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SUMMARY
Localized prostate cancer exhibits multiple genomic alterations and heterogeneity at the proteomic
level. Single-cell technologies capture important cell-to-cell variability responsible for heterogeneity in
biomarker expression that may be overlooked when molecular alterations are based on bulk tissue sam-
ples. This study aims to identify prognostic biomarkers and describe the heterogeneity of prostate cancer
and the associated microenvironment by simultaneously quantifying 36 proteins using single-cell mass
cytometry analysis of over 1.6 million cells from 58 men with localized prostate cancer. We perform this
task, using a high-dimensional clustering pipeline named Franken to describe subpopulations of immune,
stromal, and prostate cells, including changes occurring in tumor tissues and high-grade disease that
provide insights into the coordinated progression of prostate cancer. Our results further indicate that
men with localized disease already harbor rare subpopulations that typically occur in castration-resistant
and metastatic disease.
INTRODUCTION

The treatment of localized prostate cancer is based on clinico-

pathological information including Gleason score, prostate-

specific antigen (PSA) levels, stage, and patient age.3 While

the majority of patients with localized disease can be cured,

some men recur with metastatic disease4 because of micro-

scopic spread. The observed heterogeneity of outcomes might

be explained by heterogeneity within tumors,5 which is missed

by the current grading system, and new prognostic biomarkers

are of utmost importance.

Several potential biomarkers including gene fusions, muta-

tions, epigenetic heterogeneity, and proteins have been stud-

ied.6 Technological advances in proteomics now allow both

exploration of the proteome for biomarkers and assessment of

the heterogeneity of biomarker expression. However, analysis

of a whole tissue core misses important cell-to-cell variability.

In this study, we performed mass cytometry analysis of dissoci-

ated single cells from prostatectomies of 58 patients with tumors

at varying grades and UICC (Union Internationale Contre le

Cancer) stages using a set of 36 metal-tagged antibodies that

recognize surface markers, enzymes, transcription factors, and
Cell R
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markers of functional readouts selected to facilitate character-

ization of the phenotypic diversity of prostate tumors and their

microenvironment. The power to comprehensively analyze

heterogeneity of tumors by simultaneously measuring dozens

of markers in hundreds of thousands to millions of cells makes

mass cytometry the ideal tool to characterize single-cell subpop-

ulations present in prostate or other tumors including those rare

populations that cannot be detected with lower parametricity or

lower throughput methods.

Although mass cytometry has single-cell resolution capabil-

ities, there are statistical challenges involved in analyzing such

high-dimensional data. State-of-the-art clustering methods

either underperform in precision and recall or require long run-

times and prohibitive computational resources.2 To address

this issue we developed an unsupervised, single-cell clustering

approach, Franken, combining speed and performance. Use of

Franken to quantify the phenotypic diversity of single cells in

prostate tumor samples identified progression-related single-

cell phenotypes. We detected immune landscape features

unique to patients with high-grade prostate cancer, reflected

by higher frequencies of macrophage and T cell phenotypes

than observed in patients with intermediate grade disease.
eports Medicine 3, 100604, April 19, 2022 ª 2022 The Author(s). 1
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Figure 1. Schematic of method for characterization of primary prostate cancer tissue using mass cytometry

(A) The patient cohort consisted of 58 primary prostate cancer cases. For 16 patients, tumor and adjacent benign prostatic tissue (ABPT) samples were available.

The remaining samples were from randomly selected regions from a prostatectomy without tumor assessment. Samples were analyzed by mass cytometry, and

data were analyzed using Franken.

(B) Markers used to categorize prostate epithelial cells as luminal, basal, or transitional, andmarkers used to identify tumor cells, cells from themicroenvironment,

and functional features, such as proliferation, apoptosis, or hypoxia.
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Further, we observed tumor-specific prostate epithelial pheno-

types, including AR-negative and/or PSA-negative phenotypes

typically associated with resistance to adrogen deprivation ther-

apy (ADT) and castration resistant prostate cancer (CRPC),7–9

and rare CD15+ phenotypes.

RESULTS

Clustering of high-dimensional mass cytometry data
defines molecular profiles of prostate subpopulations
Using mass cytometry, we profiled tumor samples from 58 pros-

tate cancer patients with localized, hormone-naive tumors,

including 24 patients with the International Society of Urological

Pathology (ISUP) grade II (Gleason score 3 + 4), 22 grade III cases

(Gleason score 4 + 3), and 12 patients with grade V prostate

carcinomas (Gleason scores 4 + 5, 5 + 4, or 5 + 5) (Figure 1A).

No tissue was collected from low-grade tumors, and grades II

and III are henceforth referred to as the intermediate-grade group,

and grade V tumors are referred to as the high-grade group. Fresh

tissue samples were collected from 58 prostate cancer patients

after surgical resection of the index tumor lesions (themost exten-

sive with the highest Gleason score). For 17 patients (29%),

paired samples were taken from a macroscopically visible tumor

mass and adjacent benign prostatic tissue (ABPT); remaining

samples are referred to as random prostatic tissue (RPT). The

presence of prostate cancer was confirmed histologically after

examining the opposite side of the specimen, first in the frozen

section and then after paraffin embedding; ABPT specimens
2 Cell Reports Medicine 3, 100604, April 19, 2022
were taken from the contralateral transitional zone of the prostate

and never from the peripheral one, where tumor is more likely to

be located. Single-cell suspensions from all prostate tissue sam-

ples and from 10 cell lines, including prostate cancer, stromal,

and immune cells (key resources table), were barcoded, pooled,

and stained with a 36-antibody prostate cancer-centric panel,

before mass cytometry acquisition. The antibody panel was

designed to quantify markers that identify prostate epithelial

cells, cells of the stroma and immune microenvironment, and

markers of proliferation and survival (Figure 1B). Data for a total

of 1,670,117 live cells were generated.

The high dimensionality of this dataset represented a chal-

lenge for data visualization and clustering. To address this

task, we developed an efficient computational pipeline called

Franken (Figure S1A). The pipeline begins by building a large

self-organizing map10–12 (SOM), which is used to fit all of the

data. The SOM nodes in the original high-dimensional space

are used to build a mutual nearest neighbor graph using the Ta-

nimoto similarity13 (also known as extended Jaccard similarity)

followed by Walktrap graph clustering.1 Although all results pre-

sented in this paper were obtained in an unsupervised manner,

the pipeline offers the option to define the chosen number of

clusters (STAR Methods).

We demonstrated the F1 performance and scalability of

Franken when compared to state-of-the-art methods on

CyTOF data obtained from two independent celullar datasets:

(1) a real-world healthy bone marrow dataset1 and (2) data

from 10 cell lines stained with our prostate-centric antibody
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panel (around 200,000 cells each; Figures S1B–S1E and STAR

Methods). We also showed that our pipeline is robust to its pa-

rameters’ choice and scalable up to dozens of millions of cells

in a synthetic dataset (Figures S1F and S1G andSTARMethods).

Franken could be run on up to 40million cells (whichwas compu-

tationally infeasible for other methods) in the time it would take

Phenograph14 to analyze one million cells. Franken also ran

over 20 times faster than the state-of-the-art single-cell RNA

sequencing clustering technique, Seurat.

Franken’s scalability and ability to resolve rare metaclusters

made it suitable to explore our new prostate cancer patient data-

set containing 1,670,117 cells. Analysis of the prostate cancer

dataset using Franken identified a total of 55 clusters (Figure 2A).

It must be noted that discrete labels do not easily apply to data-

sets with continuous expression such as single-cell data, where

a clear cutoff between cell states does not necessarily exist.

Nonetheless, to obtain clusters that were qualitatively different

in terms of marker combination (which markers were expressed,

instead of how much), Franken clusters were further merged

into 33metaclusters using hierarchical clustering of Pearson cor-

relation dissimilarities with average linkage. Based on marker

expression profiles, we defined 14 epithelial, 16 immune, one

stromal, and one endothelial phenotype (Figure S2A). We also

identified one cluster that was mostly negative for all 36 markers

in the panel (denoted asNE01). Thismay represent a cell type not

characterized by the markers in our panel or simply outliers and

was excluded from further analysis. All metaclusters were anno-

tated using a two-letter and two-digit identifier ranked by

decreasing metacluster size (TC01 > TC02 > TC03 > .) for

each cell category. The total number of cells in a cluster ranged

from a few hundred (437 cells in EP01) to hundreds of thousands

(391,554 in TC01; Figure S2B).

To project the high-dimensional data into a two-dimensional

representation, we used the UMAP (Uniform Manifold Approxi-

mation and Projection) method for dimensionality reduction visu-

alization.15 UMAP showed that our analysis recapitulated the

main cell-type compartments within the prostate (Figure 2B);

also detected were rarer cell states such as apoptotic cells

(TR02, AE01, AI01, MA03, and TC03). Franken was capable of

resolving very rare populations present at frequencies as low

as 1/5,000 (PR-high metacluster EP01; Figure S2C). To ensure

good separability of each class (metacluster) and quality of the

final metaclustering, we trained a logistic regression classifier

with lasso regularization (using 5-fold cross-validation to identify

the regularization parameter l; Figures S2D and S2E). Most

metaclusters could be predicted with higher than 99%accuracy,

and the lowest at 93%. A few metaclusters (TR03, GR03, MA01)
Figure 2. Prostate cancer samples have similar overlapping phenotyp

(A) Heatmap of scaled mean signal of marker expression in 55 Franken cluster

clustering merging (using Pearson correlation dissimilarities) of Franken clusters.

cluster.

