on the electromagnetic properties of hadrons. Leptons are also im-
portant probes of nuclear collisions, since their mean-free path in 
nuclear matter is much larger than nuclear sizes. Hence, they can 
carry information on the conditions that prevail during the brief, 
highly compressed stages of the reaction. Dileptons are produced 
in a variety of different elementary processes. Multiply differen-
tial cross sections for dilepton production can provide information 
needed to disentangle the production channels.

Independently of the specific reaction, dileptons originate from 
the decay of virtual photons. According to the vector meson dom-
inance hypothesis, hadrons couple to the electromagnetic field via 
a neutral vector meson, which subsequently converts into a pho-
ton. Although vector meson dominance does not provide an ac-
curate description of the electromagnetic coupling for all hadrons, 
it provides a tenable first approximation. This implies that dilep-
ton production in nuclear collisions can furnish information on the 
in-medium spectral functions of vector mesons.

A detailed understanding of elementary hadronic reactions is 
an important prerequisite for studies of nuclear collisions. While 
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a lot of effort has been invested in the study of dilepton produc-
tion in nucleon–nucleon collisions both in experiment and theory, 
pion–nucleon collisions are less explored. The HADES Collabora-
tion has recently studied pion-induced reactions, including dilep-
ton production. First preliminary data have been presented at the 
NSTAR2015 conference [1]. The aim of the present paper is to ex-
plore the reaction π N → R → Ne+e− , where R is the intermediate 
baryon resonance, in terms of effective Lagrangian models at the 
center-of-momentum (CM) energy of the HADES experiment. In 
particular we study the angular distribution of the produced dilep-
tons.

The general expression for the angular distribution of dileptons 
originating from the decay of a virtual photon is given by [2–4]:

dσ

d�e
∝ 1 +λθ cos2 θe +λθφ sin 2θe cosφe +λφ sin2 θe cos 2φe, (1)

where θe and φe are the polar and azimuthal angles of one of the 
two leptons in the rest frame of the photon. The anisotropy coef-
ficients λθ , λθφ and λφ depend on the choice of the quantization 
axis. We use the so-called helicity frame where the polarization 
axis is chosen along the momentum of the virtual photon in the 
CM frame [5].

As we discuss in Section 2, in the reaction π N → R → Ne+e− , 
the anisotropy coefficients depend on the quantum numbers of the 
intermediate baryon resonance and on the scattering angle θγ ∗ of
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the virtual photon. In Ref. [6] the coefficient λθ has been computed 
for some of the relevant dilepton sources in heavy-ion collisions. 
On the experimental side, a non-zero polarization of the J/ψ has 
been found in proton–proton [7] and proton–nucleus collisions [5]. 
In heavy-ion collisions the anisotropy coefficients is compatible 
with zero at low invariant masses of the lepton pair [8].

In pion–nucleon scattering, it is expected that a major part of 
the dilepton production cross section is due to s-channel baryon 
resonances with a mass close to the CM energy 

√
s. The emergence 

of a dilepton anisotropy in these processes can be understood as 
follows. The initial state, which in the CM frame contains a pion 
with momentum p and a nucleon with momentum −p, can be 
expanded in terms of eigenstates of orbital angular momentum

|π(p); N(−p)〉 ∝
∑
lm

Y ∗
lm(θ,φ) |lm〉 , (2)

where θ and φ specify the direction of p with respect to the 
quantization axis. Here spin quantum numbers as well as the nor-
malization are omitted for clarity. We choose the quantization axis 
z parallel to the momentum of the incident pion, implying that 
θ = 0. Since Ylm(θ = 0, φ) �= 0 only for m = 0, the z-component of 
the orbital angular momentum vanishes in the initial state. Hence, 
the projection of the total spin of the intermediate baryon reso-
nance on the beam axis is given by the z-component of the nu-
cleon spin. This means that only the J z = +1/2 and −1/2 states 
of the resonance are populated.

As a result, in case of an unpolarized nucleon target, spin-1/2
intermediate resonances are unpolarized, and consequently there is 
no preferred direction in the CM frame. Accordingly, in this case all 
observables are independent of the scattering angle, i.e., the angle 
θγ ∗ of the virtual photon in the CM frame. On the other hand, in-
termediate resonances of spin ≥ 3/2 have a nontrivial polarization, 
implying an angular anisotropy in the CM frame. Consequently, in 
this case, observables show a nontrivial dependence on the scat-
tering angle θγ ∗ , which reflects the quantum numbers of the reso-
nance.

