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A B S T R A C T

Older adults show relatively minor age-related decline in memory for single items, while their memory for as-
sociations is markedly reduced. Inter-individual differences in memory function in older adults are substantial but
the neurobiological underpinnings of such differences are not well understood. In particular, the relative
importance of inter-individual differences in the medio-temporal lobe (MTL) and the lateral prefrontal cortex
(PFC) for associative and item recognition in older adults is still ambiguous. We therefore aimed to first establish
the distinction between inter-individual differences in associative memory (recollection-based) performance and
item memory (familiarity-based) performance in older adults and subsequently link these two constructs to dif-
ferences in cortical thickness in the MTL and lateral PFC regions, in a latent structural equation modelling
framework. To this end, a sample of 160 older adults (65–75 years old) performed three intentional item-
associative memory tasks, of which a subsample (n ¼ 72) additionally had cortical thickness measures in MTL
and PFC regions of interest available. The results provided support for a distinction between familiarity-based
item memory and recollection-based associative memory performance in older adults. Cortical thickness in the
ventro-medial prefrontal cortex was positively correlated with associative recognition performance, above and
beyond any relationship between item recognition performance and cortical thickness in the same region and
between associative recognition performance and brain structure in the MTL (parahippocampus). The findings
highlight the relative importance of the ventromedial prefrontal cortex in allowing for intentional recollection-
based associative memory functioning in older adults.
Episodic memory, the ability to encode and retrieve memories for
events with related contextual and/or temporal details (e.g., words, ob-
jects, faces, names, see review Tulving, 1972), is typically assessed
experimentally in recognition paradigms, in which individuals are
required to judge whether specific stimuli have been studied before (old)
or not (new). Stimuli in this context can refer to single items (e.g., names,
faces) or to associations between items (e.g., face-name). Dual-process
theories state that recognition performance depends on the functionality
of either one or two independent processes, namely familiarity or
recollection (H. Eichenbaum, Yonelinas and Ranganath, 2007; Yonelinas,
1997, 2002). Whilst recollection involves retrieval of qualitative infor-
mation (i.e., contextual, temporal or emotional; “remembering”) linked
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to the previously studied stimulus, familiarity involves placing reliance
on perceived memory strength (i.e., global and context-free; “knowing”;
Mayes et al., 2010; Yonelinas et al., 2010). Different methods have been
suggested to measure both processes as distinct as possible (e.g.,
Remember/Know paradigms, receiver operating characteristic (ROC),
process dissociation, and lesion studies; Koen and Yonelinas, 2016;
Yonelinas et al., 2002; Unsworth and Brewer, 2009; Yonelinas et al.,
2007). Task-dissociation methods try to distinguish between the two
different recognition processes using task conditions, which rely rela-
tively more on one of the two processes. The involvement of the two
processes seems to depend on whether single items or associations needs
to be encoded and recognized (Davachi, 2006). For item recognition, the
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perceived memory strength exists only for the previously studied and not
for the new stimuli, allowing for high recognition performance even if
only familiarity-based processes are available. However, it is also
possible to retrieve qualitative information about single items, or use the
item as a cue for retrieving such information that may serve as infor-
mation for the recognition decision, which means that recollection-based
processes also may contribute to item recognition performance. In
contrast, for associative recognition, all individual items have been
studied before (“new” stimuli are seen items rearranged into novel pairs),
which means that the perceived memory strength is equivalent for
stimuli pairs that have been studied before relative to those that have not.
Hence, associative recognition requires recall of detailed contextual in-
formation (e.g., co-occurrence of two stimuli), making recollection-based
processes necessary for associative recognition performance.

Episodic memory functioning declines in older age, but not unitarily
(R€onnlund et al., 2005). Older adults show no or only minor age-related
reductions in memory for single items, while their memory for associa-
tions is markedly reduced in comparison to younger adults (Chalfonte
and Johnson, 1996; Naveh-Benjamin, 2000). This associative deficit of
older adults in comparison to younger adults has been found consistently
with different materials (see special issues in Psychology & Aging edited
by Naveh-Benjamin andMayr, 2018; for words, objects, faces, names, see
review Old and Naveh-Benjamin, 2008) and independent of task diffi-
culty or reduced attentional resources (Kilb and Naveh-Benjamin, 2007;
Naveh-Benjamin et al., 2004). In line with these findings, greater
age-related loss has been reported for recollection-based than for
familiarity-based recognition processes (Craik and McDowd, 1987;
Danckert and Craik, 2013; Fandakova et al., 2015; Koen and Yonelinas,
2016; L€ovd�en et al., 2002; Old and Naveh-Benjamin, 2008; Spencer and
Raz, 1995). Beyond the average pattern of age-related associative
memory decline, individuals of the same age differ markedly in their
memory performance.

