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Trypanosoma cruzi, the causative agent of Chagas disease (American trypanosomiasis), colonizes the
intestinal tract of triatomines. Triatomine bugs act as vectors in the life cycle of the parasite and transmit
infective parasite stages to animals and humans. Contact of the vector with T. cruzi alters its intestinal
microbial composition, which may also affect the associated metabolic patterns of the insect. Earlier
studies suggest that the complexity of the triatomine fecal metabolome may play a role in vector com-
petence for different T. cruzi strains. Using high-resolution mass spectrometry and supervised machine
learning, we aimed to detect differences in the intestinal metabolome of the triatomine Rhodnius prolixus
and predict whether the insect had been exposed to T. cruzi or not based solely upon their metabolic pro-
file. We were able to predict the exposure status of R. prolixus to T. cruzi with accuracies of 93.6%, 94.2%
and 91.8% using logistic regression, a random forest classifier and a gradient boosting machine model,
respectively. We extracted the most important features in producing the models and identified the major
metabolites which assist in positive classification. This work highlights the complex interactions between
triatomine vector and parasite including effects on the metabolic signature of the insect.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Chagas disease (American trypanosomiasis) is considered to be
one of the major neglected tropical disease affecting more than 6
million people worldwide [1]. It is caused by the flagellated proto-
zoan parasite Trypanosoma cruzi and occurs predominantly in Cen-
tral and South America. The parasite is transmitted by
haematophagous triatomine vectors of the Reduviidae family, sub-
family Triatominae. The insect ingests T. cruzi during blood feeding
on an infected mammal and, after a period of development in the
intestinal tract, releases infective trypomastigote forms of T. cruzi
within the faeces during a subsequent blood meal. The parasites
are then accidentally rubbed into the bite wound or enter the host
bloodstream through the mucosa. Further transmission routes
include the ingestion of contaminated food, transmission by
infected blood products and congenital transmission [1,2]. People
who develop chronic Chagas disease face severe medical, social
and also economic challenges as they are often vulnerable to
superinfections and struggle with a limited ability to work [3,4].

Infection with T. cruzi has an impact on the development, fitness
and fecundity of their insect vectors. Triatomine bugs infected by
the parasite seem to have a retarded developmental time and a
reduced survival rate compared to uninfected insects, which
applies both for hatching as well as moulting [5,6]. In addition,
the reproductive performance is impaired by the presence of T.
cruzi leading to a decreased fertility and number of eggs [7,7].
These effects are particularly influenced by the insect’s gender
and the surrounding temperature causing a delay in moulting
and allowing the parasite to develop and reach the insect’s hindgut
[5,7,8,9]. Moreover, the parasite-induced modifications and the
loss of fitness are evident in the ecological niche space of the
infected vector species by narrowing their niche breadth [10].
Interestingly, a direct influence of the infection status on the beha-
viour of the insect vector can also be observed. While feeding,
infected individuals tend to ingest more blood and defecate earlier
and in greater quantity than uninfected controls potentially
increasing the probability of mammalian host infection [15,12].
The contact of the triatomine vector with T. cruzi also influences
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and alters the prevailing microbial status in the insect intestine. In
particular, the microbial species diversity in T. cruzi- infected com-
pared to uninfected vectors differs considerably. Higher bacterial
species richness is associated with positive infection status and
an overrepresentation of distinct bacterial taxonomic groups
depending on the vector species. Also, the discrete typing unit
(DTU) of T. cruzi (TcI, TcIV, TcII/TcV) seems to have an effect on
the abundance of different bacterial groups in its host [17–17].
The synergy between T. cruzi-infection and an altered microbiota
composition suggests a consequentially adapted gastrointestinal
metabolome. It has been shown that, additional to a uniform core
metabolome which represents 80% of all detected metabolites in
the triatomine intestinal tract, it further consists of a highly vari-
able composition of chemical compounds contingent on the tri-
atomine species [18]. Some of the microbiota producing these
metabolites serve as symbiotic suppliers of essential nutrients,
e.g. vitamin B complexes from Rhodococcus, Dickeya and other bac-
terial genera in Rhodnius prolixus, and induce vector antiparasitic
activity and humoral immune defence factors [23–22]. However,
it has yet not been investigated whether the infection of the tri-
atomine vector with T. cruzi has an actual impact on its metabo-
lome, and if so, whether the metabolic signature is indicative of
an infection with the parasite.

