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It’s noisy out there! A review of denoising techniques in 
cryo-electron tomography 

Achilleas S. Frangakis 
Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe University Frankfurt Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany  

A B S T R A C T   

Cryo-electron tomography is the only technique that can provide sub-nanometer resolved images of cell regions or even whole cells, without the need of labeling or 
staining methods. Technological advances over the past decade in electron microscope stability, cameras, stage precision and software have resulted in faster 
acquisition speeds and considerably improved resolution. In pursuit of even better image resolution, researchers seek to reduce noise – a crucial factor affecting the 
reliability of the tomogram interpretation and ultimately limiting the achieved resolution. Sub-tomogram averaging is the method of choice for reducing noise in 
repetitive objects. However, when averaging is not applicable, a trade-off between reducing noise and conserving genuine image details must be achieved. Thus, 
denoising is an important process that improves the interpretability of the tomogram not only directly but also by facilitating other downstream tasks, such as 
segmentation and 3D visualization. Here, I review contemporary denoising techniques for cryo-electron tomography by taking into account noise-specific properties 
of both reconstruction and detector noise. The outcomes of different techniques are compared, in order to help researchers select the most appropriate for each 
dataset and to achieve better and more reliable interpretation of the tomograms.   

1. Introduction 

Denoising is an image processing procedure that aims to reduce the 
noise in two-dimensional (2D) or three-dimensional (3D) images (Russ 
and Neal, 2018). In electron microscopy, many identical macromole-
cules (often numbering in the thousands) are captured in a single image. 
This repetitive signal is averaged again and again, thus achieving 
denoising, which is reflected by the gain in resolution (Frank, 2006). On 
the other hand, when the signal of non-repetitive objects needs to be 
denoised, very sophisticated techniques – other than averaging – are 
required. These techniques typically explore features in the image such 
as edges or patterns that are to be retained and try to remove everything 
else which is considered to be noise. Denoising techniques other than 
averaging, tend to be dismissed as cosmetic operations. This is because 
the gain in resolution and signal-to-noise ratio (SNR) is not yet sufficient 
to allow for a mechanistic understanding of the objects under scrutiny. 
Most biological objects such as organelles, macromolecules and poly-
mers are non-repetitive, very dynamic and cannot be captured at 
discrete states, as required by conventional structural techniques. This 
pleiomorphism ultimately requires a solitary analysis (Sikora et al., 
2020; Turoňová et al., 2020) and prohibits the use of averaging tech-
niques, where the SNR improves in proportion to the number of entities 
used in the average (Papoulis, 1984). Thus, it is foreseeable that with the 
further development of electron tomography that opens up new avenues 
for the analysis of pleiomorphic objects, denoising methods will become 

even more essential. 
Cryo-electron tomography (cryoET) is currently the only technique 

capable of recording 3D images of biological objects with a resolution in 
the nanometer range (Sali et al., 2003). The biological specimen is 
typically preserved at liquid nitrogen temperatures in a close-to-native 
state. Unfortunately, cryo-electron tomograms have a very low SNR at 
higher resolutions due to the high radiation sensitivity of biological 
specimens (Hattne et al., 2018; Sali et al., 2003). The use of higher doses 
of radiation increases the SNR but also destroys or falsifies high- 
frequency information due to alterations to the specimens. When 
seeking increasingly better resolutions, noise is a major limiting factor 
and improving the SNR is essential. There are many sources of noise, and 
noise can occur before and after image reconstruction. Before the 
reconstruction, the noise can be modeled by a Poisson or Gaussian dis-
tribution (Baumann and Reimer, 1981) depending on the radiation dose, 
whereas after the reconstruction, the noise modeling becomes more 
complex. Tomograms are prone to artifacts caused by samples changing 
during the recording process, which leads to differences between the 
individual images (Veesler et al., 2013), while 3D reconstructions are 
affected most significantly by the limited angular range of the tilt series 
(typically from − 65 to +65 degrees), which results in an incomplete 
data set that is visible as an empty wedge in the Fourier domain, as 
predicted by the Fourier slice theorem (Mastronarde, 1997). In addition, 
the contrast transfer function (CTF) of the microscope is not trivial to be 
estimated in images of thick specimens recorded at higher tilt angles 
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(Kunz and Frangakis, 2017). Each of these issues alone is difficult to 
overcome, their combination poses a major challenge to any denoising 
technique. 

For the reconstruction, the well-established filtered back projection 
(FBP) algorithm is typically used (Mastronarde, 1997). Despite the 
acceptable performance of the FBP (Heumann et al., 2011; Hrabe et al., 
2012), in particular with respect to sub-tomogram averaging, the ramp 
filtering amplifies high-frequency noise and generally results in low- 
contrast images (Kunz and Frangakis, 2014; Smith et al., 1973). This 
limitation of FBP has probably motivated the parallel use of iterative 
reconstruction algorithms (Gilbert, 1972). Thus, although image 
reconstruction techniques also provide some level of denoising, this 
review will address denoising techniques independent of the recon-
struction method. 

Here, I discuss different denoising techniques used in cryo-electron 
tomography and compare their outcomes in particular regarding the 
visual quality and ability to preserve small details, which are particu-
larly important for biological applications. Lastly, I provide examples of 
each method’s performance to illustrate their advantages. 

2. Evaluation measures 

Evaluating the performance of denoising algorithms is challenging, 
because in most real-life cases the ground truth is not known (Frank, 
2008). The evaluation criteria are broad and lastly depend on the result 
for each individual application (Narasimha et al., 2008). The typical 
measurement of quality for a denoising algorithm is reflected in the gain 
of the SNR. The SNR is defined as: 

SNR =
E
[
S2
]

E
[
N2
]

where E is the expectation value. If the noise N and signal S are zero- 
mean, the SNR is the ratio of the variances of the signal to noise. 