(B) UMAP map of 23,200 (400 per patient) cells colored by cellular metacluster a

(C) UMAP map of 23,200 (400 per patient) cells colored by patient.

(D and E) Boxplots of frequencies of the main cell types across all 58 samples fro

ABPT in the proportion of granulocytes (two-sided Wilcoxon signed rank paired

(E) Boxplots of frequencies of the main cell types in samples from all 58 patient

luminal and T cell compartments are significant according to a two-sided Mann-W

and high grade N = 12.
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showed unexpected marker co-expressions (CK19+/CD15+,

CD15+/CD3+, CD68+/CD3+ respectively), and to ensure these

did not result from doublets, DNA was plotted against event

length (Figures S2F and S2H).

All detected clusters contained cells from ABPT and tumor re-

gions (Figure S2I). This suggested that tumor cells were present

within the ABPT tissue and/or that ABPT tissue was present in-

side the tumor mass. This was expected due to the way prostate

tumors infiltrate the prostate as well as intrinsic limitations of the

macroscopic-based sample collection procedure (which could

not ensure the adjacent regions were 100% tumor-free). Alterna-

tively, this could suggest our custom panel missed markers to

allow such distinction.

Luminal cells were the most abundant cell type in the prostate

and corresponded on average (across all 58 patients) to 32%of a

patient’s sample. This is in line with findings from Chen et al.16

who concluded from a scRNA-seq experiment that luminal is

the dominant epithelial type for most prostate tumors. They

also observed that most clusters consisted of cells frommultiple

patients, as was the case in our dataset. T cells were the second

most abundant population (24% on average). When combined,

cells from the immune compartment and other cells of the tumor

microenvironment made up over half the cells (54% on average)

found within samples of this cohort (Figure S2J). Franken clus-

tering identified a range of prostate epithelial phenotypes

including a single basal cell phenotype characterized by CK5

and CK14 expression (BA01), four transitional epithelial pheno-

types expressing a combination of CK7 and CK19 (TR01-04),

and seven epithelial luminal phenotypes (LU01-07) defined by

the expressed CK8, CK18. Cellular metaclusters that contained

a combination of CK7 or CK19 and CK8 or CK18 were annotated

as luminal epithelial cells. Only CK7- and CK19-positive meta-

clusters with very low to no CK8 and CK18 expression were de-

noted as transitional epithelial cells. Luminal epithelial cells also

expressed a combination (or varying expression intensities) of

AR, PSA, prostein, synaptophysin, AMACR, EZH2, PTEN, and

Nkx3.1. These were weakly or not expressed in transitional or

basal cell metaclusters.

In the microenvironment, five different T cell phenotypes were

detected expressing CD3 and CD45, and five macrophage

phenotypes were characterized by CD68 and CD45 expression.

Also detected were three granulocytic (expressing CD24 and/or

CD15), one stromal (characterized by SMA and S100A4), one B

cell (CD20-expressing), and one endothelial (CD31-expressing)

metaclusters. Unlike in previous studies,17 we did not observe

patient-specific batch effects, which could have led to each pa-

tient clustering separately from one another. We found that each
ic profiles

s; numbers are colored according to metaclusters resulting from hierarchical

Bar plot below the heatmap corresponds to the number of cells found in each

s indicated in (A).

m tumor, ABPT, and RPT. Significant changes were seen between tumor and

test, p = 0.008). N = 17.

s in our cohort stratified by intermediate- and high-grade tumors. Changes in

hitney-Wilcoxon test (p = 0.028 and 0.014, respectively). Intermediate N = 46
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metacluster contained a mixture of cells from most patients as

illustrated in the UMAP visualization (Figure 2C).

There was considerable overlap in the single-cell phenotypes

present within paired tumor and ABPT regions (UMAP; Fig-

ure 2D). Samples were stratified according to tumor, ABPT,

and RPT across cell types, and we found significantly lower fre-

quency of granulocytes in tumor regions than in ABPT (Fig-

ure 2D). Visualization of cells from intermediate (ISUP grades II

and III) and high-grade tumors (ISUP grade V) also revealed sig-

nificant overlap (UMAP; Figure 2E) and indicated lower fre-

quencies of luminal cells and higher frequencies of T cells in

samples from patients with high- versus intermediate-grade dis-

ease (Figure 2D).

Immune landscape differs between tumor and benign
adjacent tissue and across prostate cancer ISUP grade
The UMAP visualization of 23,200 cells (400 per patient) revealed

the expression patterns of markers associated with the microen-

vironment (Figures 3A and S2K). We validated both observations

by quantifying T cells (CD3+) and granulocytes (CD15+) in a tissue

microarray (Figure S2J and STAR Methods) that included

formalin-fixed paraffin-embedded tissues from all patients in

the cohort. Confirming the mass cytometry data, we observed

higher densities of T cells in high-grade (Figures 3B and 3C)

than in intermediate prostate tumors and lower densities of

granulocytes in tumor regions than in ABPT regions (Figures

3D and 3E).

We identified multiple subpopulations of some immune cell

types. By focusing on the comparison of each individual meta-

cluster, we found that two T cell clusters were significantly en-

riched in tumor samples (TC03 and TC04, apoptotic T cells

and proliferating T cells, respectively) when compared to the

adjacent ABPT regions (Figure 3F). Notably, proliferating

T cells were also enriched in high-grade tumors and in high-

grade patient samples when tumor and adjacent tissue were

mixed (Figures 3G and S3A), suggesting that this T cell pheno-

type is enriched throughout the prostate of patients with high-

grade disease and not only in the core of the tumor.

The overall frequencies of macrophages were not significantly

different between tumor and tumor-adjacent (ABPT) samples

(Figure 2D). However, two macrophage metaclusters were en-
Figure 3. Stratification of samples reveals prostate tissue changes as

(A) UMAP of 23,200 cells (400 per patient) colored by expression of indicated ma

(B) Representative tissue sample stained for CD3 from a tissue microarray genera

(C) Densities of T cells as determined by CD3 staining (p = 0.042).

(D) Representative tissue sample stained for CD15 from a tissuemicroarray genera

(E) Densities of granulocytes as determined by CD15 staining (p = 0.058). Scale

(F) Proportion of T cell metaclusters in ABPT and tumor samples across patients

respectively). N = 17.

(G) Summary table of clusters that were significant when comparing ABPT and

colored in blue, while those enriched in tumor samples are colored in red. Comp

tumor/ABPT; intermediate N = 46 and high grade N = 12). Metaclusters enriche

relationships are colored, and remaining comparisons are shown in gray.

(H) Proportion of macrophage metaclusters in ABPT and tumor samples across

MA01–05, respectively). N = 17. In panels (F) and (H), dots are colored by disease s

(25th to 75th percentile), the median is shown as the middle band, and the whiske

datum within that distance. Statistical testing between dependent paired tumo

statistical tests (two-sided). Independent intermediate- and high-grade samples

each group is indicated by N.
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riched in tumor samples (MA04 and MA05, proliferating macro-

phages and CD45low macrophages, respectively). These same

metaclusters were further enriched in high-grade patient sam-

ples (Figure S3B). The overall macrophage proportion was lower

in tumor samples than in tumor-adjacent samples, highlighting

the importance of analyzing such a complex dataset at single-

cell resolution to reveal that rare macrophages phenotypes can

change in the opposite trend to the overall macrophage popula-

tion. The majority of macrophages are localized in the prostate

stroma, but their density is greater in tumorigenic regions.18,19

This is a confounding factor when comparing macrophage fre-

quencies across tumor grades, since lower grade tumors have

a greater proportion of stroma than high-grade tumors, resulting

in a higher frequency of stroma-infiltrating macrophages

(Figure 3H).

In summary, our clustering analysis identified changes in the

cellular phenotypes present in the prostate tumor microenviron-

ment compared to adjacent ABPT regions. Distinct macrophage

phenotypes were associated with prostate tumors and with the

stroma rich ABPT regions. Overall, the cell-type compositions

of the tumor microenvironments differed with tumor grade,

except for granulocytes, which were decreased in tumor regions

regardless of grade (Figure S3D). Although the tumor microenvi-

ronment of the intermediate sub-cohort was characterized

mostly by a relative decrease of immune phenotypes compared

with ABPT regions, we found the opposite in the high-grade sub-

cohort where multiple immune phenotypes were enriched,

notably highly proliferative macrophage and T cell phenotypes.

Malignant and benign prostate tissues diverge in rare
phenotypes
Matched tumor and ABPT samples exhibited overall similar sin-

gle-cell phenotypic profiles, and phenotypic profiles were similar

across patients. These similarities were likely due to the pres-

ence of benign tissue in both tumor and ABPT samples, whereas

patient-specific phenotypes are related to heterogeneous, de-

regulated malignant cells.20 We found that every sample from

every patient, including tumor and ABPT samples, contained

basal cells (BA01) aswell as CK7+/CK19+ live and apoptotic tran-

sitional epithelial cells (TR01 and TR02, respectively). All patient

samples also contained a variety of luminal epithelial cells
sociated with tumor and advanced disease

rker.

ted from prostate samples from the same cohort analyzed by mass cytometry.

ted from prostate samples from the same cohort analyzed bymass cytometry.

bar, 50 mm.

with paired samples (p = 0.066, 0.169, 0.023, 0.002, and 0.332 for TC01–05,

tumor samples (N = 17 for both groups). Metaclusters enriched in ABPT are

arison between intermediate- and high-grade patient samples (for combined

d in patients with high-grade disease are colored in dark red. Only significant

patients with paired samples (p = 0.095, 0.169, 0.515, 0.0004, and 0.014 for

everity (intermediate versus high grade). In all boxplots, boxes illustrate the IQR

rs extend to 1.5 times the IQR from the top (or bottom) of the box to the furthest

r and ABPT samples was done using a Wilcoxon signed rank paired-sample

were tested using a two-sided Wilcoxon rank-sum test. Number of patients in
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Figure 4. Characterization of epithelial tumor clusters and patient groups

(A) Bar indicating which metaclusters were significantly enriched between three pairs of conditions: (top bar) high- and intermediate-grade samples, irrespective

of tumor status; (middle bar) tumor versus ABPT; (bottom bar) intermediate- and high-grade tumor regions only. All significant nominal p values are indicated

given their level of significance for the figure, and those still significant after Bonferroni correction are indicated by a dark black outline. p values for all tested

hypotheses are given in Table S1.