The determination of the quantum numbers of the baryon res-
onances produced in pion–nucleon collisions is important for gain-
ing a deeper understanding of hadron–hadron interactions in gen-
eral and dilepton production in hadronic collisions in particular. 
The above arguments indicate that the study of the angular dis-
tribution of dileptons can provide valuable information on the spin 
and parity of the intermediate resonances. In principle, by compar-
ing measured angular distributions of the dileptons with theoreti-
cal predictions for different resonance states, it should be possible 
to set constraints on the quantum numbers of the resonance. The 
same idea has been used e.g. to determine the quantum numbers 
of the X(3872) meson [9].

At the intermediate energies explored in the HADES experi-
ment, the task is facilitated by the small number of baryon reso-
nances that contribute significantly. However, in practice the situa-
tion is often more complex than in the ideal case of an isolated 
resonance which dominates the cross section. Thus, in general 
there is interference with nearby resonances and with a non-
resonant background which must be accounted for.

In this paper we study the angular distribution of dileptons in 
the process π N → Ne+e− in terms of the anisotropy coefficient λθ

of Eq. (1). In Section 2 we give the expressions of the differential 
cross section and the anisotropy coefficient. In Section 3 we briefly 
review the effective Lagrangian of our model. This is followed by a 
presentation of the numerical results for the anisotropy coefficient 
in Section 4, where we also briefly explore the effect of nearby 
resonances. Conclusions are presented in Section 5.
2. Cross section and anisotropy coefficient

The differential cross section of the process π N → Ne+e− can 
be written in the form

dσ

dMd cos θγ ∗d�e
= M

64(2π)4s

|p f |
|pi |

1

npol

∑
pol

|M|2 , (3)

where M is the matrix element, θγ ∗ is the polar angle of the mo-
mentum of the virtual photon in the CM frame measured from the 
beam axis and d�e is the solid angle of the electron in the rest 
frame of the lepton pair [10]. Moreover, M is the invariant mass 
of the lepton pair, s is the square of the CM energy, pi and p f are 
the CM three-momenta of the initial and final nucleons, respec-
tively. The sum is over all spin states in the initial and final state 
particles and npol is the number of spin polarizations in the initial 
state.

The square of the matrix element can be written in the form

∑
pol

|M|2 = e2

k4
Wμνlμν, (4)

where the lepton tensor,

lμν = 4
[
kμ

1 kν
2 + kν

1kμ
2 − (k1 · k2 + m2

e )gμν
]

(5)

describes the coupling of the virtual photon to the e+e− pair, 
k1 and k2 being the momenta of the electron and positron, re-
spectively, and me being the electron mass. The quantity

Wμν =
∑
pol

Mhad
μ Mhad

ν
∗

(6)

is the hadronic tensor, where Mhad
μ is the hadronic part of the 

matrix element M.
The nontrivial angular distribution of the e+e− pair is con-

nected with the polarization state of the decaying virtual photon. 
Therefore it is convenient to work in the polarization density ma-
trix representation [11]. Let εμ(k, λ) denote the polarization vector 
of the virtual photon of momentum k (the helicity λ can take on 
values ±1 and 0, since virtual photons can also be longitudinally 
polarized). The polarization vectors for the three helicities are, in 
the rest frame of the virtual photon,

εμ(k,−1) = 1√
2
(0,1,−i,0), (7)

εμ(k,0) = (0,0,0,1), (8)

εμ(k,+1) = − 1√
2
(0,1, i,0). (9)

We define the hadronic (or production) density matrix as

ρhad
λ,λ′ = e2

k4
εμ(k, λ)Wμνε

ν(k, λ′)∗ (10)

and the leptonic (or decay) density matrix as

ρ
lep
λ′,λ = εμ(k, λ′)lμνε

ν(k, λ)∗. (11)

In terms of the density matrices the square of the matrix element 
is given by∑
pol

|M|2 =
∑
λ,λ′

ρhad
λ,λ′ρ

lep
λ′,λ. (12)

The equivalence of Eqs. (4) and (12) is seen by employing the iden-
tity
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∑
λ

εμ(k, λ)εν(k, λ)∗ = −gμν + kμkν

k2
(13)

and the fact that kμlμν = 0.