In electron microscopy, resolution is typically estimated by the 
Fourier shell correlation function (FSC); a better (closer to the value one) 
FSC also reflects an increase in the SNR (Böttcher et al., 1997; Rosenthal 
and Henderson, 2003; van Heel, 1987; van Heel and Schatz, 2005). 
Thus, the SNR is related to the achieved resolution (Radermacher and 
Ruiz, 2019): 

SNR =
CC

(1 − CC)

where CC is the cross-correlation coefficient between two images. The 
FSC(s) between two images I1 und I2 is given by the following formula: 

FSC(s) =

∑
|f|∈s

(
I1(f)I2(f)

− )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(∑
|f|∈s|I1(f) |2

)(∑
|f|∈s|I2(f) |2

)√

where s is the Fourier shell index, f is the spatial frequency, and – de-
notes complex conjugation. 

Other metrics for estimating the quality of denoising include the 
peak SNR (Zhang et al., 2012), the spectral SNR (Penczek, 2002), and 
different interpretation of the resolution in the FSC such as the bit-FSC 
(van Heel and Schatz, 2005), but these performance measurements are 
not discussed in this review. 

3. Denoising methods 

The human eye is extremely powerful and can identify features 
within images even when noise is present. However, this ability is 
significantly impaired when viewing 3D images such as tomograms or 
when the noise level is very high. In these situations, denoising methods 
become particularly useful, as they aim to preserve important image 

details that are essential for further processing. There are essentially two 
points in the processing pipeline when denoising methods can be used: 
pre-reconstruction, applied to individual 2D images; or post- 
reconstruction, applied to tomograms (Fig. 1). There are advantages 
and disadvantages to both approaches, although the risks are significant 
for the former, as denoising can ambiguously affect the proper down-
stream interpretation of the data (Pruggnaller et al., 2008) (Heymann 
et al., 2008) (Roels et al., 2020). 

Pre-reconstruction denoising reduces noise in individual 2D images 
by directly addressing the statistical attributes of noise from the mi-
croscope and the camera. Various denoising methods have been used for 
computed tomography, such as domain filtering techniques like Wavelet 
and Fourier Transformation-based filtering (FT), nonlinear and edge- 
keeping noise filters (e.g. nonlinear anisotropic diffusion (NAD) and 
non-local (NL) means) and, more recently, denoising techniques based 
on neural networks (Noise2Noise) (Fig. 2). 

Post-reconstruction denoising reduces noise in 3D images by 
exploiting structural features in the objects – primarily edges. In tomo-
gram denoising, the filter parameters are typically tuned to retain the 
proper appearance of the sample – in general a subjective judgement. A 
statistical model of the noise in tomograms is difficult to generate and 
depends on various effects. 

Post-reconstruction denoising is typically preferred for several rea-
sons: (i) it does not disturb the linearity between the projection images 
and the reconstruction; (ii) it avoids different treatments or even 
removal of features from the tilt-series due to a non-preferential viewing 
orientation; and (iii) it minimizes the risk of introduction of new arti-
facts that appeared during the denoising procedure. 

Most importantly the SNR, but also specific artifacts and properties 
related to electron tomography may affect denoising performance and 
ultimately the choice of the best technique for a specific application 
(Fig. 3a). They include how the techniques perform regarding: (i) CTF 
corrected tomograms (Zanetti et al., 2009),(Bhamre et al., 2016), since 
the CTF flips the contrast of features depending on the spatial frequency 
and effects the contrast at the edges. (ii) the amount of missing wedge, i. 
e. how the elongation resulting from the missing wedge is dealt with 
(Mastronarde, 1997). Increasing the size of the wedge decreases the 
dimensionality from 3D towards 2D. Consequently, algorithms per-
forming better in 2D may be appropriate for denoising tomograms with 
a very pronounced missing wedge. 

3.1. Linear filters applied in either the spatial or frequency domain 

Linear filters are routinely applied to image data individually or in 
combination, usually with the aim of removing either slow-changing 
background intensities (mild high-pass filter) or high frequencies (low- 
pass filter) that are thought to contain significantly more noise than 
signal. Linear filters typically denoted with h(j) in real space and their 
Fourier transform H(f) ⇌{F (h(j) ) } are mostly applied in the Fourier 
domain, due to speed considerations, although they can also be applied 
in the spatial domain when the kernels are very small. 

Fig. 1. Denoising can be used at two points during analysis in elec-
tron tomography. 
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I’(j) = (I*h)(j) =
∫∞

− ∞
I(k)∙ h(j − k)dk⇌{F (I(j) ) }∙H(f )

Linear filters can be empirically derived and easily adapted. Char-
acteristic examples include: (i) the low-pass filter which either down- 
weights or sets to zero all Fourier components above the maximum 
achievable frequencies or resolution, (ii) the Gaussian-filter, which is 
also a lowpass filter, that multiplies all Fourier components with a 
Gaussian function H(f) = e− f2/2σ2 with a set width σ, (iii) the “dose- 
filtering” to eliminate or down-weight higher frequencies that are 
thought not to contain any more useful information because of the dose 
that has already been applied to the sample (Grant and Grigorieff, 2015; 
Scheres, 2014; Sigworth, 2016), and others. Linear filters improve the 
visual quality of images and the overall SNR may also improve, because 
the energies of the noise and the signal are not equally distributed over 
all frequencies – that is, more noise is present at higher frequencies, 
which, for instance, in the case of low-pass filtering are removed 
(Fig. 3b). Instead, the FSC remains the same, because the signal and the 
noise are minimized in each frequency band by the same amount. In 
addition, there is a tradeoff between the reduction in noise at the higher 
frequencies and the spatial resolution of the image. 