To investigate the chemical ecology inside the triatomine insect,
we challenged 5th instar R. prolixus with T. cruzi and analysed the
changes that occur in their intestinal metabolome at different time
points after contact, by using ultra high-performance liquid chro-
matography and mass spectrometry. To our knowledge, this is
the first approach to describe the metabolic changes in a tri-
atomine vector following trypanosomal exposure and to integrate
our findings into the existing knowledge on vector-host
interactions.
2. Methods

2.1. Ethics statement

All experiments using live animals were performed in accor-
dance with FIOCRUZ guidelines on animal experimentation and
were approved by the Ethics Committee in Animal Experimenta-
tion (CEUA/FIOCRUZ) under the protocol number LW-8/17.
2.2. Insect rearing and parasite cultivation

The Rhodnius prolixus colony used in this study was established
with insects collected in Honduras in the 1990s and is maintained
by the Vector Behavior and Pathogen Interaction group at FIOCRUZ.
The colony is maintained at 25 ± 1 �C, 60 ± 10% RH and a natural
illumination cycle. Insects were fed monthly on citrated rabbit
blood obtained from CECAL (Fiocruz, Rio de Janeiro, Brazil) offered
through an artificial feeder at 37 �C, or chicken previously
anesthetized with intraperitoneal injections containing mixtures
of ketamine (20 mg/kg; Cristália, Brazil) and detomidine (0.3
mg/kg; Syntec, Brazil).

Trypanosoma cruzi (Dm28c strain, TcI) isolated from naturally
infected Didelphis marsupialis [23] was used to infect the tri-
atomines. Parasites were cultured in vitro by twice a week passages
in LIT (liver-infusion tryptose) medium supplemented with 15%
fetal bovine serum (FBS), 100 mg/ml streptomycin and 100
units/ml penicillin. Strain infectivity was maintained by
continuous full cycle infections on triatomine and mouse hosts
every six months [24].
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2.3. Insect infection

Groups of 5th instar R. prolixus nymphs were infected with
either T. cruzi epimastigotes or trypomastigotes. For epimastigote
exposure, insects were fed through a latex membrane with an arti-
ficial feeder containing citrated (10% v/v), heat-inactivated (56 �C,
30 min) rabbit blood heated to 37 �C containing a suspension of
epimastigotes (106 epimastigotes/ml). For infection with T. cruzi
trypomastigotes, mice were infected by the injection of metacyclic
trypomastigotes intraperitoneally and used to feed the insects at
day 9 post-infection. Parasitemia in the mice was 7–15 trypo-
mastigotes/ll.

2.4. Sample preparation

Triatomine guts were separated into anterior midgut, posterior
midgut and hindgut and transferred into Eppendorf tubes contain-
ing 40 ml of PBS in pools of five insects per tube. Three glass beads
(Sigma-Aldrich) and 1 ml of methanol (99%) were added to each
tube and samples were homogenized for 3 min at a frequency of
30/s (Retsch MM 400) to break up both insect tissue and cells.
Separation of remaining cell fragments was achieved through cen-
trifugation (Eppendorf 5424 R) for 5 min at 10.000 rpm at a tem-
perature of 10 �C. Cell pellets were then extracted twice more, with
the supernatants from each extraction combined (3 ml total) and
dried in a SpeedVac (Eppendorf Concentrator Plus, Labconco Cen-
triVap Concentrator) at 30 �C. An unexposed control group was also
investigated, using insects fed blood free of parasite (either unin-
fected mice for trypimastigotes or uninfected blood for epimastig-
ote experiments) as well as a group of starved, unfed insects. In
addition, extraction blanks were conducted using PBS. All experi-
ments were performed in triplicate. Samples were taken immedi-
ately after feeding and at 24 h, 48 h and 72 h post-infection for
both epimastigote and trypomastigote experiments. In order to
reduce the amount of fatty acids and other lipids, all samples were
dissolved in 1 ml of methanol and 1 ml of hexane and mixed thor-
oughly. Subsequently, the upper fatty acid-containing hexane
phase was eliminated using a separating funnel. Metadata for all
samples can be found in Supplementary Table 1.