(legend continued on next page)
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(LU01–LU07) containing varying combinations of luminal

markers CK8/18, AR, PSA, prostein, Nkx3.1, and in some cases

the co-expression of CK19 and CK7 (LU02 and LU04, respec-

tively). However, cell types co-expressing both CK7 and CK19

expressed little to no CK8/18 (TR01-04). Stem cell marker

CD24 and neuroendocrine marker synaptophysin showed high-

est expression in luminal epithelial cells. We carried out statisti-

cal comparisons for epithelial metaclusters and summarized the

significant relative enrichment results across all metaclusters

(Figures 4A, S3, and Table S1) for comparisons between patient

grade groups (top row; NI = 46, NH = 12), tumor and ABPT (mid-

dle row; NI,H = 17), and high- versus intermediate-grade tumor

regions only (bottom row; NI = 10, NH = 7). We identified the

enrichment of apoptotic epithelial cells in tumor versus ABPT re-

gions, which was irrespective of tumor grade (Figures 4A, S3E,

and S3F). We also found that luminal metaclusters were typically

enriched in ABPT regions and/or in intermediate-stage patient

samples. In particular, prostein-high and AR-low metaclusters

(LU03 and LU05; p values = 0.0001 and 0.026 respectively)

were depleted in tumors versus ABPT samples (Figures 4A,

S3G, and S3H). The depletion of prostein-high phenotypes

was even more pronounced in high-grade compared to interme-

diate tumors (Figure 4A; bottom row). It is possible that during

tumor progression, regulation of differentiation programs is

lost, and PSAs are no longer expressed, supporting the hypoth-

esis that aggressive tumor cells are de-differentiated. A rare

SMA-positive luminal cell type (LU06; p value = 0.012) was char-

acteristic of patients with intermediate disease, irrespective of

tumor or ABPT region, although this was strongly influenced by

the contribution of one specific patient to this cell type. The

only luminal metacluster enriched in high-grade patients was a

rare PSA-low, CD15+, CD24+ (an adhesion protein previously

identified as a cancer stem cell marker21), and AR-high cell

type (LU07; p value = 0.028; Figures 4A and S3H). Two additional

CD15+ cell populations were identified, TR03 and TR04, among

transitional epithelial metaclusters. Both were increased in

tumor and high-grade patient samples, though significant

enrichment could only be detected in TR03 (p value = 0.003),

which co-expressed CK19 and CK7 (Figures 4A and S3J), while

TR04 may be a more common precursor with lower cytokeratin

expression. TR03 and TR04 also expressed a low amount of

basal markers CK5/14.

When interpreting changes in tumor and ABPT (Figure 4A,

middle bar) in combination with tumor-only changes across

grades (Figure 4A, bottom bar), we found that in somemetaclus-

ters (LU03, MA04, TC04) the effect between tumor and ABPT

was stronger than the effect between patient grades. The deple-
(B) Pairwise Tanimoto similarity of intermediate- (I) and high-grade (H) tumor (T

ronment and epithelium. Color intensity and the size of the circle are proportiona

(C) Correlation of metaclusters across 17 tumor patient samples. Correlations in th

the correlation plot, while correlations that were gained are indicated by a G. On

spurious correlations. Metacluster labels are colored to reflect cell types as in Fi

(D) UMAP projections of 23,200 cells (400 cells per patient) colored by expressio

shown in gray.

(E) CD15 and p63 co-stained showing CD15 expression in epithelial cells from pat

CD15 in normal glands (right) showing basal cell layer expressing p63. Scale, 25

(F) Number of patients with cells belonging to a specific metacluster. Colors and

(G) Grouped patient samples represented by proportion of metaclusters. Colors
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tion of LU03 and enrichment of MA04 and TC04 in tumors was

observed across high- and intermediate-grade patients, but an

effect could still be observed between the different grade

groups. In other cases (AE01, GR01, GR02, and TC03), no effect

could be detected between grades, only between tumor and

ABPT samples, suggesting that enrichment (AE01 and TC03;

p values = 0.003 and 0.022) or depletion (GR01 and GR02;

p values = 0.044 and 0.0004) of these cellular phenotypes hap-

pens in tumors of patients irrespective of grade. Lastly, there

were metaclusters that changed less significantly between tu-

mor and ABPT (LU05, TR03, and MA05; p values = 0.025,

0.096, and 0.014) and more across grades (p values = 0.004,

0.026, and 0.0007). This suggests that although there may

have been a difference between tumor and ABPT regions, a dif-

ference also existed between the tumor regions of intermediate-

and high-grade tumors. These cellular phenotypes suggest a

possible progressive change in the prostate, where some meta-

clusters are lowest in ABPT, higher in intermediate-grade tu-

mors, and even higher in high-grade tumors (or the reverse

with highest expression in ABPT and progressive loss in interme-

diate-, then high-grade tumors). We were also interested in

integrating information across all cellular phenotypes in the

epithelium and in the microenvironment (Figure 4B). We took

the mean metacluster proportion across all 17 patients for which

we had tumor and ABPT (tumor adjacent) samples. We calcu-

lated the Tanimoto similarity between intermediate-grade tu-

mor-adjacent regions (ITAs), intermediate-grade tumors (ITs),

high-grade tumor-adjacent regions (HTAs), and high-grade

tumors (HTs). We found that in the epithelium, tumor-adjacent

regions in intermediate and high-grade are most similar to one

another, while ITs and HTs bear more similarity to each other

than to their benign adjacent regions. However, in the microen-

vironment, HTAs are more similar to ITs than to their paired

HTs, suggesting that HTs may have progressed from ITs, but

with further changes in epithelial cellular phenotypes, while the

tumor-adjacent microenvironment remains similar to that of an

IT (Figure 4B).

Next, we analyzed correlations betweenmetaclusters in tumor

samples across the 17 patients for which we had paired tumor

and ABPT samples (Figure 4C). We restricted the analysis to

Spearman correlations with a significance level <0.05 for both

correlations across tumor and ABPT samples. We compared

correlations in the tumor to those in the paired adjacent benign

tissue and found that while some correlations were lost in tumor

(indicated by an L in the correlation plot; Figure 4C), others were

gained (indicated by a G; Figure 4C). For example, luminal

epithelial cell types LU03 and LU05 were uncorrelated in benign
) and benign tumor-adjacent (TA) samples for metaclusters in the microenvi-

l to the Tanimoto similarity.

e paired adjacent benign tissue that were lost in tumor are indicated by an L in

ly Spearman correlations with a significance level <0.05 are shown to exclude

gure 2A.

n of indicated epithelial and prostate-specific markers. Maximum signal (=1) is

ients with acinar (left) and with ductal (middle) carcinoma as well as absence of

mm.

labels matched to panels (A) and (C).

in bar plot reflect those on panels (A) and (C).
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tissue but correlated in tumors. Indeed, we had found that both

of these prostein-high metaclusters were depleted in tumors,

and we found their decrease was correlated with one another.

We found that while transitional epithelial metaclusters TR01

and TR02 (CK7+/CK19+ cells and CK7+/CK19+ apoptotic cells,

respectively) were correlated in both tumor and adjacent benign

prostate tissue, the strong correlation between TR03 and TR04

(CD15+/CK7+/CK19+ and CD15+/CK-low cells respectively)

was only present in tumor regions. New correlations also ap-

peared between cell types of the microenvironment. For

example, GR02 and GR03 (CD15-low and CD3+ granulocytes,

respectively) were newly correlated in tumor regions. We also

observed that most T cell types became correlated in tumors,

although they were uncorrelated in adjacent benign tissue.

Anti-correlations were also gained. Notably, MA04, MA05 (prolif-

erating and CD45-low macrophages), and TC04 (proliferating

T cells) became anti-correlated with LU03 in tumor. This result

suggests that the increase of thesemacrophage and T cell meta-

clusters may be related to the depletion of this, likely benign,

prostein-high luminal cell type.

While many new correlations and anti-correlations were

gained in tumor regions, we also found that previously (anti-)

correlated cell types in benign tissue became uncorrelated in tu-

mor samples. Mostmacrophagemetaclusters were correlated in

benign tumor-adjacent samples but no longer in tumor. Basal

cells were correlated with TR03, but this was not the case in tu-

mor samples anymore, likely due to the de-regulated, malignant

expansion of these transitional epithelial cells. Apoptotic epithe-

lial cells (AE01) were correlated with transitional metaclusters

TR01, TR02, and TR04 in tumor-adjacent regions, but these cor-

relations were lost in tumors. The main transitional epithelial

metacluster TR01 used to be anti-correlated with various, likely

benign, luminal cell types (LU01, LU03, LU05). It is believed

that these transitional cells may originate from basal cells and

are precursors of luminal cells, and therefore a balance between

the population of CK7+/CK19+ cells and CK8/18 exists in a

healthy scenario. However, our results support that this balance

is disrupted in tumor regions.

