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Abstract

Many Polyakov loop models can be written in a dual formulation which is free of sign problem even 
when a non-vanishing baryon chemical potential is introduced in the action. Here, results of numerical 
simulations of a dual representation of one such effective Polyakov loop model at finite baryon density are 
presented. We compute various local observables such as energy density, baryon density, quark condensate 
and describe in details the phase diagram of the model. The regions of the first order phase transition and 
the crossover, as well as the line of the second order phase transition, are established. We also compute 
several correlation functions of the Polyakov loops.
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1. Introduction

The properties of strongly interacting matter at finite temperatures and densities remain in the 
focus of intensive theoretical and numerical studies (see Ref. [1] for a recent review). The full 
understanding of these properties is still far from satisfactory, especially at finite baryon chemical 
potential, due to the famous sign problem. Many approaches to solve this problem, partially or 
completely, have been designed during the last decades and a certain progress has been achieved 
within such methods as Taylor expansion and reweighting at small baryon chemical potential, 
simulations at imaginary potential, complex Langevin simulations and some others (see, e.g., the 
reviews [2–4]).

One of the approaches attempting to fully solve the sign problem relies on rewriting the orig-
inal partition function and important observables in terms of different, usually integer valued, 
degrees of freedom such that the resulting Boltzmann weight is positive definite. Convention-
ally, all such formulations are referred to as dual formulations, though sometimes a different 
name can be used (e.g., flux line representation) [5]. There are several routes to construct such 
dual theory for non-Abelian lattice models with fermions [6–8]. While a dual formulation with a 
positive Boltzmann weight has not yet been constructed for full QCD, positive formulations (or 
formulations where sign problem appears to be very soft) are already known for few important 
cases. One such case refers to the strong coupling limit of QCD, where the SU(N) lattice gauge 
theory can be mapped onto a monomer-dimer and closed baryon loop model [9] (for a recent 
development of this direction, see Ref. [10] and references therein). Another important case is 
represented by many effective Polyakov loop models which can be derived from the full lattice 
QCD in certain limits. A dual representation with positive Boltzmann weight is known for some 
SU(N) [11–13] and U(N) Polyakov loop models [6] (for recent advances, see Ref. [14]). Two 
of these versions have been studied numerically in [12,13,15]. The emphasis in these simulations 
was put on establishing the phase diagram of the model in the presence of the baryon chemical 
potential and on computing local observables which can be obtained by differentiating the dual 
partition function with respect to some of the parameters entering the action of the theory.

Important class of observables not yet computed in dual formulations are the correlations 
of the Polyakov loops. These correlations can be related to screening (electric and magnetic) 
masses at finite temperatures. Understanding the properties of such masses would lead to an es-
sential progress in our comprehension of the high temperature QCD phase as a whole. While 
correlations and related masses have been subject of numerous and intensive calculations at zero 
chemical potential (see [16] and references therein), it seems to be an extremely difficult problem 
to compute these masses for the real baryon chemical potential with available simulation meth-
ods. So far correlations and screening masses have been computed only at imaginary chemical 
potential in [17]. A closely related and intriguing problem is the appearance of a hypothetical 
oscillating phase at finite density [18–20]. Such a phase is ultimately connected to the complex 
spectrum of the theory and requires computations of long-distance correlations with real baryon 
chemical potential.

Here and in a forthcoming paper we study a somewhat different, but equivalent dual form 
of the effective Polyakov loop model presented in [14]. This form of the dual representation 
has been already used by us in [21] for the computation of correlation functions related to the 
three-quark potential. We believe it is well suited to address the problem of screening masses 
at finite densities, at least in the framework of the available positive dual formulations. In the 
present paper we describe the Polyakov loop model we work with, its dual representation and 
several observables. We compute also some local observables and reveal the phase structure of 
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the model. We shall also present preliminary results for the Polyakov loop correlations. In a 
companion paper we will give a detailed study of screening masses, based on the computation 
of correlation functions and of the second moment correlation length at finite density. This will 
also allow us to draw some conclusions about the existence of an oscillating phase in the model.

We work on a 3-dimensional hypercubic lattice � = L3, with L the linear extension and a 
unit lattice spacing. The sites of the lattice are denoted by �x ≡ x = (x1, x2, x3), xi ∈ [0, L − 1], 
while l = (�x, ν) is the lattice link in the direction ν; eν is the unit vector in the direction ν and 
Nt is the lattice size in the temporal direction. Periodic boundary conditions are imposed in all 
directions. Let G be the SU(N) group and U(x) an element of G, then dU denotes the (reduced) 
Haar measure on G and TrU the fundamental character of G.

In this paper we shall study an effective 3-dimensional Polyakov loop model which describes 
a (3 + 1)-dimensional lattice gauge theory with one flavor of staggered fermions. The general 
form of the partition function of the model is given by

Z�(β,m,μ;N,Nf ) ≡ Z =
∫ ∏

x

dU(x)
∏
x,ν

Bg(β)
∏
x

Bq(m,μ) . (1)

Here, Bg(β) is the gauge part of the Boltzmann weight and Bq(m, μ) is the determinant for static 
quarks. There are many forms of Bg(β) and Bq(m, μ) discussed in the literature. In what follows 
we use the weight that can be obtained on an anisotropic lattice and in the limit of vanishing 
spatial gauge coupling βs after explicit integration over all spatial gauge fields (see, for instance, 
Refs. [13,22,23] and references therein):

Bg(β) = exp
[
β ReTrU(x)TrU†(x + eν)

]
. (2)

For SU(N) the effective coupling constant β is related to the temporal coupling βt by β =
2DF(βt) with

DF(βt) =
(

CF(βt)

NC0(βt)

)Nt

, CF(βt) =
∞∑

k=−∞
detIλi−i+j+k(βt)

∣∣∣
1≤i,j≤N

, (3)

where In(x) is the modified Bessel function and λi refers to the fundamental representation of 
SU(N) and is equal to λi = δ1i . The Boltzmann weight of static staggered fermions can be 
presented as

Bq(m,μ) = A(m) det
[
1 + h+U(x)

]
det

[
1 + h−U†(x)

]
, (4)

where the determinant is taken over group indices and

A(m) = h−N , h± = he± μph
T , h = e−Nt arcsinhm ≈ e− mph

T . (5)