2.5. HPLC-MS/MS measurements

Dried samples were redissolved in 1 ml of methanol and cen-
trifuged at maximum speed of 13.000 rpm for 20 min. Chromatog-
raphy was performed with 5 ml per sample on a Thermo Scientific
UltiMate 3000 System using a C18 column (ACQUITY UPLC BEH
C18 Column, 1.7 mm, 2.1 mm X 50 mm, Waters). Acetonitrile was
used as a control for blank measurements. Mass spectrometry
measurements were performed on a Bruker Impact II System (Bru-
ker Daltonik GmbH). The measuring range was 50 to 1800 m/z and
the run time 22 min. All measurements were conducted in posi-
tive ionization mode.

2.6. Data analysis and feature based molecular networking

Data obtained from mass spectrometry was first converted to
the open mzXML format and uploaded to MZmine (v2.53) to filter
the raw data [25]. It was processed as follows: mass detection - MS
level = 1, mass detector = centroid, noise level = 1000; mass detec-
tion MS level = 2, mass detector = centroid, noise level = 100; chro-
matogram builder (ADAP) - min group size = 5, group intensity
threshold = 500, min highest intensity = 3000, m/z tolerance = 0.
01 m/z or 20 ppm; chromatogram deconvolution - baseline-
cutoff with min peak height = 2000, peak duration range 0.01–
3.00, baseline level 1000, m/z range for MS2 0.02, RT range for
MS2 0.1, m/z center calculation = MEDIAN; isotopic peak grouper
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- m/z tolerance = 0.01 m/z or 20 ppm, RT tolerance = 0.1 absolute,
max charge = 3, representative isotope = most intense; join aligner
- m/z tolerance = 0.01 m/z or 20 ppm, weight for m/z = 75, RT
tolerance = 0.1 min absolute, weight for RT 25; feature list row fil-
ter =min peaks in a row 3,minimumpeaks in an isotope pattern = 2,
keep only peaks with MS2 scan = yes. During sample preparation,
we also performed PBS extractions as well as extraction blanks
(methanol only) as controls. Prior to running the samples on the
mass spectrometer, we also ran acetonitrile through the column
to determine any metabolites from previous runs. The acetonitrile
values were subtracted from all samples, followed by the removal
of an average of the PBS blanks and an average of the extraction
blanks. All values subsequently below zero were reset to zero,
and any metabolite that no longer contained non-zero values
was removed from the list. Filtered rows were then exported to
GNPS/FBMN as MGF files.

Data were imported into the Global Natural Product Social
Molecular Networking (GNPS) site [26], with networks created
using the Feature Based Molecular Networking (FBMN) workflow
(release 26) [27]. Data was filtered by removing all MS/MS frag-
ment ions within +/- 17 Da of the precursorm/z, with further filter-
ing to select only the top 6 fragment ions in a +/- 50 Da window of
each spectrum. A precursor ion mass tolerance and MS/MS frag-
ment ion tolerance of 0.2 Da was used. A molecular network was
created with edges filtered to have a cosine score above 0.7 and
more than 6 matched peaks. Edges between two nodes in the net-
work were kept only if each of the nodes appeared in the respec-
tive others top 10 most similar nodes. A maximum size of a
molecular family was set to 100, and the lowest scoring edges were
removed from molecular families until the molecular family size
was below this threshold. The analogue search mode was used
by searching against MS/MS spectra with a maximum difference
of 100.0 in the precursor ion value. The library spectra were filtered
in the same manner as the input data. All matches kept between
network spectra and library spectra were required to have a score
above 0.7 and at least 6 matched peaks. Networks were further
annotated using DEREPLICATOR+ (v1.0.0), MS2LDA (release 23.1)
[28] and the Network Annotation Propagation (v1.2.5) [29] as a
part of the GNPS site. These results were then combined into a final
annotated network using MOLNETENHANCER (release 22) [30] and
visualized in Cytoscape v3.8.0.