In regards to the neural underpinnings of episodic memory,
structural and functional brain imaging confirm the involvement of a
large-scale network including both the medio-temporal lobes (MTL)
and the lateral prefrontal cortex (PFC; Buckner et al., 1999; Simons
and Spiers, 2003; Squire, 2004). At a general level, the MTL is thought
to be critical for relational binding processes (item-item, item-context)
in long-term memory whilst the lateral PFC is thought to be more
important for strategic control functions that support the creation,
maintenance, and selection of durable memory representations
through organization and elaboration of relevant stimuli (e.g., Badre
and Wagner, 2007; Cabeza and Nyberg, 2000; Kirchhoff and Buckner,
2006; Kirchhoff et al., 2014; M. N. Rajah & D’Esposito, 2005).

Functional imaging studies in younger adults have found evidence for
a functional differentiation within the MTL, with the hippocampus being
especially involved in recollection-based processes and the memory of
associations and the parahippocampal region being more involved in
familiarity-based processes and the memory of single items (Davachi,
2006; Davachi and Wagner, 2002; Giovanello et al., 2004; Jackson and
Schacter, 2004; Mayes et al., 2007; Qin et al., 2009; Sperling et al., 2003;
Westerberg et al., 2012; for reviews see H. Eichenbaum et al., 2007;
Skinner and Fernandes, 2007). In contrast, evidence for such a functional
differentiation within the lateral PFC has not been as convincing. In
younger adults, the dorsolateral and the ventrolateral PFC has been
found to be relevant for recollection- as well as familiarity-based pro-
cesses (Achim and Lepage, 2005; Daselaar et al., 2006; Frithsen and
Miller, 2014; Johnson et al., 2013; Kafkas andMontaldi, 2012; see Scalici
et al., 2017 for review) and the inferior lateral PFC has been linked
specifically to associative memory performance (Achim and Lepage,
2005; Addis et al., 2014; Blumenfeld and Ranganath, 2007; Murray and
Ranganath, 2007; Wong et al., 2013).

The MTL and PFC both demonstrate substantial age-related
shrinkage as well as large inter-individual differences in function
and structure (Lindenberger, 2014; Raz et al., 2005), which may ac-
count for the large inter-individual differences in episodic memory in
2

older adults. The strongest negative association between age and
regional volume has been observed in the prefrontal cortex with
temporal and parietal regions trailing behind, and occipital areas
showing the weakest effect of age (Raz et al., 2003). Functionally,
age-related impairments in the hippocampus has been linked to older
adults’ difficulties in forming new item-item associations (Daselaar
et al., 2003; Grady et al., 2003) and in separating new associations
from existing memory traces stored in long-term memory (e.g., Dase-
laar et al., 2006; Wilson et al., 2006). Lateral PFC activity has been
positively linked to associative memory functioning in older adults
(Duarte et al., 2010; Fandakova et al., 2015; Sperling et al., 2003).

Structural brain imaging studies are less common and most often
focusing exclusively on the link between hippocampus volume and
associative memory functioning. In younger adults, results have
ranged from showing zero or even a negative link (DeMaster et al.,
2014; Schlichting et al., 2017; Van Peten, 2004) to a positive link
(Poppenk and Moscovitch, 2011; M.N. Rajah, Kromas, Han and
Pruessner, 2010) between hippocampal volume and associative
memory performance. Similarly, structural results have varied in older
adults, from no links (Becker et al., 2015; Rajah et al., 2010) to pos-
itive links between hippocampal volume and associative memory
functioning (Carr et al., 2017; Nordin et al., 2017; Rodrigue and Raz,
2004; Shing et al., 2011). At the same time, familiarity and recollec-
tion were relatively more correlated with brain volume in entorhinal
cortex and hippocampus, respectively (Yonelinas et al., 2007; Wolk
et al., 2011). In general, the anatomical mappings of item memory and
associative memory and the underlying processes of familiarity and
recollection to brain structure in the MTL and the lateral PFC in older
adults remains poorly understood.

Studies investigating structural brain correlates of both item and
associative memory in both MTL and PFC regions in the same model
are surprisingly rare. To our knowledge, only one study investigated
the specific contribution of regional gray-matter volume in lateral PFC
and MTL to associative memory and item memory in the same study.
In this study, 54 60-year old adults intentionally learned face-scene
pairs before performing separate recognition tasks for items and as-
sociations, respectively. Using voxel-based morphometry region-of-
interest (ROI) analyses, older adults with better associative memory
showed larger gray-matter volumes primarily in regions of the left and
right lateral PFC, with no associations with hippocampal volume.
These results suggest that the lateral PFC may more important than the
MTL in accounting for interindividual difference in intentional
learning of associations in older adults (Becker et al., 2015). This
could be due to the greater age-related effects on the lateral PFC
relative to the MTL, which may make brain structure in the lateral PFC
and its organizational and strategic processes more important than the
MTL and its relational binding processes for determining the level of
associative memory ability in older adults.