3.2. Nonlinear filters 

3.2.1. Median filter 
The most popular nonlinear filter is perhaps the median filter (Pitas 

and Venetsanopoulos, 1990). The median filter replaces the value of the 
central kernel pixel I(j) with the median value of the kernel W 

I’(j)←median
v∈Wj

{I(v + j)|v ∈ R }

The median filter is known for preserving the edges. It works 
particularly well for salt and pepper noise. In contrast to linear filters, 
the median filter improves both the SNR and the FSC. In general, it is a 
very versatile filter that is routinely used for many applications (Omer 
et al., 2018). 

3.2.2. Nonlinear anisotropic diffusion 
Nonlinear anisotropic diffusion (NAD) is based on the original pro-

posal of Perona and Malik (Perona and Malik, 1990) and further 
mathematical improvements and the introduction of coherence 
enhancing diffusion (Weickert, 1999). It has been a popular technique 
for denoising electron tomograms, because the diffusion filters are 
designed to preserve the edges while smoothing along them. NAD filters 
considerably improve the SNR and the FSC, because they effectively 
remove noise in smooth regions and ensure edge preservation. Image 
smoothening is designed as a diffusion process that is equivalent to 
Gaussian filtering, but it can be controlled along edges as a function of 
the local gradient. Thus, the image It, with respect to the processing time 
t, is a function of the gradient of the image ∇I and a diffusivity matrix G: 

It = div(G⋅∇I)

The properties of G determine the development of the image 

denoising. It is composed of the three eigenvectors vi of the structure 
tensor Jσ = ∇I⋅∇IT*Kσ which allow for an averaged direction of the 
gradient (Kσ is a Gaussian kernel of width σ and * denotes the convo-
lution) and the corresponding eigenvalues μi. 

The diffusivity G can be structured in the following way: 

G = [ v1 v2 v3 ]⋅

⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦⋅[ v1 v2 v3 ]
T 

Eigenvectors and eigenvalues characterize the local structural fea-
tures of the image within a neighborhood defined by Kσ. 

For edge-enhancing diffusion, λ1 = λ2 = 1/
(
1+μ1

2/κ2) and λ3 = 1 
are chosen; for coherence enhancing diffusion, λ1 = λ2 = α and 

λ3 = α+(1 − α)⋅exp
(
− C/(μ1 − μ3)

2
)

are chosen (κ, α and C are user- 

defined, although α and C are typically close to zero). Hybrid ap-
proaches have been shown to perform well for electron microscopy 
(Frangakis and Hegerl, 2001). NAD is mathematically well-posed and 
can be used as a pre- or post-reconstruction filter (Fig. 3c) (Frangakis 
and Hegerl, 2001; Maiorca et al., 2012). 

3.2.3. Non-local means filter 
Averaging reduces the noise by summing many identical structures. 

A conceptually similar filter is the non-local means (NLM) filter, which 
removes noise by averaging similar patterns within repeating informa-
tion in the image (Buades et al., 2005). As a result, the new pixel in-
tensity is determined as the weighted mean of similar patterns inside the 
image. For a given noisy image I, a denoised image I’(j) at pixel j is 
computed as a weighted mean of all pixels in an image or within a 
neighborhood IN, 

I’(j) =
∑

k∈IN
we(j, k)I(k)

where the weights we(j, k) = 1
NC(j)e

−

(
‖I(Vj)− I(Vk)‖

2
2,b

)/
h2 

indicate the sim-
ilarity between two pixels or a small region around those pixels. b is the 
Gaussian kernel standard deviation, Vj and Vk are the intensity grey level 
vectors, and NC is a normalizing constant, such that the overall sum of 
the weights is equal to one (Zhang et al., 2013). NLM is also used in 
electron microscopy (Wei and Yin, 2010). The Gaussian kernel with 
standard deviation h acts as a filtering parameter, controlling the degree 
of filtering. When h is very small, most weights of the pixels in the 
neighborhood IN can be ignored and only a few pixels whose neigh-
borhood is very similar to that of the target pixels contribute to the 
average. Therefore, a very small h leads to weak smoothening of the 
image. For large h values, the opposite is true. For electron microscopy, 
the choice of an appropriate h was proposed as an automatic and locally 
adaptive method to estimate the optimal h value (Wei and Yin, 2010). 
While admittedly in 2D this method is among the best denoising tech-
niques, its proper implementation in a 3D setting with 6 degrees of 
freedom is still lacking, as it can become very computationally expensive 
(Fig. 3d). 

Fig. 2. Overview and classification of denoising methods in electron tomography.  
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4. Bilateral and trilateral filters (or intensity and range filters, 
respectively) 

Bilateral and trilateral filters are local nonlinear filters (Tomasi and 
Manduchi, 1998). Their shape depends on the local properties of the 
image, such as intensity, distance and similarity. The shape of the filter 
resembles nonlinear anisotropic diffusion in the sense that filtering over 
edges is prevented, while smoothing along the edge is possible, typically 
with a Gaussian function. The bilateral filter is defined for each pixel 
individually and does not need to be applied iteratively like NAD. 
Several implementations in 3D also exist for electron microscopy (Jiang 
et al., 2003), (Pantelic et al., 2007). 

