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Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. Many studies

have provided evidence that both genetic and environmental factors induce atherosclerosis,

leading thus to cardiovascular complications. Atherosclerosis is an inflammatory disease, and

aging is strongly associated with the development of atherosclerosis. Recent experimental evi-

dence suggests that clonal hematopoiesis (CH) is an emerging cardiovascular risk factor that

contributes to the development of atherosclerosis and cardiac dysfunction and exacerbates

cardiovascular diseases. CH is caused by somatic mutations in recurrent genes in hematopoi-

etic stem cells, leading to the clonal expansion of mutated blood cell clones. Many of the

mutated genes are known in the context of myeloid neoplasms. However, only some individu-

als carrying CH mutations develop hematologic abnormalities. CH is clearly age dependent

and is not rare: at least 10%−20% of people >70 years old carry CH. The newly discovered

association between myeloid leukemia-driver mutations and the progression of CVDs has

raised medical interest. In this review, we summarize the current view on the contribution

of CH in different cardiovascular diseases, CVD risk assessment, patient stratification, and

the development of novel therapeutic strategies. © 2020 ISEH – Society for Hematology and

Stem Cells. Published by Elsevier Inc. This is an open access article under the CC BY-NC-

ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Despite advances in the medical and interventional clinical

management of patients, cardiovascular diseases (CVDs)

remain the leading cause of death worldwide. It is well

appreciated that atherosclerosis represents the underlying

cause of most CVDs [1]. Atherosclerosis is a chronic

inflammatory disease that leads to the formation of athero-

matous lesions in the vessel associated with increased

recruitment, adhesion, and proliferation of different leuko-

cyte subsets to the endothelium [1]. Several cardiovascular

risk factors (CRFs) have been found to enhance the risk of

CVD (Figure 1), including hypercholesterolemia (HC), dia-

betes mellitus (DM), hypertension, metabolic syndrome,

obesity, and smoking [2]. Inflammation plays a crucial
to: Michael A. Rieger, PhD, Hematology/Oncol-

Medicine II, Goethe University, Theodor-Stern-

rt, Germany;

.uni-frankfurt.de

SEH – Society for Hematology and Stem Cells. Publishe

eativecommons.org/licenses/by-nc-nd/4.0/)

6/j.exphem.2019.12.006
role in the development of CVDs and several studies

have reported that CRFs enhance production of myeloid

cells and multipotent hematopoietic progenitors in the

bone marrow and in this way may promote atherosclerosis

and disease development [3].

Increasing evidence suggests that conventional CRFs

are not fully predictive of the development of CVDs and,

more importantly, that the incidence of CVDs increases

with age [4,5]. Although the effect of aging on the

development of atherosclerosis has been considered to

be caused by cumulative exposure to classic CRFs, the

exact molecular mechanisms of age predisposition to

CVDs are not completely understood. Several studies

have linked cardiovascular aging to genomic instability,

telomere attrition, and accumulating irreversible epige-

netic alterations, including DNA methylation, histone

posttranslational modifications, and dynamic nucleosome

occupancy [6−8].
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Figure 1. Commonalities of clonal hematopoiesis, myeloid neoplasms, and cardiovascular diseases. Many shared risk factors suggest a causal

relation between the origin and progression of blood-related alterations and cardiovascular diseases.
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Recent elegant studies have provided evidence that

clonal hematopoiesis (CH) is a novel causal CRF for

CVDs in elderly individuals, as previously reviewed

[9,10]. CH was initially described in elderly people who

develop hematologic malignancies. CH originates from

somatic mutations in hematopoietic stem cells (HSCs) in

genes implicated in myeloid neoplasms and results in

expansion of mutated blood cell clones. Clonal hematopoi-

esis of indeterminate potential (CHIP) is technically

defined by the presence of somatic variants with a variant

allele frequency (VAF) (i.e., variant prevalence among all

blood cells) of at least 2%, but without the presence of

hematologic malignancies or other hematologic abnormali-

ties [11]. Genetic and epidemiology studies in humans

revealed that CHIP correlated with increased mortality in

individuals with CVDs. Preclinical animal models provided

mechanistic evidence for the role of CHIP in the progres-

sion and development of CVD. In this review, we summa-

rize the role of inflammation and inflammatory blood cell

types in the development of atherosclerosis and CVDs.