Below we shall use the dimensionless quantities m = mph/T and μ = μph/T . Then for SU(3)

one has A(m) = e3m.
The resulting Polyakov loop model we work with takes the form

Z =
∫ ∏

x

dU(x) exp

[
β

∑
x,ν

ReTrU(x)TrU†(x + eν)

]

×
∏

A(m) det
[
1 + h+U(x)

]
det

[
1 + h−U†(x)

]
. (6)
x
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In this model the matrices U(x) play the role of Polyakov loops, the only gauge-invariant oper-
ators surviving the integration over spatial gauge fields and over quarks. The integration in (6)
is performed with respect to the Haar measure on G. The pure gauge part of the SU(N) model 
is invariant under global discrete transformations U(x) → ZU(x), with Z ∈ Z(N). This is the 
global Z(N) symmetry. The quark contribution violates this symmetry explicitly. Another im-
portant feature of the Boltzmann weight is that it becomes complex in the presence of a chemical 
potential, as it follows from (6). Therefore, the model cannot be directly simulated if μ is non-
zero.

In the absence of static quarks the Polyakov loop model exhibits a first order phase transition 
at the critical point βc ≈ 0.274. The global Z(N) symmetry gets spontaneously broken above 
βc. At finite density the model defined in Eq. (6) and its several variations have been studied 
both numerically via simulation of dual formulations [12,13,15] and analytically via mean-field 
approximation [24–26] and via linked cluster expansion [27]. Mean-field and Monte Carlo study 
are in quantitative agreement for the expectation values of energy density and Polyakov loop. 
This allowed to reveal the phase diagram of the model, at least in some regions of the parameters 
β , h and μ. In this paper we confirm the qualitative picture found in previous study and give 
further details on the behavior of local observables, including the baryon density and the quark 
condensate. Also, first results for Polyakov loop correlations will be presented.

The paper is organized as follows. In Section 2 we formulate our dual representation of the 
model valid for all SU(N) groups and in all dimensions. We present also results of an analytical 
study of the model based on strong coupling expansion and mean-field approximation. The phase 
diagram of the 3-dimensional SU(3) model is studied numerically in details in Section 3, where 
we discuss also simulation results for some local observables as the baryon density and the 
quark condensate. In Section 4 we present preliminary results for the Polyakov loop correlation 
functions. The summary and outline for future work are done in Section 5.

2. Dual formulation of the Polyakov loop model

In this Section we describe the dual form of the partition function (6). This dual represen-
tation will be used in the next Sections for numerical simulations of the model. All details of 
the derivation can be found in [14]. In the case of one flavor of staggered fermions the partition 
function (6) can be presented, after an exact integration over Polyakov loops, as

Z =
∞∑

{r(l)}=−∞

∞∑
{s(l)}=0

∏
l

(
β
2

)|r(l)|+2s(l)

(s(l) + |r(l)|)!s(l)!
∏
x

A(m)RN(n(x),p(x)) , (7)

n(x) =
2d∑
i=1

(
s(li) + 1

2
|r(li )|

)
+ 1

2

d∑
ν=1

(rν(x) − rν(x − eν)) , (8)

p(x) =
2d∑
i=1

(
s(li) + 1

2
|r(li )|

)
− 1

2

d∑
ν=1

(rν(x) − rν(x − eν)) , (9)

where li , i = 1, ..., 2d are 2d links attached to a site x and

RN(n,p) =
∞∑ N∑ ∑

δn+k,p+l+qN d(σ/1k)d(σ + qN/1l ) hk+hl− . (10)

q=−∞ k,l=0 σ
n+k
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The sum over σ runs over all partitions of n + k, and d (σ/1m) is the dimension of a skew 
representation defined by a corresponding skew Young diagram, σ + qN = (σ1 + q, . . . , σN + q)

(for more details we refer the reader to Ref. [14]). Equation (7) is valid for all SU(N) groups 
and in any dimension. Clearly, all factors entering the Boltzmann weight of (7) are positive. 
Hence, this representation is suitable for numerical simulations. The Kronecker delta-function in 
expression (10) represents the N -ality constraint on the admissible configurations of the integer-
valued variables s(l) and r(l). This constraint can be exactly resolved only in the pure gauge 
model when h± = 0. In this case the dual representation (7) has been already tested by us on an 
example of 2-dimensional SU(3) model, where we studied correlation functions and three-quark 
potential [21].

In the following Sections we study the dual representation (7) via Monte Carlo simulations 
for the 3-dimensional SU(3) model. In this case the function RN(n, p; h±) takes the form

R3(n,p) = Q3(n + 1,p)
(
h+ + h2− + h+h3− + h3+h2−

)
(11)

+ Q3(n,p)
(

1 + h3+ + h3− + h3+h3−
)

+ Q3(n,p + 1)
(
h− + h2+ + h3+h− + h2+h3−

)
+ Q3(n + 1,p + 1)

(
h+h− + h2+h2−

)
+ Q3(n + 2,p)h+h2− + Q3(n,p + 2)h2+h− .

The function Q3(n, p) is the result of the group integration and is given by [28]

QN(n,p) =
∑

λ
min(n,p)

d(λ) d(λ + |q|N) , (12)

where d(λ) is the dimension of the permutation group Sr in the representation λ, q = (p −n)/N

(when q is not an integer QN(n, p) = 0).
Important is the fact that both local observables and long-distance quantities can be computed 

with the help of this dual representation. Explicit expressions for the correlation functions of the 
Polyakov loops will be given in Section 4. Below we list some local observables which we are 
going to compute here and which can be obtained by taking suitable derivatives of the partition 
function (7).

• Magnetization and its conjugate

M = 〈TrU(x)〉 , M∗ =
〈
TrU†(x)

〉
, (13)

• Susceptibility

χ = L2
(〈

(TrU(x))2
〉
− 〈TrU(x)〉2

)
, (14)

• Energy density

E = 1

3L3

∂ lnZ

∂β
= 2

3βL3

∑
l

〈2s(l) + |r(l)|〉 , (15)

• Baryon density

B = 1

L3

∂ lnZ

∂μ
= 1

L3

∑
〈k(x) − l(x)〉 , (16)
x
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• Quark condensate

Q = 1

L3

∂ lnZ

∂m
= N − 1

L3

∑
x

〈k(x) + l(x)〉 . (17)

In the last two equations k(x) and l(x) are the summation variables from (10).
Before discussing results of numerical simulations we would like to present some results ob-

tained by simple analytical methods. These results can serve as an additional check of numerical 
data and lead to a better understanding of the whole phase diagram of the model and of the 
behavior of the different expectation values.