2.7. Discriminant analysis of principal components (DAPC)

DAPC was performed using adegenet [31] (v2.1.3) in R (v4.0.3)
on a data frame containing the presence or absence of each
metabolite. To determine the optimal number of principal compo-
nents we used 30-fold cross-validation with the xvalDapc function
in adegenet. The aim was to optimize the trade-off between retain-
ing too many and too few PCs by splitting the data set into training
(90%) and validation (10%) sets. DAPC was then carried out on the
training set with varying numbers of PCs, and the degree to which
validation set members were accurately assigned to the exposed/
unexposed group was measured. The optimal number of PCs was
then retained for use with the dapc.data.frame method together
with the presence/absence matrix of metabolites.

2.8. Predicting infection status

The quantified output from MZmine2 was also used to predict
the infection status of triatomines. Since the quantified peaks
spanned several magnitudes, we converted the values to 1 (com-
pound present) or 0 (compound absent). We then integrated the
output from the feature-based network analysis as a unique fea-
ture in each sample. Therefore, if a metabolite from a given net-
work was present in any given sample then that network was
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also present in that sample. We then dropped all features that were
present in less than 10% of samples as they were unlikely to mean-
ingfully contribute to a given model. Finally, we ended up with a
total of 931 features that could be used for predicting the infection
status.

For logistic regression, a correlation matrix was created to
determine the correlation of all features to the infection status.
We then took the top correlated features (correlation greater
than 0.3) for training the model. Cross-validation was performed
with 5 folds, using the top 10 correlated features, top 25 correlated
features or all strongly correlated features (greater than 0.3). The
feature importance was then analyzed using the shap package
[32]. Shapley Additive exPlanations (SHAP) is an approach to
describe the output of any machine learning model based on game
theory [33]. We utilized the kernel explainer function, which
makes no assumptions about the model used.

In addition to logistic regression, we also trained a random for-
est classifier and a light gradient boosting machine (LightGBM)
model using the scikit-learn [33] (v0.22.1) and lightgbm [34]
(v2.3.0) packages, respectively. For random forest, hyperparame-
ters were tuned using a grid search with 5-fold cross validation.
Both the LightGBM and random forest classifier were created using
5-fold cross validation over 100 runs, with the mean accuracy
reported.

2.9. Mass spectrometry search tool (MASST)

We performed single spectrum searches of important features
using MASST [35], through the online workflow on the GNPS web-
site (http://gnps.ucsd.edu). MASST searches are analogous to
BLAST for protein or nucleotide sequences. With MASST, metabo-
lite peaks are matched to databases within set thresholds. The data
was filtered by removing all MS/MS fragment ions within +/- 17 Da
of the precursor m/z. MS/MS spectra were window filtered by
choosing only the top 6 fragment ions in the +/- 50 Da window
throughout the spectrum. The precursor ion mass tolerance was
set to 2.0 Da and a MS/MS fragment ion tolerance of 0.5 Da. The
library spectra were filtered in the same manner as the input data.
All matches kept between input spectra and library spectra were
required to have a score above 0.7 and at least 6 matched peaks.

2.10. Data availability

All code used for processing data are available at https://
github.com/ntobias-85/Rprolixus_metabolites. MS data sets used
for network analysis are available from the public MassIVE data-
base with ID MSV000086832.
3. Results & discussion

3.1. Feature based molecular networking

Antunes et al. provided the first hints that the metabolic finger-
print of triatomines may affect vector competence for specific T.
cruzi strains. Furthermore, it has already been shown that infec-
tions with T. cruzi in mammalian hosts are accompanied by distinct
biochemical changes [36]. Our aim here was to further explore
these tantalizing findings and determine whether it would be pos-
sible to predict the exposure status of triatomines based solely
upon their metabolic signature.

