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Abstract. This note shows that in non-deterministic extended lambda-
calculi with letrec, the tool of applicative (bi)simulation is in general not
usable for contextual equivalence, by giving a counterexample adapted
from data flow analysis. It also shown that there is a flaw in a lemma
and a theorem concerning finite simulation in a conference paper by the
first two authors.

1 Introduction and Related Work

In this note we discuss the problem of whether applicative (bi)simulation can be
applied to non-deterministic lambda calculi with letrec and show that there are
limitations.
In particular, we will adapt a counterexample to a problem for non-deterministic
data flow programs in [Pan95,Rus89]. This will also show that the claims on
comparing abstractions in the approach of finite simulation for letrec-calculi
is wrong in [SSM08a]. For more proofs of the properties of this calculus see
[SSM08b].
A paper that discusses similar problems and counterexamples in a call-by-value
calculus with amb is [Lev07]: it shows that there is no well-pointed denotational
semantics for a call-by-value calculus with amb, which also means that applicative
(bi)simulation fails.



(s t)S∨T → (sS t)V

(letrec Env in t)T → (letrec Env in tS)V

(letrec x = s,Env in C[xS ]) → (letrec x = sS ,Env in C[xV ])
(letrec x = s, y = C[xS ],Env in r) → (letrec x = sS , y = C[xV ],Env in r)

if C 6= [.]
(seq s t)S∨T → (seq sS t)V

(case s alts)S∨T → (case sS alts)V

Fig. 1. The labeling to find the normal-order redex

2 The Counterexample

First we present the example using the syntax of the calculus LS in [SSM08a].
Later we show how the example can be adapted to different calculi.

2.1 The Syntax

The syntax for expressions E in the call-by-need calculi L and LS in
[SSM08b,SSM08a] is as follows:

E ::= V | (c E1 . . . Ear(c)) | (seq E1 E2) | (caseT E Alt1 . . . Alt#(T )) | (E1 E2)
(choice E1 E2) | (λ V.E) | (letrec V1 = E1, . . . , Vn = En in E)

Alt ::= (Pat → E) Pat ::= (c V1 . . . Var(c))

where E,Ei are expressions, V, Vi are variables, and c denotes a constructor.
Expressions (caseT . . .) have exactly one alternative for every constructor of
type T . We assume that types consist of pairwise disjoint sets of constructors
with a given arity.
The normal-order reduction is defined in [SSM08a] and also weak head normal
forms (WHNFs), see also Figures 1 and 2, where an LS-WHNF is defined as an
abstraction or a cv-expression (an expressions of the form (c x1 . . . xn), where c is
a constructor and xi are variables), or an expression (letrec Env in v), where v
is an abstraction or a cv-expression. We will use the calculus LS in the following.
Note that it is not essential which calculus (of those defined in [SSM08a]) we
choose, since they are shown to be equivalent w.r.t. contextual equivalence.
An example for a normal-order reduction in LS is (λx.x) ((λy.y) (λz.z)) →
(letrec x = ((λy.y) (λz.z)) in x) → (letrec x = (letrec y =
(λz.z) in y) in x) → (letrec x = y, y = λz.z in x) → (letrec x = λz′.z′, y =
λz.z in x) → (letrec x = λz′.z′, y = λz.z in λz′′.z′′), where the final term
is a weak head normal form (WHNF) for the calculus LS . An expression s is
may-convergent (s↓) iff there is a normal-order reduction sequence starting with
s and ending in a WHNF. Two expressions s, t are contextually equivalent, s ∼ t,
if s ≤c t and t ≤c s where s ≤c t iff for all contexts C[·] : C[s]↓ =⇒ C[t]↓. In
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(lbeta) ((λx.s)S r) → (letrec x = r in s)
(cp-in) (letrec x = vS ,Env in C[xV ])

→ (letrec x = v,Env in C[v])
where v is an abstraction or a cv-expression

(cp-e) (letrec x = vS ,Env , y = C[xV ] in r)
→ (letrec x = v,Env , y = C[v] in r)

where v is an abstraction or a cv-expression
(abs) (c t1 . . . tn)S∨T → (letrec x1 = t1, . . . , xn = tn in (c x1 . . . xn))

if (c t1 . . . tn) is not a cv-expression
(llet-in) (letrec Env1 in (letrec Env2 in r)S)

→ (letrec Env1,Env2 in r)
(llet-e) (letrec Env1, x = (letrec Env2 in sx)S in r)

→ (letrec Env1,Env2, x = sx in r)
(lapp) ((letrec Env in t)S s) → (letrec Env in (t s))
(lcase) (caseT (letrec Env in t)S alts) → (letrec Env in (caseT t alts))
(seq-c) (seq vS t) → t if v is a value
(lseq) (seq (letrec Env in s)S t) → (letrec Env in (seq s t))
(case) (case (c t1 . . . tn)S . . . ((c y1 . . . yn) → s) . . .)

