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Abstract

In this proceeding, we review our recent work using deep convolutional neural network (CNN) to identify the nature
of the QCD transition in a hybrid modeling of heavy-ion collisions. Within this hybrid model, a viscous hydrodynamic
model is coupled with a hadronic cascade “after-burner”. As a binary classification setup, we employ two different types
of equations of state (EoS) of the hot medium in the hydrodynamic evolution. The resulting final-state pion spectra in the
transverse momentum and azimuthal angle plane are fed to the neural network as the input data in order to distinguish
different EoS. To probe the effects of the fluctuations in the event-by-event spectra, we explore different scenarios for the
input data and make a comparison in a systematic way. We observe a clear hierarchy in the predictive power when the
network is fed with the event-by-event, cascade-coarse-grained and event-fine-averaged spectra. The carefully-trained
neural network can extract high-level features from pion spectra to identify the nature of the QCD transition in a realistic
simulation scenario.

Keywords: Heavy-ion physics, QCD equation of state, Hybrid model, Deep learning

1. Introduction

A new state of matter, quark-gluon plasma (QGP), is predicted by the QCD theory if the temperature
of strongly-interacting matter becomes high enough. Lattice QCD has established that the transition from
a hadron gas to the QGP is a smooth crossover at a high temperature and low net baryon density. A first-
order phase transition is conjectured at low temperature and moderate to high net baryon densities. The
main goal of relativistic heavy ion experiments at the RHIC and LHC is to search for signals for the QCD
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phase transition and study the properties of QGP. Phenomenologically, conventional method to study the
properties of QGP is to compare model simulations with experimental data by varying parameter sets and
employing different EoSs. Recently, modern statistical methods such as Bayesian methods are used to fit a
set of different observables globally to constrain the properties of QGP [1, 2]. However, with these methods
one cannot obtain direct correlations between observables and the focused property of QGP rather than
others. Machine learning methods are possible tools to tackle such tasks. Recently, a deep CNN classifier
is developed to identify the nature of the QCD transition with a high predictive accuracy ~ 95% in pion
spectra from a pure hydrodynamic study [3], which are robust against different initial conditions, physical
parameters and hydrodynamics solvers. In this proceeding, we review the generalizability of this method in a
more realistic scenario of heavy ion collisions where the hadronization, hadronic rescattering and resonance
decays after the hydrodynamics evolution are taken into account in a hybrid model [4]. Due to the finite
number of particles and the stochastic dynamics, the discrete event-by-event pion spectra have significant
fluctuations that might blur out the correlations one is looking for.

2. Micro-Macro hybrid model of relativistic heavy-ion collisions

We use the iEBE-VISHNU hybrid model [5] to perform event-by-event simulations of relativistic heavy-
ion collisions at RHIC and LHC energies. This hybrid model uses the MC-Glauber [6, 7] or MC-KLN [8, 9]
model to generate fluctuating initial conditions. The hydrodynamics simulation uses two different types of
EoSs: (1) a crossover EoS from a lattice-QCD parametrization [10]; (2) a first-order EoS from a Maxwell
construction between a hadron resonance gas and an ideal gas made of quarks and gluons with transition
temperature 7, = 165 MeV [11]. These two EoSs are depicted in Fig. 1a. After the hydrodynamic evolution,
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Fig. 1: Left: Two different EoSs are implemented in the hydrodynamic simulation, pressure as functions of the energy density. A
crossover one is compared with a first order phase transition with a transition temperature 7, = 165 MeV. The baryon-chemical
potential is is assumed to be exactly up = 0 throughout the whole work. Right: The CNN architecture.

the fluid fields are projected into hadrons via the Cooper-Frye formula, and a hadronic cascade follows with
the UrQMD model [12, 13] where resonance decays and hadronic rescatterings are both included.

This hybrid model can fit experimental data on final hadron spectra by varying adjustable parameters
which include: the equilibration time 7, the ratio of the shear viscosity to the entropy density /s and the
switching temperature 7'y, from hydrodynamics to hadronic cascade stage. We vary these model parame-
ters in the generation of the training data to encourage the neural network to capture the intrinsic features
encoded in the EoS, rather than those biased by the specific setup of other uncertain physical properties.