2.1. Strong coupling expansion

The formulation (7) allows a straightforward expansion in powers of β . The free energy of 
the 3-dimensional SU(3) model can be written as

F = 3m + lnR3(0,0) +
∞∑

k=1

βkfk . (18)

The first three coefficients fk are given by

f1 = 3p01 p10

f2 = 3

4

(
p2

11 + p02 p20 − 22p2
01 p2

10 + 5p02 p2
10 + 5p2

01 p20 + 10p10 p01 p11

)
f3 = 1

8

(
1168p3

01 p3
10 − 960p2

01 p2
10 p11 − 480

(
p01 p02 p3

10 + p3
01 p10 p20

)
+ 20

(
p03 p3

10 + p3
01 p30

)
+ 150p11

(
p02 p2

10 + p2
01 p20

)
+ 84p01 p10

(
p2

11 + p02 p20

)
+ 60

(
p01 p2

10 p12 + p2
01 p10 p21

)
+ 30p11 (p10 p12 + p01 p21) + 15p20 (p03 p10 + p01 p12)

+ 15p02 (p01 p30 + p10 p21) + p03 p30 + 3p12 p21) , (19)

where pkl = R3(k, l)/R3(0, 0) and the coefficients R3 can be easily calculated from Eqs. (11)
and (12), resulting in

R3(0,0) = 1 + h2 + h4 + h6 + 2h3 cosh(3μ) ,

R3(0,1) = h2e−2μ
(

1 + h2
)

+ heμ
(

1 + h2 + h4
)

,

R3(1,0) = h2e2μ
(

1 + h2
)

+ he−μ
(

1 + h2 + h4
)

,

R3(0,2) = he−μ
(

1 + h2
)2 + h2e2μ

(
1 + h2

)
,

R3(2,0) = heμ
(

1 + h2
)2 + h2e−2μ

(
1 + h2

)
,

R3(1,1) = 1 + 2h2 + 2h4 + h6 + 2h3 cosh(3μ) ,

R3(0,3) = R(3,0) =
(

1 + h2
)3 + 2h3 cosh(3μ) ,
6
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R3(1,2) = 2h2e−2μ
(

1 + h2
)

+ heμ
(

2 + 3h2 + 2h4
)

,

R3(2,1) = 2h2e2μ
(

1 + h2
)

+ he−μ
(

2 + 3h2 + 2h4
)

. (20)

All local observables listed above can be obtained from the expansion (18). The strong coupling 
expansion converges, presumably in the region β ≤ βc(h, μ), where βc(h, μ) is the phase tran-
sition or crossover point. One expects that in this region numerical data agree reasonably well 
with strong coupling results. For the purposes of this paper it was sufficient to consider only the 
lowest three orders in the strong coupling series. Higher orders can be calculated using the linked 
cluster expansion developed in [27] for a similar Polyakov loop model.

2.2. Mean-field solution

Another obvious approach which can be used to get qualitative description of the model (6)
is mean-field approximation. Within the mean-field method one obtains an approximate phase 
diagram of the model. Also, it allows to calculate various local observables, as the free energy 
density, the baryon density and some others. We use here one of the simplest mean-field schemes, 
applied to a similar Polyakov loop model in [24–26]. In this scheme the mean-field approxima-
tion reduces to the following replacement:∑

x,ν

ReTrU(x)TrU†(x + eν) −→ 2d

2

∑
x

(
ωTrU(x) + uTrU†(x)

)
, (21)

where

u = 〈TrU(x)〉 = 1

dβ

∂ lnZmf(u,ω)

∂ω
, ω = 〈TrU†(x)〉 = 1

dβ

∂ lnZmf(u,ω)

∂u
. (22)

The partition function gets the form

Z = [Zmf(u,ω)]L
d

, (23)

Zmf(u,ω) = A(m)

∫
dU exp

[
dβ

(
ωTrU + uTrU†

)]
× det

[
1 + h+U

]
det

[
1 + h−U†

]
. (24)

Using the integration methods developed in [14,28] the mean-field partition function is presented 
as

Zmf(u,ω) =
∞∑

r,s=0

(dβω)r

r!
(dβu)s

s! R3(r, s) (25)

and explicit form of R3(r, s) reads

R3(r, s) =
1∑

i,j=0

Cij Q3(r + i, s + j) + C20 Q3(r + 2, s) + C02 Q3(r, s + 2) , (26)

where the coefficients Cij are given by

C00 = 2 cosh 3m + 2 cosh 3μ ,C11 = 2 coshm , C20 = eμ , C02 = e−μ ,

C10 = 2e−μ cosh 2m + 2e2μ coshm ,C01 = 2eμ cosh 2m + 2e−2μ coshm . (27)
7
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Fig. 1. Comparison of the observables obtained from mean-field analysis (solid lines), strong coupling expansion up to 
third order in β (dashed lines) and simulation results (dots) at h = 0.6, μ = 0.5 on a 163 lattice. Top left: magnetization 
(blue and red lines denote magnetization and its conjugate, respectively); top right: energy density; bottom left: baryon 
density; bottom right: quark condensate. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

The mean-field equations (22), as well as all local observables, can now be computed numerically 
and compared with the strong coupling results and numerical data. In the pure gauge case, h = 0, 
one finds a first order phase transition at the critical value βg ≈ 0.2615. This value, as well as the 
magnetization, matches the corresponding results obtained earlier by the mean-field method [24,
25]. Fig. 1 compares our numerical data with the strong coupling expansion and mean-field 
results for some typical values h = 0.6, μ = 0.5. More mean-field results and comparison with 
simulations will be given in the next Section.