The use of a high-resolution mass spectrometer generates a sig-
nificant amount of information and so we aimed to summarize this
using feature based molecular networking. Essentially, this process
involves examining the fragmentation patterns of individual peaks
within the mass spectra to determine structural relatedness and
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create a synopsis of compounds detected in all samples. An added
benefit to molecular networking is that we can assess the similar-
ity to known compounds and infer compound classes from the
data. The molecular networking of our mass spectrometry data
resulted in 1,436 nodes, each representing a different compound
and were joined by a total of 2,409 edges. Edges in this context rep-
resent a mass difference between two given metabolites (nodes)
that have some structural similarity (see methods for settings
used). These nodes then assembled into 177 networks consisting
of two or more nodes (Fig. 1A,B). As a part of our annotation pipe-
line, we used MolNetEnhancer, which combined the outputs of the
Feature Based Molecular Networking, MS2LDA, DEREPLICATOR+,
Network Annotation Propagation tool as well as an automated
chemical classification with CLASSYFIRE, and were thereby able
Fig. 1. A. Condensed feature based molecular network of all metabolites from all sample
class of the network: lipids and lipid-like molecules (green), phenylpropanoids a
organoheterocyclic compounds (pink), organic acids and derivatives (blue) and not m
supervised machine learning, C-E with metabolite abundance of these top three compou
insects, broken down by gut compartment (AM: anterior midgut, PM: posterior midgut, H
minimum, maximum and outliers shown. All plots were generated with the GNPS Feature
can be found in Supplementary Table 2. (For interpretation of the references to colour i
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to annotate 544 nodes with structurally similar compounds
(Supplementary Table 2). Based on these annotations, we see a
majority of networks are associated with lipids and lipid-like
molecules, with several networks also represented by benzenoids
and phenylpropanoids & polyketides (Fig. 1A,B).

The large proportion of lipids and lipid-like molecules is
unsurprising given their important role in regulating fundamental
metabolic process. Lipids are important as a source of energy for
triatomines, but are also involved in the detoxification of heme
from blood, in developmental regulation and other fundamental
metabolic processes. One of these processes is the maintenance
of immunity and the production of antimicrobial peptides (AMP),
such as defensins, lysozymes and prolixicin. The production of pro-
lixicin in the fat body and the midgut of R. prolixus results in the
s that assemble into a network of two or more nodes. Colors indicate the compound
nd polyketides (red), benzenoids (yellow), alkaloids and derivatives (orange),
atches (grey). B Also indicated are the top three key compounds identified by
nds (feature IDs 4724, 539 and 1224) in exposed group, control group and starved
: hindgut) and time point (in days). Box plots show interquartile range, with median,
Based Molecular Networking dashboard (v0.1). Further details of these metabolites

n this figure legend, the reader is referred to the web version of this article.)
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modulation of bacterial microbiota and is altered by the infection
status and the trypanosomal pathogen (e.g. T. cruzi Dm 28c, T. cruzi
Y strain, T. rangeli) [41–39]. Another group of immunologically rel-
evant compounds are the eicosanoids, which are fatty acid deriva-
tives and mainly synthesized from arachidonic acid. These
compounds act as lipid mediators in insects driving specific cell
reactions to pathogen invasion, including phagocytosis, microag-
gregation, nodulation and hemocytes activity [22,37,40].

3.2. Exposure-dependent differences in metabolic profiles

Since insects were not individually tested for colonization by T.
cruzi, we will refer to insects as being exposed, as opposed to col-
onized or infected. In order to determine general changes in meta-
bolic profiles, initial investigation of differences between exposed
and non-exposed insects was carried out using the discriminant
analysis of principal components (DAPC). This method for analysis
of metabolic studies is limited. However, its ability to derive bio-
logically meaningful insights with respect to different chemotype
classes is well documented [40–38]. We determined the optimal
number of principal components (PCs) to use in the DAPC analysis
by using cross-validation implemented by the xvalDapc function of
the adegenet package (Supplementary Fig. 1). We used 20 PCs for
the DAPC analysis, which corresponded with the lowest root mean
squared error in the cross-validation data (Supplementary Fig. 1).
Twenty PCs explained 59.2% of variance (Supplementary Fig. 2)
and resulted in a mean successful assignment of individuals into
the exposed or unexposed groups 80.7% of the time, using cross-
validation. We observed clear separation of exposed and unex-
posed insects based on all detected features (Fig. 2), suggesting
that feeding on blood infected by T. cruzi is sufficient to alter the
metabolic profile of insects in a detectable way, irrespective of
whether the insect is ultimately colonized by the parasite. This
could be a consequence of the microbiota changed by the presence
of T. cruzi, while it could also be a reaction of the insect itself. If
Fig. 2. Discriminant analysis of principal components for exposed and non-exposed
samples. Taking into account all detected molecules from all samples, a clear
separation between both groups (T. cruzi-exposed and unexposed) is apparent,
indicating a change in the metabolic profile. Vertical lines beneath the plot
represent individual samples.
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these results are a direct immunological reaction of the insect to
T. cruzi, it would be important to rule out cross-reactions in further
studies. For example, R. prolixus can also be infected by other try-
panosomatid parasites such as Trypanosoma rangeli, which has
adverse effects to its insect vector and might trigger divergent
reactions [41]. In order to prevent false positive results and to
establish the effects of T. rangeli on the metabolome, triatomines
infected with T. rangeli should be included in future studies.

