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Abstract. This paper shows the equivalence of applicative similarity
and contextual approximation, and hence also of bisimilarity and con-
textual equivalence, in the deterministic call-by-need lambda calculus
with letrec. Bisimilarity simplifies equivalence proofs in the calculus and
opens a way for more convenient correctness proofs for program transfor-
mations. Although this property may be a natural one to expect, to the
best of our knowledge, this paper is the first one providing a proof. The
proof technique is to transfer the contextual approximation into Abram-
sky’s lazy lambda calculus by a fully abstract and surjective translation.
This also shows that the natural embedding of Abramsky’s lazy lambda
calculus into the call-by-need lambda calculus with letrec is an isomor-
phism between the respective term-models. We show that the equivalence
property proven in this paper transfers to a call-by-need letrec calculus
developed by Ariola and Felleisen.

1 Introduction

Non-strict programming languages such as the core-language of Haskell can be
modeled using call-by-need lambda calculi. Contextual semantics, based on an
operational semantics, describes behavior of expressions in all possible contexts
and can model the semantics of different variants of these calculi. Applicative



bisimulation is a restricted form of contextual equivalence: if two closed ex-
pressions behave the same on all arguments, then they are bisimilar. It allows
more convenient proofs of e.g. correctness of program transformations. Abram-
sky & Ong showed that applicative bisimulation is the same as contextual
equivalence in a specific simple lazy lambda calculus [Abr90,AO93], and Howe
[How89,How96] proved that in classes of calculi applicative bisimulation is the
same as contextual equivalence. This leads to the expectation that some form
of applicative bisimulation may be used for calculi with Haskell’s cyclic let(rec).
Howe’s method is applicable to calculi with non-recursive let even in the pres-
ence of non-determinism [MSS10]. However, in the case of (cyclic) letrec and
non-determinism the method fails, as a recent counterexample shows [SSMS09].
This raises a question: which call-by-need calculi with letrec permit applicative
bisimilarity as a tool for proving contextual equality.

We show in this paper that for the minimal extension of Abramsky’s lazy
lambda calculus with letrec which implements sharing and explicit recursion, the
equivalence of contextual equivalence and applicative bisimulation indeed holds.
The technique used is via two translations: W from a call-by-need letrec-calculus
into a full call-by-name letrec calculus using infinite trees as justification for the
correctness (i.e. full abstraction), and N translating the letrec expressions away
using a family of fixpoint combinators. Full abstraction of the translation, an
analysis of applicative contexts, and a variant of behavioral similarity then show
that the applicative similarity can be transferred between the calculi and that
the embedding of the lazy lambda calculus into the call-by-need calculus is an
isomorphism of the respective term models.

In [Jef94] there is an investigation into the semantics of a lambda-calculus
that permits cyclic graphs, and where a fully abstract denotational semantics is
described. However, the calculus is different from our calculi in its expressiveness
since it permits strictness annotations and a parallel convergence test, where
the latter is required for the full abstraction property of the denotational model.
Expressiveness of programming languages was investigated e.g. in [Fel91] and
the usage of syntactic methods was formulated as a research program there,
with non-recursive let as the paradigmatic example. Our isomorphism-theorem
6.9 shows that this approach is extensible to a cyclic let.

Related work on calculi with recursive bindings includes the following
foundational papers. An early paper that proposes cyclic let-bindings (as
graphs) is [AK94], where reduction and confluence properties are discussed.
[AFM+95,AF97,MOW98] present call-by-need lambda calculi with non-recursive
let and a let-less formulation of call-by-need reduction. For a calculus with non-
recursive let it is shown in [MOW98] that call-by-name and call-by-need eval-
uation induce the same observational equivalences. Call-by-need lambda calculi
with a recursive let that closely correspond to our calculus Lneed are also pre-
sented in [AFM+95,AF97,AB02]. In [AB02] it is shown that there exist infinite
normal forms and that the calculus satisfies a form of confluence. In this paper
we show that the letrec calculus of [AF97] is equivalent to Lneed w.r.t. con-
vergence and contextual equivalence (see Theorem 7.1) and that bisimulation



for the letrec calculus of [AF97] is equivalent to contextual equivalence. This
supports our experience and view that contextual equivalence is a more central
notion than a specific standard reduction.