The explicit form of the lepton spin density matrix ρ lep
λ′,λ is given 

by

ρ
lep
λ′,λ = 4|k1|2(

1 + cos2 θe + α −√
2 cos θe sin θee−iφe sin2 θee−2iφe

−√
2 cos θe sin θeeiφe 2(1 − cos2 θe) + α

√
2 cos θe sin θee−iφe

sin2 θee2iφe
√

2 cos θe sin θeeiφe 1 + cos2 θe + α

)
,

(14)

where θe and φe are the polar and azimuthal angle of one of the 
two lepton momenta relative to the polarization axis in the rest 
frame of the virtual photon, k1 is the three-momentum of one of 
the two leptons in the virtual photon rest frame and α = 2m2

e
|k1|2 . 

As noted above, we use the so-called helicity frame. In the rest of 
the paper we neglect the electron mass. The angular dependence 
of the squared matrix element is obtained by combining Eqs. (12)
and (14),∑
pol

|M|2 ∝ (1 + cos2 θe)(ρ
had
−1,−1 + ρhad

1,1 ) + 2(1 − cos2 θe)ρ
had
0,0

+ √
2 cos θe sin θe

[
eiφe (ρhad

0,1 − ρhad
−1,0)

+ e−iφe (ρhad
1,0 − ρhad

0,−1)
]

+ sin2 θe(e2iφe ρhad
−1,1 + e−2iφe ρhad

1,−1). (15)

Here we suppressed the explicit dependence of ρhad
λ,λ′ on M

and θγ ∗ . By comparing Eqs. (1) and (15), we can identify the 
anisotropy coefficients

λθ = ρhad
−1,−1 + ρhad

1,1 − 2ρhad
0,0

ρhad
−1,−1 + ρhad

1,1 + 2ρhad
0,0

, (16)

λθφ = √
2

Re(ρhad
0,1 − ρhad

−1,0)

ρhad
−1,−1 + ρhad

1,1 + 2ρhad
0,0

, (17)

λφ = 2
Re(ρhad

−1,1)

ρhad
−1,−1 + ρhad

1,1 + 2ρhad
0,0

, (18)

where we used the fact that the density matrix is hermitian. Equa-
tion (15) contains two further terms, proportional to sin 2θe sinφe

and sin2 θe sin 2φe , respectively, which in principle define two addi-
tional anisotropy coefficients. However, these two additional terms 
are unobservable [4].

The interpretation of the λθ coefficient becomes clear if we in-
tegrate over the azimuthal angle of the electron momentum φe . In 
this case only the first two terms of Eq. (15) yield a nonzero re-
sult, and hence only the diagonal elements of ρhad

λ,λ′ contribute to 
the averaged cross section. Consequently, the angular distribution 
Eq. (3) can be cast in the form

dσ

dMd cos θγ ∗d cos θe
∝ �⊥(1 + cos2 θe) + �‖(1 − cos2 θe), (19)

where �⊥ = ρhad
−1,−1 + ρhad

1,1 and �‖ = 2ρhad
0,0 are the contributions 

of the transverse and parallel polarizations of the intermediate 
photon to the differential cross section. Equation (19) can be re-
arranged in the following way:

dσ

dMd cos θ ∗d cos θ
∝ N (1 + λθ cos2 θe), (20)
γ e
where the anisotropy coefficient λθ is given by

λθ (M, θγ ∗) = �⊥ − �‖
�⊥ + �‖

. (21)

Thus, the anisotropy coefficient provides information on the polar-
ization of the virtual photon. If the virtual photon is created via the 
decay of an intermediate baryon resonance, then λθ (and in par-
ticular its dependence on θγ ∗ ) depends on the quantum numbers 
of the baryon resonance.