The expression of CD15 in various malignant prostate epithe-

lial cell populations (LU07, TR03, and TR04) was surprising,

although high-dimensional mapping usingUMAPhad already re-

vealed CD15-high expressing cells in regions of epithelial marker

expression such as E-cadherin and EpCAM, luminal markers

CK8 and CK18, and transitional epithelial markers CK7 and

CK19 (Figures 3A and 4D). Immunohistochemistry confirmed

the presence of CD15 in both ductal and acinar carcinoma of

the prostate frompatients whowere shown to have this rare pop-

ulation by mass cytometry (one representative acinar and one

ductal patient sample are shown in Figure 4E). This adhesion

molecule is typically used as a granulocyte marker and plays

important roles in cell adhesion22 and migration.23 Although pre-

viously observed in other carcinomas24–26 and demonstrated to

be a marker of propagating tumor cells,27 cells expressing CD15

had not been previously detected in prostate tumors. To assess

the clinical relevance of this CD15+/CK19+ subpopulation (meta-

cluster TR03), we analyzed two other TMA cohorts with 374 pa-

tients (example core shown in Figure S4B) with localized disease

(336) and metastatic disease (38) and found that the proportion
of patients with CD15-positive cells increased with disease

severity (low, intermediate, and high ISUP grades) and was high-

est among metastatic cases (Figure S4C). Survival analysis did

not yield any differences for this cohort, but the number of

CD15+/CK19+ cases was very low. Only 5% positive cases

were detected (19 patients out of 374, for which survival data

were only available for 11), while via CyTOF most patients con-

tained this cellular phenotype and 12% (7 out of 58) showed

an enrichment. However, even in enriched cases, TR03 repre-

sented on average 0.6%–1.1% of cells in a patient, and overall,

across all patients, this cellular phenotype represented on

average 0.3% of cells, making it difficult to identify a lot of pos-

itive cases in a TMA spot with diameter 0.06 mm; here the

number of cells is substantially lower than can be detected via

high-throughput mass cytometry. It is very likely many CD15-

positive patients were missed in the TMA analysis, which

impaired survival analysis.

Overall, 0.1%, 0.3%, and 0.1% cells were found across the

whole dataset from LU07, TR03, and TR04, respectively. Addi-

tionally, these rare CD15-expressing metaclusters were among

the 14 observed in a subset of the patient cohort (Figure 4F).

The remaining majority of metaclusters (29) were represented

across all patients. In conclusion, our methodology identified a

prostate tumor subpopulation, which may also characterize a

distinct patient subtype.

Although elevated PSA levels are typically associated with

localized prostate cancer, luminal and transitional phenotypes

found enriched in tumor or high-grade samples had very little

or no PSA expression (AE01, TR03, and LU07). Prostate cancer

cells that express low levels or no PSA may be a self-renewing,

tumor-propagating cell population that resists ADT.8 Similarly,

not all phenotypes increased in tumor regions were high in AR.

While AR overexpression is associated with advanced disease

and was found in one of the metaclusters enriched in HTs

(LU07), an AR-low phenotype was also enriched in high-grade

samples (TR03). Loss of AR has been associated with resistance

to ADT,9 and our results support that malignant phenotypes are

not necessarily high in AR. We also found that AR-low metaclus-

ters could be distinguished between benign and malignant by

the presence of prostein and PSA. AR-low phenotypes that

were PSA- and prostein-high were benign (LU03 and LU05),

while malignant TR03, which was low in AR, was also low in

PSA and prostein.

Rare cellular phenotypes define patient subgroups
After having described the different cellular phenotypes present

in prostate tumors, we wondered whether certain metaclusters

(or combinations) could characterize patient groups. We clus-

tered patients according tometacluster proportions using hierar-

chical clustering with Pearson correlation dissimilarity. We found

many small groups across our 58 patient cohort, and some could

be characterized by the enrichment or depletion of a handful of

phenotypes (Figure 4G). After statistical testing, we were able

to define which cell types significantly defined a patient group

(Figures 4G and S4D). Notably, patient group 1 consisted of pa-

tients with enrichment of transitional epithelial cells expressing

CD15 (TR03 and TR04). The former, as had already been

observed in our study, was enriched in HTs. Patient group 2
Cell Reports Medicine 3, 100604, April 19, 2022 9
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showed significant enrichment of prostein-high phenotype

LU05. Group 3 consisted of patients with the highest proportion

of apoptotic epithelial cells (AE01), previously associated with

malignant tissue. One patient was characteristically different

from all others due to the highest enrichment of SMA, metaclus-

ter LU06, and clustered separately from the rest constituting

group 5. A high proportion of LU07 (CD15+, AR-high luminal

cells), which we had already shown as enriched in HTs (Fig-

ure 4A), was characteristic of patient group 8. LU04, a CK7+/

CK8/18 luminal cell type, was enriched in patients in group 9,

although it is not clear the role of this metacluster as it was

not enriched/depleted in tumors nor did it differ according to tu-

mor grade. Group 10 was marked by the enrichment of prolifer-

ating macrophages (MA04) as well as CD45low macrophages

(MA05), which were increased in tumor regions compared to

adjacent benign tissue and in the case ofMA05were even further

enriched in the tumor regions of patients with high-grade dis-

ease. These two populations may be related to each other as

they strongly correlated both in a tumor and benign tissue sam-

ples (Figure 4C). Patient groups 11, 12, and 13 consisted of pa-

tients with a rather mixed cell type composition, or very few pa-

tients and very weak enrichment or depletion of markers; it is not

clear whether these consist of cohesive patient groups.

The long-term effect that these phenotypes may have on sur-

vival remains to be determined. We showed that few single-cell

phenotypes can further stratify patients beyond their ISUP grade

and may represent treatment targets for personalized treatment.

DISCUSSION

Weperformed single-cell analysis of 1,670,117 cells from58pros-

tate cancer patients by mass cytometry using a newly developed

computational pipeline that provides a combination of high-

dimensional clustering performance and speed. Of note is the

fact that most prostate cancer patients differed mainly in rare

cell types. Based on our results, we hypothesize that cellular phe-

notypes associated with resistance to hormone ablation therapy

are also found in treatment-naive prostate cancer patients. This

is consistent with the big bang theory as has been shown by Sot-

toriva et al. in colorectal cancer. In addition,we found alterations in

the microenvironment, namely T cells and proliferating macro-

phages, which were associated with aggressive disease.28 Of

note, we identified a rare CD15+ epithelial phenotype that was

increased in a subset of patients with high-grade prostate cancer.

In this study, we have described 33 prostate cellular pheno-

types including 14 epithelial and 18 cell types from the microen-

vironment. Tumors and surrounding ABPT had considerable

similarity: 9 of the 33 metaclusters (27%) were present at signif-

icantly different frequencies between the two regions. Although

this was much higher than would be expected at random for a

confidence level of 5% (1.65 out of 33), almost two-thirds of

cell types and states detected (24 out of 33) were shared at

similar proportions in tumor and ABPT tissue. Most epithelial dif-

ferences between tumor and ABPT and tumor grades involved

luminal cell types with the exception of one important transitional

epithelial phenotype (the CD15-high metacluster TR03), sug-

gesting that prostate tumorigenesis is strongly affected by an

interplay of luminal phenotypes. A scRNA-seq study earlier this
10 Cell Reports Medicine 3, 100604, April 19, 2022
year by Chen et al.16 noted that a transitional epithelial cells

signature is associated with better survival, when this signature

was applied to TCGA data. This is in line with our findings if

considering the most abundant transitional epithelial cell sub-

populations (TR01 and TR02), but their conclusion, due to the

comparatively lower throughput (36,424 cells across 12 pa-

tients), overlooks rare subpopulations.

Prostein-high phenotypes were depleted in tumor regions and

even more so in HTs; this suggests that during tumorigenesis

there is selection for poorly differentiated prostate cell types. Tu-

mor-enriched phenotypes all contained EpCAM. High levels of

EpCAM expression at both mRNA and protein levels were previ-

ously reported in prostate cancer tissues and cell lines.29,30 Our

analysis showed that both AR-high/PSA-low (LU07) and AR-low/

PSA-low (TR03) cells were present in localized, hormone-naive

prostate tumors even though such phenotypes had previously

been associated only with castration-resistant disease after

ADT or metastatic disease.7–9 Cells in the AR-high/PSA-low

cluster also overexpressed Nkx3.1. Loss of prostein15 and PSA

expression,31 Nkx3.1 overexpression,32 and AR overexpression

or amplification33–35 have been shown to be common in castra-

tion-resistant disease states. Furthermore, men with localized

high-grade prostate cancer but low PSA show inferior cancer

survival.36 It remains to be determined whether these rare cells

with the properties of tumors resistant to ADT are capable of

dissemination and are responsible for disease progression after

prostatectomy. Surprisingly, two phenotypes enriched in high-

grade patients expressed CD15. After analyzing an additional

374 patients’ TMA samples, we also found that CD15+/CK19+

prostate epithelial cells were further enriched in metastatic dis-

ease. CD15 plays an important role in cell adhesion and migra-

tion,22,23 and CD15-expressing cells have been identified in

other tumor types as having stem-like potential but not yet in

prostate cancer24–26 and might represent a biomarker for

aggressive phenotypes with a higher metastatic potential.