Outline: In Sect. 3 we introduce the two letrec-calculi and recall results for
Abramsky’s lazy lambda calculus. In Sect. 4 and 5 the translations W and N
are introduced and the full-abstraction results are obtained. In Sect. 6 we show
that bisimulation and contextual equivalence are the same in the call-by-need
calculus with letrec. In Sect. 7 we show that our result is transferable to the
letrec-calculus of [AF97]. Finally, we conclude in Sect. 8.

2 Common Notions and Notations for Calculi

Before we explain the specific calculi, some common notions are introduced. A
calculus definition consists of its syntax together with its operational seman-
tics which defines the evaluation of programs and the implied equivalence of
expressions.

Definition 2.1. An untyped deterministic calculus D is a four-tuple
(E , C,→,W), where E are expressions, C : E → E is a set of functions (which
usually represents contexts), → is a small-step reduction relation (usually the
normal-order reduction), which is a partial function on expressions, and W ⊂ E
is a set of values of the calculus.

For C ∈ C and an expression s, the functional application is denoted as C[s].
For contexts, this is the replacement of the hole of C by s. We also assume that
the identity function Id is contained in C with Id [s] = s for all expressions s.
The transitive closure of → is denoted as +−→ and the transitive and reflexive
closure of → is denoted as ∗−→. Given an expression t, a sequence t → t1 →
. . . → tn is called a reduction sequence; it is called an evaluation if tn is a
value, i.e. tn ∈ W . Then we say s converges and denote this as s↓tn or as s↓
if tn is not important. If there is no tn s.t. s↓tn then s diverges, denoted as s⇑.
When dealing with multiple calculi, we often use the calculus name to mark its
expressions and relations, e.g. D−→ denotes a reduction relation in D.

Contextual approximation and equivalence can be defined in a general way:

Definition 2.2. Let D = (E , C,→,W) be a calculus and s, t be D-expressions.
Contextual approximation ≤D and contextual equivalence ∼D are defined as:

s ≤D t iff ∀C ∈ C : C[s]↓D ⇒ C[t]↓D

s ∼D t iff s ≤D t ∧ t ≤D s

Note that ≤D is a precongruence and that ∼D is a congruence.

We are interested in translations between calculi that are faithful w.r.t. the
corresponding contextual preorders. Recall that we developed such translations
between calculi with contextual equivalences in [SSNSS08,SSNSS09]: A trans-
lation τ : (E1, C1,→1,W1) → (E2, C2,→2,W2) is a mapping τE : E1 → E2 and
a mapping τC : C1 → C2 such that τC(Id1 ) = Id2 . The following notions are
defined:



– τ is compositional iff τ(C[e]) = τ(C)[τ(e)] for all C, e.
– τ is convergence equivalent iff e↓1 ⇐⇒ τ(e)↓2 for all e.
– τ is adequate iff for all e, e′ ∈ E1: τ(e) ∼2 τ(e′) =⇒ e ∼1 e′.
– τ is fully abstract iff for all e, e′ ∈ E1: e ∼1 e′ ⇐⇒ τ(e) ∼2 τ(e′).

From [SSNSS08,SSNSS09] it is known that a compositional and convergence
equivalent translation is adequate.

3 Three Calculi

In this section we present the calculi that we use in the paper: the two calculi
Lneed and Lname with letrec, which have the same syntax, but differ in their
reduction strategies, and Abramsky’s “lazy lambda calculus”, which is a pure
lambda calculus with a call-by-name reduction that has abstractions as successful
results.

3.1 The Call-by-Need Calculus Lneed

We begin with the call-by-need lambda calculus Lneed which is exactly the call-
by-need calculus of [SS07]. The set E of Lneed -expressions is as follows where
x, xi are variables:

si, s, t ∈ E ::= x | (s t) | (λx.s) | (letrec x1 = s1, . . . , xn = sn in t)

We assign the names application, abstraction, or letrec-expression to the ex-
pressions (s t), (λx.s), (letrec x1 = s1, . . . , xn = sn in t), respectively. A group
of letrec bindings is abbreviated as Env.