3. Neural network and input data

The CNN architecture used here is shown in Fig. 1b whose details can be found in Ref. [4]. The input to
this neural network is a histogram of the number of pions at mid-rapidity [y| < 1 p(pr, ®) = dN,/dydprd®
with 24 pr-bins and 24 ®-bins. pr denotes the transverse momenta, while @ denotes the azimuthal angles.
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We explore six different scenarios for the input to the neural network in a systematic way. A late- and
early-transition from hydrodynamics to the hadronic cascade are both considered by taking the switching
temperature the same value as the freeze-out temperature used in pure hydrodynamics study [3], T, = 137
MeV and a realistic value T, > 150 MeV, respectively. In the late-transition scenario, the duration of the
hadronic cascade are significantly diminished and the effects of the finite number of particles and resonance
decays are mainly left as compared to the pure hydrodynamics modeling. The early-transition scenario
is more realistic and different from the late-transition one in two aspects. Firstly, the contribution from
resonance decays in the pion spectra is increased. Secondly, the elongated duration of the hadronic cascade
might further erase the imprint of EoS encoded in the pion spectra.

In both of the late- and early-transition scenarios, we have three sub-scenarios for the input to the neural
network: event-by-event spectra, cascade-coarse-grained spectra and event-fine-averaged spectra. To mit-
igate the fluctuations in the event-by-event spectra due to the finite number of particles, hadronic cascade
and resonance decays, certain averaging procedures are possible methods. In the model simulations, one
can repeat the hadronic cascade for any times for the same hydrodynamic evolution. The cascade-coarse-
grained spectra are explored, where the spectra of 30 such simulations are coarse-grained by averaging as to
smear the fluctuations induced by the cascade. However, one defect of such averaging procedure is that the
separation of dynamics between hydrodynamic and hadronic cascade stage is purely theoretical. Thus an
experimentally controllable averaging procedure is favored. The event-fine-averaged spectra, which are the
average over the spectra of 30 events generated within the same fine centrality bin of 1% width are explored.
In such spectra, the initial-state fluctuations are also significantly mitigated.

4. Results and Conclusion

Performances in different scenarios
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Fig. 2: (a) Training and validation accuracy in training history for three sub-scenarios of the late-transition scenario with T, =
137 MeV. These three sub-scenarios refer to the event-by-event spectra (blue and orange), the cascade-coarse-grained spectra (red
and green) as well as the 30-events-fine-averaged spectra (purple and brown). (b) Comparison between the validation accuracy in
all the scenarios studied. The green star depicts the pure hydrodynamic result [3]. The red filled circle, the purple triangle and
the orange square symbols depict the performance given by the event-by-event spectra, cascade-coarse-grained and 30-events-fine-
averaged, respectively, with different switching temperatures.

Fig. 2a shows the training history of the CNN in three aforementioned sub-scenarios in the late-transition
scenario. In each sub-scenario, training and validation accuracy are still close after 1000-epochs training,
which implies that over-fitting issue is avoided since the validation data are generated with the same simu-
lation parameters as the training data but are never seen by the network in the training. A clear hierarchy
of the prediction accuracy can be observed when the averaging procedure is performed over more and more
stages of the whole dynamics. The lowest accuracy, about 80%, is given by the CNN with event-by-event
spectra, the moderate accuracy, about 90%, is given by the CNN with cascade-coarse-grained spectra, while
the highest accuracy, about 99%, is given by the CNN with the 30-events-fine-averaged spectra, which is as
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high as in the pure hydrodynamic study [3]. This hierarchy shows that proper reduction of fluctuations from
either the final hadronic cascade or together with the initial conditions in the pion spectra will help the CNN
to reveal the EoS information.

Fig. 2b summarizes the predictive performances on the validation data in all the aforementioned ex-
ploratory scenarios. The slight downward trend for the validation accuracy of network with respect to the
switching temperature, implies that the elongated resonance decays and hadronic cascade will blur out the
correlation between the EoS information in the hydrodynamics and the final-state pion spectra. We mention
that the testing accuracy on the data which are generated with different initial conditions and simulation
parameters is generally a little lower than the validation one, which demonstrates that the performance of
the trained CNN is robust against different model setups including initial conditions, 7¢, /s and T'y,, within
certain ranges.