The tumor microenvironments were similar in both tumor and

the neighboring ABPT regions for patients of different tumor

grades with the exception of granulocytes, which were present

at lower levels in tumors regardless of grade. Other rarer immune

cell types changed both between tumor and ABPT regions as

well as across tumor grades. In particular, we observed that

one proliferating T cell (TC04) and two macrophage (proliferating

MA04 and CD45-low MA05) phenotypes were enriched in tumor

regions and were further enriched in HTs.

The microenvironments of tumors from the intermediate sub-

cohort had lower frequencies of immune phenotypes compared

to the ABPT regions, but we found the opposite in the high-grade

sub-cohort. In HTs, there was an enrichment of multiple immune

phenotypes compared to the ABPT regions. It is currently un-

clear whether ITs progress to high-grade disease. If such a pro-

gression happens, our analysis suggests that the hyperplasia

and expansion of the epithelial compartment might precede al-

terations in the tumor microenvironment, or it may be that these

differences are reflective of disease stage. We proceeded to

analyze the overall changes in the microenvironment and epithe-

lium by integrating information across all metaclusters in these

two compartments and estimating the Tanimoto similarity be-

tween HTs and ITs as well as high-grade and intermediate-grade
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tumor-adjacent ABPT regions (HTA and ITA, respectively). We

found further evidence of a possible progression from

intermediate to HTs suggested by the similarity of the microenvi-

ronments of ITs and high-grade ABPT regions. Some of the rare

cell types in the microenvironment, which we found to be en-

riched in tumors from both grade groups and further enriched

in high-grade patients, may represent putative targets that can

be used to prevent the progression of the disease.

Tumorsdonot grow in isolation; cancerous cells require support

from the microenvironment. Accessory cells have been success-

fully targetedwith therapy.37–39We found thatmost immunemeta-

clusters were present at similar frequencies or were decreased in

the tumor compared to theadjacentABPT regionswith thenotable

exceptions of rare T cell and macrophages cellular phenotypes.

Both monocyte infiltration and macrophage proliferation are

necessary for macrophage maintenance during tumor growth,40

and in breast cancer, proliferating macrophages are associated

with high tumor grade, hormone receptor negativity, andpoor clin-

ical outcome.41 However, macrophage counting based on immu-

nohistochemical analysis had not led to any consensus on the

prognostic significance of tumor-associated macrophages in

prostate cancer.18,42 In our prostate cancer cohort, certainmacro-

phagephenotypes (MA04andMA05)wereenriched inprostate tu-

morsandevenmoreso inhigh-gradepatients. Taken togetherwith

findings that tumor-associated macrophages (TAMs) are capable

of proliferation,41 our data suggest that in addition to therapy that

inhibits differentiation of TAMs fromcirculatingmonocytes, block-

ing the proliferation of macrophages may represent an additional

therapeutic avenue to pursue in order to slow the development

of high-grade disease in prostate cancer patients. Our clustering

analysis identified that not all macrophage phenotypes changed

frequency in tumor compared to ABPT regions. This suggests

thepresenceofseparatecancer- versusstroma-infiltratingmacro-

phage phenotypes that may have opposing influences on tumori-

genesis,18,20 highlighting the importance of investigating macro-

phage infiltration in prostate cancer.

In summary, new biomarkers are needed to identify which men

qualify for active surveillance or need aggressive treatment. Un-

derstanding the cellular complexity of prostate tumors and their

microenvironments is key to the development of new diagnostic

and treatment strategies. Here, we provide a description of pros-

tate tissueheterogeneityat thesingle-cell level anddescribediffer-

ences between tumors and the neighboring benign regions aswell

as across tumor grades. We identify two CD15-high phenotypes

enriched in high-gradepatients aswell as changes to themicroen-

vironment in rare macrophage and T cell phenotypes associated

with tumor regions and high-grade disease. We also identify in

men with localized disease, epithelial subpopulations associated

with advanced castration-resistant disease. The alterations to

the epithelium and microenvironment should be further explored

to guide development of newdiagnostic and treatment paradigms

forprostatecancerand tounderstandwhichcellularphenotypes in

primary prostate cancer need to be detected and may change

treatment decisions.

Limitations of the study
Our study provides the largest scale analysis of prostate cancer

at the single-cell proteomics level. While it provides evidence
that rare cellular types associated with advanced, hormone-re-

fractory disease pre-exist in hormone-naive patients, it has its

limitations; Our patient cohort did not allow for a survival analysis

as patients with localized disease have an expected survival of

5–10 years. Additionally, we found that tumor and non-tumor re-

gions differed in rare cell types. This made it difficult to employ

bulk RNA sequencing in survival analysis as well. Furthermore,

we discovered a rare proliferating macrophage and T cell sub-

populations as well as a rare CD15+ cell type that is enriched

in tumor and advanced disease, but further work is needed to

investigate the role played by these cell types in the context of

prostate tumorigenesis.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-human-AMACR2 (13H4) Thermo Fischer Cat# MA5-14576, RRID:AB_10985819

anti-human-Androgen Receptor AR (D6F11) Cell Signaling Technologies Cat# 5153; RRID:AB_10692774

anti-human-Carbonic Anhydrase IX

(polyclonal_CA9_AF2188)

R&D Systems Cat# AF2188; RRID:AB_416562

anti-human-CD15 (HI98) Biolegend Cat# 301902; RRID:AB_314194

anti-human-CD20 (H1(FB1)) Becton Dickinson Cat# 555677; RRID:AB_396030

anti-human-CD24 (ML5) Becton Dickinson Cat# 555426; RRID:AB_395820

anti-human-CD3 (UCHT1) E-Biosciences Cat# 300402; RRID:AB_314056

anti-human-CD31 (HC1/6) Millipore Cat# CBL468-K; RRID:AB_1586934

anti-human-CD326 (EpCAM) (9C4) Biolegend Cat# 324202; RRID:AB_756076

anti-human-CD44 (IM7) Biolegend Cat# 550538; RRID:AB_393732

anti-human-CD45 (HI30) Biolegend Cat# 304002; RRID:AB_314390

anti-human-CD68 (KP1) E-Biosciences Cat# 333802; RRID:AB_1089058

anti-human-Cleaved Caspase3 (C92-605) Becton Dickinson Cat# 559565; RRID:AB_397274

anti-human-cleaved PARP (F21-852) Becton Dickinson Cat# 552596; RRID:AB_394437

anti-human-Cytokeratin 19 (Troma-III) Dev Studies Hybridoma Bank Cat# MABT913

RRID: AB_2133570

anti-human-Cytokeratin 5 (EP1601Y) Abcam Cat# ab52635; RRID:AB_869890

anti-human-Cytokeratin 7 (RCK105) Becton Dickinson Cat# 550507; RRID:AB_2134456

anti-human-Cytokeratin 8/18 (C51) Cell Signaling Technologies Cat# 4546; RRID:AB_2134843

anti-human-E-Cadherin (24E10) Cell Signaling Technologies Cat# 3195; RRID:AB_10694492

anti-human-ERG (EPR3864(2)) Abcam Cat# ab174739, RRID:AB_2905642

anti-human-EZH2 (SP129) Spring Bioscience Cat# 5246; RRID:AB_10694683

anti-human-fap (polyclonal_FAP) R&D Systems Cat# AF3715; RRID:AB_2102369

anti-human-FSP1 / S100A4 (NJ-4F3-D1) Biolegend Cat# 370002

RRID: AB_2566630

anti-human-Glucocorticoid Receptor (D6H2L) Cell Signaling Technologies Cat# 12041, RRID:AB_2631286

anti-human-H3K27me3 (C36B11) Cell Signaling Technologies Cat# 9733; RRID:AB_2616029

anti-human-Histone H3 (HTA28) Biolegend Cat# 641002, RRID:AB_1227659

anti-human-Keratin 14 (KRT14)

(polyclonal_PA5-16722)

Thermo Fischer Cat# PA5-99310, RRID:AB_2818243

anti-human-Keratin Epithelial (AE3) EMD Millipore Cat# MAB1611, RRID:AB_2134409

anti-human-Ki-67 (B56) Becton Dickinson Cat# 550609, RRID:AB_393778

anti-human-NKX3.1 (EPR14970) Abcam Cat# ab186413, RRID:AB_2905641

anti-human-p53 (EPR17343) Abcam Cat# ab179477; RRID:AB_2737134

anti-human-pan Cytokeratin (AE1) Millipore Cat# MAB1612; RRID:AB_2132794

anti-human-Progesterone Receptor (YR85) Abcam Cat# ab32085; RRID:AB_777452

anti-human-Progesterone Receptor A/B (PR-2C5) Thermo Fisher Cat# 18-0172, RRID:AB_86695

anti-human-Prostein (E-5) Santa Cruz Cat# sc-390873, RRID:AB_2905640

anti-human-PSA (D6B1) Cell Signaling Technologies Cat# 5365, RRID:AB_2797609

anti-human-PSMA (YPSMA-1) Abcam Cat# ab19071, RRID:AB_444751

anti-human-PTEN (138G6) Cell Signaling Technologies Cat# 9559; RRID:AB_390810

anti-human-SMA (1A4) Abcam Cat# ab8207; RRID:AB_306356

anti-human-Synaptophysin (YE269) Abcam Cat# ab187259, RRID:AB_2905639

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

anti-human-Vimentin (EPR3776) Abcam Cat# ab92547; RRID:AB_10562134

Biological samples

Prostate Cancer tumor tissue samples University Hospital Zurich N/A

PBMC Blutspende Z€urich N/A

Fibroblasts, foreskin gift from the laboratory of

Dr. Robert A. Weinberg at

the Massachusetts Institute

of Technology

N/A

Chemicals, peptides, and recombinant proteins

Antibody Stabilizer PBS Candor Bioscience Cat# 131 050

Bis(2,20-bipyridine)-40-methyl-4-carboxybipyridine-

ruthenium-N-succidimyl ester-bis(hexafluorophosphate)