The aim of this study was to investigate the relative contribution of
inter-individual differences in the structure of the MTL and the lateral
PFC in accounting for inter-individual differences in associative and
item memory in older adults. To this end, we first evaluated the
empirical support for a distinction between associative memory
(recollection-based processes) and item memory (familiarity-based
processes) at a behavioural level and subsequently linked inter-
individual differences in associative and item memory ability to
inter-individual differences in brain structure in MTL and lateral PFC
regions of interest, in a latent structural equation modelling frame-
work. In line with Becker et al. (2015), we hypothesized the lateral
PFC to be mostly involved in the recognition of associations, due to the
strategic recollection-based processes involved, while item memory
can more strongly rely on familiarity-based processes, which require
less lateral PFC but can be solved through MTL (i.e., perirhinal and
parahippocampal) involvement.
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1. Methods

1.1. Participants

The recruitment procedure and study sample has been described in
detail previously (Berggren et al., 2019; Nilsson et al., 2018). In brief,
169 healthy older adults aged between 65 and 75 years fulfilled study
criteria and were recruited, of which 160 participants subsequently
completed the study. Participants who expressed an interest, were
right-handed and did not have any MR contraindications were invited to
undergo the MR assessments. A total of 82 participants were assigned
MR, of which 72 completed the assessments with good gray matter
segmentation quality. The MR subsample (n ¼ 72) was highly repre-
sentative of the total study sample (N ¼ 160) in regards to age (Mtotal ¼
69.35, SDtotal ¼ 2.76; MMR ¼ 69.53, SDMR ¼ 2.83), percent females
(%total¼ 62.5,%MR¼ 62.5) and performance on a word-word associative
recognition test (H-FAtotal ¼ 0.54, SDtotal ¼ 0.26; H-FAMR ¼ 0.53, SDMR ¼
0.26). The study was approved by the ethical review board in Stockholm
(case number 2015/2284-31/2) and conducted in accordance with the
Declaration of Helsinki.

1.2. Study design and procedure

The study was designed to investigate the effects of foreign language
learning on cognition and brain in older adults. To this end, the study
included three phases: pre intervention, intervention, and post inter-
vention. For the intervention phase, participants were randomly allo-
cated to attend an entry level Italian language course (experimental
condition) or a relaxation course (control condition), both lasting for 11
weeks. In the pre- and post-intervention phases, all participants completed
an extensive cognitive test battery and the MR subsample underwent
brain imaging. We have previously reported that the Italian language
course did not result in any statistically significant and differential per-
formance change relative to the relaxation course in any of the latent
cognitive abilities: associative memory, item memory, working memory,
spatial intelligence and verbal intelligence (Berggren et al., 2019). We
have also demonstrated that neither the experimental nor the control
condition resulted in any detectable change in hippocampal volume or in
cortical thickness in any of the language-relevant regions of interest: pars
triangularus, pars opercularis, and the superior temporal gyrus (Nilsson
et al., 2018). Consequently, for the purposes of the present study, we
considered the pre- and post-intervention assessments to be repeated
measures of assumed unchanged constructs, which justified merging the
data of the two intervention groups over time.

Item-associative memory tests (IAMTs). All participants performed
three IAMTs (see Naveh-Benjamin, 2000) at pre- and post-intervention
assessments, which entailed all the same structure but varied in
regards to the stimuli material used: word-word pairs, face-name pairs or
picture-picture pairs. Each IAMT consisted of three phases: encoding,
item recognition, and associative recognition. During encoding, partici-
pants were instructed to memorize 40 stimuli pairs, presented one pair at
a time for 6000 ms. Afterwards, two self-paced recognition tests were
administered. During item recognition, participants were presented with
one stimulus at a time (i.e., randomized order compared to encoding but
fixed across subjects) and were asked to indicate whether they had seen
that stimulus during encoding or not. In total, 40 items were presented, of
which 20 had been seen during the encoding phase (targets) and 20 had
never been seen before (foils). During associative recognition, participants
were presented with stimulus pairs and asked to indicate whether they
had seen that particular pair during encoding. Again, the presentation
order of stimuli was randomized compared to study, but fixed across
individuals. In total, 40 pairs were presented, 20 of which had been
paired together during encoding (target pairs) and 20 re-arranged pairs,
means all stimuli had been presented during encoding but not paired
together (foil pairs). Performance in the item and associative memory
tasks were defined as the proportion of hits minus the proportion of false
3

alarms (H-FA).
1.3. Magnetic resonance imaging

Two MR assessments were conducted with 14 weeks apart, one week
before and two weeks after the intervention period. Scanning was per-
formed using an 8-channel coil on a GE Discovery MR-750 3.0-T scanner
(General Electric, Milwaukee, WI, USA), located at the Karolinska Uni-
versity Hospital, in Solna, Sweden. Structural images were acquired with
a standardized T1 spoiled gradient BRAVO sequence with 0.94 mm3