We assume that variables xi in letrec-bindings are all distinct, that letrec-
expressions are identified up to reordering of binding-components, and that, for
convenience, there is at least one binding. letrec-bindings are recursive, i.e.,
the scope of xj in (letrec x1 = s1, . . . , xn−1 = sn−1 in sn) are all expressions
si with 1 ≤ i ≤ n. Free and bound variables in expressions and α-renamings
are defined as usual. The set of free variables in t is denoted as FV (t). We
use the distinct variable convention, i.e., all bound variables in expressions are
assumed to be distinct, and free variables are distinct from bound variables. The
reduction rules are assumed to implicitly α-rename bound variables in the result
if necessary.

A context C is an expression from Lneed extended by a symbol [·], the hole,
such that [·] occurs exactly once (as subexpression) in C. A formal definition
is:

Definition 3.1. Contexts C are defined by the following grammar:

C ∈ C ::= [·] | (C s) | (s C) | (λ x.C) | (letrec x1 = s1, . . . , xn = sn in C)
| (letrec Env , x = C in s)



(lbeta) C[((λx.s)S r)] → C[(letrec x = r in s)]
(cp-in) (letrec x = sS ,Env in C[xV ]) → (letrec x = s,Env in C[s])

where s is an abstraction or a variable
(cp-e) (letrec x = sS ,Env , y = C[xV ] in r) → (letrec x = s,Env , y = C[s] in r)

where s is an abstraction or a variable
(llet-in) (letrec Env1 in (letrec Env2 in r)S) → (letrec Env1,Env2 in r)
(llet-e) (letrec Env1, x = (letrec Env2 in sx)S in r)

→ (letrec Env1,Env2, x = sx in r)
(lapp) C[((letrec Env in t)S s)] → C[(letrec Env in (t s))]

Fig. 1. Reduction rules of Lneed

Given a term t and a context C, we write C[t] for the Lneed -expression con-
structed from C by plugging t into the hole, i.e, by replacing [·] in C by t, where
this replacement is meant syntactically, i.e., a variable capture is permitted.

Definition 3.2. The reduction rules for the calculus and language Lneed are
defined in Fig. 1, where the labels S, V are used for the exact definition of the
normal-order reduction below. Several reduction rules are denoted by their name
prefix, e.g. the union of (llet-in) and (llet-e) is called (llet). The union of (llet)
and (lapp) is called (lll).

For the definition of the normal order reduction strategy of the calculus
Lneed we use the labeling algorithm in Figure 2, which detects the position to
which a reduction rule is applied according to the normal order. It uses the
following labels: S (subterm), T (top term), V (visited). We use ∨ when a rule
allows two options for a label, e.g. sS∨T stands for s labeled with S or T . A
labeling rule l → r is applicable to a (labeled) expression s if s matches l with
the labels given by l where s may have more labels than l if not otherwise
stated. The labeling algorithm has as input an expression s and then exhaustively
applies the rules in Fig. 2 to sT , where no other subexpression in s is labeled.
The label T is used to prevent the labeling algorithm from visiting letrec-
environments that are not at the top of the expression. The labeling algorithm
either terminates with fail or with success, where in general the direct superterm
of the S-marked subexpression indicates a potential normal-order redex. The use
of such a labeling algorithm corresponds to the search of a redex in term graphs
where it is usually called unwinding.

Example 3.3. For the expression letrec x = x in x the labeling does not fail:

(letrec x = x in x)T →(letrec x = x in xS)V

→ (letrec x = xS in xV )V

But for the expressions letrec x = (y x), y = (x y) in x and letrec x =
(x λu.u) in x the labeling fails.



(letrec Env in t)T → (letrec Env in tS)V

C[(s t)S∨T ] → C[(sS t)V ]
(letrec x = s,Env in C[xS ]) → (letrec x = sS ,Env in C[xV ])
(letrec x = s, y = C[xS ],Env in t) → (letrec x = sS , y = C[xV ],Env in t)

if s was not labeled and if C[x] 6= x
(letrec x = sV , y = C[xS ],Env in t) → fail if C[x] 6= x
(letrec x = C[xS ]V ,Env in t) → fail if C[x] 6= x

Fig. 2. Labeling algorithm for Lneed

Definition 3.4 (Normal Order Reduction of Lneed). Let t be an expression.
Then a single normal order reduction step need−−−→ is defined as follows: first the
labeling algorithm is applied to t. If the labeling algorithm terminates successfully,
then one of the rules in Figure 1 is applied, if possible, where the labels S, V must
match the labels in the expression t (again t may have more labels). The normal
order redex is defined as the left-hand side of the applied reduction rule. The
notation for a normal-order reduction that applies the rule a is

need,a−−−−→, e.g.
need,lapp−−−−−−→ applies the rule (lapp).