→ (letrec y1 = t1, . . . , yn = tn in s)
(choice-l) (choice s t)S∨T → s
(choice-r) (choice s t)S∨T → t

Fig. 2. Reduction rules of LS

[SSM08a] it is also proved that all reductions with the exception of the choice-
reduction are correct w.r.t. ∼, i.e. if s → t where the used reduction rule is not
a choice-reduction, then s ∼ t.

2.2 The Counterexample

One of the properties that a finite simulation is based on is the ability to identify
contextually equivalent expressions based on their behavior on all substitutions
that substitute values for free variables. For instance, if two expressions with a
free variable x behave the same for all substitutions for x; or alternatively, if they
behave the same for all contexts of the form (letrec x1 = v1, . . . , xn = vn in [·]),
where vi are closed values then these two expressions are said to be in a finite
simulation relation. Intuitively, this should imply that the expressions are also
contextually equivalent (see Proposition 7.2 in [SSM08a] for a precise statement;
but note that the proof has a flaw).
Now we describe a counterexample to this property inspired by Panangaden
[Pan95,Rus89] for data-flow analysis, adapted to our calculus LS . Specifically,
we consider all substitutions for a free variable that come from the set of so-called
pseudo-values (defined below) and show that although the two expressions that
we constructed behave the same on all pseudo-values, there are contexts that
distinguish them.
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The expressions s1, s2 are defined as follows, where isList is defined as
λxs.caselist xs of (Nil→ True) ((Cons x xs) → True), and if a then b else c
is an abbreviation for casebool a (True → b) (False → c). Let Ω stand for
a closed non-converging expression (all such expressions are equivalent in our
calculus).

s1 := (choice (Cons 0 (if (isList xs) then (Cons 0 Nil) else Ω))
(if (isList xs) then (Cons 0 (Cons 1 Nil)) else Ω))

s2 := (choice (Cons 0 (if (isList xs) then (Cons 0 Nil) else Ω))
(choice (if (isList xs) then (Cons 0 (Cons 1 Nil)) else Ω)

(Cons 0 (if (isList xs) then (Cons 1 Nil) else Ω))))

These two expressions are indistinguishable, if compared for all substitutions
σ := [v/x], where v ranges over all closed pseudo-values. Closed pseudo-values
are expressions built from constructors, Ω, and abstractions. The test to distin-
guish two expressions is to ask for convergence; decomposing data structures is
permitted.
It is sufficient to check the following expressions and lists:

– xs = Ω or a data-object that is a non-list, i.e. where (isList xs)⇑. Then s1

may reduce either to Ω or to an expression that is contextually equivalent to
(Cons 0 Ω). Here we used the correctness of garbage collection as a program
transformation. The possibility of non-convergence is irrelevant for may-
convergence. The same for s2.

– xs = Nil or = Cons a b for any a, b. Then s1 may reduce to expressions
(Cons 0 (Cons 0 Nil))) or to (Cons 0 (Cons 1 Nil))) (modulo contextual
equivalence). The expression s2 has the possibility to reduce to expressions
that are contextually equivalent either to (Cons 0 (Cons 0 Nil))) or to
(Cons 0 (Cons 1 Nil))).

This means that for forms of applicative (bi)simulation, the expressions s1, s2

cannot be distinguished.
However, the two expressions are not contextually equivalent, as seen using the
following context: C := (letrec xs = [·] in xs). The expression C[s1] can only be
reduced to a diverging expression or to an expression contextually equivalent to
Cons 0 (Cons 0 Nil))). The expression C[s2] can evaluate to expressions that are
contextually equivalent to Ω, (Cons 0 (Cons 0 Nil))) or to (Cons 0 (Cons 1 Nil))).
We add a further context D that tests for the second element of a list and
terminates if this element is equal to 1, otherwise diverges. Then D[C[s1]]⇑, but
D[C[s2]]↓, hence the expressions s1, s2 are not contextually equivalent.

2.3 Consequences of the Counterexample

The counterexample shows that Proposition 7.2 in [SSM08b,SSM08a] is not cor-
rect as claimed. The proof has a gap, since reduction contexts of the form
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(letrec Env , x = [·] in r) and similar cycle-creating contexts were not con-
sidered; and also Theorem 7.3 is not correct. Hence the simulation method as
described there cannot be used for abstractions.