We also discuss the potential mechanisms by which CH

contributes to increased cardiovascular risk in aging

individuals and how increased inflammation, induced by

cardiovascular risk factors, further promotes the clonal
dominance of mutated HSC clones, leading to a feedback

loop between CH and CVDs. Finally, we raise potential

implications of these findings in CVD risk assessment,

patient stratification, and the development of novel ther-

apeutic strategies.

Role of myeloid cells and inflammation in the

development of CVD

Atherosclerosis is a chronic inflammatory disease of the

vasculature. It is well appreciated that monocyte-derived

macrophages play a crucial role in the progression of

atherosclerosis, plaque development, and the incidence

of CVD [1,2]. Pathological stimuli such as hyperlipid-

emia and hypertension increase monocyte adhesion on

the endothelium and their infiltration into the vessel

wall during atherogenesis [1,2]. After entering the vessel

wall, monocytes start to proliferate and differentiate into

macrophages, which endocytose lipids and develop into

foam cells, which contribute to plaque development

[1,2]. It has been reported that increased numbers of cir-

culating monocytes (monocytosis) correlate with plaque

formation and the development of carotid artery disease

(CAD) [1,12,13]. Experimental evidence has established

a causal relationship between monocytosis and the
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development of atherosclerosis in preclinical models [1,2].

Monocyte depletion or inhibition of monocyte recruitment

results in reduced atherogenesis and plaque formation in

experimental models of atherosclerosis [14−18]. Several

CRFs have been found to increase the risk of CVDs by

inducing myelopoiesis and hematopoiesis (Figure 1).

Hypercholesterolemia, diabetes, and obesity increase the

number of circulating monocytes, resulting thus in accel-

eration of atherosclerosis [19−21]. Moreover, hypercho-

lesterolemia promotes hematopoietic stem and progenitor

cell (HSPC) proliferation and, in this way, contributes to

increased myelopoiesis and exacerbated atherosclerosis

[22−26]. Similarly, other studies have found that diabetes

and hyperglycemia influence HSC function, differentia-

tion, and mobilization and in this way further contribute

to the development of CVDs [27−29]. Diabetes results

in reduced numbers of HSCs and interferes with their

repopulation capacity in a competitive engraftment

experiment and their cytokine expression patterns [29].

Furthermore, diabetes leads to increased expression of

plasma levels of the alarmins S100A8 and S100A9

secreted by neutrophils, resulting in increased prolifera-

tion of granulocyte−monocyte progenitors (GMPs) and

enhanced myelopoiesis [19,20].

Somatic mutations in hematopoietic stem cells drive

clonal hematopoiesis

Clearly, aging poses the largest risk for the development of

CVDs; this is due not only to the accumulative effect of

the CRFs and the increased inflammatory responses but

also to the accumulation of epigenetic alterations and

genetic mutations. It was recently reported that CHIP con-

tributes to the development of cardiovascular diseases in

elderly individuals [30−33]. Before discussing the role of

CHIP in the development of CVD, it is important to

review the basis of CH.

Hematological malignancies ensue from the clonal

expansion of transformed blood cells, and are generally

diseases of the elderly, as the median age for most of

these diseases is between 60 and 70 years. Although,

in certain cases, they can be associated with inherited

genetic mutations, hematologic malignancies usually

originate from recurrent somatic mutations in driver

genes [34,35]. Interestingly, although most of the

somatic mutations have no effect, certain mutations

result in increased proliferation or, alternatively,

reduced cell death and enhanced self-renewal and, as a

result, confer a specific clonal expansion advantage to

the HSCs carrying these mutations [36]; this may lead

to hematologic malignancies. Clonality was also found

to be a major characteristic of the aging hematopoietic

system. Studies in women over the age of 65, with

no hematologic malignancies, suggested that there is a

skewed pattern of X-chromosome inactivation in peripheral

blood cells, particularly within the myeloid compartment,
which is age related [37−39]. Subsequently, Busque and

colleagues demonstrated by exome sequencing the pres-

ence of somatic, recurrent TET2 mutations in normal

elderly individuals with clonal hematopoiesis but with-

out hematological malignancies [40]. TET2 mutations

were previously reported to be associated with myeloid

cancers [41].

Subsequent studies using whole-exome sequencing as

well as gene-targeted sequencing assisted the detection of

several somatic mutations with low VAF [31−33]. These
studies provided evidence that the majority of the age-

associated recurrent mutations were in genes such as

DNMT3A, TET2, JAK2, TP53, ASXL1, SF3B1, PPM1D,

and BCORL1, known to be associated with acute mye-

loid leukemia (AML), myeloproliferative neoplasms

(MPNs), or myelodysplastic syndrome (MDS) [42].