The filtered image I’ subjected to the bilateral filter is defined as: 

I’(x) =
1

Wp

∑

xi∈N
I(xi)fr(‖I(xi) − I(x)‖ )gs(‖xi− x‖)

with a normalization term Wp so that the energy of the filter is 1; x 
are the coordinates; N is the window centered in x, so xi ∈ N is another 
pixel. 

In the case of the bilateral (trilateral) filter, there are two (three) 
kernels, fr is the range kernel for smoothing intensities and gs is the 
spatial kernel that penalizes pixels that are further away. 

Assuming that the range and spatial kernels are Gaussian functions, 
the weight assigned for pixel (j) to denoise pixel (k) is given by w(j, k) =

exp

(

−
(i− k)2

2σ2
d
−

‖I(j)− I(k)‖2

2σ2
r

)

where σd and σr are smoothing parameters 

(Fig. 3e). 

5. Transform domain techniques 

5.1. Fourier transform (also pin-filtering) 

Elaborate linear filters can be implemented in the Fourier domain. 
For electron microscopy of (mini)-crystals either in 2D or in 3D that have 
a discrete Fourier transform, pin-filtering can be applied as a very 
effective method for reducing the noise while retaining the signal that is 
present only at discrete positions. Pin-filtering can also be considered a 
basic form of geometrical constraint filtering, assuming that all unit-cells 
are packed in a crystal. Pre-orientation and constraining of unit-cells, 
which is also a form of a packing, is used in many sub-tomogram aver-
aging applications, at least for the initial model. Pin-filtering generates a 
hole mask in the Fourier domain after the crystal has been indexed. 
Areas inside the mask at the positions of the indexes are set to 1 and 
outside the mask are set to 0. The inverse transformation results in a 
noise-reduced version of the image. Of course, local variations and 
sample deformations are not considered, so averaging of the individual 
unit cells, by releasing the constrains, typically leads to better results. 

5.2. Wavelet transform 

There are several approaches to denoise using the wavelet transform 
(Mallat, 1989) (Münch et al., 2009; Starck and Bijaoui, 1994; Zhao, 
1999). For electron microscopy, the steerable pyramid, translation 

invariant wavelets, or translation-invariant wavelet packets have been 
suggested (Donoho, 1995). In the wavelet transform, the signal is 
divided into different sub-bands. 

Many image features consist of high-frequency components with 
small spatial extension and low-frequency components with large spatial 
extension. The main idea of the wavelet transform is to provide a vari-
able description, which has both a good spatial resolution for high- 
frequency components and a good frequency resolution for low- 
frequency components. The (highly redundant) continuous wavelet 
transform of the 1D signal I(j) is: 

WT(a, τ) =
∫∞

− ∞
I(j)∙ψa,τ(j − τ)dj 

as the inner product of the signal and a variable basis function 

ψa,τ(j) =
1̅
̅̅
a

√ ∙ψ
(
j − τ
a

)

where a > 0 is a scaling parameter and τ is a shift parameter for the 
wavelet prototype ψ(j). For the wavelet prototype function (or mother 
wavelet), various choices of functions exist, for denoising purposes the 
Symmlet 8 has been often used. The wavelet transform efficiently 
compresses characteristic signal features into a small number of signif-
icantly large coefficients, whereas noise spreads out as small coefficients 
in each band. The different magnitudes of the transform coefficients 
with respect to noise allow for efficient thresholding of the transform 
coefficients and the elimination of noise. Empirically, the soft thresh-
olding operator of Donoho showed a good performance for noisy EM 
data (Donoho, 1995; Frangakis et al., 2001; Moss et al., 2005; Stoschek 
and Hegerl, 1997). Denoising with this transform sometimes leads to 
visual artifacts, which can be attributed to the lack of translation- and 
rotation-invariance of the traditional wavelet transform (Huang et al., 
2018) (Fig. 3f). 

5.3. Denoising by neural networks 

Denoising by neural networks has been possible for decades, but has 
recently become more popular as a result of increased processing speeds 
of the training (Liu et al., 2021). This is due to gains in computing power, 
which also allow for deeper (multiple layers) and more complex net-
works (nonpolynomial activation functions), from which the expression 
“deep-learning” rises. From an engineering point of view, designing a 
neural network (i.e. the number of hidden layers and number of neurons 
per layer) has always been a bit of an art, as the network architecture 
influences the learning speed, the information stored, and the infor-
mation transfer. In a training session, the weights of the individual 
neurons need to be adjusted. To achieve this, input–output pairs (for 
denoising purposes, typically a noise-corrupted input xi and noise-free 
(clean) output yi, but others can be used) are presented to the network 
such that the weights of the individual neurons are progressively 
adapted by the backpropagation algorithm. The goal of the network is to 
minimize 

argmin
L

∑.

i
L({L(fL(xi), yi ) } )

Fig. 3. Visual comparison of denoising results of different techniques. All images were set to be mean-value free and were scaled to ±3 the variance. Parameters were 
selected as such, in order to show the individual effects of each denoising technique on the image (i.e. not as a quantitative performance comparison). Denoted at the 
bottom left corner of each image is the level at which the tomograms were denoised, whether in 3D, as individual tomographic slices or whether the individual 
micrographs were denoised prior to reconstruction. This depended on the limitations of individual techniques, but also implementation constraints. (a) 1.6 nm thick 
tomographic slice through a Mycoplasma pneumoniae cell (Scale bar is 50 nm for all subsequent images). The cell membrane, adhesion machinery (NAPs), two rods 
(R) in a top and side view, and DNA with various complexes attached can be seen. This slice was selected in order to compare the denoising properties on high spatial 
frequencies at the area of the rod, the continuity of the membrane and preservation of the lipid bilayer, the contrast enhancement on individual features attached to 
the DNA. (b) Gaussian filter with σ = 3 pixels. (c) Nonlinear anisotropic diffusion performed for 50 iterations with κ = 0.001. (d) Non-local means applied on in-
dividual slices with h = 10. (e) Bilateral filter with σr = 3 pixels and σd = 3 pixels. (f) Wavelet transformation applied on individual slices with soft-thresholding and a 
threshold value at 10% of the highest intensity coefficients. (g) Neural network denoising with the pretrained network of Topaz (Bepler et al., 2020), applied on the 
individual movie frames of the direct detector and subsequent reconstruction. 
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where fL is a parametric family of mappings. 
While this feature of the supervised learning approach was previ-