isotropic voxels, a field of view of 240 mm (240� 240 matrix), repetition
time/echo time ¼ 6.4/2.808 msec, and flip angle 12�. Cortical recon-
struction and volumetric segmentation of the T1-weighted images were
performed using the FreeSurfer imaging analysis suite (https://surfer
.nmr.mgh.harvard.edu/; version 6.0). To extract reliable volume and
thickness estimates, images where automatically processed with the
longitudinal stream in FreeSurfer (Reuter et al., 2012). Motivated by
previous literature (Achim and Lepage, 2005; Becker et al., 2015; Bunge
et al., 2004; Kirchhoff and Buckner, 2006; Rodrigue and Raz, 2004),
measures of cortical thickness and volume were extracted from the hy-
pothesized gray matter regions in the lateral PFC and the MTL using the
Desikan-Killiany cortical parcellation available in Freesurfer, for each
individual participant, in the right and left hemisphere, at pre and post
intervention (Desikan et al., 2006). Specifically, for the lateral PFC,
cortical thickness measures were extracted from the pars triangularus,
pars opercularis, pars orbitalis, caudal middle frontal gyrus, rostral
middle frontal gyrus and the superior frontal gyrus, and for the MTL,
from the entorhinal and parahippocampal cortex. For the MTL, hippo-
campal (HC) volumes at pre- and post- intervention assessments, in the
left and right hemisphere, were additionally extracted from the subcor-
tical FreeSurfer segmentation and adjusted for total intracranial volume
(ICV) as follows:

adjusted HC volume ¼ raw HC volume – b X (ICV – average ICV)

where b is the slope of regression of the raw HC volume on ICV. No such
adjustment was performed for the cortical thickness measures, which, in
contrast to raw regional volumes, do not tend to be reliably associated
with total intracranial volume (see SI-1 for relevant correlations in the
study dataset).
1.4. Statistical analysis

SEMwas performed using the lavaan package (Rosseel, 2012) in the R
programming environment (R Core Team, 2014), employing the SEM
function (‘sem’) to fit the model estimate the parameters. All observed
variables were standardized before being entered into the model. Model
fit was evaluated using the Comparative Fit Index (CFI) and the Root
Mean Square Error of Approximation (RMSEA) and full-information
maximum likelihood estimation was used to deal with missing data
(for effective sample sizes for all measures, see the supplementary in-
formation (SI-1). Full-information maximum likelihood requires that
data is missing at random or completely at random (Schafer and Graham,
2002). Whilst it is impossible to empirically demonstrate that the
assumption of missingness at random is fully met when participants can
self-select into (parts of) a study, we found it reasonable to assume that
the selection variables for the MR subsample, which included willingness
to complete the assessment and absence of MR contraindications (e.g.,
metal implants), were unrelated to measures of cortical thickness and
volume, after accounting for observed information included in the model
(e.g., memory performance). All available data was used in all models,
allowing the cognitive latent variables to be derived from the full study
sample (n ¼ 160) in all models whilst the brain latent variables were
derived from the MR subsample (n ¼ 72). This procedure ensures the
maximum precision with which the parameters of the model are esti-
mated, and maximum power with which statistical tests are conducted, is

https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
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attained. In all models, the variances of the latent factors were fixed to
unity and all factor loadings were freely estimated, allowing covariances
between latent factors to be interpreted as correlations. All model com-
parisons were performed using χ2 -difference tests and a significance
threshold of p ¼ .05.

As previously stated, recognition performance for associations re-
quires recollection-based retrieval processes, while recognition of single
items can be based on familiarity- and recollection-based retrieval pro-
cesses. Associative memory (AM) was therefore modelled as the shared
variance among the three associative recognition tests and the three item
recognition tests, with the aim to capture the recollection-based retrieval
processes that the tests have in common (cognitive model; Fig. 1A). Item
memory was modelled as the shared variance among the three item
Fig. 1. SEMs testing the support for a distinction between item and associative memor
regions of interest (Brain model, B). The regional specificity of the relationships betw
relationships in PFC regions with relationships in MTL regions (Region specificity m
variances by double-headed arrows. The variances of all latent variables were fixe
estimated. AM ¼ associative memory tests, IT ¼ item memory tests, FN ¼ face-name,
measure 1, a-fn 2 ¼ associative memory face-name measure 2, etc.

4

recognition tests (ITEM) to separate the variance assumed to be specific
to the item tests: familiarity-based retrieval processes. Importantly, in-
dividual performance in the three IAMTs were also represented by a
latent factor, that is, as the shared variance of the respective tests
collected at pre- and post-intervention assessments. Given that the
recognition phase for item and associative memory was based on the
same encoding phase and stimulus material, the residual terms for each
test (picture-picture, word-word, face-name) were allowed to correlate.
Statistical support for the cognitive model (Fig. 1A), which specifies an
associative and an item memory factor (dual-process model), was eval-
uated by comparison to a model in which the specific ITEM memory
factor was removed and thus only included a single memory factor
(single-process model). The relationship between the latent associative
y (Cognitive model, A) and their differential relationships with brain structure in
een item and associative memory and brain structure was tested by comparing
odel, C). Regression weights are represented by single-headed arrows and co-
d to unity and all factor loadings, intercepts, variances, and covariances were
WW ¼ word-word, PP ¼ picture-picture, a-fn 1 ¼ associative memory face-name
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and item memory factors was furthermore tested by contrasting the
cognitive model, in which the factors were assumed to be independent, to
a model in which the covariance term between AM and ITEM was freely
estimated.