3. Phase diagram of the model

3.1. Lattice setup

To explore the phase structure of the model, we simulate numerically the partition function (7). 
Important ingredient of such simulations is the way we treat the triality constraint in (10). In the 
8
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pure gauge theory, h = 0, this constraint is solved exactly in terms of genuine dual variables and 
the resulting theory can be simulated with the usual Metropolis update [21]. Instead, at non-zero 
values of h, the function RN(n, p) in (7) is explicitly expanded in series (11). In this formulation 
every configuration of link variables s(l) and r(l) has non-zero Boltzmann weight, thus allowing 
us to use again the simple Metropolis update algorithm instead of more complicated worm-
like algorithms usually adopted to probe dual model formulations. The values of the function 
Q3(n, p) are computed beforehand and stored in an array, which is then used in simulations. An 
extra benefit of the absence of the triality condition is the possibility to calculate a correlation 
function as the expectation value of a product of one-site observables instead of a product over 
the path connecting the sources (see Section 4).

Let us mention that our dual formulation allows to simulate all SU(N) models on equal foot-
ing: the only difference between different N is encoded in the function QN(n, p) which, as said 
above, can be computed prior to simulations. Thus, the present approach can be easily extended 
to any values of N . The investigation of the large-N limit is interesting per sé since it can shed 
light on the large-N QCD phase diagram at finite density, which could exhibit novel phases, such 
as quarkyonic matter [29–31]. Moreover, it can reveal interesting connections between glueball 
states in SU(N) gauge models for large N and the constituents of dark matter [32].

For simulations above h = 0.01, we performed 2 · 105 thermalization updates, and then made 
measurements every 100 whole lattice updates, collecting a statistic of 105 measurements. To 
estimate statistical error, a jackknife analysis was performed at different blocking over bins with 
size varying from 10 to 104.

When we move to smaller values of h, we see that transition probabilities of the one-spin 
Metropolis update become smaller. To counter this, while keeping the simulation time reason-
able, we used the combination of a multihit update with an update skipping procedure: we go 
through each link variable and attempt nhit Metropolis updates, but before each attempt we cal-
culate the a priori probability that the update is rejected and generate the number nrej of rejects 
before the first acceptance (from the corresponding geometric distribution); in this way we can 
skip nrej updates and therefore save on the number of updates left to perform on the current link. 
Then, if we still need to do some updates, we choose the update for the link using the probabili-
ties calculated in presumption that the update is accepted. Using this technique allows us to vary 
nhit for different simulation parameters in the range 5 - 2000, while keeping the simulation time 
constant for a fixed acceptance rate.

Below h = 0.01 we performed 2 · 105 thermalization updates, with measurements taken every 
50 whole lattice updates, collecting statistics of 106 measurements. The bins size in the jackknife 
analysis varied from 10 to 105.

3.2. Critical behavior

A clear indication of the presence of different phases can be seen from the inspection of the 
distribution and the scatter plot of the Monte Carlo equilibrium values for the absolute value 
of the magnetization near a transition value of β: for some choice of the parameters h and μ, 
we observe two separate peaks and two separate spots, respectively, which is suggestive of a 
first order transition; for other choices we see instead just one single peak and a single spot, 
respectively, as expected for a second order transition or a crossover.

Another indication comes from the behavior of the magnetization and its susceptibility versus
β near the transition for different values of (h, μ). Figs. 2-4 show that, when h is kept fixed and 
μ is varied from μ = 0 to μ = 2, the transition softens, the “jump” of the magnetization at the 
9
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Fig. 2. Magnetization (left) and magnetization susceptibility (right) versus β at h = 0.01 and μ = 0 on a 163 lattice, in 
the vicinity of a first order phase transition. The solid lines represent the mean-field estimates.

Fig. 3. The same as Fig. 2 for h = 0.01 and μ = 0.9635, where a second order phase transition occurs. Lines and points 
in blue correspond to the magnetization, while those in red correspond to the conjugate magnetization.

pseudo-critical β becoming less steep and the peak of the susceptibility less pronounced, which 
suggests that different regimes are being explored. According to the finite-size scaling analysis 
discussed below, the three regimes represented in Figs. 2-4 correspond to first order, second order 
and crossover, respectively.

To characterize in a quantitative way the phase structure of the model in the (h, μ)-plane, we 
performed a standard finite-size scaling analysis on the peak value of the magnetization suscep-
tibility χ . Although the simulation algorithm does not prevent us from considering arbitrarily 
large lattice sizes, we limit ourselves to the results presented here, obtained by high-statistic sim-
ulations on lattices with linear sizes L = 10 and 16. Larger lattices were also studied for some 
choices of the couplings to investigate the behavior of the correlation functions. We do not quote 
those results here to keep a uniform treatment of the whole parameter space. These results will 
appear in a separate paper. The reason for using relatively small lattice sizes is twofold: on one 
side, we had to explore a wide region in a three-parameter space and simulating many volumes 
10



Fig. 4. The same as Fig. 3 for h = 0.01 and μ = 2, where a crossover transition occurs.

for each point in the parameter space would have been too expensive; on the other side, drawing 
a precision phase diagram for this model is beyond the scope of the present work, whose main 
aim is rather to show the effectiveness of the suggested model. We determined χ for several β
values in the transition region and fitted them to a Lorentzian, thus getting the position of the 
peak, which gives the pseudocritical coupling βpc, and its height. Comparing the dependence of 
the peak height on the lattice size L with the scaling law

χL(βpc) = ALγ/ν , (28)

we estimated the critical-index ratio γ /ν and collected all our determinations, as many as 202, 
in Table 1. More specifically, for each (h, μ) pair we extracted γ /ν by the following formula:

γ

ν
= log 16

10

(
χ16(βpc)

χ10(βpc)