3.3. Predictive models of exposure status

We wondered then if the differences are the result of the pres-
ence or absence of a specific combination of metabolites and
whether we might be able to accurately predict exposure status
using machine learning. To investigate, we took the output from
MZmine2, which detailed the mass to charge ratio (m/z), retention
time and intensity for each sample. The details from the network
analysis from GNPS were also added to each table, where the pres-
ence of a metabolite in a network, also meant that network was
present in a given sample. 908 metabolites were identified as being
part of a network (two or more metabolites), while 528 metabo-
lites were not identified as being structurally related to anything.
To reduce computational processing time and the likelihood of
overfitting the model, we also removed any metabolite that was
present in less than 10% of the 171 samples, since they were unli-
kely to contribute meaningfully to developing a model. Finally,
metadata regarding gut section, time point after feeding and para-
site type (trypomastigote or epimastigote) was added to our fea-
ture table. After data cleaning, we were left with 932 features
across 171 samples. Based upon these cleaned data, we utilized
three different supervised machine learning algorithms to predict
the exposure status of insects.

Of the 171 samples, 90 contained results from unexposed
insects, while 81 were exposed. We began by developing a logistic
regression model using highly-correlated features to exposure sta-
tus. These were initially limited to the top 10, top 25 or any fea-
tures with a correlation score higher than 0.3 (top 51). We used
5-fold cross-validation on our dataset while developing a logistic
regression model, which returned average accuracies of 88.9%
(top 10), 93.6% (top 25) and 93.0% (top 51). We also employed a
gradient boosting machine model and random forest, similarly
using 5-fold cross validation, which returned average accuracies
of 91.8% and 94.2%, respectively. Confusion matrices were pro-
duced for each of the models detailing false positive, false negative,
true positive and true negative values (Supplementary Figure 3).
Next, we investigated the top 25 features from each of the models
by extracting them using the shap package, which is a model
agnostic method for determining feature importance. This step
was important to us as we wanted to know whether independent
models were performing well due to the presence (or absence) of
an individual feature. All features that each of the three models
agreed were important are listed in Table 1.

In our current study, we utilized a total of 171 samples (81
infected and 90 uninfected, including 9 starved) from R. prolixus.
Our models predicting the exposure status of insects performed
with average accuracies of between 91.8 and 94.2%. Interestingly,
the most commonly misclassified samples were those from our
unexposed, starved samples, which tended to result in false posi-
tives. This is perhaps unsurprising since only nine samples were
included for starved samples. Generally, having more observations
should improve the performance of models. In the future we will
place more emphasis on increased numbers of observations, over
longer time frames as the complete digestion of a blood meal takes
12–14 days in adult R. prolixus. Afterwards, the insects are able to
withstand prolonged periods of starvation resulting in the loss of
the blood-induced increased microbial diversity in the intestinal



Table 1
Summary of important group discriminating compounds (feature IDs) agreed upon by each of our three models, including the mass to charge ratio (m/z), average retention time
and network. Also indicated are the top MASST compound annotation matches. Further details of MASST matches can be found in Supplementary Table 3.