ously used exclusively, it was recently shown that image restoration is 
possible without clean data (Lehtinen et al., 2018). Thus, in the training 
session, the correspondence of noisy input and noise-free output is no 
longer required, and an ensemble of outputs for which the expectation 
value is equivalent to that of the noise-free output can be used. 

This is particularly interesting because most often – if not always – in 
electron microscopy, the noise-free output is not known. However, many 
noise realizations of identical objects exist. This starts at the level of the 
detector output: the individual movie frames (short exposures) contain 
many noisy realizations of the recorded signal of a less noisy object, i.e. 
the final accumulated exposure. Every short exposure is one noisy 
realization of the original signal. The task of the network is to “learn” the 
noise from the short exposures and produce a denoised image that is less 
noisy than the simple average (the expectation value) of all the short 
exposures (Bepler et al., 2020) (Ramírez-Aportela et al., 2019). The 
same approach can be applied on many applications in electron micro-
scopy, such as the denoising of sub-tomograms, half-sets of whole to-
mograms and others (Buchholz et al., 2019). Thus, altogether, neural 
networks may produce denoised images that are better than the simple 
averaging of individual events (Fig. 3g). 

6. Algorithm performance assessment 

Here, I present the results of the above denoising methods, to help 
readers assess the outcomes and choose the best method for a given 
dataset (Table 1). When selecting a method, particular consideration 
should be given to the presence of artifacts and, equally important, to 
the preservation of texture, edges, and fine image structures. 

7. Discussion 

As a result of various contributions from many researchers in the 
field of electron microscopy, often inspired by the respective computer 
science developments, numerous well-performing denoising techniques 
are applicable to cryo-electron tomograms. These techniques are 
currently used systematically to improve the downstream processing of 
electron tomograms and to highlight information hidden in the noise. 
Any isosurface or volume rendering requires the application of some 
denoising, because otherwise a proper visualization is hindered by the 
noise, which in combination with the missing wedge, make a meaningful 
interpretation impossible. Segmentation techniques similarly profit, 
because the tracing of boundaries, identifying coherent regions and 
textures, and ultimately annotating entire objects, all profit significantly 
from a denoised image. 

Summarizing, it is difficult to make concluding statement on which is 
the best denoising technique, because this rather depends on the 
application. Here, several denoising filters were presented and Table 1 
provides a general guideline for which applications they are best suited. 
In a real case scenario, one would start with the most versatile filters and 
progress to using more specialized filters as the requirements dictate. 
This will involve choosing the appropriate parameters, which affects the 
outcome but also the quantitative evaluation of the results. Tuning of 
several parameters, or extensive training sessions are often necessary in 
order to achieve an optimal result. Measuring the performance of a 
denoising technique is easy, when the ground truth is known. However, 
when real data is evaluated this can be extremely complicated. In 
electron microscopy, the dataset can typically be split into two halves to 
allow an FSC to be calculated. This indicates the gain in SNR, which 
most often is also reflected in the visual appearance. 

When pleiomorphic objects are analyzed, denoising becomes 
increasingly important, as there is no other way to extract the infor-
mation from the noise since averaging is not an option. In addition, 
automated tomogram analysis, such as template matching (Frangakis 
et al., 2002), or feature detection with neural networks (Chen et al., 
2017) also benefits from improved denoising, for instance after 
denoising with neural networks (Buchholz et al., 2019) (Tegunov et al., 
2021). Unfortunately, the resolution of the tomograms does not yet 
allow for systematically obtaining structural information at 6–7 Å, 
which is necessary in order to draw mechanistic insight. While denoising 
significantly improves the SNR, it does not manage to tip the scale to-
wards quantitative and mechanistic insight, yet. This may change with 
advances in electron microscopy hardware technology. This is where the 
promise lies, that with improving tomographic resolution, in combina-
tion with advanced denoising techniques, all possible structures depic-
ted in the tomograms can be precisely analyzed. 

Table 1 
Electron microscopy denoising techniques with their main area of application as 
well as potential advantages and disadvantages of each technique.  

Electron 
microscopy 
denoising 
technique 

Advantages Disadvantages 

Linear filter Linear filters (low-pass and 
band-pass filters) are easy to 
implement and remain the 
first choice when it comes to 
denoising the image. 
Can be used as a pre- and 
post-reconstruction filter. 

Many limitations as they do 
not discriminate specific 
signal properties; most 
importantly, they blur the 
edges, as they dampen the 
high frequencies. 
The FSC remains unaltered in 
contrast to all other 
techniques, where the FSC 
improves. 

Bilateral and 
trilateral filter 

Very effective and does not 
need to be run iteratively. 
Only a few parameters need 
to be properly setup. 

Very much dependent on the 
window size. Potentially, the 
coherence of the structure 
may be lost. 
Should not be used as a pre- 
reconstruction filter. 