Interestingly, other mutations in genes found to play an

important role in AML development and progression,

such as FLT3, IDH1, IDH2, and NPM1, were not so

common in CH [30−32,42−44]. All identified mutations

increased with age. Subsequent complementary studies

of large cohorts of patients utilizing sensitive error-cor-

rected, targeted deep sequencing [45,46] further sup-

ported these results, indicating that recurrent mutations

in genes associated with leukemia are increased in

aged individuals and correlated with clonal hematopoie-

sis [30−33,46−48], but without leading to hematological

malignancies. This type of CH was technically defined

as CHIP and is characterized by the presence of recur-

rent mutations with a VAF of at least 2% in aged indi-

viduals in the absence of hematologic cancer or other

clonal disease [11]. Although the frequency of CHIP is

less than 1% in individuals younger than 40 years, its

prevalence increases to 15%−20% in people older than

70 years [31,33,42,43]. However, the prevalence of CH

is highly dependent on the sensitivity of the detection

method used. Although the initial studies used whole-exome

sequencing, which is relatively insensitive to smaller clones,

recent studies using more sensitive, error-corrected, deep

sequencing approaches have found a much higher preva-

lence of CH with low VAF, even at younger age. The bio-

logical and medical importance of the smaller clones still

remains unclear [45,49].

Association of clonal hematopoiesis with CVDs

Although CH was initially associated with hematologic

malignancies, it became evident that CH led to decreased

patient survival, which could not be explained by the

increase in hematological cancer [30−33,43] Different

studies using next-generation sequencing analysis in

large cohorts revealed that CHIP-driver mutations in

leukemia-related genes DNMT3A, TET2, ASXL1, and

JAK2 were associated with an increased risk of inci-

dence of coronary heart disease (CHD) or stroke and

increased mortality [30−32]. Importantly it was reported
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that the prevalence of CHIP was higher in individuals

with early onset of myocardial infarction [30,32]. In a

recent study, CHIP was also associated with chronic

heart failure (CHF) caused by ischemic heart disease. It

was found that the occurrence of CHIP was increased in

CHF patients compared with published control cohorts,

with a higher prevalence in aged patients with CHF.

CHIP-driver mutations in DNMT3A or TET2 were the

most prevalent causes of CHIP, representing more than

60% of CHIP carriers with CHF. CHF patients with or

without CHIP did not have any difference in other clini-

cal parameters or common classifications of CHF. Most

importantly, DNMT3A or TET2 CHIP-driver mutations

were associated with a poor outcome in these CHF

patients, who had reduced survival and increased pro-

gression of their disease [50]. The dosage dependence

of DNMT3A- or TET2-mutated cells on the outcome in

these patients suggests a causative role of mutated blood

cells and the progression of CHF. The presence of

DNMT3A or TET2 CHIP-driver mutations remained a

significant new risk factor for CHF after multivariate

correction of confounding factors. Interestingly, individ-

uals with CHIP had increased coronary artery calcium

scores, indicative of vascular wall inflammation and

development of atherosclerosis [30,32]. In line with

these results, a recent study reported that CHIP is also

associated with degenerative aortic valve stenosis and

that mutations in DNMT3A or TET2 result in worse

prognosis and increased mortality in patients undergo-

ing transcatheter aortic valve implantation [51]. More-

over CHIP mutations in one of the driver genes, JAK2,

have been associated with an increased risk of throm-

bosis, which correlated with increased numbers of leu-

kocytes and acute coronary events [52−54]. Hence,

CHIP is now considered an additional CRF that contrib-

utes to age-related CVD development and progression

(Figure 2).

Role of CHIP-driver gene mutations in the

development of atherosclerosis and CVDs

After establishment of a link between CHIP and CVD,

several studies focused on the characterization of the

fundamental mechanisms that may explain the func-

tional association of CHIP with the development of

CVD. Studies in humans and mice provided functional

evidence for a differential role of distinct mutations in

various CHIP-driver genes in CAD (Figure 2).

In this respect, TET2 (ten-eleven translocation-2) is the

most well-characterized gene. TET2 is a methylcytosine

dioxygenase that modulates DNA hydroxymethylation by

converting 5-methylcytosine (5-mC) into 5-hydroxymethyl-

cytosine (5-hmC) to promote DNA demethylation [55].