(96Ru, 98-102Ru, 104Ru)

Sigma Aldrich Cat# 96631

Bismuth trichloride (209Bi) Sigma Aldrich Cat# 450723

maleimidomono-amido-DOTA (mDOTA) Macrocyclics Cat# B272

Cell-ID Intercalator-Ir Fluidigm Cat# 201192B

DMSO Sigma Aldrich Cat# D2438

EDTA StemCell Technologies, Inc. Cat# EDS-100G

EQ Four Element Calibration Beads Fluidigm Cat# 201078

FcR Blocking Reagent, human Miltenyi Biotec Cat# 130-059-901

Indium (113In, 115In) Fluidigm N/A

Isothiocyanobenzyl-EDTA Dojindo Laboratories M030-10

Lanthanide (III) metal isotopes as chloride salts Fluidigm N/A

Paraformaldehyde, 16 % w/v Electron Microscopy Sciences Cat# 15710

Saponin Sigma Aldrich Cat# S7900

Yttrium (89Y) Sigma Aldrich N/A

RPMI 1640 Medium Thermo Fisher Cat# 21875-034

Tumor Dissociation Kit, human Miltenyi Biotec Cat #130-095-929

heat-inactivated FBS Thermo Fisher Cat #10500064

Cis-Diamminplatinum (II) Dichloride TCI Cat# D3371

Maxpar X8 Multimetal Labeling Kit Fluidigm Cat# 201300

Deposited data

Mass cytometry data Mendeley https://doi.org/10.17632/5k5xfj

626k.1

Experimental model: Cell lines

VCaP ATCC Cat# CRL-2876

PC-3 ATCC Cat# CRL-1435

LNCaP ATCC Cat# CRL-1740

Du145 ATCC Cat# HTB-81

22Rv1 ATCC Cat# CRL-2505

T47D ATCC Cat# HTB-133

MDA-MB-231 ATCC Cat# HTB-26

HMLE gift from the laboratory of

Dr. Robert A. Weinberg at

the Massachusetts Institute

of Technology

N/A

Software and algorithms

Franken algorithms Zenodo/Github https://zenodo.org/badge/latestdoi/340344455

Cytobank Kotecha et al., 2010 https://www.cytobank.org/

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

CATALYST Chevrier et al., 2018 http://bioconductor.org/packages/release/

bioc/html/CATALYST.html

R Version 3.4.1 R Core Team (2021). R:

A language and environment

for statistical computing.

R Foundation for Statistical

Computing, Vienna, Austria.

https://www.r-project.org/

MATLAB MATLAB, 2018 (R2018b),

Natick, Massachusetts:

The MathWorks Inc.

https://www.mathworks.com/products/

matlab.html

UMAP 0.2.7 McInnes et al.,2018 https://cran.r-project.org/web/packages/

umap/index.html

Seurat 3 Butler et al., 2019 https://satijalab.org/seurat/

FlowSOM v1.22.0 Van Gassen et al., 2015 https://bioconductor.org/packages/

FlowSOM/

Phenograph/CYT3 Levine et al., 2015 https://github.com/dpeerlab/cyt3
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Peter J.

Wild (peter.wild@kgu.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The single-cell data supporting the findings of this study including raw.fcs files from primary samples and cell lines have been

deposited at Mendeley and are publicly available as of the date of publication. Accession numbers are listed in the key re-

sources table.

d The published bone marrow CyTOF data used in the clustering methods benchmarking (Figure S1) is from Bendall et al.1 and

publicly available at http://cytobank.org/nolanlab/reports. Pre-processin is detailed in Weber et al.2 Comparison of clustering

methods for high-dimensional single-cell flow and mass cytometry data. Cytometry Part A, 89(12):1084-1096.

d Code for above mentioned data pre-processing pipeline (from Weber et al.) can be found at: https://github.com/lmweber/

cytometry-clustering-comparison

d The Franken package and related all code is available at Github and is publicly available as of the date of publication with cor-

responding Zenodo DOI provided in key resources table.

d Any additional information required to reanalyze the data reported in this work paper is available from the Lead Contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient samples
The Ethics Committee of the Canton of Zurich approved all procedures involving human prostate material (KEK-ZH-No. 2008-0040).

All patients were part of the Zurich Prostate Cancer Outcomes Cohort (ProCOC) study,43,44 and each patient signed an informed con-

sent form. Prostatectomy samples were taken from 58 prostate cancer patients from the ProCOC cohort between 2015 and 2017.

Tumors were of a range of ISUP grades. No clinical or histological status was used in the selection of the cohort. Staging and grading

was performed usingWorld Health Organization and ISUP criteria45). Twenty-four patients had ISUP grade II (Gleason score 3 + 4), 22

had ISUP grade III (Gleason score 4 + 3), and 12 had ISUP grade V prostate carcinoma (Gleason scores 4 + 5, 5 + 4, and 5 + 5).

Cell lines
Human epithelial cell lines were purchased from the American Type Culture Collection (ATCC) and were propagated and maintained

according to the supplier’s instructions. Cell lines included PC-3, VCaP, Du145, LNCaP, 22Rv1, and T47D. HMLEwere a gift from the

laboratory of Dr. Robert A. Weinberg at the Massachusetts Institute of Technology and were cultured with the MEGM bullet kit
e3 Cell Reports Medicine 3, 100604, April 19, 2022
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(Lonza). Fibroblasts were a gift from the laboratory of Prof. Silvio Hemmi at the University of Zurich and were cultured in DMEMme-

dium (Sigma Aldrich) supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, and 10% fetal bovine serum (FBS).

Peripheral blood mononuclear cells (PBMCs) from healthy donors were obtained from the Zurich Blood transfusion Service and

were isolated by histopaque (Sigma Aldrich) density gradient centrifugation.

METHOD DETAILS

Sample collection and microarray construction
Immediately after surgery, native radical prostatectomy specimens were transferred to the frozen section lab on ice (4�C) and were

processed within 15 min in the Department of Pathology and Molecular Pathology, University Hospital Zurich. The first slice after

dissection of the apex was quartered and snap frozen in four separate blocks for biobanking within the ProCOC study. Fresh tu-

mor and ABPT tissue were taken from the second slice after dissection of the apex without destruction of surgical margins and the

pseudocapsule. After formalin fixation overnight, the rest of the specimen was embedded in paraffin. Hematoxylin and eosin-

stained sections of the four frozen blocks were sliced for immediate evaluation regarding tumor load and margins in synopsis

with the standard formalin-fixed paraffin-embedded histology to control for the representativeness of tissue sampling for mass

cytometry.

Following evaluation of tissue sections by uropathologists (NJR, JHR, PJW) a tissue microarray (TMA) containing two ABPT and

two tumor regions from all patients in the selected cohort was generated as previously described.46 For TMA construction, represen-

tative tumor areas of the second and third slice of radical prostatectomy specimens were chosen, as close as possible to the area of

tissue sampling for mass cytometry. Figure S5 shows H&E images of the selected regions.

Fresh tissue preparation
After surgical resection and based on the aforementioned real-time frozen sections, the index tumor lesions (the most extensive with

the highest Gleason score) were immediately harvested and transferred to precooled MACS tissue storage solution (Miltenyi Biotec)

and shipped at 4�C. To better select the index lesion, only cases in which a tumor nodule was also macroscopically visible were

selected, ultimately resulting in a cohort with higher ISUP grades. Only tumors that had a tumor cell content of at least 80% after

histological evaluation of the fresh frozen sample were selected, and a representative piece of tissue (at least 4 3 4 3 1 mm) was

excised with a normal blade. Tissue processing was completed within 24 h of collection.

For the dissociation of tissues to single cells, the tissue was minced using surgical scalpels and further disintegrated using the

Tumor Dissociation Kit, human (Miltenyi Biotech) and the gentleMACSDissociator (Miltenyi Biotech) according to themanufacturer’s

instructions. The resulting single-cell suspensions were filtered through sterile 70-mmand 40-mmcell strainers and stained for viability

with 25 mM cisplatin (Enzo Life Sciences) in a 1-min pulse before quenching with 10% FBS (Fienberg et al., 2012). Cells were then

fixed with 1.6% paraformaldehyde (Electron Microscopy Sciences) for 10 min at room temperature and stored at �80�C.

Mass cytometry barcoding
To ensure homogenous staining, 0.33 106 to 0.83 106 cells from each tumor sample were barcoded as previously described using a

126-well barcoding scheme consisting of unique combinations of four out of nine barcoding reagents.47 Metals included palladium

(105Pd, 106Pd, 108Pd, 110Pd, Fluidigm) chelated to 1-(4-Isothiocyanatobenzyl)ethylenediamine-N,N,N EN Etetraacetic acid (Isothio-

cyanobenzyl-EDTA, Dojino) and indium (113In and 115In, Fluidigm), yttrium (89Y, Sigma Aldrich), rhodium (103Rh, Fluidigm), and bis-

muth (209Bi, Sigma Aldrich) chelated to 1,4,7,10-tetraazacy-clododecane-1,4,7-tris-acetic acid 10-maleimide ethylacetamide

(mDOTA, Dojino) following standard procedures.45 The chelated barcoding reagents were titrated for equivalent staining intensities;

the final concentrations were adjusted to 20 nM (209Bi), 100 nM (105-110Pd, 115In, 89Y), 200 nM (113In), or 2 mM (103Rh). Cells were bar-

coded using the transient partial permeabilization protocol.48 Cells were washed with 0.03% saponin in PBS (Sigma Aldrich) and

incubated for 30 min at room temperature with 200 mL of mass tag barcoding reagents. Cells were then washed twice with PBS

plus saponin and twice with cell staining medium (CSM, PBS with 0.5% bovine serum albumin and 2mM EDTA).