Feature ID m/z Retention time (min) Network index Top MASST Result

MSV ID Source Cosine score

4724 524.29 11.31 7 MSV000083446 Mice tissue 0.93
12,224 105.07 1.37 – – – –
539 605.41 17.24 – – – –
4000 548.29 12.87 2 MSV000080655 Sputum samples 0.97
184 607.39 16.71 11 MSV000086109 Moorena bouillonii 0.85
12,240 462.28 9.38 – – – –
6800 595.38 11.28 – – – –
7453 459.30 15.94 11 MSV000080050 Human and rat stool sample 0.84
6828 559.36 14.77 7 – – –
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tract [46–44]. By using longer time frames, we might be able to see
metabolic changes in exposed (and infected) triatomines without
the interfering effects of blood uptake. Also, the immune reaction
of the insect only reaches its peak after 5 to 9 days after exposure,
which may also influence results [21,45,46].

3.4. Feature investigation and origins of key compounds

By exploring the reasoning behind exposure status classification
for a given sample, we were able to elucidate the contribution that
each compound makes (see Supplementary Fig. 4 for an example).
Looking at feature contributions allowed us to develop an under-
standing of how large an impact any one metabolite plays in the
prediction. To break this down further, we explored the abundance
of these top features in different gut compartments (Fig. 1B-E).
Interestingly, we see clear differences in gut compartment, infec-
tion status and time point. In part, this helps to explain why there
was no one single metabolite that lead to an accurate prediction of
exposure, but a series of metabolites. Intuitively this also makes
sense, since the different gut compartments undertake different
metabolic functions and we expect them to contain different
metabolites [47]. For example, metabolite with compound ID
4724 was much more abundant in the anterior midgut of exposed
insects (Fig. 1B,C). On the other hand, compound ID 539 was occa-
sionally present at time point zero of unexposed insects but rapidly
decreased from day 1 in unexposed insects, in all gut compart-
ments (Fig. 1B,D). There are also clear differences in the abundance
of compounds between epimastigote and trypomastigote T. cruzi
exposed triatomines. For example, the molecule with feature ID
4000 is considerably more present in epimastigote exposed insects.
Taking a higher level look at just the gut compartment and infec-
tion status, we see similar differences, although not always as pro-
nounced (Supplementary Fig. 5). This demonstrates that the
occurring changes can be traced back to several different com-
pounds. Each metabolite can be explored in detail through
http://dorresteintesthub.ucsd.edu:6549/?task=5a6231ed03724b0
88fa0055e33397038 using the feature IDs present in Supplemen-
tary Table 2.

Recently, the development of the Mass Search Tool (MASST) has
opened up the possibility to search unknown metabolites in com-
pound databases in an analogous way to nucleotide or protein
sequences using BLAST. We explored our top-ranking features for
hits in compound databases (Table 1, Supplementary Table 3). Only
four of the top hits had similarity in the database demonstrating
the difficulties of annotating untargeted metabolomics data. Three
of these matched to studies involving human or mouse/rat, while
the fourth matched a sugarcane-microbe interaction study. This
may indicate that the metabolic signature detected in our study
is a result of ingesting exposed blood, rather than an insect specific
finding. However, since the T. cruzi epimastigotes were added to
the blood in the artificial feeder and do not originate from an
3056
infected mouse, this blood should not contain compounds pro-
duced by the mammal host in reaction to a Chagas infestation. In
addition, comparing exposed and control samples, the differences
in abundance of the most highly rated machine learning features
were caused by trypomastigote as well as epimastigote T. cruzi.
Nevertheless, to determine whether the ingested blood has a sub-
stantial influence on the results, studies on other triatomine spe-
cies would be extremely beneficial as this may indicate a more
widespread trend that could be detected. Also, the metabolomic
screening of triatomines with a verified persistent T. cruzi infection
and without a previous blood meal might be advantageous as this
would minimize the effects of metabolites originating from
ingested blood.

4. Concluding remarks

Our results show that the exposure of triatomine bugs with the
parasite T. cruzi leads to a change in the composition of metabolites
in the insects’ intestinal tract. These differences in the metabolic
signature can be used to determine whether or not an insect has
been exposed to the parasite with up to 94.2% accuracy. Further-
more, it is possible to narrow down the differences to specific com-
pounds shaping the metabolome of infected triatomines. These key
compounds may prove to be robust biomarkers of T. cruzi exposure
in R. prolixus, but also in other triatomine species.
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