To investigate relationships with structural brain variables, a latent
brain factor was added to the cognitive model, allowing it to correlate
with both ITEM and AM (brain model; Fig. 1B). These analyses were
conducted using a region of interest approach, to test for the relative
importance of specific task-relevant regions (lateral PFC and MTL) for
inter-individual differences in associative over item memory, see
description above (Fig. 2 A).

Given the high pre-post correlations for the brain measures (all
Pearson’s rs> 0.90), a pre-post average was calculated for each region of
interest. Each region of interest was subsequently modelled as the shared
variance (i.e., latent factor) of measures in the left and right hemisphere
(brain model; Fig. 1B). Loadings of the left and right hemisphere
Fig. 2. (A) Results from the brain model for the different regions of interest, as in
modified with permission from Desikan et al., 2006). The hippocampus was also incl
depicted here. (B) Bar chart of the standardized β estimates for the correlations bet
directly derived from the results presented in Table 1. The colors of the bars correspo
entorhinal cortex resulted in an improper solution and results for this region is theref
estimates, but note that all significance testing was performed by model comparison
overlaid on the bars. Significant differences in correlation strength between AM-brain
indicated with *(p < 0.05) above the relevant bars. Rost mid frontal ¼ rostral midd

5

indicators on the latent brain factor were constrained to be equal.
Cortical thickness (volume for hippocampus) was evaluated for each
region of interest in separate models. Statistical significance of the cor-
relations was tested by comparing a model in which the correlation to be
tested (e.g., AM-brain) was fixed to zero, while the other (e.g., ITEM-
brain) was freely estimated, with a model in which both correlations
were freely estimated. To test whether the AM-brain correlation differed
significantly from the ITEM-brain correlation, the correlations were
constrained to be equal in a model, which was compared to a model in
which the correlations were freely estimated.

Regional specificity was subsequently tested for all regions showing a
significantly differential relationship to AM performance or ITEM per-
formance. This analysis was inspired by previous work proposing a
distinction between the contributions of different MTL regions for item
and associative memory and the relative importance of prefrontal brain
volume for intentional associative recognition memory in older adults
dicated by the colored parcels in the Desikan-Killiany parcellation map (image
uded as a region of interest in the brain model but as a subcortical region is not
ween the regions of interest and performance in item and associative memory,
nd to the colors of the region parcels in Table 1. Estimation of the model for the
ore not included. The error bars represent the standard errors for the correlation
using χ2 tests. Significant correlation estimates are indicated with *(p < 0.05)
and ITEM-brain associations and between AM-PFC and AM-MTL associations are
le frontal, Caud mid frontal ¼ caudal middle frontal.
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(Becker et al., 2015). To this end, prefrontal and medio-temporal regions
that were identified as selectively important for associative memory or
item memory were pitched against medio-temporal regions and pre-
frontal regions, respectively. For all brain regions showing a significantly
different relationship to AM performance or ITEM performance, one
prefrontal region of interest (PFC) and one medial temporal region of
interest (MTL) were included simultaneously in the model, and were
allowed to correlate with each other and with AM or ITEM (region
specificity model, Fig. 1C). Each combination of PFC and MTL regions
were entered into separate models. To test whether the correlation with
performance differed between the PFC and the MTL regions, a model in
which the PFC-performance and MTL-performance correlations were
constrained to be equal was compared to a model in which they were
freely estimated. Like in the basic brain model, loadings of the left and
right hemisphere indicators on the latent brain variables were con-
strained to be equal.

2. Results

The cognitive model (dual-process model; Fig. 1A) demonstrated
good fit to the data (χ2 (39, N ¼ 160) ¼ 51.38, CFI ¼ 0.986, RMSEA ¼
0.045; for factor loadings see SI-2). Removing the specific ITEM factor
(single-process model) resulted in a significantly worse model fit (χ2 (42,
N ¼ 160) ¼ 70.40, CFI ¼ 0.967, RMSEA ¼ 0.065), in support of a unique
contribution of ITEM to the model, (χ2 (3, N¼ 160)¼ 19.02, p< .05). In
support of the independence of the latent AM and ITEM factors, model fit
Table 1
Model fit indices (χ2, CFI, RMSEA) and standardized parameter esti
interest and item memory (ITEM) and associative memory (AM), a
tested the significance of and between these correlations.

6

did not differ between the cognitive model, which assumed indepen-
dence between the latent AM and ITEM factors, and a model in which this
covariance term was freely estimated (χ2 (1, N ¼ 160) <0.01, p � 1).