Wavelet transform Wavelets define local 
features spectrally or 
spatially, which enable the 
method to filter noise by 
preserving the fine details 
and edges of the image. 
Very effective for 
compressing information. 

Thresholding is difficult. 
Translational and rotational 
invariance is not guaranteed, 
thus artifacts may appear. 
After thresholding, the output 
cannot be used for 
reconstruction as artifacts are 
prevalent. 

Non-local means Maybe the best denoising 
method in 2D. It removes 
noise by exploiting 
redundant information in 
the image. 
Performs in a similar 
fashion to averaging, thus 
intuitive to use. 

In 3D in particular, 
computationally very 
expensive because of its 
complexity in evaluating the 
pixel weights.  

Table 1 (continued ) 

Electron 
microscopy 
denoising 
technique 

Advantages Disadvantages 

Anisotropic 
diffusion filter 

Performs smoothing by 
preserving important edge 
details of the image. 
Achieves probably the most 
improvement in FSC 
compared to all other 
techniques. 

Generates areas with constant 
intensities in the image and 
may remove small details. 

Convolutional 
neural networks 

Ideally suited for direct 
detector recording 
properties. 
In certain cases, produces 
sterling results. 

General properties not yet 
well understood. 
Unclear whether it is 
acceptable as a pre- 
reconstruction method, or if it 
introduces artifacts and/or 
bias.  
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Böttcher, B., Wynne, S.A., Crowther, R.A., 1997. Determination of the fold of the core 
protein of hepatitis B virus by electron cryomicroscopy. Nature 386 (6620), 88–91. 

Buades, A., Coll, B., Morel, J.-M., 2005. A Non-Local Algorithm for Image Denoising. 
IEEE Computer Society, DC, USA, Washington.  

Buchholz, T.O., Jordan, M., Pigino, G., Jug, F. 2019. Cryo-CARE: Content-Aware Image 
Restoration for Cryo-Transmission Electron Microscopy Data, pp. 502-506 Ieee 16th 
International Symposium on Biomedical Imaging. 

Chen, M., Dai, W., Sun, S.Y., Jonasch, D., He, C.Y., Schmid, M.F., Chiu, W., Ludtke, S.J., 
2017. Convolutional neural networks for automated annotation of cellular cryo- 
electron tomograms. Nat Methods 14 (10), 983–985. 

Donoho, D.L., 1995. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41 (3), 
613–627. 

Frangakis, A.S., Hegerl, R., 2001. Noise reduction in electron tomographic 
reconstructions using nonlinear anisotropic diffusion. J Struct Biol 135 (3), 239–250. 

Frangakis, A.S., Stoschek, A., Hegerl, R., 2001. Wavelet transform filtering and nonlinear 
anisotropic diffusion assessed for signal reconstruction performance on 
multidimensional biomedical data. IEEE Trans. Biomed. Eng. 48 (2), 213–222. 

Frangakis, A.S., Bohm, J., Forster, F., Nickell, S., Nicastro, D., Typke, D., Hegerl, R., 
Baumeister, W., 2002. Identification of macromolecular complexes in cryoelectron 
tomograms of phantom cells. Proc Natl Acad Sci U S A 99 (22), 14153–14158. 

Frank, J., 2006. Three-Dimensional Electron Microscopy of Macromolecular Assemblies: 
Visualization of Biological Molecules in Their Native State: Visualization of 
Biological Molecules in Their Native. State Oxford University Press, USA.  

J. Frank Electron Tomography: Methods for Three-Dimensional Visualization of 
Structures in the Cell Springer 2008 New York. 

Gilbert, P., 1972. Iterative methods for the three-dimensional reconstruction of an object 
from projections. J Theor Biol 36 (1), 105–117. 

Grant, T., Grigorieff, N., 2015. Measuring the optimal exposure for single particle cryo- 
EM using a 2.6 Å reconstruction of rotavirus VP6. Elife 4, e06980. 

Hattne, J., Shi, D., Glynn, C., Zee, C.-T., Gallagher-Jones, M., Martynowycz, M.W., 
Rodriguez, J.A., Gonen, T., 2018. Analysis of Global and Site-Specific Radiation 
Damage in Cryo-EM. Structure 26 (5), 759–766.e4. 

Heumann, J.M., Hoenger, A., Mastronarde, D.N., 2011. Clustering and variance maps for 
cryo-electron tomography using wedge-masked differences. J Struct Biol 175 (3), 
288–299. 

Heymann, J.B., Cardone, G., Winkler, D.C., Steven, A.C., 2008. Computational resources 
for cryo-electron tomography in Bsoft. J Struct Biol 161 (3), 232–242. 

Hrabe, T., Chen, Y., Pfeffer, S., Kuhn Cuellar, L., Mangold, A.-V., Förster, F., 2012. 
PyTom: a python-based toolbox for localization of macromolecules in cryo-electron 
tomograms and subtomogram analysis. J Struct Biol 178 (2), 177–188. 

Huang, X., Li, S., Gao, S., 2018. Applying a Modified Wavelet Shrinkage Filter to Improve 
Cryo-Electron Microscopy Imaging. J Comput Biol 25 (9), 1050–1058. 

Jiang, W., Baker, M.L., Wu, Q., Bajaj, C., Chiu, W., 2003. Applications of a bilateral 
denoising filter in biological electron microscopy. J Struct Biol 144 (1-2), 114–122. 

Kunz, M., Frangakis, A.S., 2014. Super-sampling SART with ordered subsets. J Struct Biol 
188 (2), 107–115. 

Kunz, M., Frangakis, A.S., 2017. Three-dimensional CTF correction improves the 
resolution of electron tomograms. J Struct Biol 197 (2), 114–122. 

Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., Aila, T., 2018. 
Noise2Noise: Learning Image Restoration without Clean Data. ArXiv, 1803.04189v3.  

Liu, Z., Jin, L., Chen, J., Fang, Q., Ablameyko, S., Yin, Z., Xu, Y., 2021. A survey on 
applications of deep learning in microscopy image analysis. Comput Biol Med 134, 
104523. https://doi.org/10.1016/j.compbiomed.2021.104523. 

Maiorca, M., Hanssen, E., Kazmierczak, E., Maco, B., Kudryashev, M., Hall, R., 
Quiney, H., Tilley, L., 2012. Improving the quality of electron tomography image 
volumes using pre-reconstruction filtering. J Struct Biol 180 (1), 132–142. 

Mallat, S.G., 1989. A Theory for Multiresolution Signal Decomposition: The Wavelet 
Representation. IEEE Trans. Pattern Anal. Mach. Intell. 11 (7), 674–693. 

Mastronarde, D.N., 1997. Dual-axis tomography: an approach with alignment methods 
that preserve resolution. J Struct Biol 120 (3), 343–352. 

MOSS, W.C., HAASE, S., LYLE, J.M., AGARD, D.A., SEDAT, J.W., 2005. A novel 3D 
wavelet-based filter for visualizing features in noisy biological data. J Microsc 219 
(2), 43–49. 

Münch, B., Trtik, P., Marone, F., Stampanoni, M., 2009. Stripe and ring artifact removal 
with combined wavelet –- Fourier filtering. Opt. Express 17 (10), 8567. https://doi. 
org/10.1364/OE.17.008567. 

Narasimha, R., Aganj, I., Bennett, A.E., Borgnia, M.J., Zabransky, D., Sapiro, G., 
McLaughlin, S.W., Milne, J.L.S., Subramaniam, S., 2008. Evaluation of denoising 
algorithms for biological electron tomography. J Struct Biol 164 (1), 7–17. 

Omer, A.A., Hassan, O.I., Ahmed, A.I., Abdelrahman, A., 2018. Denoising CT Images 
using Median based Filters: a Review. 2018 International Conference on Computer, 
Control, Electrical, and Electronics Engineering (ICCCEEE), 1-6. 

Pantelic, R.S., Ericksson, G., Hamilton, N., Hankamer, B., 2007. Bilateral edge filter: 
photometrically weighted, discontinuity based edge detection. J Struct Biol 160 (1), 
93–102. 

Papoulis, A., 1984. Probability, Random Variables and Stochastic Processes McGraw Hill. 
Penczek, P.A., 2002. Three-dimensional spectral signal-to-noise ratio for a class of 

reconstruction algorithms. J Struct Biol 138 (1-2), 34–46. 
Perona, P., Malik, J., 1990. Scale-Space and Edge Detection Using Anisotropic Diffusion. 

IEEE Trans. Pattern Anal. Mach. Intell. 12 (7), 629–639. 
Pitas, I., Venetsanopoulos, A.N., 1990. In: Nonlinear Digital Filters. Springer US, Boston, 

MA, pp. 63–116. https://doi.org/10.1007/978-1-4757-6017-0_4. 
Pruggnaller, S., Mayr, M., Frangakis, A.S., 2008. A visualization and segmentation 

toolbox for electron microscopy. J Struct Biol 164 (1), 161–165. 
Radermacher, M., Ruiz, T., 2019. On cross-correlations, averages and noise in electron 

microscopy. Acta Crystallogr F Struct Biol Commun 75 (1), 12–18. 
Ramírez-Aportela, E., Mota, J., Conesa, P., Carazo, J.M., Sorzano, C.O.S., 2019. DeepRes: 

a new deep-learning- and aspect-based local resolution method for electron- 
microscopy maps. IUCrJ 6 (6), 1054–1063. 

Roels, J., Vernaillen, F., Kremer, A., Gonçalves, A., Aelterman, J., Luong, H.Q., 
Goossens, B., Philips, W., Lippens, S., Saeys, Y., 2020. An interactive ImageJ plugin 
for semi-automated image denoising in electron microscopy. Nat Commun 11, 771. 

Rosenthal, P.B., Henderson, R., 2003. Optimal determination of particle orientation, 
absolute hand, and contrast loss in single-particle electron cryomicroscopy. J Mol 
Biol 333 (4), 721–745. 

Russ, J.C., Neal, F.B., 2018. The Image Processing Handbook. CRC Press. 
Sali, A., Glaeser, R., Earnest, T., Baumeister, W., 2003. From words to literature in 

structural proteomics. Nature 422 (6928), 216–225. 
S.HW. Scheres Beam-induced motion correction for sub-megadalton cryo-EM particles 3 

2014 10.7554/eLife.03665 10.7554/eLife.03665.001 10.7554/eLife.03665.002 
10.7554/eLife.03665.003 10.7554/eLife.03665.004 10.7554/eLife.03665.005 
10.7554/eLife.03665.006 10.7554/eLife.03665.007 10.7554/eLife.03665.008 
10.7554/eLife.03665.009. 

Sigworth, F.J., 2016. Principles of cryo-EM single-particle image processing. Microscopy 
(Oxf) 65 (1), 57–67. 

Sikora, M., Ermel, U.H., Seybold, A., Kunz, M., Calloni, G., Reitz, J., Vabulas, R.M., 
Hummer, G., Frangakis, A.S., 2020. Desmosome architecture derived from molecular 
dynamics simulations and cryo-electron tomography. Proc Natl Acad Sci U S A 117 
(44), 27132–27140. 