)
(29)

and assigned to each determination a statistical error calculated by standard error propagation.
We can see that, within uncertainties, the values of γ /ν are spread in a range between 3., 

which implies a first order transition, and zero, which holds for crossover, passing through the 
second order 3-dimensional Ising value, γ /ν = 1.9638(8) [33]. These sparse values of γ /ν are 
evidently an artifact of the relatively small lattice sizes we could simulate. If we could approach 
the thermodynamic limit, we would see that values of γ /ν concentrate around the values of 3. 
(first order), 1.9638(8) (second order in the 3-dimensional Ising class) and 0. (crossover). This is 
expected since we know that at μ = 0 in the pure gauge limit of QCD or for heavy enough quark 
masses there is a whole region of first order deconfinement transitions in the mu,d-ms plane (the 
famous Columbia plot), delimited by a line of second order critical points in the 3-dimensional 
Ising class [34]: thereafter, for lower quark masses, the crossover region is met. In the simulations 
of our effective Polyakov loop model at non-zero density toward the thermodynamic limit we 
should see the continuation of the line of second order critical points to non-zero values of the 
chemical potential. For the lattice volumes considered in our study, we are not able to make a 
clear-cut assignment of each choice of the parameters h and μ to one of the three transition 
regions. Using the determination of γ /ν, we tried anyhow to make this assignment, extending 
and modifying the three possible options (first order, second order and crossover) as in Table 2. 
This makes no sense in the thermodynamic limit, but can be helpful in the present context. In 
O. Borisenko, V. Chelnokov, E. Mendicelli et al. Nuclear Physics B 965 (2021) 115332
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Table 1
Summary of the determinations of βpc and γ /ν for different values of h and μ.

h μ βpc γ /ν

0.001 3.0 0.269041(7) 2.83(6)
3.2 0.267843(5) 2.50(11)
3.3 0.267156(7) 2.14(5)
3.35 0.266782(5) 2.06(4)
3.36 0.266708(1) 1.96(2)
3.365 0.266669(3) 1.93(2)
3.375 0.266596(4) 1.88(3)
3.4 0.266390(4) 1.79(4)
3.5 0.265563(5) 1.39(4)
4.0 0.26016(4) 0.07(9)
5.0 0.2413(2) 0.01(3)

0.002 2.3 0.26904(2) 2.72(10)
2.4 0.268487(4) 2.48(11)
2.5 0.267861(5) 2.54(3)
2.55 0.267526(4) 2.35(3)
2.6 0.267172(6) 2.24(6)
2.625 0.266992(5) 2.15(3)
2.65 0.266809(5) 2.03(4)
2.8 0.26558(2) 1.49(10)
3.0 0.26370(3) 0.61(13)
4.0 0.2485(3) -0.07(6)

0.003 2 0.26837(2) 2.56(28)
2.2 0.267102(6) 2.24(4)
2.25 0.266724(3) 1.97(2)
2.275 0.266537(5) 1.92(3)
2.3 0.266339(3) 1.77(2)
2.5 0.264611(7) 0.99(3)

0.004 1.6 0.268926(9) 2.64(18)
1.8 0.267786(4) 2.48(3)
1.88 0.267257(4) 2.22(3)
1.9 0.267116(6) 2.18(4)
1.95 0.266758(3) 2.02(3)
1.96 0.266685(3) 1.98(3)
1.97 0.266608(4) 1.94(2)
1.975 0.266574(5) 1.87(3)
2 0.26637(2) 1.63(22)
3 0.2542(1) 0.08(6)

0.005 1.5 0.268147(4) 2.58(4)
1.7 0.266877(4) 2.07(3)
1.8 0.266137(4) 1.69(3)
1.85 0.265729(2) 1.50(1)
2 0.264402(5) 0.98(4)
2.5 0.25850(5) 0.12(7)

0.007 0.8 0.26947(4) 2.50(46)
1 0.268710(7) 2.46(14)
1.2 0.267686(3) 2.52(5)
1.3 0.267085(4) 2.23(3)
1.4 0.266403(4) 1.92(5)
1.5 0.265659(4) 1.53(3)

h μ βpc γ /ν

2 0.26066(4) 0.21(7)
3 0.2429(2) 0.16(4)

0.008 0 0.2705(2) 3.02(13)
0.8 0.268774(9) 2.84(5)
1 0.26787(1) 2.60(11)
1.2 0.266733(1) 2.06(1)
1.3 0.266044(2) 1.69(1)
1.35 0.265672(3) 1.50(2)
1.5 0.264432(8) 0.99(5)
2.5 0.25(9) 0.04(4)

0.01 0 0.26916(2) 3.19(60)
0.01 0.26923(1) 2.87(6)
0.2 0.26913(2) 2.92(8)
0.4 0.26872(1) 2.91(10)
0.7 0.26780(2) 2.50(10)
0.8 0.26734(2) 2.21(16)
0.9 0.266844(1) 2.14(6)
0.95 0.26656(1) 2.04(4)
0.96 0.266504(5) 2.02(4)
0.963 0.26648(1) 1.95(3)
0.96325 0.26649(1) 1.95(3)
0.9635 0.26649(1) 1.94(4)
0.964 0.266473(4) 1.95(2)
0.96425 0.26648(1) 1.97(3)
0.9645 0.26647(1) 1.98(3)
0.965 0.26646(1) 1.92(3)
0.967 0.26646(1) 1.92(3)
0.97 0.26644(1) 1.92(3)
0.98 0.26638(1) 1.86(5)
1 0.26626(1) 1.82(4)
1. 1 0.26558(1) 1.44(4)
1.5 0.26204(1) 0.40(5)
2 0.25543(9) 0.10(5)

0.0125 0 0.26791(1) 2.63(7)
0.0125 0.26789(1) 2.55(6)
0.125 0.26785(1) 2.56(4)
0.2 0.26776(1) 2.57(5)
0.3 0.26758(1) 2.52(4)
0.4 0.26735(1) 2.43(4)
0.5 0.267032(4) 2.32(3)
0.6 0.266639(4) 2.06(3)
0.65 0.26641(1) 1.93(4)
0.7 0.26617(1) 1.83(4)
0.8 0.26562(1) 1.54(3)
0.9 0.26499(1) 1.27(7)
0.95 0.26462(1) 1.08(4)
0.97 0.26446(1) 0.96(4)
1 0.26425(1) 0.99(6)
1.25 0.26205(2) 0.44(8)
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Table 1 (continued)

h μ βpc γ /ν

0.014 0 0.26712(1) 2.39(8)
0.014 0.267132(4) 2.37(3)
0.14 0.26706(1) 2.32(3)
0.16 0.26702(1) 2.32(4)
0.2 0.26697(1) 2.33(3)
0.3 0.26678(1) 2.24(4)
0.4 0.266513(5) 2.11(4)
0.5 0.266164(5) 1.83(3)
0.6 0.265716(5) 1.63(2)
0.8 0.26458(1) 1.04(4)
0.9 0.26387(1) 0.86(3)
1 0.26307(1) 0.61(3)
1.2 0.26117(1) 0.31(4)
1.4 0.25884(5) 0.12(4)
2 0.2491(2) -0.04(4)