2.4 Variations of the Counterexample and Tests

2.4.1 Restricting to Closed Expressions The counterexample is also valid
if the two expressions are closed: s′

1 := λxs.s1, s′
2 := λxs.s2. Then s′

1, s
′
2 can-

not be distinguished in an applicative (bi)simulation style, i.e. if applied to any
pseudo-value. The proof is the same as for s1, s2. But s′

1, s
′
2 are not contextually

equivalent, which can be seen using the context C ′ := (letrec y = [·] y in y).
Note that C ′[s′

1] = (letrec y = s′
1 y in y), which reduces to (letrec y =

s1, xs = y in y) ∼ (letrec xs = s1 in xs) using the correct program transfor-
mations in [SSM08b]. We see that C ′[s′

1] ∼c C[s1], and C ′[s′
2] ∼c C[s2], which

means that s′
1, s

′
2 are not contextually equivalent. This example also shows that

it is not sufficient to take contexts of the form (letrec Env , x = [·] in x) into ac-
count for the simulation test since such contexts cannot distinguish the elements
s′
1 and s′

2.

2.4.2 Applicative Bisimulation Testing all Expressions If the con-
dition for equivalence of expressions under applicative (bi)simulation is that
they must not be distinguishable by arbitrary substitution or by using arbi-
trary closing environments of the form (letrec Env in [·]), then the coun-
terexample remains valid since only one additional case has to be consid-
ered: when xs = choice Ω Nil. The expression σ(s1) may evaluate to
Ω, Cons 0 Ω, Cons 0 (Cons 0 Nil)) or Cons 0 (Cons 1 Nil)). The same holds
for s2. Thus they remain indistinguishable by applicative bisimulation, but are
not contextually equivalent, using the same argument as above.

3 The Counterexample in Other Calculi

3.1 Calculi with only a Boolean Choice

Note that the counter-example does not rely on unrestrained nondeterminism
(in the sense of [SS92]) provided by choice. “Unrestrained” means that choice
can be applied to any expressions, whereas “restrained” limits arguments of
choice to atomic values. In our case using a simpler (atomic) choice on Booleans
is sufficient to encode the unrestrained nondeterminism. This follows, since the
following law is easy to prove using the diagram techniques and the context
lemma for may- and must-convergence, (see e.g. [SSS08] and [SSM08b] for the
context-lemma for may-convergence):

choice s t ∼ if choice True False then s else t

This translation does not work for (bottom-avoiding) amb, and it appears to
be impossible to encode amb-expressions using restricted amb-expressions with
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certain small arguments. Hence call-by-need calculi with letrec and choice do
not exhibit an improved behavior as it is claimed in [Lev07] for certain forms of
amb-calculi when amb is restricted to arguments of ground type.

3.2 Typed Calculi

The counterexample in LS is polymorphically typable, since all the construc-
tors and functions have a consistent polymorphic type. The same for the cyclic
context and the testing contexts. Hence, the counterexample remains valid in a
typed variant of the LS-calculus.

3.3 Calculi With a Nonrecursive let

Note that this counterexample does not work in the non-deterministic calculus
of [MSS06], which is rather similar to the calculus considered here with the only
difference that a non-recursive let is used. Plugging s1, s2 in a fixpointing context
results in expressions like Y (λxs.s1) and Y (λxs.s2), which on evaluation are
permitted to copy the abstractions (λxs.si), and hence the effect of letrec to
provide an immediate combination of recursion and sharing is not possible in
that calculus.

3.4 Calculi with amb

A further consequence is that applicative (bi)simulation methods cannot be ap-
plied to the calculus in [Sab08], which is a call-by-need lambda-calculus with
amb, letrec, case, and constructors. This is easy to check for may-convergence,
since the same reasoning as above is valid. The arguments in subsection 2.2
also show that the must-convergence behavior of the terms s1, s2 is identi-
cal, if checked for all replacements of values for xs. But note that with con-
texts it is possible to distinguish s1 and s2 also by their must-convergence be-
haviour only: let D be a context that takes the second element of a list and
let D′ = if (amb D 0) = 0 then 0 else ⊥. Then we have D′[C[s1]]⇓ while
D′[C[s2]] ↑ where C is defined as letrec xs = [·] in xs.

3.5 On a Conjecture on Behavioral Simulation

The Conjecture 14.5. in [SSSS04] which claims that applicative simulation im-
plies contextual equivalence in a non-deterministic letrec-calculus, is wrong. Note
that the suspicion that it may be too hard to prove or may even be wrong lead
to another successful approach manifested in [SSSS05] and [SSSS08].