Predictions for the λθ coefficient for some dilepton sources are 
given in Ref. [6]. In particular for the Drell–Yan process λθ = +1
(the virtual photon is completely transversely polarized), while 
for the pion annihilation process λθ = −1 (the virtual photon is 
completely longitudinally polarized). In the case of a medium in 
thermal equilibrium, the polarization of the virtual photon, and 
hence the anisotropy coefficient λθ , in general depends on the mo-
mentum relative to the heat bath in addition to the production 
mechanism [12].

3. The model

In the present study we first focus on the contribution of Feyn-
man diagrams containing one baryon resonance in the s-channel, 
and set the resonance mass equal to 

√
s. Thus, we can explore the 

dependence of the angular shape of the anisotropy coefficient on 
the quantum numbers of the intermediate state in the ideal case 
of an isolated on-shell resonance. We then include the relevant 
baryon resonances in the mass range between 1.4 and 1.68 GeV 
and add also the corresponding u-channel diagrams. Obviously, 
this choice of diagrams is not exhaustive. Nevertheless, it provides 
a first estimate of interference effects. For the interpretation of the 
HADES data at 

√
s = 1.49 GeV, the nearby resonances N(1440), 

N(1520) and N(1535) are expected to provide the leading con-
tributions.

We assume that baryons couple to the electromagnetic field via 
an intermediate ρ0 meson according to the vector meson domi-
nance model.1 For the ρ0-photon coupling we use the gauge in-
variant vector meson dominance model Lagrangian [14]

Lργ = − e

2gρ
F μνρ0

μν, (22)

where F μν = ∂μ Aν − ∂ν Aμ is the electromagnetic field strength 
tensor and ρ0

μν = ∂μρ0
ν − ∂νρ

0
μ .

We include baryon resonances up to spin-5/2. The interaction 
of spin-1/2 baryons with pions and ρ mesons is described by the 
Lagrangian densities of Ref. [10],

LR1/2 Nπ = − gRNπ

mπ
ψ̄R�γ μ �τψN · ∂μ �π + h.c., (23)

LR1/2 Nρ = gRNρ

2mρ
ψ̄R �τσμν�̃ψN · �ρμν + h.c. (24)

Here, and also in the Lagrangians involving higher spin resonances 
given below, � = γ5 for J P = 1/2+ , 3/2− and 5/2+ resonances 
and � = 1 otherwise, and �̃ = γ5�.

Higher spin fermions are represented by Rarita–Schwinger 
spinor fields in effective Lagrangian models. These fields trans-
form according to a product of a spin-1/2 and one or more spin-1 
representations of the Lorentz group. Therefore they contain some 
contributions describing the propagation of lower-spin states. In 

1 We neglect the isoscalar channel, i.e. the ω meson, since it is not expected 
to modify the polarization of the virtual photon. We note, however, that ρ − ω
interference [13] may affect the dependence of the polarization observables on the 
dilepton invariant mass.
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a consistent Lagrangian involving higher-spin baryons, the lower-
spin components of the Rarita–Schwinger fields should not con-
tribute to observable quantities.

Such a consistent interaction scheme for spin-3/2 fermions was 
developed by Pascalutsa [15] and generalized for spin-5/2 fermions 
by Vrancx et al. [16]. In this work we specify the Lagrangian de-
scribing the interaction of higher-spin baryon resonances based on 
the scheme of Ref. [16]. In this scheme, the lower-spin degrees of 
freedom are eliminated from observables by requiring that the La-
grangian is invariant under the gauge transformations

ψμ → ψμ + i∂μχ, (25)

ψμν → ψμν + i

2
(∂μχν + ∂νχμ), (26)

for spin-3/2 (ψμ) and spin-5/2 (ψμν ) Rarita–Schwinger fields, 
respectively. In the above equations, χ and χμ are arbitrary 
spinor and spinor-vector fields, respectively. The gauge invariance 
of Eqs. (25) and (26) is ensured if only the gauge invariant expres-
sions of the fields

Gμ,ν = i(∂μψν − ∂νψμ), (27)

Gμν,λρ = −∂μ∂νψλρ − ∂λ∂ρψμν

+ 1

2
(∂μ∂λψνρ + ∂μ∂ρψνλ + ∂ν∂λψμρ + ∂ν∂ρψμλ)

(28)

appear in the Lagrangian. Furthermore, by defining the fields

�μ = γ νGμ,ν,

�μν = γ λγ ρGμν,λρ,
(29)

and making the replacements

ψμ → 1

m
�μ, and ψμν → 1

m2
�μν (30)

in a “traditional” Lagrangian containing Rarita–Schwinger fields 
one obtains a gauge invariant and hence consistent Lagrangian. 
The mass parameter m in Eq. (30) is introduced for dimensional 
reasons.