TET2 is involved in DNA methylation and, in this way,

regulates transcriptional activation or repression of many

genes [55,56]. TET2 loss of function leads to dysregulated
expansion of HSCs, enhanced repopulating capacity of

HSCs in vivo, and an altered cell differentiation skewing

toward monocytic/granulocytic lineages [41,56−58]. TET2
mutations have been associated with increased cardiovas-

cular risk, and it was reported that in individuals carrying

TET2 mutations, levels of circulating interleukin (IL)-8

were increased twofold compared with levels in those

without mutations [32]. In addition, patients with severe

aortic valve stenosis carrying TET2 mutations had

increased numbers of nonclassic inflammatory mono-

cytes, which secrete pro-inflammatory cytokines and in

this way may contribute to development of CVD

[50,51]. TET2 CH-driver mutations lead to increased

bone marrow (BM) leukocytes and increased HSPC

numbers in patients with CHF following ischemia, while

patients carrying DNMT3A CHIP-driver mutations do

not exhibit any alteration in bone marrow blood cell

lineage distribution and HSPCs [59]. Studies in preclini-

cal models revealed that atheroprone mice transplanted

with TET2-deficient BM cells exhibited robust expansion

in vivo and increased macrophage infiltration and ath-

erosclerotic plaque size [32,60]. Further characterization

revealed that TET2 deficiency results in increased

expression of different chemokines such as Cxcl1,

Cxcl2, and Cxcl3, as well as IL-6 and IL-1b [32,60,61].

Increased expression of IL-1b from TET2-deficient mac-

rophages was found to be mediated by NLRP3 inflam-

masome, and treatment of atherosclerosis-prone mice,

transplanted with TET2-deficient BM cells, with an

NLRP3 inhibitor reduced the proatherogenic effect of

TET2 deficiency [60]. TET2 deficiency in HSCs

increased cardiac dysfunction and fibrosis in hearts sub-

jected to left anterior descending artery ligation or pres-

sure overload [62]. This was shown to be caused by

increased IL-1b expression, and treatment with an

NLRP3 inhibitor reversed the effects of TET2 deficiency

on cardiac dysfunction [62]. In another study, CRISPR-

mediated editing of TET2 introducing inactivating muta-

tions into mouse HSCs increased cardiac dysfunction

and fibrosis in mice with angiotensin II-induced heart

failure by inducing the expression of IL-1b, IL-6, and

Ccl5 [63]. Although TET2 mutations result in a mye-

loid-bias lineage differentiation, recent studies have

found that specific deletion of TET2 in regulatory T

cells in mice unleashed their effector function and

skewed their phenotype toward Tfh/Th17, resulting in

the development of dominant inflammatory disease, sug-

gesting that TET2 inactivation may also affect the func-

tion of other immune cells involved in the development

of CVDs [64].

Other studies focused on the effect of DNMT3A defi-

ciency on CVDs. DNMT3A is a DNA methyltransfer-

ase mediating DNA methylation and regulating gene

expression. Interestingly, DNMT3A is the most preva-

lent driver gene associated with CH [31−33].

https://doi.org/10.1016/j.exphem.2019.12.006
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Figure 2. Clonal hematopoiesis is a potent cardiovascular risk factor for cardiovascular diseases. Mutations in myeloid leukemia-associated

driver genes in HSCs confer an advantage in the mutated blood cell clones, leading to clonal hematopoiesis. Mutations in distinct genes are

associated with increased risk and progression of atherosclerosis, heart failure, aortic stenosis, and thrombosis.
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Nevertheless, DNMT3A-deficient BM cells do not

exhibit selective expansion in vivo [63,65] and mainly

expand in vivo after sequential BM transplantations in

aged mice [66−68]. CRISPR-mediated mutagenesis of

DNMT3A in mouse HSCs resulted in increased cardiac

dysfunction and fibrosis in mice following angiotensin II-

induced heart failure by promoting the expression of

Cxcl1, Cxcl2, IL-6, and Ccl5 but not Il-1b [63]. DNMT3A

deficiency may also promote a pro-atherogenic phenotype

in different immune cells such as activation of mast cells

and increased interferon-g production by T cells [69−73].
Moreover, it was recently reported that patients with aortic

valve stenosis carrying DNTM3A recurrent mutations

exhibited an increased Th17/Treg ratio, suggesting that

DNMT3A mutations might promote T-cell polarization

toward a pro-inflammatory phenotype that can contribute
to atherosclerosis development and CVDs [51,74]. The

exact role of DNMT3A deficiency in atherosclerosis

development remains to be further investigated.