Antibodies and antibody labeling
The supplier, clone, andmetal tag for each antibody used in this study are listed in the key resources table. Antibody labeling with the

indicated metal tag was performed using the MaxPAR antibody conjugation kit (Fluidigm). After metal conjugation, the concentration

of each antibody was assessed using a Nanodrop (Thermo Scientific). The concentration was adjusted to 200 mg/mL and stored in

Candor Antibody Stabilizer. All conjugated antibodies were titrated for optimal concentration for use with prostate tissues. Antibody

usage in this study was managed using the AirLab cloud-based platform.49

Antibody staining and mass cytometry data collection
After barcoding, pooled cells were incubated with FcR blocking reagent (Miltenyi Biotech) for 10 min at 4�C. Samples were stained

with 100 mL of the antibody panel per 106 cells for 60min at 4�C. Cells were washed twice in CSM and resuspended in 1mL of nucleic

acid Ir-Intercalator (Fluidigm) overnight at 4�C. Cells were thenwashed once in CSM, once in PBS, and twice in water. Cells were then

diluted to 0.53 106 cells/mL in H2O containing 10% of EQTM Four Element Calibration Beads (Fluidigm). Samples were placed on ice
Cell Reports Medicine 3, 100604, April 19, 2022 e4
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until analysis. Data were acquired on an upgraded Helios CyTOF 2mass cytometer using the Super Sampler (Victorian Airship) intro-

duction system.

Immunohistochemistry
For immunohistochemical validation studies anti-CD3 (mouse monoclonal, clone LN10, Leica Microsystems) and anti-CD15 (mouse

monoclonal, clone Carb-3, Agilent Dako) antibodies were used. Automated platforms were used for in situ protein expression ana-

lyses of CD15 (Ventana Benchmark CD15), and CD3 (Leica Bond-Max).

QUANTIFICATION AND STATISTICAL ANALYSIS

Mass cytometry data analysis
Individual .fcs files collected from each set of samples were concatenated using the .fcs concatenation tool from Cytobank, and data

were normalized using the executable MATLAB version of the Normalizer tool.50 Individual samples were debarcoded using the

CATALYST R/Bioconductor package51 (Figure S8 and Table S2). Debarcoded files were compensated for channel crosstalk using

single-stained polystyrene beads as previously described.51

CyTOF data was analyzed by initially applying an arcsinh transformation with a cofactor of 5 (newdatai = arcsinh(datai/5)). The

UMAP algorithm52 was applied to the high-dimensional data from 23,200 (400 per patient) cells taken at random from across the pa-

tient cohort using default parameters (perplexity, 30; theta, 0.5) to facilitate visualization in two dimensions. The pre-processed data

were analyzed using the Franken algorithm as described in detail below. All analysis was done using R version 3.4.1

The Franken pipeline
The initial step of the Franken pipeline uses a SOM11,12 to over-cluster the preprocessed data into a large number of nodes. Prostate

patient data was pooled from all patient samples (1,670,117 cells) and 400 SOM nodes were used (SOM grid dimensions were x = 20

and y = 20). Next, a mutual k-nearest neighbor graph (k = 6) was built between the SOM nodes using the Tanimoto similarity,13 which

unlike the binary version, can be applied to continuous or discrete non-negative features and retains the sparsity property of the

cosine while allowing discrimination of collinear vectors. Lastly, the resulting graph is clustered using a random-walk-based graph

clustering technique called Walktrap, using the implementations available in package igraph53 in R. Walktrap is a graph partitioning

technique that requires a choice of randomwalk steps. To increase our pipeline’s robustness, this procedure is applied for a range of

random walk steps and the smallest step that maximizes the graph’s modularity is chosen.

According to the thorough review and comparison of community detection algorithms by Yang et al.,54 Walktrap is amongst the

best performing algorithms for both large and small networks regardless of whether the mixing parameter is high or low. Although

Yang et al. found that for large mixing parameters most algorithms failed to detect the community structure, Walktrap was able to

do it. Another advantage of Walktrap is that it is possible (although not necessary) for a user to define the number of communities

one wishes to find in the data. This allows the user to decide exactly how many clusters they wish to find, although the method is

by default run in an unsupervised way. Although Walktrap is not the fastest method for large networks, the network size in Franken

is never large due to the initial SOM-building step.

Benchmarking Franken against other methods for additional datasets
To test the performance of Franken, we compared it to two state-of-the-art clustering methods for mass cytometry data, Phe-

nograph14 and FlowSOM.12 All three methods were used to cluster data obtained from two celullar datasets: (i) a real-world

healthy bone marrow dataset1 and (ii) data from 10 cell lines stained with our prostate-centric antibody panel (Supplemental

Figures S1B–S1F). The three methods were also applied to synthetic datasets generated from the simulation of high-dimen-

sional gaussians (Figure 1G). The ground truth for the healthy bone marrow cellular phenotypes had been previously manually

annotated in Bendall et al.1 while the ground truth for the cell lines dataset was known from their cell line origin. We calculated

precision and recall (as shown by F1 scores according to Weber et al.2) for each phenotype in each dataset (Figures S1B, S1C

and S1E). Franken was able to recover the most phenotypes in both datasets, resulting in the least phenotypes with zero F1

scores. After repeating the F1 estimates for multiple runs (with different random seeds) of each method, on average, Franken

performed as well or better than the other methods. Franken requires the input of three parameters: the SOM grid dimensions

(x and y which multiplied correspond to the number of nodes used to build the SOM) and k neighbors (the number of

neighbors used to decide whether two nodes are connected by an edge in the mutual nearest neighbor graph); a SOM size

of 400 (x = y = 20) and k = 6 were used in our simulations of all three datasets. Franken results were robust to the choice of

its parameters (Figure S1F).

Franken requires minimal computational resources, and runtimes were very fast when evaluated on the two benchmark datasets

containing around 200,000 cells (Figure S1E). While FlowSOMwas slightly faster than Franken, it performed very poorly in F1 scores

compared to both Franken and Phenograph. FlowSOMwas run using the default parameters chosen by the authors as optimal (SOM

nodes 100). However, as FlowSOM and Franken share the SOM-building step we also tested FlowSOM using the same 400-node

SOM grid size and the F1 scores were equivalent while the runtime was increased, no longer making FlowSOM superior in speed,

therefore we chose to use the author’s default parameters for benchmarking which were more favorable to the FlowSOM method.
e5 Cell Reports Medicine 3, 100604, April 19, 2022
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Although the F1 scores from Phenograph were comparable to Franken’s, their scalability varied greatly. After testing Franken on

several synthetic datasets of sizes varying from 20 thousand to 40 million, we showed that one could analyze 40 million cells with

Franken in the equivalent time taken to analyze 1 million cells using Phenograph (Figure S1G). Franken can also be applied to sin-

gle-cell RNA sequencing data, therefore we also compared Franken’s scalability with the state-of-the-art method for single-cell

RNA sequencing Seurat and could show that Franken was far superior in scalability (Figure S1G). Franken could cluster 40 million

cells in the half of the time taken to cluster 3 million cells with Seurat. As Phenograph and Seurat require far larger computational

resources they could not be run on the larger datasets beyond 1 and 3 million respectively.

Other computational methods
PhenoGraph runs included in Figure S1were performed using theMATLAB (R2018b) implementation using the GUI CYT3 as themat-

lab implementation was the only one which allowed different random seeds to be used in each run. Default parameters were used: k

nearest neighbors = 30. PhenoGraph runs in Figure S2 were performed using its implementation in R (Rphenograph) for its ease in

including it in scripts instead of manually running theMATLABGUI. FlowSOM and Seurat runs were performed using their implemen-

tation in R and default parameters. All software versions are provided in the key Resources Table.