0.015 0 0.26660(1) 2.13(6)
0.015 0.26660(1) 2.19(3)
0.15 0.26651(1) 2.04(5)
0.2 0.26644(1) 2.06(4)
0.3 0.26625(1) 1.94(3)
0.35 0.26613(1) 1.91(3)
0.4 0.26596(1) 1.82(3)
0.45 0.265778(4) 1.71(2)
0.5 0.26556(1) 1.44(2)
0.6 0.26510(1) 1.34(3)

0.0155 0 0.26635(1) 1.99(3)
0.0155 0.26635(1) 2.05(8)
0.05 0.26635(1) 2.01(3)
0.07 0.266332(4) 2.02(3)
0.08 0.266312(5) 1.95(2)
0.085 0.26632(1) 1.93(4)
0.09 0.26632(1) 2.04(3)
0.1 0.26630(1) 1.95(3)
0.155 0.26625(1) 1.93(4)
0.3 0.26597(1) 1.86(4)
0.7 0.26423(1) 1.02(3)
1 0.26193(2) 0.44(2)

0.0156 0 0.266303(4) 1.94(3)
0.0156 0.266292(3) 2.01(2)
0.02 0.266295(4) 1.96(2)
0.025 0.26629(1) 1.98(4)
0.0275 0.26631(1) 1.95(2)
0.03 0.266293(5) 1.94(3)
0.156 0.26620(1) 1.92(3)
0.2 0.266121(1) 1.90(4)
0.4 0.265623(4) 1.61(3)
0.6 0.26475(1) 1.22(3)
0.8 0.263497(4) 0.74(3)

h μ βpc γ /ν

0.0157 0 0.266252(4) 2.01(3)
0.0157 0.26625(1) 1.97(3)
0.02 0.266247(1) 1.97(1)
0.03 0.26624(1) 1.99(3)
0.05 0.266235(1) 1.98(3)
0.07 0.26623(1) 1.92(3)
0.1 0.26621(1) 1.91(3)
0.2 0.266072(4) 1.80(2)

0.0158 0 0.266198(3) 1.95(2)
0.01 0.26620(1) 1.89(3)
0.0158 0.26619(1) 1.94(4)
0.02 0.266197(2) 1.91(2)
0.04 0.266191(4) 1.95(3)
0.06 0.266180(4) 1.93(2)
0.08 0.26617(1) 1.90(2)
0.1 0.266151(4) 1.88(2)
0.158 0.266085(4) 1.84(2)

0.01585 0 0.26615(1) 1.94(4)
0.01585 0.266171(4) 1.96(3)
0.02 0.26617(1) 1.96(4)
0.025 0.26617(1) 1.88(4)
0.03 0.26616(1) 1.95(3)
0.06 0.26615(1) 1.87(4)
0.1 0.26613(1) 1.92(3)
0.2 0.26600(1) 1.81(3)

0.0159 0 0.266157(4) 1.90(2)
0.0159 0.26615(1) 1.93(4)
0.02 0.266150(5) 1.88(2)
0.04 0.266152(4) 1.91(2)
0.06 0.26613(1) 1.93(4)
0.08 0.266120(4) 1.91(2)
0.1 0.26611(1) 1.85(3)
0.159 0.266039(3) 1.87(2)
0.2 0.26598(1) 1.79(3)

0.016 0 0.26616(1) 1.90(4)
0.016 0.26609(1) 1.84(4)
0.16 0.265976(3) 1.87(2)

0.017 0 0.26557(1) 1.69(4)
0.017 0.26558(1) 1.60(4)
0.17 0.26545(1) 1.56(3)

0.018 0.018 0.26508(1) 1.42(4)

0.02 0 0.26404(9) 0.87(1)
0.01 0.26404(1) 1.00(4)
0.1 0.26398(1) 0.93(4)
1 0.25865(6) 0.14(3)

0.025 0 0.26156(1) 0.40(2)
0.03 0 0.25913(3) 0.10(2)
0.04 0 0.25466(4) 0.01(2)
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Table 2
Color code used to characterize the different phases depending on the value of 
γ /ν.

γ /ν Color Phase

γ /ν ≥ 3 green first order
2.50 ≤ γ /ν < 3 light green more first order than second order
1.98 < γ/ν < 2.50 yellow more second order than first order
1.94 ≤ γ /ν ≤ 1.98 red very close to second order
1.85 ≤ γ /ν < 1.94 brown more second order than crossover
0.3 ≤ γ /ν < 1.85 magenta more crossover than second order
0 ≤ γ /ν < 0.3 blue crossover

Fig. 5. (Left) Assignment of each parameter pair (h, μ) to a transition region according to the color code of Table 2. 
(Right) Estimated phase diagram.

Table 2 we introduced a color code, to help identifying at a glance in which of these regions a 
given parameter pair (h, μ) falls.

In Fig. 5(left) each parameter pair (h, μ) considered in our simulations is represented by a 
colored dot in the (h, μ) plane, according to the color code defined in Table 2, allowing us to 
sketch a tentative phase diagram in the right panel of the same figure. A different visualization 
of the general phase diagram is presented in Fig. 6, where in a 3d plot γ /ν values are reported 
in correspondence of each (h, μ) pair.

Fig. 7 shows the values of βpc obtained for each considered pair (h, μ). It is interesting to 
note that the variation of βpc along the red line (close to the second order phase transition) is 
much smaller than the variation for all other points. Hence, red points lie approximately in one 
plane βpc = const, while all points associated with other phases lie on a curved surface. This is 
also seen from Table 3, where we collected the values of βpc close to the second order phase 
transition.

We have not performed simulations in the absence of external field. To find the critical value 
βg at h = 0, i.e. for the pure gauge theory, and at μ = 0., we performed a simple fit of the 
form βc(h) = βg + ah, as suggested in [13]. We obtained following values βg = 0.274991, a =
−0.5568. The value of βg agrees very well with the value quoted in the literature, βg = 0.274
and reasonably well with the mean-field result βg = 0.2615.
14
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Fig. 6. Values of the critical index ratio γ /ν for each considered choice of the pair (h, μ). The color code is as in Table 2. 
The plane at γ /ν = 1.9638(8) corresponds to the γ /ν value for a second order phase transition in the 3-dimensional 
Ising class [33].