JAK2 (Janus kinase 2) is a signaling tyrosine kinase

that associates with the signaling cascades of a variety

of cytokine receptors; it has been associated with cell

growth and division and is especially important for

controlling blood cell production in the BM [75]. In

addition, several studies have implicated JAK2 in the

development of atherosclerosis [76,77]. JAK2 is one of

the genes frequently mutated in individuals with CHIP

[31−33] and leads to proliferation of HSCs. Early stud-

ies provided evidence suggesting that patients carrying

the JAK2 V617F gain-of-function have a higher risk of

thrombosis [78]. Interestingly, studies in mice suggested

that JAK2 V617F drives CH toward the myeloid and

https://doi.org/10.1016/j.exphem.2019.12.006
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granulocytic lineage and enhances the pro-inflammatory

activities of macrophages and neutrophils, providing a

potential mechanism by which JAK2 V617F affects car-

diovascular function [79−81]. Moreover, it was reported

that hematopoietic JAK2 V617F in atheroprone mice

leads to acceleration of atherosclerosis and plaque insta-

bility [82].

Further studies are awaited that shed light on the func-

tional role of somatic mutations in other CH-driver genes,

such as TP53, ASXL1, SF3B1, PPM1D, and BCORL1, in

the development of CVDs.

Association between cancer and CVDs and the

possible role of CH therein

There is substantial biological evidence that cancer and

CVD share biological mechanisms underlying their

pathogenesis [83,84]. Numerous studies have proposed

that there are similar risk factors for cancer (solid and

hematological) and CVDs (Figure 1). The incidence of

both cancer and CVDs increases with advancing age

[83−85]. Chronic inflammation plays a major role in

the development of CVDs [1], and now it is well

appreciated that inflammation in the tumor microenvi-

ronment can promote malignant transformation and

cancer progression [86−88]. Interestingly, a number of

CRFs such as diabetes, obesity, and smoking have been

also reported to increase the prevalence of cancer [89].

Although advances in medical care have improved lon-

gevity, they have increased the overlap between cancer

and CVDs; cancer patients are at high risk of develop-

ing CVDs, and patients with CVDs or heart failure

have a higher rate of cancer than healthy control subjects

[83−85,90]. It was found that patients with myelodysplas-

tic syndrome, leukemia, and Hodgkin’s lymphoma have an

increased risk of cardiovascular complications [91−93].
Moreover, arterial thrombosis is preceding cancer diagno-

sis in older patients [94,95], and vascular calcifications,

CAD, and other cardiovascular complications are prevalent

in patients with colorectal cancer [96]. There is a causal

relationship between heart failure/myocardial infarction

(MI) and development of cancer. Analysis of the distri-

butions of different cancer sites among patients with MI

revealed that the most frequent types of cancers were

colorectal cancer (22%), prostate cancer (22%), and

lung cancer (16%) [97]. Furthermore, the induction of

MI in APCmin mice, which are prone to developing pre-

cancerous intestinal tumors, resulted in increased tumor

formation and accelerated tumor growth [83,90].

CH has been also associated with nonhematological

cancers [42,43,98], although not so much is known

regarding the driver genes or molecular mechanisms

involved therein. Nevertheless, it has been reported that

cancer patients with CH have worse prognosis than the

ones without CH [43,99]. Interestingly, CH-driver gene

mutations have been identified in tumor-supporting
lymphocytes and macrophages in the tumor stroma but

not in the tumor epithelium. The same mutations were

found in the blood cells of the same patients although at

a lower VAF [100].

Although the exact relationship between CH, CVD and

solid cancers is not yet clear, there is growing appre-

hension that CH may be a risk factor linking CVDs

and cancer progression. Future studies using advanced

sequencing technologies are awaited to shed light on

the interrelationship between CH, cancer, and cardiovascular

complications.

Future perspectives on the role of CH in the

development of atherosclerosis and CVDs

CH has emerged as an age-dependent CRF although the

underlying mechanisms are far from been completely

understood. CH-driver gene mutations give an advanta-

geous proliferation to specific HSC clones and promote

monocytic skewing and increased production of inflam-

matory cytokines such as IL-1b and IL-6 and in this

way accelerate inflammation in CVDs (Figure 3). The

expansion of mutated HSC clones may be boosted by

classic CRFs, considering evidence that hypercholester-

olemia and diabetic conditions promote the expansion

of HSCs and myelopoiesis. There may be a feedback

loop in which CH induces inflammation and accelerates

atherosclerosis, which in turn further stimulates the

expansion of mutated HSPC clones and their progeny

and further induces inflammatory responses and CVD

progression (Figure 3).

