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The pion-to-proton ratio is identified as a potential signal for a non-equilibrium first-order chiral phase 
transition in heavy-ion collisions, as the pion multiplicity is directly related to entropy production. To 
showcase this effect, a non-equilibrium Bjorken expansion starting from realistic initial conditions along 
a Taub adiabat is used to simulate the entropy production. Different dynamical criteria to determine 
the final entropy-per-baryon number are investigated and matched to a hadron resonance gas model 
along the chemical freeze out curve to obtain the final pion and proton numbers. We detect a strong 
enhancement of their multiplicity ratio at the energies where the system experiences a strong phase 
transition as compared to a smooth crossover which shows almost no enhancement.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

A quark-gluon plasma is created in heavy-ion collisions at suf-
ficiently large center-of-mass energies [1,2]. It is a new phase of 
strongly interacting matter that is characterized by deconfinement 
and the restoration of chiral symmetry. Although lattice QCD has 
ruled out the possibility of a quantum chromodynamics (QCD) 
phase transition for small values of the baryochemical potential 
μB, a critical end point (CEP) and first-order phase transition 
(FOPT) are possible to be present in the QCD phase diagram at high 
baryon densities. The location of the CEP has been estimated from 
first principles [3,4] and also effective models [5–7] with so far 
only little agreement between the various theoretical approaches.

Experimentally, the focus on investigating the QCD phase di-
agram has been on the measurement of cumulants or cumulant 
ratios of baryon number, strangeness, electric charge, e.g. in the 
beam energy scan program at STAR [8], at NA49/61 [9,10], and for 
lowest energies, also at HADES [11]. It is expected that the pres-
ence of a CEP will manifest in non-monotonic behavior of these 
observables as function of beam energy, as shown in lattice QCD 
[12,13], functional techniques [14], and effective models [15–17]. 
Due to the sensitivity of these cumulants to the correlation length, 
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it is not fully understood how much of the signal survives the 
nonequilibrium dynamics of the expanding medium, finite size and 
time effects [18], hadronic rescattering, as explored by a multitude 
of dynamical models in recent years [19–30].

This possible caveat of the impact of nonequilibrium dynamics 
on observables can be turned into an advantage when consider-
ing signals for a FOPT. Spinodal decomposition and the emergence 
of density inhomogeneities have been widely studied [31–37]. Be-
sides that, the FOPT sees a delayed relaxation of the critical mode 
which consequently produces additional entropy [38], an effect 
that has been shown to potentially double the initial entropy-per-
baryon number (S/A) [39].

In the present letter, we intend to show the significant effect 
that this additional entropy can have on a simple observable such 
as the pion to proton multiplicity ratio, which can be measured 
much more easily than higher order cumulants or correlation func-
tions. To do so we will start from the relaxational dynamics of the 
chiral order parameter which is coupled to a Bjorken expansion. 
Realistic initial conditions are obtained for low- to intermediate 
energies from the stationary one-dimensional Taub adiabat model 
[40,41]. We observe differences between an ideal hydrodynamic 
evolution and the full nonequilibrium dynamics near the CEP and 
across the FOPT. After comparing different criteria for obtaining the 
final S/A, we use two parametrized freeze-out curves to map this 
value to pion and proton multiplicities via a hadron resonance gas 
(HRG) model [42].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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After a description of the model in Section 2, we report our 
results in Section 3, and finally conclude with a summary in Sec-
tion 4.

2. Model description

To describe the entropy production due to a non-equilibrium 
first order chiral phase transition the chiral Bjorken expansion, 
introduced in [39] as a simple variant of non-equilibrium chiral 
fluid dynamics [21], is employed. This simple 1D model yields a 
dynamics that is very similar to the event-averages of more so-
phisticated (3+1)D models [34]. As shown in [39], the model pro-
duces entropy across a FOPT due to the relaxational dynamics of 
the non-equilibrium order parameter evolution, obeying a Langevin 
equation of motion,

σ̈ +
(

D

τ
+ η

)
σ̇ + δ�

δσ
= ξ . (1)

Here, the dots above σ denote derivatives with respect to proper 
time τ . Furthermore, � is the mean-field grand canonical potential 
and we set D = 1 in the Hubble term for a longitudinal expansion. 
The T - and μ-dependent damping coefficient η is related to the 
stochastic noise ξ with the dissipation-fluctuation relation

〈ξ(t)ξ(t′)〉 = mσ η

V
coth

(mσ

2T

)
δ(t − t′) , (2)

with the fireball volume V , and the sigma screening mass mσ

which is given by the second derivative of � with respect to σ at 
the equilibrium state. The function η(T , μ) has been derived from 
the 2PI effective action and vanishes around the CEP to allow for 
the emergence of long-range fluctuations. Physically, it arises from 
various sigma-meson scatterings, see [39] for further details. Alter-
natively, simplifications with a constant damping coefficient have 
been studied earlier [43]. Note that the choice of η will directly 
impact the relaxation time of the system.