Starting from the Lagrangians of Ref. [16] and taking the isospin 
structure into account, we obtain the expressions

LR3/2 Nπ = igRNπ

m2
π

�̄
μ
R � �τψN · ∂μ �π + h.c., (31)

LR5/2 Nπ = − gRNπ

m4
π

�̄
μν
R � �τψN · ∂μ∂ν �π + h.c., (32)

for the Lagrangians describing the resonance-nucleon–pion inter-
action. In the case of � resonances, the Pauli matrices �τ appearing 
in the above and the following Lagrangians have to be replaced by 
the isospin-3/2 → 1/2 transition matrices.

The resonance-nucleon-ρ interaction Lagrangian is analogous to 
the electromagnetic resonance-nucleon transition Lagrangian. Out 
of the three Lagrangians given in Ref. [16] we choose the one with 
the lowest number of derivatives. After including the isospin struc-
ture of the interaction, the Lagrangians are given by

LR3/2 Nρ = igRNρ

4m2
ρ

�̄
μ
R �τγ ν�̃ψN · �ρνμ + h.c., (33)

LR5/2 Nρ = − gRNρ

(2mρ)4
�̄

μν
R �τ �̃γ ρ(∂μψN) · �ρρν + h.c. (34)

We explore the relevance of the different spins and parities 
by computing the anisotropy coefficient with a hypothetical res-
onance for each spin-parity combination, all with the same mass 
and width, mR = 1.49 GeV and �R = 0.15 GeV. The mass was cho-
sen to coincide with the CM energy 

√
s used in our calculations, 

thus assuming that in the s-channel the resonance is on the mass 
shell.

We also made calculations including all well established reso-
nance states in the relevant energy domain. These states are the 
nucleon resonances N(1440) 1/2+ , N(1520) 3/2− , N(1535) 1/2− , 
N(1650) 1/2− , N(1675) 5/2− , N(1680) 5/2+ , and the � res-
onances �(1600) 3/2+ , and �(1620) 1/2− . The coupling con-
stants gRNπ and gRNρ were determined from the widths of the 
R → Nπ and R → Nρ → Nππ decays. The empirical values for 
these partial widths were obtained as a product of the total width 
and the appropriate branching ratio as given by the Particle Data 
Group [17]. Masses of the resonances are also taken from Ref. [17].

We stress that the present model is intended to be valid for 
virtual photon masses not far from the ρ meson mass. The gauge 
invariant version of the vector meson dominance (22) does not 
contribute to processes with real photons and, therefore, the model 
has to be supplemented by a separate coupling of baryon reso-
nances to the nucleon and photon, if we want to describe pro-
cesses with low mass virtual or real photons. On the other hand, 
using the original (not gauge invariant) version of the vector me-
son dominance by Sakurai [18], the photonic branching ratios of 
the baryon resonances are overpredicted [19].

The �(1232) resonance is not included, since there is no infor-
mation available on the coupling strengths to the Nρ channel and 
its mass is far below the CM energy considered.

We use a simplifying approximation for the mass dependence 
of the resonance width, assuming that it is given by that of the 
Nπ channel, and employ the parametrization of Ref. [10].

4. Results

We employ the model described above to compute the aniso-
tropy coefficient λθ of Eq. (21) for the reaction π N → Ne+e− . In 
the following we discuss the dependence of the anisotropy coef-
ficient on the polar angle of the virtual photon θγ ∗ . In all the 
calculations, the CM energy is set to 