Fig. 7. Values of βpc for each considered choice of the pair (h, μ). The color code is as in Table 2. For the sake of 
readability, red points have been connected by a broken line and the plane βpc = 0.266334 was drawn.

Another important question concerns the shape of the critical line shown in the right panel 
of Fig. 5 in the heavy-dense limit, h → 0, μ → ∞. From the data we have, one cannot make 
unambiguous conclusions about its behavior. Nevertheless, data are well fitted by the function 
μc = −a lnh + c − bh2, with a = 0.932, c = −3.1, b = 2367. This shows that the line of second 
order phase transition might persist in the heavy-dense limit of QCD.

3.3. Quark condensate and baryon density

In this subsection we study the behavior of the quark condensate and the baryon density in 
different phases and compare numerical results with mean-field predictions. In the static approx-
imation for the quark determinant one cannot observe the phenomenon of spontaneous breaking 
of the chiral symmetry. Indeed, even in the strong coupling region, using Eq. (18), one can easily 
15
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Table 3
Values of βpc and γ /ν for h and μ belonging to the region 
“very close to second order”. These values correspond to the 
bigger red points in Fig. 7.

h μ βpc γ /ν

0.001 3.36 0.266708(1) 1.96(2)
0.003 2.25 0.266724(3) 1.97(2)
0.01 0.963 0.26648(1) 1.95(3)
0.01 0.96325 0.26649(1) 1.95(3)
0.01 0.9635 0.26649(1) 1.94(3)
0.01 0.964 0.266473(4) 1.95(2)
0.01 0.96425 0.26648(1) 1.97(3)
0.01 0.9645 0.26647(1) 1.98(3)
0.015 0.3 0.26625(1) 1.94(3)
0.0154 0.2 0.26624(1) 1.96(4)
0.0155 0.08 0.266312(5) 1.95(2)
0.0155 0.1 0.26630(1) 1.95(3)
0.0156 0.0 0.266303(4) 1.94(3)
0.0156 0.02 0.266295(4) 1.96(2)
0.0156 0.025 0.26629(1) 1.98(4)
0.0156 0.0275 0.26631(1) 1.95(2)
0.0156 0.03 0.266293(5) 1.94(3)
0.0157 0.0 0.26625(1) 1.97(3)
0.0157 0.02 0.266247(1) 1.97(1)
0.0157 0.05 0.266235(1) 1.98(3)
0.0158 0.0 0.266198(3) 1.95(2)
0.0158 0.04 0.266191(4) 1.95(3)
0.01585 0.0 0.26615(1) 1.94(4)
0.01585 0.01585 0.266171(4) 1.96(3)
0.01585 0.02 0.26617(1) 1.96(3)
0.01585 0.03 0.26616(1) 1.95(3)

obtain for the quark condensate Q = 0 for all μ in the massless limit h = 1. The same result 
in this limit can be obtained within mean-field approach and from numerical simulations which 
we performed for various values of β and μ. Nevertheless, we think it might be instructive to 
see the behavior of the condensate in the three regimes corresponding to first and second order 
transitions and to crossover. A more traditional observable to study in the effective Polyakov 
loop models is the baryon density. In the dual formulation the baryon density B and the quark 
condensate Q are given by Eqs. (16) and (17), respectively. We have computed the right-hand 
sides of these equations both numerically and using the mean-field approach, for the same values 
of h and μ.

The behavior of baryon density and quark condensate as functions of β depends strongly on 
the phase of the system. Left panels of Figs. 8 and 9 show the typical behavior of Q and B for 
h = 0.01 and various values of the chemical potential corresponding to different phases of the 
model. These phases are characterized as before by the values of γ /ν and can be approximately 
read off from Fig. 6 or, more precisely from the Table 1. One observes a rapid change of both Q
and B at the first order phase transition. This rapid change becomes smoother and smoother when 
parameters are gradually changed toward the second order line and then to the crossover regime. 
The right panels of the same Figures compare Monte Carlo data with the mean-field predictions 
16
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Fig. 8. Behavior of the quark condensate versus β for fixed h = 0.01 and for different values of μ on a 163 lattice. Left 
panel: results of simulations in the vicinity of a phase transition. Right panel: comparison of mean-field analysis and 
numerical results in three different phase regimes. The color code of Table 2 is used here and below to differentiate the 
phases of the system.

Fig. 9. Behavior of the baryon density versus β for fixed h = 0.01 and for different values of μ on a 163 lattice. Left 
panel: results of simulations in the vicinity of a phase transition. Right panel: comparison of mean-field analysis and 
numerical results in three different phase regimes.

in the three regions. One can conclude that mean-field reproduces numerical simulations with 
good accuracy.

The quark condensate as a function of β is shown in Fig. 10(left) for vanishing value of the 
chemical potential and several values of h. The right panel of the same figure demonstrates the 
approach to the saturation of the baryon density at zero quark mass, h = 1.

As follows from Fig. 1, the baryon density B is a decreasing function of β at sufficiently large 
h = 0.6, while Fig. 9 shows that for small h values (large mass) B is an increasing function of 
β . This conclusion is supported by all three methods of calculations used in this paper. There-
17
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Fig. 10. Left panel: behavior of the quark condensate versus β for fixed μ = 0 and for different values of h on a 163

lattice. Right panel: baryon density for h = 1 and β = 0.1 on a 163 lattice.

fore, there should exist some value of the quark mass where the density changes its qualitative 
behavior. We have not tried to estimate this value.