In this study, the mean-field potential � is obtained from a 
quark-meson (QM) model, as integral of the quark degrees of free-
dom,

L = q
(
iγ μ∂μ − gσ

)
q + 1

2

(
∂μσ

)2 − U (σ ) , (3)

U (σ ) = λ2

4

(
σ 2 − f 2

π

)2 − fπm2
πσ + U0 , (4)

where we use light quarks q = (u, d) only and standard parame-
ters fπ = 93 MeV, mπ = 138 MeV, λ2 = 19.7. The QM model is far 
from a realistic description of dense QCD matter. However, it con-
tains the relevant symmetries and necessary degrees of freedom to 
describe a chiral transition at finite baryon density and it allows us 
to solve the proper equations of motion for the chiral field.

To relate the trajectories which can be calculated with the chi-
ral Bjorken expansion to a beam energy the corresponding initial 
state, i.e. initial temperature T and density as well as entropy per 
baryon needs to be calculated self consistently from the equation 
of state. This can be done reliably assuming that most entropy in 
the initial state of low energy heavy ion collisions is produced by 
shock heating. Then, the initial compression can be estimated by a 
one-dimensional shock wave solution, the Rankine-Hugoniot-Taub 
adiabat [40,41]. Then, one has to solve the following equation [44]:

(P0 + ε0) (P + ε0)n2 = (P0 + ε) (P + ε)n2
0 , (5)

where P0 = 0, ε0/n0 −mN = −16 MeV and n0 = 0.16 fm−3 are the 
ground state pressure, energy density, and baryon density. With 
any known relation P = P (ε, n), Eq. (5) can be solved. Further-
more, the collision energy can be related to the compression as:
2

Fig. 1. Evolutions of the fluid dynamical model (solid lines) compared to the isen-
tropes (dashed line) from the same initial condition along the Taub adiabat. The 
position of the CEP and FOPT are indicated by the dot and solid black line.

γ CM = εn0

ε0n
, γ CM =

√
1

2

(
1 + E lab

mN

)
. (6)

Here γ CM is the Lorentz gamma factor in the center of mass frame 
of the heavy ion collisions and E lab is the beam energy per nucleon 
in the laboratory frame of a fixed target collision.

3. Results

Fig. 1 depicts trajectories for initial conditions at three differ-
ent beam energies, defined by values of S/A. The initial conditions 
are shown as dots along the blue Taub adiabat line. The solid black 
curve and adjacent dot around (T , μB) show the location of the 
FOPT and CEP of the quark-meson model in mean-field. For each 
initial condition the non-equilibrium evolution (solid lines), av-
eraged over 104 chiral Bjorken dynamics events, is compared to 
isentropes (dashed lines) along which S/A remains constant and 
which represent an ideal hydrodynamic evolution. We use these as 
proxy for the evolution without phase transition, where the relax-
ational dynamics plays only an insignificant role and the produced 
entropy is marginal compared to a scenario with a FOPT. While 
the trajectories halt at a final time of τ = 12 fm from our simu-
lation, the isentropes are drawn until the density reaches that of 
ground state nuclear matter. We notice several differences between 
nonequilibrium and ideal hydrodynamics, most notable is the over-
shooting of the FOPT line at lowest energies which is not present 
in the isentropes that stay along the phase transition line and then 
lie slightly below it. As a result, the freeze-out points for these two 
scenarios will be different.

For defining a freeze-out criterion, we compare two different 
scenarios: Since the model focuses on the sigma field, we use its 
dynamics to define a point where the entropy production ends: 
First, at a constant value which we set to σf.o. = 70 MeV, and 
second, at the point where the slope in the function σ(τ ) re-
mains constant, indicating the completion of the transition, i.e. 
d2σ/dτ 2|σ=σf.o.

= 0. Fig. 2 shows the final S/A for both cases as 
function of 

√
sN N together with the initial S/A from the Taub adi-

abat. We see that, while the initial S/A increases monotonically 
with energy, both of the final ones are strongly enhanced at lowest √

sN N . For 
√

sN N ≥ 3.0 GeV, both yield nearly the same entropy-
per-baryon number of the final state, below that, the discrepancy 
is of the order of ∼ 10% only. Since both freeze-out conditions 
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Fig. 2. Initial and final entropy-per-baryon number, the latter one extracted for two 
different freeze-out conditions. In both cases, a clear enhancement at low energies 
is found compared to the initial value.

yield similar results, from here on, we will discuss only the cri-
terion of the vanishing second derivative which produces a slightly 
stronger effect.