√
s = 1.49 GeV, corresponding 

to the HADES data.
In order to demonstrate the effect of different spin-parity 

baryon resonance states on the λθ coefficient, we first use the 
model with the hypothetical resonances discussed above, includ-
ing only the s-channel Feynman diagram. In Fig. 1 we show the 
anisotropy coefficient for dileptons of invariant mass M = 0.5 GeV. 
In this case the resonance in the intermediate state is on-shell 
and, therefore, the results should correspond to standard angu-
lar momentum coupling. Fig. 1 shows that the spin and parity of 
the intermediate resonance is reflected in a characteristic angu-
lar dependence of the anisotropy coefficient. In particular, in the 
spin-1/2 channels the λθ coefficient is independent of θγ ∗ , in ac-
cordance with the arguments given in the introduction. Based on 
the same arguments, the z-component of the total spin coincides 
with the z-component of the initial nucleon spin. Since the nu-
cleon target is unpolarized, the J z = +1/2 and −1/2 polarization 
states of each resonance are equally populated. This means that 
there is no preferred direction and, consequently, that the λθ coef-
ficient is isotropic.

The dependence of the anisotropy coefficient on the quantum 
numbers of the intermediate baryon resonance can be interpreted 
in terms of angular momentum coupling, once one accounts for 
the fact that, in the non-relativistic limit, the off-diagonal coupling 
Eq. (24) is purely transverse. We note that for all channels con-
sidered, except J P = 1/2+ , two values of the final state orbital 
angular momentum are possible. The strengths of these channels 
and their relative phase depend on the structure of the interac-
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Fig. 1. The anisotropy coefficient λθ as a function of the virtual photon polar an-
gle θγ ∗ for hypothetical resonance states with different spins and parities in the 
s-channel at a dilepton mass M = 0.5 GeV. The resonance masses coincide with √

s = 1.49 GeV, the resonance widths are �R = 0.15 GeV.

Fig. 2. The anisotropy coefficient λθ as a function of the virtual photon polar an-
gle at a dilepton mass M = 0.5 GeV including s- and u-channel diagrams. The CM 
energy is √s = 1.49 GeV. For further details, see the text.

tion vertices Eqs. (24), (33), and (34). Thus, a different choice for 
the interaction Lagrangians [16] may lead to a somewhat different 
angular dependence of the anisotropy coefficient. This indicates a 
certain model dependence of the results. However, as long as the 
lowest angular momentum states dominate, we expect the results 
presented here to remain valid, at least on a qualitative level.

In Fig. 2 we show the λθ coefficient obtained from the s- and 
u-channel diagrams of seven of the physical resonance states con-
sidered. (The contribution of the �(1620), which has a shape very 
similar to the other spin-1/2− states, is left out for the sake of 
clarity.) Here, the characteristic shapes presented in Fig. 1 are 
modified mainly by the interference with the u-channel resonance 
contributions.

In order to assess which of the resonances are important for 
the dilepton production process at the CM energy of the HADES 
experiment, we compute the differential cross section dσ/dM by 
integrating Eq. (3) over the scattering angle θγ ∗ and the elec-
tron solid angle �e . We find that at 

√
s = 1.49 GeV and a dilep-

ton invariant mass of M = 0.5 GeV, the two dominant contri-
butions are the N(1520) with dσ/dM = 0.44 μb/GeV, and the 
N(1440) with dσ/dM = 0.33 μb/GeV. These results contain both 
s- and u-channel diagrams. The combined cross section taking 
into account both N(1520) and N(1440) and their interference is 
dσ/dM = 0.84 μb/GeV when all coupling constants are assumed to 
have the same phase and dσ/dM = 0.70 μb/GeV if we assume that 
the matrix elements involving the two resonances have the oppo-
site phase. The range of baryon resonance widths and branching 
ratios given by the Particle Data Group [17] induce uncertainties 
in the differential cross sections. In particular, the N(1520) con-
tribution may vary by about 40%. For the Nρ branching ratio of 
the N(1440) resonance, only an upper limit is given. As a re-
sult, the combined total cross section including both the N(1440)

and N(1520) can be up to a factor of 2 larger than the values 
given above. On the other extreme, the N(1440) branching ratio 
into the ρ N channel may vanish, implying that the corresponding 
contribution to dilepton production is negligible. Nevertheless, the 
average values of the branching ratios used here yield reasonable 
agreement with experiment, as discussed below.