3.6 The Fudget-Calculus with letrec, Choice, Case and Constructors

The call-by-need non-deterministic calculus in [MSC99,MSC03] comprises ex-
pressions with letrec, case and constructors, and uses a contextual semantics
with may and (total) must-convergence. Our counterexample also shows that
applicative bisimulation is not applicable for this calculus even if only the may-
convergence is used.
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3.7 Counterexample in Typed Calculus without Case and
Constructors but with seq

In this section we investigate whether the counterexample can be adapted for an
untyped non-deterministic call-by-need calculus without case and constructors,
The syntax is:

E ::= V | (E1 E2) | (choice E1 E2) |
(seq E1 E2) | (λ V.E) | (letrec V1 = E1, . . . , Vn = En in E)

where E,Ei are expressions, and V, Vi are variables
The normal-order reduction and the notion of WHNF is as before.
A Church-like encoding of numbers and lists (in Haskell-style) is as follows :

cnil = \c n -> n

cisnil = \l -> l (\h t -> cfalse) ctrue

cislist = \l -> l (\h t -> ctrue) ctrue

ccons = \h t c n -> c h (t c n)

chead = \l -> l (\h t -> h) cfalse

ctail = \l -> cfst (l (\x p -> cpair (csnd p) (ccons x (csnd p)))

(cpair cnil cnil))

cpair = \x y z -> z x y

cfst = \p -> p (\x y -> x)

csnd = \p -> p (\x y -> y)

ctrue = \a b -> a

cfalse = \a b -> b

cifthenelse = \test thenclause elseclause -> test thenclause elseclause

ciscons = \l -> cifthenelse (cisnil l) cfalse ctrue

one = ctrue

zero = cfalse

s1 = choice (ccons zero (seq xs (ccons zero cnil)))

(seq xs (ccons zero (ccons one cnil)))

s2 = choice (ccons zero (seq xs (ccons zero cnil)))

(choice (seq xs (ccons zero (ccons one cnil)))

(ccons zero (seq xs (ccons one cnil))))

s1test = let xs = [s1] in chead (ctail xs)

s2test = let xs = [s2] in chead (ctail xs)

[s1] and [s2] means the textual replacement

Fig. 3. Church-like encoding of the Counterexample

Note that the code in Figure 3 can be made executable in Haskell (except for
choice which would require an extension) The same arguments as above show
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that the counterexample is also valid in this calculus using the encoding in Figure
3.

3.8 Counterexample in an Untyped Calculus with letrec but
without Case and Constructors and seq

The Church-like encoding above, of course, also works if the calculus is untyped
by simply dropping the types. Replacing the seq-expression by an isList-
application as before can be done, where the encoding of islist as above is
used.

3.9 Typed Calculus without Case and Constructors

We could not decide the question whether there is an adaptation of the coun-
terexample in a polymorphically typed call-by-need calculus without case, con-
structors and seq. Trying the Church-like encoding results in an error-message
generated by the type checker complaining about infinite types. Some experi-
mentation and analysis shows that it is also not possible to encode variations of
the counterexample. So this calculus variant appears to be exceptional.
This leads to the conjecture that applicative bisimulation (or finite simulation)
may be valid as a tool for recognizing contextual equivalence in a polymorphically
typed call-by-need calculus with choice and letrec, but without case, constructors
and seq.

3.10 Call-By-Value Calculi

An investigation in a concurrent call-by-value calculus with futures is in
[NSS06,NSSSS07,SSNSS09]. The so-called futures are like letrec-bound top vari-
ables in the calculus and all its variants. In the latter reference, the calculus
λτ (fc) is a typed version of the calculus with lists, where the counterexample
can be encoded and where all arguments are valid. Hence applicative simulation
cannot be used as a tool for contextual equivalence in λτ (fc). In all variants of the
calculus in [NSSSS07,SSNSS09], the counterexample can be encoded. The coun-
terexample can also be encoded in [NSS06], which is a typed calculus without
data structures, since call-by-value can enforce evaluation, so no seq is needed.
Thus the exceptional case for call-by-need calculi in 3.9 does not show up for
call-by-value calculi with mutually recursive futures.

3.11 Conclusion and Further Work

We are investigating further restrictions that enable the finite simulation method.
For example, deterministic letrec calculi appear to permit simulation methods,
however, as far as we know there is no proof yet. We are also studying further
the generality of the counterexample.
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