To translate our final state entropy into particle multiplicities, 
we match the obtained values of S/A onto a parametrized freeze-
out curve by identifying T and μB along that curve with the final 
S/A. After that, we use these values of T and μB to calculate the 
pion and proton numbers from a hadron resonance gas model, 
using the Thermal-FIST (Thermal, Fast and Interactive Statistical 
Toolkit) package [42]. As the final entropy in our approach is di-
rectly connected to a beam energy we can then investigate the 
beam energy dependence of the particle multiplicities. Since there 
is currently no agreement on the precise location of the freeze-
out curve, especially for the lowest energies, we compare results 
from two versions obtained from thermal model fits to experimen-
tal data over a wide range of energies using the parametrization

T f.o.(μB) = a − bμ2
B − cμ4

B , (7)

with parameter set A as a = 0.157 GeV, b = 0.087 GeV−1, and 
c = 0.092 GeV−3 (freeze-out curve A [45]) and parameter set B as 
a = 0.166 GeV, b = 0.139 GeV−1, and c = 0.053 GeV−3 (freeze-out 
curve B [46]). These freeze-out curves, together with the freeze-out 
points, with and without a phase transition, corresponding to the 
evolutions with the smallest and largest beam energy, are shown 
in Fig. 3. The points on the freeze-out curve are identified by ob-
taining S/A along the parametrized curve from the Thermal-FIST 
model and then comparing to the final values of our dynamical 
evolution. While the freeze-out coordinates lie relatively close to-
gether for an initial S/A of 11.96, they significantly differ for the 
smallest initial S/A of 3.9, especially the two points with phase 
transition lie far away from each other.

This difference is reflected in the ratio of charged pion to proton 
numbers obtained from the HRG model, see Fig. 4. Here, again, we 
show results for freeze-out curves A and B, each with and without 
phase transition. All the particle multiplicities are to be understood 
as event-averages since the values have been obtained from the 
event-averaged final entropy-per-baryon number S/A. In general, 
we observe an enhancement of the multiplicity ratio in the pres-
ence of a phase transition (cross and square symbol) compared 
to a no-transition scenario (circle and diamond symbol) which is 
most significant at the low values of 

√
sN N , where the values go 
3

Fig. 3. Different parametrizations of the freeze-out curve with the freeze-out points 
of the evolutions with the smallest/largest initial S/A as well as with and without 
a phase transition.

up again after an initial decrease from low energies. Since freeze-
out curve A lies above curve B throughout the investigated energy 
range, the same is true for the corresponding pion-to-proton ratios. 
We see that as we approach the lowest center-of-mass energies 
around 2.2 GeV, the values approach zero for curve B without 
phase transition. For curve B, a ratio of 0.45 is the lowest one, 
which is clearly more realistic. Qualitatively, however, both curves 
give a consistent result.

To understand why the pion to proton ratio keeps increasing for 
low beam energies, in the scenario with a non-equilibrium phase 
transition, it is important to emphasize that the Taub adiabat and 
with it every initial state constructed from the quark-meson La-
grangian lies entirely within the phase of chiral symmetry restora-
tion. In other words, even initial states at the lowest beam energies 
will have to pass through the chiral phase transition. In a more 
realistic setup the systems created at the lowest beam energies 
would rather remain within the hadronic phase from the begin-
ning. For these evolutions, there would be no entropy gain from 
a nonequilibrium FOPT. Therefore we predict that a beam energy 
scan around these values of 

√
sN N , where the FOPT is reached 

should then reveal a sudden increase of the pion-to-proton ratio 
at the collision that passes through that transition.

4. Summary and conclusions

We have studied the influence of a chiral FOPT on the entropy-
per-baryon number and pion-to-proton ratio from a Bjorken ex-
pansion coupled to the nonequilibrium evolution of the order 
parameter and a calculation of particle multiplicities along two 
parametrizations of freeze-out conditions obtained from experi-
mental data. We have found that a nonequilibrium FOPT leads to a 
significant increase of S/A compared to a case without phase tran-
sition and, experimentally, to an enhancement in the multiplicity 
ratio. The entropy is generated by damping processes during the 
dynamical phase transition and stochastic fluctuations throughout 
the evolution. This result is qualitatively independent of the spe-
cific choice of freeze-out criterion. It is also reasonable to expect 
that the gain in entropy is a generic feature of the nonequilibrium 
phase transition rather than the underlying model of the arguably 
simple quark-meson Lagrangian. If indeed a QCD FOPT is present 
at large baryochemical potentials, it should be possible to unveil it 
within a beam energy scan at low 

√
sN N . Since recent STAR data 

shows that the flow at 
√

sN N = 3 GeV can be best described with a 
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Fig. 4. Pion-to-proton multiplicity ratio as function of center-of-mass energy for 
scenarios with and without phase transition. For both freeze-out curves, we see 
a strong enhancement at low energies for scenarios with a phase transition.

stiff hadronic equation of state [47], a sudden jump in the pion-to-
proton number at a higher beam energy would clearly signal the 
lowest center-of-mass energy where the created fireball is consist-
ing of matter above the chiral phase transition line. In the future, 
it would be interesting to include viscosity in our model for com-
parison of the various sources of entropy production. Earlier, the 
relative increase in viscous hydrodynamics with various equations 
of state has been estimated at 5 − 20% [48].
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