We extended a previous work on identifying EoS from pion spectra in the pure hydrodynamics modeling
of heavy ion collisions using deep learning technique. In this work, we explore a more realistic hybrid mod-
eling for heavy-ion collisions, where hadronization, hadronic cascade and resonance decays are properly
considered. It is demonstrated that, even after these stochastic dynamics, the imprint of EoS in hydrody-
namics evolution survives in the final-state pion spectra, from the perspectives of deep CNN. In the future
it’s tempting to explore how to generalize this method to the data from other simulation models as well as
experimental data.

Acknowledgement

This work is supported by the HGS-HIRe for FAIR, by the GSI F&E, by the Al grant of SAMSON
AG, by the BMBF, and by the Judah M. Eisenberg Laureatus Chair and the Walter Greiner Gesellschaft,
by Trond Mohn Foundation under Grant No. BFS2018REKO1, by National Natural Science Foundation
of China under Grant Nos.11475085, 11535005, 11690030 and 11221504, and National Major state Basic
Research and Development of China under Grant Nos. 2016Y-FE0129300 and 2014CB845404, and the
U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231, and the U.S. National Science
Foundation (NSF) under Grant No. ACI-1550228 (JETSCAPE).

References

[1] S.Pratt, E. Sangaline, P. Sorensen, H. Wang, Constraining the equation of state of superhadronic matter from heavy-ion collisions,
Phys. Rev. Lett 114 (20) (2015) 202301.
[2] J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu, U. Heinz, Applying bayesian parameter estimation to relativistic heavy-ion
collisions: simultaneous characterization of the initial state and quark-gluon plasma medium, Phys. Rev. C 94 (2) (2016) 024907.
[3] L.-G. Pang, K. Zhou, N. Su, H. Petersen, H. Stoecker, X.-N. Wang, An equation-of-state-meter of quantum chromodynamics
transition from deep learning, Nat Commun 9 (1) (2018) 210.
[4] Y.-L. Du, K. Zhou, J. Steinheimer, L.-G. Pang, A. Motornenko, H.-S. Zong, X.-N. Wang, H. Stocker, Identifying the nature of
the ged transition in relativistic collision of heavy nuclei with deep learning, arXiv preprint arXiv:1910.11530.
[5] C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, U. Heinz, The iebe-vishnu code package for relativistic heavy-ion collisions,
Comp. Phys. Comm 199 (2016) 61-85.
[6] W. Broniowski, M. Rybczyniski, P. Bozek, Glissando: Glauber initial-state simulation and more. .., Comput. Phys. Commun.
180 (1) (2009) 69-83.
[71 B. Alver, M. Baker, C. Loizides, P. Steinberg, The phobos glauber monte carlo, arXiv:0805.4411.
[8] D. Kharzeev, E. Levin, M. Nardi, Onset of classical qcd dynamics in relativistic heavy ion collisions, Phys. Rev. C 71 (5) (2005)
054903.
[9] D. Kharzeev, E. Levin, M. Nardi, Color glass condensate at the Ihc: Hadron multiplicities in pp, pa and aa collisions, Nucl. Phys.
A 747 (2-4) (2005) 609-629.
[10] P. Huovinen, P. Petreczky, Qcd equation of state and hadron resonance gas, Nucl. Phys. A 837 (1-2) (2010) 26-53.
[11] J. Sollfrank, P. Huovinen, M. Kataja, P. Ruuskanen, M. Prakash, R. Venugopalan, Hydrodynamical description of 200a gev/c s+
au collisions: hadron and electromagnetic spectra, Phys. Rev. C 55 (1) (1997) 392.
[12] S. A.Bass, M. Belkacem, M. Bleicher, M. Brandstetter, L. Bravina, C. Ernst, L. Gerland, M. Hofmann, S. Hofmann, J. Konopka,
et al., Microscopic models for ultrarelativistic heavy ion collisions, Progress in Particle and Nuclear Physics 41 (1998) 255-369.
[13] M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ernst, S. Soff, L. Bravina, M. Belkacem, H. Weber, H. Stoecker, et al.,
Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model, J. Phys. G 25 (9) (1999) 1859.