The brain model (Fig. 1B) converged with good model fit for all re-
gions of interest (Table 1). However, the variance-covariance matrix was
not positively definite for the entorhinal cortex, with improbable esti-
mates for some loadings, which prevented further interpretation of re-
sults in this region. Among the remaining regions, AM was significantly
correlated with cortical thickness in the pars triangularis and pars orbi-
talis whilst no significant correlations were detected for ITEM in any of
the regions of interest (Table 1). For the pars triangularis, the correlation
with AM was significantly higher than the correlation with ITEM and the
same pattern was marginally significant in the pars orbitalis (Table 1).
For illustrative purposes, the pattern of correlation estimates is visualized
in Fig. 2B. The qualitative pattern in Fig. 2B shows that whilst all AM-
brain correlations are numerically positive, the ITEM-brain correlations
are numerically positive only in medial temporal regions and negative in
all prefrontal regions, indicating a level of regional specificity. Whilst this
qualitative pattern was not tested formally, it suggests that prefrontal
regions (pars triangularis, pars orbitalis) may contribute more to asso-
ciative memory than medial temporal regions, whilst the reverse pattern
may be true for item memory.

To formally test for regional specificity of the contribution of the pars
triangularis to associative memory demonstrated previously, the corre-
lation between associative memory performance and pars triangularis
was contrasted to the corresponding correlation with the HC and the
mates (β) for the correlations between the different regions of
s well as inferential statistics for the model comparisons that
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parahippocampal regions of the MTL, in two separate models (Fig. 1C).
Model fit was good for the model that included the HC (χ2 (86, N ¼ 160)
¼ 89.18, CFI¼ 0.997, RMSEA¼ 0.015) as well as themodel that included
the parahippocampus (χ2 (120, N ¼ 160) ¼ 114.07, CFI ¼ 0.97, RMSEA
¼ 0.045). Fixing the AM-PFC and AM-HC correlations to be equal
resulted in a significant decrease in model fit only when the pars trian-
gularis was contrasted with the parahippocampus (χ2 (1, N ¼ 160) ¼
4.05, p < .05), although a trending pattern was detected also for the pars
triangularis and the hippocampus, (χ2 (1, N ¼ 160) ¼ 3.70, p ¼ 0.054),
supporting that the demonstrated relationship between the pars trian-
gularis and associative memory is indeed specific to the frontal lobe.

A correlation matrix of all included measures and their means and
standard deviations are available in the supplementary information (SI-
1).

Follow-up analyses. Whilst the age range of the study sample is
relatively narrow (age 65–75), age-related variation in cognition and
brain structure is possible. Therefore, in a set of follow-up analyses, all
models were re-run with age included as an observed variable.

In the cognitive model (Fig. 1A), age was regressed on the AM and
ITEM latent factors. As in the original analysis, statistical support for a
distinction between item and associative memory was evaluated by a
comparison to a model that included a single memory factor, which Age
was regressed on. Again, the cognitive model demonstrated good fit to
the data (χ2 (49, N ¼ 160) ¼ 61.88, CFI ¼ 0.985, RMSEA ¼ 0.041) and
removing the specific ITEM factor resulted in a significant decrease in
model fit (χ2 (4, N ¼ 160) ¼ 19.02, p ¼ 0.0006545). Thus, the empirical
support for a separation between associative and item memory remained
even after accounting for age. For more detailed output on the cognitive
model with age included in the model, see SI-3.

In the brain model (Fig. 1B), age was regressed on the Brain, AM, and
ITEM latent factors. As in the original analysis, statistical significance of
the correlations was tested by comparing a model in which the correla-
tion to be tested (e.g., AM-brain) was fixed to zero, while the other (e.g.,
ITEM-brain) was freely estimated, with a model in which both correla-
tions were freely estimated. The AM-brain correlation remained signifi-
cant in the pars triangularis, χ2 (1, N ¼ 160) ¼ 7.224, p ¼ 0.007, and in
the pars orbitalis, χ2 (1, N ¼ 160) ¼ 5.590, p ¼ 0.018, when age was
included in the model. However, the direct comparison of correlation
strength between the AM-brain and the ITEM-brain correlations in the
pars triangularis no longer reached significance when age was included
in the model, χ2 (1, N¼ 160)¼ 3.775, p¼ 0.052. For complete statistical
output from the brain models with age included, see SI-4.

In the region specificity model (Fig. 1C), age was regressed on MTL,
FC, AM and ITEM. As in the original analysis, a model in which the PFC-
performance and MTL-performance correlations were constrained to be
equal was compared to a model in which they were freely estimated. The
model that contrasted the parahippocampus and the pars triangularis
converged with good model fit (χ2 (98, N ¼ 160) ¼ 126.045, CFI ¼
0.970, RMSEA ¼ 0.042), but fixing the AM-PFC and AM-HC correlation
did no longer result in a significant drop in model fit (χ2 (1, N ¼ 160) ¼
3.7039, p ¼ 0.05428). The model that contrasted the pars trianglularis
and the hippocampus did not converge when age was included in the
model.