Smith, P.R., Peters, T.M., Bates, R.H.T., 1973. Image reconstruction from finite numbers 
of projections. J. Phys. A: Math. Nucl. Gen. 6 (3), 361–382. 

Starck, J.-L., Bijaoui, A., 1994. Filtering and deconvolution by the wavelet transform. 
Signal Process. 35 (3), 195–211. 

Stoschek, A., Hegerl, R., 1997. Denoising of electron tomographic reconstructions using 
multiscale transformations. J Struct Biol 120 (3), 257–265. 

Tegunov, D., Xue, L., Dienemann, C., Cramer, P., Mahamid, J., 2021. Multi-particle cryo- 
EM refinement with M visualizes ribosome-antibiotic complex at 3.5 A in cells. Nat 
Methods 18, 186–193. 

Tomasi, C., Manduchi, R., 1998. Bilateral filtering for gray and color images. Sixth 
International Conference on Computer Vision (IEEE Cat. No.98CH36271), 839–846. 

Turoňová, B., Sikora, M., Schürmann, C., Hagen, W.J.H., Welsch, S., Blanc, F.E.C., von 
Bülow, S., Gecht, M., Bagola, K., Hörner, C., van Zandbergen, G., Landry, J., de 
Azevedo, N.T.D., Mosalaganti, S., Schwarz, A., Covino, R., Mühlebach, M.D., 
Hummer, G., Krijnse Locker, J., Beck, M., 2020. In situ structural analysis of SARS- 
CoV-2 spike reveals flexibility mediated by three hinges. Science 370 (6513), 
203–208. 

Van Heel, M., 1987. Similarity measures between images. Ultramicroscopy 21 (1), 
95–100. 

van Heel, M., Schatz, M., 2005. Fourier shell correlation threshold criteria. J Struct Biol 
151 (3), 250–262. 

Veesler, D., Campbell, M.G., Cheng, A., Fu, C.-y., Murez, Z., Johnson, J.E., Potter, C.S., 
Carragher, B., 2013. Maximizing the potential of electron cryomicroscopy data 
collected using direct detectors. J Struct Biol 184 (2), 193–202. 

Wei, D.-Y., Yin, C.-C., 2010. An optimized locally adaptive non-local means denoising 
filter for cryo-electron microscopy data. J Struct Biol 172 (3), 211–218. 

Weickert, J., 1999. Coherence-Enhancing Diffusion Filtering. Int. J. Comput. Vision 31, 
111–127. 

Zanetti, G., Riches, J.D., Fuller, S.D., Briggs, J.A.G., 2009. Contrast transfer function 
correction applied to cryo-electron tomography and sub-tomogram averaging. 
J Struct Biol 168 (2), 305–312. 

Zhang, C., Wang, T.T., Sun, D.J., 2013. Image edge detection based on the Euclidean 
distance graph. {font-family:“Cambria Math” 18, 176–183. 

Zhang, Y., Cheng, H.D., Huang, J., Tang, X., 2012. An effective and objective criterion for 
evaluating the performance of denoising filters. Pattern Recogn. 45 (7), 2743–2757. 

Zhao, S., 1999. Wavelet Filtering for Filtered Backprojection in Computed Tomography. 
Appl. Comput. Harmon. Anal. 6 (3), 346–373. 

A.S. Frangakis                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S1047-8477(21)00109-X/h0005
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0005
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0010
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0010
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0015
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0015
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0020
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0020
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0025
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0025
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0035
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0035
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0035
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0040
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0040
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0045
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0045
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0050
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0050
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0050
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0055
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0055
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0055
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0060
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0060
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0060
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0070
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0070
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0080
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0080
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0080
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0085
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0085
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0085
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0090
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0090
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0095
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0095
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0095
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0100
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0100
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0105
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0105
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0110
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0110
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0115
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0115
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0120
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0120
https://doi.org/10.1016/j.compbiomed.2021.104523
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0130
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0130
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0130
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0135
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0135
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0140
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0140
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0145
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0145
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0145
https://doi.org/10.1364/OE.17.008567
https://doi.org/10.1364/OE.17.008567
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0155
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0155
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0155
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0165
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0165
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0165
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0175
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0175
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0180
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0180
https://doi.org/10.1007/978-1-4757-6017-0_4
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0190
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0190
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0195
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0195
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0200
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0200
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0200
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0205
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0205
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0205
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0210
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0210
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0210
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0215
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0220
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0220
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0230
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0230
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0235
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0235
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0235
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0235
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0240
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0240
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0245
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0245
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0250
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0250
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0255
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0255
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0255
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0260
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0260
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0265
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0265
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0265
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0265
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0265
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0265
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0270
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0270
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0275
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0275
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0280
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0280
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0280
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0285
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0285
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0290
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0290
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0295
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0295
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0295
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0300
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0300
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0305
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0305
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0310
http://refhub.elsevier.com/S1047-8477(21)00109-X/h0310

	It’s noisy out there! A review of denoising techniques in cryo-electron tomography
	1 Introduction
	2 Evaluation measures
	3 Denoising methods
	3.1 Linear filters applied in either the spatial or frequency domain
	3.2 Nonlinear filters
	3.2.1 Median filter
	3.2.2 Nonlinear anisotropic diffusion
	3.2.3 Non-local means filter


	4 Bilateral and trilateral filters (or intensity and range filters, respectively)
	5 Transform domain techniques
	5.1 Fourier transform (also pin-filtering)
	5.2 Wavelet transform
	5.3 Denoising by neural networks

	6 Algorithm performance assessment
	7 Discussion
	Declaration of Competing Interest
	Acknowledgements
	References