4. Large-distance behavior of the correlations

To see the impact of a non-zero chemical potential on the correlation function behavior, we 
calculated the two-point correlation functions for several values of parameters. We considered 
six kinds of the correlation functions:

�nn(r) = 〈TrU(0)TrU(r)〉 , �rr (r) = 〈Re TrU(0)Re TrU(r)〉 ,

�na(r) =
〈
TrU(0)TrU†(r)

〉
, �ri(r) = 〈Re TrU(0) Im TrU(r)〉 ,

�aa(r) =
〈
TrU†(0)TrU†(r)

〉
, �ii(r) = 〈Im TrU(0) Im TrU(r)〉 . (30)

In the dual formulation the correlation functions can be written as

�nn(r) =
〈
R3(n(0) + 1,p(0))

R3(n(0),p(0))

R3(n(r) + 1,p(r))

R3(n(r),p(r))

〉

�na(r) =
〈
R3(n(0) + 1,p(0))

R3(n(0),p(0))

R3(n(r),p(r) + 1)

R3(n(r),p(r))

〉

�aa(r) =
〈
R3(n(0),p(0) + 1)

R3(n(0),p(0))

R3(n(r),p(r) + 1)

R3(n(r),p(r))

〉
. (31)

These formulas work for r > 0. For r = 0 both shifts to the n, p variables happen at one point, so 
only one ratio remains. The correlations �rr , �ri and �ii can be obtained as linear combinations 
of �nn, �na and �aa .

The expressions (31) become unusable when h = 0, and can have a bad convergence prop-
erties for very small h, or very large μ values. We have checked by comparing the numerical 
results with the strong coupling expressions for small β values, that the results can be relied on 
for h > 0.005 and μ < 3.
18



O. Borisenko, V. Chelnokov, E. Mendicelli et al. Nuclear Physics B 965 (2021) 115332
Since we work at non-zero h, the average traces can become non-zero, introducing a constant 
term into the correlation function even in the disordered phase. Due to that, we introduce the sub-
tracted correlation functions, subtracting the corresponding average trace inside the correlations:

�nn,sub(r) = �nn(r) − 〈TrU 〉2 ,

�na,sub(r) = �na(r) − 〈TrU 〉
〈
TrU†

〉
,

�aa,sub(r) = �aa(r) −
〈
TrU†

〉2
. (32)

For these subtracted correlations we expect an exponential decay,

�(r) = A
exp(−mr)

r
, (33)

at least in the disordered phase.
Samples of correlation function behavior in different regions of the phase diagram are shown 

in Figs. 11, 12 and 13. One can see that, indeed, both in disordered and ordered phases, the 
correlations decay exponentially. While the mass gap, corresponding to the slope of the plots, 
remains the same for �nn, �na , �aa , �rr and �ri correlation functions, it is much larger for the 
�ii correlation function. Also the mass gap for the �ii correlation remains more or less constant, 
and in particular does not vanish in the vicinity of the phase transition.

The difference in mass gaps can be explained by noting that at μ = 0 �rr and �ii correspond to 
the color-magnetic and color-electric sectors having different mass gaps mM and mE , mM < mE

(see [17]). While at non-zero μ these two sectors should mix, so all the correlators we study 
should decay with mM , it is possible that in our case the mixing is small causing the real large 
distance mass gap for the color-electric sector to be visible only on distances larger than the ones 
for which we have reliable results.

In the ordered phase we observe an increase of the correlation function slope (at the same β
values) with the increase of μ, implying that the mass gap grows with μ. This means an increase 
of the screening effects: at finite density non-zero μ pushes system deeper in the deconfined 
phase. This is in qualitative accordance with the results of [17] obtained with imaginary μ.

We will address these questions in more detail in a future work, which is under preparation. 
For now, we can note that at least in the disordered phase also the second moment correlation 
length for the imaginary-imaginary correlations is substantially different from the one for the 
real-real correlations.

5. Summary

Revealing the phase diagram of QCD at finite temperature and non-zero baryon chemical 
potential, as well as the nature of strong interacting matter at high temperatures, remains one 
of the important challenges of high energy physics. In spite of enormous efforts, many aspects 
of these problems are still far from unambiguous resolution. The several methods developed to 
solve the sign problem in finite density QCD have their own advantages and drawbacks. Dual 
formulations of effective Polyakov loop models for heavy-dense QCD, as the one used here, 
solve the sign problem completely, but are restricted so far to strong coupled regions in the case 
of non-Abelian gauge theories. Even in this region one can get valuable information about the 
phase structure of non-Abelian models and behavior of various observables. The study presented 
here is in the same spirit of Refs. [12,13,15], though we have used a different dual formulation of 
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Fig. 11. Behavior of the correlation functions on a 203 lattice for different values of parameter β (h = 0.008, μ = 0.9635). 
Top: disordered phase. Middle: near the first order phase transition point. Bottom: ordered phase. This legend applies 
also to the next figures.

the Polyakov loop model, built in Ref. [14]. To corroborate our findings we have also compared 
in many cases simulation results with the strong coupling expansion of the dual model and with 
the mean-field analysis. Let us briefly recapitulate our main results.

• The phase diagram of the model was studied in great details. We have classified three regions 
in the parameter space of the model (β, h, μ) according to the type of the critical behavior: 
first or second order phase transition, or crossover. The values of the ratio of critical indices 
γ /ν are different in different regimes.
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Fig. 12. The same as Fig. 11 for h = 0.01, μ = 0.9635 (region of the second order phase transition).

• As main observables we computed expectation values of the Polyakov loop and its conjugate, 
the baryon density and the quark condensate.

• Our dual formulation allows us to compute correlation functions of the Polyakov loops. We 
have presented some preliminary results for such correlations at non-zero chemical potential.

• It is interesting to note that the mean-field results agree very well with numerical simulations 
both at zero and non-zero μ. Also, the mean-field results are in good qualitative agreement 
with a similar analysis in Ref. [24].

The overall qualitative picture of the phase diagram and the behavior of all observables fully 
agree with the picture described in Refs. [13,15].
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Fig. 13. The same as Fig. 11 for h = 0.01, μ = 2.0 (crossover region).

All observables considered in this work have shown sensitivity to the chemical potential. The 
general trend is that when μ is increased, they exhibit a less steep variation across transition 
when the coupling β (which corresponds to the temperature in the underlying QCD theory) 
is increased. Qualitatively, one can say that increasing μ plays effectively the same role as a 
reduction of the quark mass.

The most important direction for the future work is a detailed study of the different corre-
lations of the Polyakov loops and the extraction of screening (electric and magnetic) masses at 
finite chemical potential. Also, an investigation of the oscillating phase and the related complex 
masses can be accomplished within our dual formulation. All these problems will be addressed 
in a companion paper which is currently under preparation.
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