Mutations in different CH-driver genes result in dif-

ferent pro-inflammatory profiles, suggesting that the

underlying mechanisms may be different. Thus, it is

important to characterize the molecular mechanisms by

which the various CH-driver gene mutations contribute

to CVDs or other inflammatory diseases and cancer.

Preclinical studies have reported that NLRP3 inhibitors

that block IL-1b production can inhibit atherosclerosis

in mice with TET2-deficient BM cells [62]. Recently,

the CANTOS clinical trial found that anti-inflammatory

treatments using a neutralizing antibody against IL-1b

improve CVD patient outcome and, in addition, lower

total cancer mortality [101,102]. In line with this, Bick

and colleagues reported that individuals with CHIP and

a genetic deficiency in IL-6 signaling (by carrying the

IL6R p.Asp358Ala allele variant) had a decreased CVD

risk compared with CHIP patients without defective IL-6

signaling [103]. As targeted therapies against CHIP-driver

gene products are technically more challenging to imple-

ment, it may be more effective to design therapies target-

ing their causal effects. Future approaches are likely to

include a combination of anti-inflammatory treatments and

clonal selective immunotherapies.

The prevalence of CH is increasing in an aging pop-

ulation, as are the numbers of coding and non-coding

https://doi.org/10.1016/j.exphem.2019.12.006


Figure 3. Schematic of a vicious circuit of inflammation driven by somatic mutations in myeloid blood cells. CH-driver gene mutations endorse

an expansion of mutated HSC clones and empower myeloid skewing. Mutated myeloid cells have a pro-inflammatory profile that results in

increased production of inflammatory cytokines, such as IL-1b, IL-6, and IL-8, which contribute to increased inflammation and acceleration of

atherosclerosis and thrombosis, as well as a poor prognosis following degenerative aortic stenosis and heart failure. In turn, cardiovascular risk

factors such as diabetes and hypercholesterolemia, by inducing the expression of inflammatory cytokines, can induce activation of HSCs and, by

this vicious circuit, further promote the clonal dominance of mutated HSC clones, leading to a feedback loop between CHIP and CVDs.
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driver events of CH. Not all mutations leading to CH

will also have a consequence on the development and

progression of CVDs. Future studies must delineate

specific mutated genes and even distinct mutations in

these genes that are truly associated with and clinically

relevant for various diseases in the cardiovascular sys-

tem having a high predictive value, as recently evi-

denced for the prediction of AML progression

[45,104]. Careful evaluation of driver mutations, also

within one particular gene, will help us to distinguish

cooperating events from passenger events. Moreover,

mechanistic studies, by generating functional mutation-

specific models of these driver mutations, must be

applied to identify the functional consequences of these

mutations in the context of CVD to enlighten the
causative effects that can be targeted in the future.

Shared mechanisms of different mutated genes may be

identified as common targets in the treatment of differ-

ent CVDs.

These recent findings have raised several questions

for clinicians as well as for patients. Although screen-

ing of patients with a high prevalence of CHIP or

hematological malignancies is well established, screen-

ing of CVD patients for the presence of predictive

CHIP-driver mutations is not presently customary.

Based on the association between CH and the develop-

ment of CVDs, as well as the poor prognosis of

patients with CVDs, it may be reasonable to screen

individuals with CVDs for CHIP, especially individuals

with CAD in the absence of traditional CRFs. Based

https://doi.org/10.1016/j.exphem.2019.12.006


102 E. Pardali et al. / Experimental Hematology 2020;83:95−104
on developments in the field of next-generation

sequencing, genotyping for CH may become routine in the

near future. In addition, a logical consequence would be to

initiate a more intense screening for CVD blood parame-

ters and echocardiography, angiography, or [18F]fluoro-

deoxyglucose positron emission tomography (FDG-PET)

imaging for people with CH mutations, and recommend

lifestyle changes to reduce confounding factors.

Despite the challenges, future studies are awaited to

shed more light on the functional causalities of distinct

CH-driver mutations and their associated diseases,

including CVDs, and on the clinical management of

complications associated with CH in these patients.
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