TMA analysis
Immunohistochemistry applied to TMA was used to validate single-cell mass cytometry data. The open-source software QuPath55

was used to quantify cell types in TMA. CD3+ cells were quantified using an automated detection procedure, and CD15+ cells were

manually selected by a pathologist (J.H.R.).
Cell Reports Medicine 3, 100604, April 19, 2022 e6
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Supplemental figures and legends:  

   

Figure S1. High-dimensional clustering with Franken combines performance and speed. (a) Franken 
involves fitting a large SOM to the data, building a mutual k-nearest neighbor graph on the n-dimensional SOM 
nodes, and applying the Walktrap algorithm. A UMAP 2-D map can be used for visualization. (b-c) 
Performance of Franken, PhenoGraph, and FlowSOM in clustering of b) bone marrow and c) cell lines as 
measured by F1 scores. (d) Average runtimes of Franken, PhenoGraph, and FlowSOM applied to the bone 
marrow (blue) and cell line (pink) datasets 10 times and plotted against mean F1 score. FlowSOM and 
PhenoGraph were run using their default parameters in their R and Matlab implementations, respectively (e) 
subset-specific evaluation of the different clustering approaches on the cell lines dataset. (f) F1 values for 



Franken tested on cell lines dataset for different SOM sizes as well as number of k neighbors and distance 
measures in mutual nearest neighbor graph. The Tanimoto similarity (also known as extended Jaccard; ejaccard) 
is the recommended measure for Franken. The default k-nearest neighbors is kn=6. As Franken builds a mutual 
k-nearest-neighbor graph, too few neighbors can lead to poor results, however Franken proved to be very stable 
a minimum number of neighbors of at least kn = 3. (g) Franken, PhenoGraph and FlowSOM were run on a 
series of synthetic datasets of increasing size up to 40 million cells and runtimes were recorded for each. These 
consisted of simulated gaussians in 10 dimensions. We also included a state-of-the-art clustering technique used 
for single-cell RNA sequencing data (Seurat) according to Duo et al. 2018. PhenoGraph and Seurat could not be 
run on the largest datasets and were therefore run on the largest computationally feasible set (1 million for 
PhenoGraph and 3 million for Seurat). Franken was able to cluster 40 million cells in the same time necessary 
for PhenoGraph to cluster 1 million cells. Seurat performed slightly faster than PhenoGraphbut attempting to 
cluster 3 million cells with Seurat took twice as long as it would take to cluster 40 million cells with Franken. 
FlowSOM was faster than all methods, however its F1-score performance was far inferior compared to Franken 
and PhenoGraph when applied to all benchmarking datasets (Figure 2b-d). Franken still provided comparable 
speed to FlowSOM and was at most three times slower for the largest 40 million dataset. Related to STAR 
methods’ Franken pipeline section. 
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Figure S2. Logistic regression classification confirms metaclustering resolution. Metacluster labels given in 
b-e are all given in panel (d). (a) UMAP 2-D representation colored by only epithelial, immune or 
microenvironemnt cell subsets (b) Number of cells in each metacluster (c) Proportion of metacluster (d) 
Misclassification error for each metacluster resulting from logistic regression classification. (e) Coefficients 
from logistic regression performed with LASSO regularization. Biaxial plots of cell subsets confirming co-
expression of markers is not a result from doublet formation for (f) CD15+/CK19+ (g) CD3+/CD15+ and (h) 
CD3+/CD68 cells. (i) Relative proportion of cells in a metacluster from a tumor-sample (red), adjacent bening 
prostatic tissue-sample (ABPT; blue) and from a random prostatic tissue (RPT; grey) (j) Average proportion 
(normalized by total number of cell in a patient) of cell types across all 58 patients in cohort  (k) Expression of 
Stromal (SMA, S100A4 and Vimentin) and endothelial (CD31) markers (l) H&E of TMA from patient cohort 
analysed with CyTOF. The TMA  contains two BPH and two tumor regions from all patients in the selected 
cohort was generated as previously described (Mortezavi et al. 2011). For TMA construction, representative 
tumor areas of the second and third slice of radical prostatectomy specimens were chosen, as close as possible to 
the area of tissue sampling for mass cytometry. Related to Figure 2. 

  



 

 

Figure S3. Immune and epithelial metacluster comparison between grades and tumor/non-tumor groups. 
Proportions (normalized by total number of cells in a patient) of (a) T cell, (b) macrophages and (c) granulocytes 
metaclusters across all 58 patients in cohort (Intermediate N = 46 and high grade N = 12) (d) Proportion 
(normalized by total number of cells in a patient) of cells from tumor and adjacent benign prostatic tissue 
samples for each granulocyte metacluster (N=17). Dots are colored by disease severity (intermediate vs high 
grade). Paired tumor/ABPT samples were analysed with a two-sided Wilcoxon signed rank paired test and 



unpaired intermediate/high grade samples were analysed with a two-sided Wilcoxon rank sum test (also known 
as a Mann-Whitney-Wilcoxon). Related to Figure 3. (e) Comparison of proportions  (f) Proportion (normalized 
by total number of cells in a patient) of luminal cells metaclusters stratified by (g) tumor and adjacent benign 
prostatic tissue samples (N=17) and (h) intermediate and high grade patient samples (for combined 
tumor/ABPT; Intermediate N = 46 and high grade N = 12). (i) same as (h) for transitional epithelial 
metaclusters. (j) proportion (normalized by total number of cells in a patient) of cells from tumor and adjacent 
benign prostatic tissue samples for each transitional epithelial metacluster. Dots are colored by disease severity 
(intermediate vs high grade). Paired tumor/ABPT samples were analysed with a two-sided Wilcoxon signed 
rank paired test and unpaired intermediate/high grade samples were analysed with a two-sided Wilcoxon rank 
sum test (also known as a Mann-Whitney-Wilcoxon). Related to Figures 3 and 4. 

  

 

 

  

Figure S4. UMAP 2-D representation of cells across all 58 patients and analysis of CD15 prostate 
epithelial cells and patient groups. (a) 400 cells were sampled from each patient and projected using 
dimensionality reduction with UMAP. The normalized expression of each marker is shown for each 
cell. Related to Figure 4. (b) Sample core from TMA stained with CD15 (brown) and CK19 (red). The diameter 
of each spot is exactly 0.6 mm (c) The TMA was graded as positive or negative in the presence or absence 
(respectively) of double CD15 and CK19 positivity. The bar plot represents the proportion of patients positive 
for the double staining. From low grade (Gleason 6 or lower) to metastatic patients the proportions are 
(Positive/Negative): 1/47 (low grade); 11/188 (intermediate grade); 7/88 (high grade) and 4/34 (metastatisis). (d) 
Summary of significance testing showing which cellular metaclusters are enriched or depleted in a patient 
group. Only significant p-values below of at least 0.05 are shown. Related to Figure 4. 
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Figure S5. Quality control of CyTOF samples. (a) Yield plots of doublet free sample debarcoding performed 
with CATALYST. Histogram in the back shows distribution of barcode population separations. Lines in the 
foreground show cell yields by sample as a function of the applied separation cut-off. Left y-axis corresponds to 
cell yield in percent; right y-axis shows the total number of cells. All measured samples are displayed. Three 
lines that correspond to the samples P61_I, P61IV, & empty show a poor yield upon debarcoding. They were 
excluded with other samples with too few cells or poor viability subsequently. (b) Example of barcoding 
signatures after doublet free debarcoding. Histograms show staining intensities of barcoding reagent on 8 
randomly selected samples.  
(c) Example (P38_N) for manual gating approach on live single cells in Cytobank to exclude intra well doublets 
and dead cells. (d) Dot plots show effectiveness of the chosen gating strategy to remove immune-epithelial can 
only be removed by exclusion non existing CD45+/panCK+ clusters from the analysis. Related to STAR 
methods’ Mass cytometry data analysis section. 
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 Intermediate vs High Tumor vs ABPT Intermediate vs High Tu 
AE01 0.299667932 0.003917694 1 
AI01 0.947145257 0.567760468 0.122947744 
BA01 0.783528041 0.921714783 0.490207806 
BC01 0.11411 0.541217804 0.141652594 
EN01 0.430598236 0.708557129 0.730861244 
EP01 0.066186256 0.711997146 0.366052516 
GR01 0.917029458 0.044559479 0.332195797 
GR02 0.962233422 0.000419617 0.629796416 
GR03 0.915765168 0.798272981 0.770263521 
IM01 0.520189906 0.257926941 0.368409325 
LU01 0.588859896 0.395462036 0.266593958 
LU02 0.036087507 0.465316772 0.730861244 
LU03 0.097218186 0.000164032 0.02128483 
LU04 0.286692639 0.395462036 0.832332166 
LU05 0.25706893 0.025821686 0.004760342 
LU06 0.0124254 0.530158015 0.028507805 
LU07 0.028625801 0.097942043 0.915768036 
MA01 0.032658761 0.09551239 0.162362792 
MA02 0.842335487 0.168792725 0.836593489 
MA03 0.060665363 0.515277863 0.730861244 
MA04 0.033903965 0.000419617 0.002884886 
MA05 0.012244233 0.014068604 0.000773994 
NE01 0.430598236 0.123188019 0.890655784 
ST01 0.327307712 0.921714783 0.836593489 
TC01 0.005867147 0.066287994 0.055551646 
TC02 0.857185684 0.168792725 0.836593489 
TC03 0.082336603 0.022987366 0.141652594 
TC04 0.046835508 0.00202179 0.028692568 
TC05 0.034337657 0.332065582 0.013720799 
TR01 0.754548216 0.738090515 0.783258279 
TR02 0.2187601 0.241252899 0.490207806 
TR03 0.003438092 0.09551239 0.026175063 
TR04 0.175943059 0.087429047 0.534911812 

 

Table 1. All statistical results from the Wilcoxon test results shown in figures 3 and 4 and supplemental figure 3.  

 

 

  


	ELS_XCRM100604_annotate_v3i4.pdf
	Single-cell proteomics defines the cellular heterogeneity of localized prostate cancer
	Introduction
	Results
	Clustering of high-dimensional mass cytometry data defines molecular profiles of prostate subpopulations
	Immune landscape differs between tumor and benign adjacent tissue and across prostate cancer ISUP grade
	Malignant and benign prostate tissues diverge in rare phenotypes
	Rare cellular phenotypes define patient subgroups

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Patient samples
	Cell lines

	Method details
	Sample collection and microarray construction
	Fresh tissue preparation
	Mass cytometry barcoding
	Antibodies and antibody labeling
	Antibody staining and mass cytometry data collection
	Immunohistochemistry

	Quantification and statistical analysis
	Mass cytometry data analysis
	The Franken pipeline
	Benchmarking Franken against other methods for additional datasets
	Other computational methods
	TMA analysis