3. Discussion

The main findings of the present study are in line with our hypotheses
showing (a) support for a distinction between recollection-based and
familiarity-based performance in older adults at a behavioural level and
(b) an association between recognition performance and cortical thick-
ness in the ventromedial PFC that is specific to associative recollection-
based processes (relative to familiarity-based item memory) and to the
pars triangularis (relative to the parahippocampus in the MTL). Belowwe
discuss each finding and its respective interpretation and limitations in
detail.

This is the first time that familiarity- and recollection-based
7

recognition performance were investigated with SEM methods using
IAMTs, which measure item and associative memory within the same
task procedure, using the same stimulus material, encoding phase, and
encoding instructions (but see Henson et al., 2016 for similar approach
but different study goal). By using several independent indicators for
item and for associative memory, derived from the IAMTs, the behavioral
data could be modelled at the latent ability level. Specifically, the vari-
ance that was assumed to be shared among the item and associative
recognition tests (recollection-based contributions to performance) was
captured separately from the variance that was assumed to be shared
amongst the three item memory indicators (familiarity-based processes),
whilst disregarding task-specific effects and controlling for measurement
error. The model that included such a distinction resulted in better model
fit compared to a model that was limited to a single episodic memory
factor, providing evidence for the relevance of the distinction between
associative and item memory at the latent ability level in older adults.

Good associative recognition performance was found to be associated
with greater cortical thickness in two lateral prefrontal regions of inter-
est, the pars triangularis and the pars orbitalis. This is in line with a
previous demonstration of a positive correlation between associative
recognition performance and cortical thickness in dorso- and ventrolat-
eral prefrontal brain regions in older adults, with no associations being
detected for item memory with any other prefrontal or medio-temporal
brain region (Becker et al., 2015). The correlation between
recollection-based recognition and cortical thickness was significantly
stronger than the corresponding correlation for familiarity-based recog-
nition in the ventromedial PFC (i.e., pars triangularis). This finding
provides support for a specific role of the pars triangularis for accounting
interindividual differences in associative memory ability, with no such
role for item memory, in older adults. Furthermore, the association be-
tween associative recognition and the pars triangularis appeared to be
regionally specific to the lateral prefrontal lobe. Specifically, the corre-
lation between associative memory ability and brain structure in the pars
triangularis was significantly stronger than the corresponding association
in the parahippocampus, with a trending effect also relative to the hip-
pocampus. This provides preliminary support that the ventromedial
prefrontal lobe is more important for the explanation of interindividual
differences in associative memory performance than MTL regions in old
age. The qualitative multivariate pattern of correlations furthermore
appeared to support a broader distinction between the role of MTL re-
gions in item memory over associative memory and the role of lateral
PFC regions in associative memory over item memory. Whilst such a
multivariate pattern awaits formal testing in future studies, the qualita-
tive pattern of results is consistent with previous proposals of the func-
tional separation between the MTL and the lateral PFC in item- and
associative memory (Becker et al., 2015).

Becker et al. (2015) argued that the relative importance of the HC
might have been underestimated in their study due to relatively small
and young study sample (i.e., all individuals 60 years of age), in which
age-related brain atrophy especially in the HC has not been so pro-
nounced yet (see also Raz et al., 2005). Here, we tested a larger sample (n
¼ 72) that covered a wider age range (65–75 years) and yet we
demonstrated no significant contribution of MTL regions in accounting
for interindividual differences in associative (recollection-based) mem-
ory. These findings suggest that the lateral PFC is more relevant for
distinguishing older individuals with good and poor associative memory
functioning thanMTL regions. As previous functional and structural work
especially in younger adults support the relative importance of the MTL
(especially the hippocampus) for good associative memory functioning
and recollection-based processes, age-comparative studies including
younger and older adults and investigating the relative importance of
MTL and lateral PFC for different age groups would be important to
compare and even more longitudinal assessments of age-related changes
of brain-behavior changes within individuals across the adult lifespan.