The largest sub-leading contributions to the cross section 
are due to the N(1535) and �(1600) resonances, which yield 
0.011 μb/GeV and 0.0078 μb/GeV, respectively. Although these are 
negligible compared to the dominant contributions, the interfer-
ence of these resonances with the dominant ones could contribute 
at most about ±20% in the ideal case, where the interference is ei-
ther constructive or destructive throughout the whole phase space. 
We computed these interference terms numerically, and found that 
they are negligible compared to the N(1520) and N(1440) con-
tributions. This remains true also when the uncertainties of the 
sub-leading contributions are taken into account.

Our calculation of dσ/dM is consistent with the results of [10]
at M = 0.5 GeV within the uncertainties discussed above. More-
over, the cross section in [10] has been compared with prelim-
inary HADES data and found to be in a reasonable agreement 
at 

√
s = 1.49 GeV and M = 0.5 GeV [1]. An alternative check of 

the reliability of the model is obtained by studying the process 
π N → Nππ . We thus computed the neutral ρ contribution of the 
differential cross section at 0.5 GeV invariant mass of the pion pair, 
including the N(1520) resonance in both the s- and u-channels. 
Taking the uncertainties discussed above into account, we obtain a 
value for dσ/dM between 5 and 10 mb/GeV, which is consistent 
with the result of the partial wave analysis of the Bonn–Gatchina 
group, presented in [20].

The double-differential cross section, dσ/dMd cos θγ ∗ obtained 
from s- and u-channel diagrams with the N(1520) and N(1440)

resonances is shown in Fig. 3 as a function of the polar angle of 
the virtual photon, θγ ∗ . Here two of the curves correspond to the 
contributions of the two resonances without interference. In the 
other two, the interference terms are included, assuming either 
a positive or negative relative sign between the two resonance 
amplitudes. In general, the interaction vertices of the resonances 
with pions and ρ mesons can be complex, as a result of their 
microscopic structure [21]. This can result in an energy depen-
dent relative phase of two resonance amplitudes between 0 and 
π . Since this phase is unknown, we give the results for two lim-
iting cases, assuming a positive or negative relative sign between 
the N(1520) and N(1440) amplitudes.

From Fig. 3 it is clear that the relative phase has a strong in-
fluence on the shape of the θγ ∗ dependence of the differential 
cross section. Moreover, as discussed above the magnitude of the 
N(1440) contribution is uncertain, which in turn affects the shape 
of the differential cross section. This suggests that the unknown 
phase and the coupling strength of the N(1440) to the Nρ chan-
nel can be constrained by data on the angular distribution.

In Fig. 4 we show the dominant contributions to the anisotropy 
coefficient λθ as a function of θγ ∗ . As in Fig. 3, we show results 
for the two limiting assumptions for the relative phase of the 
two resonance amplitudes. In both cases, the shape of the curve 
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Fig. 3. The contribution of the two dominant resonances, N(1440) and N(1520), to 
the differential cross section of dilepton production at √s = 1.49 GeV CM energy. 
Two of the curves show the result obtained from s- and u-channel diagrams of each 
resonance. The other two curves are obtained from the sum of all four diagrams 
(s- and u-channel diagrams of both resonances), assuming a positive and negative 
relative sign between the amplitudes of the two resonances.

Fig. 4. The contribution of the two dominant resonances, N(1440) and N(1520), 
to the anisotropy coefficient, λθ at √s = 1.49 GeV CM energy. The various curves 
correspond to the same assumptions as in Fig. 3.

approximately follows that of the N(1520) contribution, which im-
plies that it is only weakly affected by the uncertainties of the 
N(1440) parameters. The anisotropy parameter λθ has a maximum 
around θγ ∗ = π/2. Thus, virtual photons emitted perpendicular to 
the beam axis in the CM frame tend to be transversely polarized, 
while virtual photons emitted along the beam direction are almost 
unpolarized or, in the case of a positive relative phase between the 
two resonances, photons traveling in the forward direction tend to 
be longitudinally polarized.

Dileptons with a low invariant mass originate from the decay of 
a virtual photon which is close to its mass shell. Such virtual pho-
tons must be predominantly transversely polarized. Consequently 
the λθ coefficient of the resulting dileptons is close to unity. This 
can be seen in Fig. 5, where we show the θγ ∗ dependence of the λθ

coefficient for various values of the dilepton invariant mass. These 
results include the s- and u-channel diagrams of the dominant 
N(1520) and N(1440) resonances, assuming a positive relative sign 
between the amplitudes.