According to the dual-component model of episodic memory, its
functionality relies on the interaction between strategic and associative
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components (e.g., Shing et al., 2010). The strategic component of
episodic memory refers to cognitive control processes that aid memory
functioning during encoding and retrieval and are linked to the func-
tionality and integrity of lateral PFC, while the associative component is
engaged relatively automatically to aspects of relational binding (item--
item, item-context) in long term memory (Chalfonte and Johnson, 1996;
Naveh-Benjamin, 2000; Spencer and Raz, 1995), linked to intact MTL (H.
Eichenbaum, 2004; Olsen et al., 2012). Functional MRI research has
demonstrated that the dorsolateral PFC and the ventrolateral PFC is
linked to strategic memory processes (e.g., information maintenance,
inhibition, monitoring, and control processes) and self-initiated use of
these strategies during encoding and retrieval of item pairs (Achim and
Lepage, 2005; Bunge et al., 2004; Fletcher et al., 2003; Kirchhoff and
Buckner, 2006; Kirchhoff et al., 2014; Qin et al., 2007; Wheeler and
Stuss, 2003). Similarly, greater PFC volume has been found to be asso-
ciated with better executive functions (Yuan and Raz, 2014), which are
arguably important for strategic memory processes. In this context, the
association between associative memory and cortical thickness in the
ventromedial prefrontal cortex may therefore be accounted for by
interindividual differences in strategic processes and not automatic
binding processes. Related to this, the relative importance of brain
structure in the PFC and MTL for associative memory have shown to be
different under incidental and intentional encoding instructions (see Carr
et al., 2017; Zamboni et al., 2013). Under incidental encoding instruc-
tion, participants were not aware of a subsequent memory test and did
not self-initiate encoding strategies, Zamboni et al. (2013) for example
found visuospatial associative memory performance of older adults to be
linked to HC but not PFC volume. Intentional encoding instructions were
used in the present study, allowing for intentional and effortful strategies,
which may have further shifted the contribution towards PFC regions
instead of towards MTL regions, which are more important for rapid
formation of associations between relational information (see Becker
et al., 2015).

Interestingly, the word-word item memory task (IT2) showed rela-
tively lower loadings for the item memory latent factors than the item
memory tasks containing faces and names or pictures. Item memory was
modelled as the shared variance among the three item recognition tests
to separate the variance assumed to be specific to the item tests, namely
familiarity-based retrieval processes. Thus, the lower loading of IT2 on
the item memory factor suggests that IT2 captures less familiarity-based
variance than IT1 and IT3, possibly due to the stimuli type. Indeed,
relative to IT1 and IT3, IT2 has a higher loading on the associative
memory factor, which suggests that remembering single words engages
more recollection-based processes than remembering single faces, names
and pictures. Future work is needed to systematically investigate stim-
ulus material effect when it comes to the relative contribution of famil-
iarity and recollection processes in item and associative memory
functioning.

The binding deficit hypothesis (Naveh-Benjamin, 2000) indicates that
older adults show larger age-related decline in associative than in item
memory functioning, which is based on deficient associative binding
abilities in older adults. This study does not directly compare younger
and older adults, nor includes longitudinal assessment of performance
and structural brain changes across time. Hence, we cannot provide any
interpretations regarding age-related differences or changes in associa-
tive in relation to item memory and related structural brain correlates.
The interpretation of our findings is restricted to inter-individual differ-
ences within a group of well-functioning, healthy older adults.

Whilst the sample size of this study was large relative to most pre-
vious studies, it can be considered limited in the context of the
complexity of the analysis. This limitation is particularly pertinent to the
follow-up analyses, in which the inclusion of age further increased the
complexity of the models, requiring estimation of additional associations
based on the same number of data points. Whilst inferential statistics
remained in favor of a separation between associative memory and item
memory and of associations between associative memory and cortical
8

thickness in the pars triangularis and pars orbitalis, support for a specific
association with associative memory, above and beyond item memory,
and with the pars triangularis, above and beyond medial-temporal re-
gions, dropped just below the significance threshold. Such minor varia-
tions in estimates and p-values are to be expected given the reduced
statistical power in the follow-up analyses but it is evident that the pre-
sent findings will need to be replicated in larger samples. The need for
replication in larger samples is also emphasized by the multiple models
tested in the present study without statistical adjustment, which repre-
sents an important limitation of the reported findings.

Model convergence problems were encountered for the entorhinal
cortex (non-positive-definite variance-covariance matrix), which may
have not occurred with larger sample sizes. The present findings there-
fore need to be replicated with larger study samples. It will also be
important to evaluate the influence of the intentional encoding on the
relative contribution of lateral PFC and MTL regions in accounting for
interindividual differences in associative memory in old age. Disen-
tangling the contribution of strategic and more automatic binding pro-
cesses of associative memory will be important in future research.
Furthermore, as the current study assessed static estimates of brain
structure (cross-sectional design), which does not exclude the possibility
that individual differences in brain volume and thickness might be
(party) related to differences in age-related decline or inter-individual
differences in brain structure, which existed already at younger ages. It
will be necessary to test these associations longitudinally in order to
establish whether age-related associative memory decline co-vary with
deterioration in the lateral PFC over time. Finally, since the maximum
likelihood estimation methodology used here rested on an untested
assumption that the MR data were missing at random, it will be impor-
tant to replicate the results in datasets with complete brain data.

In summary, the present study provided support for a distinction
between associative memory (i.e., recollection-based memory perfor-
mance) and item memory (i.e., more familiarity-based memory perfor-
mance) and for a specific role of the ventromedial prefrontal cortex (pars
triangularis) in accounting for interindividual differences in associative
memory performance in older adults. These findings support the idea
that successful intentional associative recognition performance in older
adults is highly supported by strategic functioning.
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