The anisotropy coefficient λθ can be determined experimentally 
by employing Eq. (20). Clearly this is very challenging, since such 
Fig. 5. The anisotropy coefficient λθ as a function of the virtual photon polar angle 
for various dilepton masses. The contributions of s- and u-channel diagrams of the 
two dominant resonances N(1440) and N(1520) and their interference term (with 
a positive relative sign) are included. The CM energy is √s = 1.49 GeV.

an analysis requires a triple-differential dilepton production cross 
section. For a fixed invariant mass M and scattering angle θγ ∗ , 
the λθ coefficient is obtained by extracting the dependence of the 
cross section on the electron angle cos2 θe . Nevertheless, the re-
sults shown in Fig. 5 suggest that a rough binning both in M and 
θγ ∗ , e.g. M > 0.3 GeV and three bins in θγ ∗ , would be sufficient for 
extracting interesting information on the polarization observable.

5. Summary and outlook

In this paper we studied the angular distribution of dileptons 
originating from the process π N → Ne+e− and presented numer-
ical results for the anisotropy coefficient λθ based on the assump-
tion that the process is dominated by intermediate baryon reso-
nances. We employed effective Lagrangians to describe the interac-
tions of baryon resonances with pions and photons. The coupling 
of the electromagnetic field to the baryon resonances is based on 
the vector meson dominance model.

The coupling constants of the model have been determined us-
ing information given by the Particle Data Group [17]. Since the 
decay parameters of some of the baryon resonances are not very 
well known, our model contains uncertainties. However, the dif-
ferential cross sections obtained using our model are in reason-
able agreement with preliminary HADES data on dilepton produc-
tion, and results on the neutral ρ contribution extracted from a 
partial wave analysis of pion pair production. The shape of the 
anisotropy coefficient λθ as a function of the scattering angle is de-
termined mainly by the N(1520) resonance and hence it depends 
only weakly on the uncertainties of the model.

The anisotropy coefficient can in principle be determined in ex-
periments by the HADES Collaboration at GSI, Darmstadt. To this 
end, at least a rough binning of the triple-differential dilepton pro-
duction cross section is needed. This requires high statistics, which 
is not easily achieved for such a rare probe. On the other hand, 
as we argued in this letter, the angular distributions provide valu-
able additional information, which can help disentangle the vari-
ous contributions to the dilepton production cross section and thus 
also provide novel information on the properties of baryon reso-
nances. Consequently, high statistics data on pion induced dilepton 
production would provide important constraints on the elemen-
tary dilepton production mechanism as well as on the structure of 
baryons.
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The calculation presented here is clearly exploratory. In future 
studies, several aspects of the model should be improved. First 
of all the model dependence of the predictions needs to be ad-
dressed. This can be done e.g. by repeating the calculation with 
different effective Lagrangians. A complementary approach, formu-
lated in terms of helicity amplitudes or partial wave amplitudes, 
could provide a systematic framework for exploring the various 
contributions to the scattering amplitude.

A previous study suggests that at the CM energy of the HADES 
experiment a major part of the pion photoproduction cross sec-
tion is probably due to non-resonant Born contributions [10]. Con-
sequently, these Born terms may significantly influence also the 
angular distributions of dilepton production and the anisotropy co-
efficient in pion–nucleon collisions. Thus, their contribution to λθ

should be assessed.
It is also known that the standard vector meson dominance 

model does not provide a satisfactory description of the electro-
magnetic interaction of baryon resonances. This can be improved 
e.g. by relaxing the universal coupling assumption [14] for the pho-
ton coupling to baryons, as discussed e.g. in Ref. [10].

Additional constraints on the model are provided by pion–
nucleon collisions with other final states. In particular the one-pion 
and two-pion final states are measured at HADES with much bet-
ter statistics than for the dilepton final state. Investigation of these 
final states in the framework of the same model would provide 
an independent check and a possibility to put tighter constraints 
on some of the parameters of the model. Two-pion production can 
also proceed via an intermediate ρ meson, which makes this pro-
cess particularly interesting in the present context.
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