Definition 3.5. A reduction context Rneed is any context, such that its hole is
labeled with S or T by the labeling algorithm.

Note that the normal order redex as well as the normal order reduction is
unique. A weak head normal form in Lneed (Lneed -WHNF) is either an abstrac-
tion λx.s, or an expression (letrec Env in λx.s). The notions of convergence,
divergence and contextual approximation are as defined in Sect. 2. Note that
black holes, i.e. expressions with cyclic dependencies in a normal order reduc-
tion context, diverge, e.g. letrec x = x in x. Other expressions which diverge
are open expressions where a free variable appears (perhaps after several reduc-
tions) in reduction position. A specific representative of diverging expressions is
Ω := (λz.(z z)) (λx.(x x)), i.e. Ω⇑need .

Example 3.6. We consider the expression t1 := letrec x = (y λu.u), y =
λz.z in x. The labeling algorithm applied to t1 yields (letrec x =
(yV λu.u)V , y = (λz.z)S in xV )V . The only reduction rule that matches this la-
beling is the reduction rule (cp-e), i.e. t1

need−−−→ (letrec x = ((λz′.z′) λu.u), y =
(λz.z) in x) = t2. The labeling of t2 is (letrec x = ((λz′.z′)S λu.u)V , y =
(λz.z) in xV )V , which makes the reduction (lbeta) applicable, i.e. t2

need−−−→
(letrec x = (letrec z′ = λu.u in z′), y = (λz.z) in x) = t3. The labeling
of t3 is (letrec x = (letrec z′ = λu.u in z′)S , y = (λz.z) in xV )V . Thus an
(llet-e)-reduction is applicable to t2, i.e. t3

Lneed−−−→ (letrec x = z′, z′ = λu.u, y =
(λz.z) in x) = t4. Application of the labeling algorithm to t4 yields: (letrec x =
z′S , z′ = λu.u, y = (λz.z) in xV )V . Thus the normal order reduction is a (cp-in)-
reduction, i.e. t4

Lneed−−−→ (letrec x = z′, z′ = λu.u, y = (λz.z) in z′) = t5 The la-



beling of t5 is (letrec x = z′, z′ = λu.uS , y = (λz.z) in z′V )V . Again a (cp-e) re-
duction is applicable, i.e. t5 → (letrec x = z′, z′ = λu.u, y = (λz.z) in λu′.u′) =
t6 The labeling algorithm applied to t6 yields (letrec x = z′, z′ = λu.u, y =
(λz.z) in λu′.u′S)V , but no reduction is applicable to t6, since t6 is a WHNF.

An Alternative Definition of Normal Order Reduction Reduction con-
texts of Lneed can be syntactically defined by the following grammar

Rneed ∈ Rneed := A | letrec Env in A
| letrec x1 = A1, x2 = A2[x1], . . . , xn = An[xn−1],Env in A[xn]

where xi are variables, A2, . . . , An are not the empty context and A, Ai are
A-contexts defined as A ∈ A ::= [·] | (A s) where s is an expression.

Normal order reduction can be alternatively defined (without labels) as fol-
lows:

(lbeta) Rneed [(λx.s) r] → Rneed [letrec x = r in s]
(cp-in) letrec y = s,Env in A[y] → letrec y = s,Env in A[s]

where s is an abstraction or a variable
(cp-e) letrec y1 = s, y2 = A2[y1], . . . , yn = An[yn−1],Env in A[yn]

→ letrec y1 = s, y2 = A2[s], . . . , yn = An[yn−1],Env in A[yn]
where s is an abstraction or a variable, and A2, . . . , An are non-empty A-contexts

(llet-in) (letrec Env1 in (letrec Env2 in r)) → (letrec Env1,Env2 in r)
(llet-e) letrec y1 = (letrec Env1 in r), y2 = A2[y1], . . . , yn = An[yn−1],Env2 in A[yn]

→ letrec y1 = r,Env1, y2 = A2[y1], . . . , yn = An[yn−1],Env in A[yn]
where A2, . . . , An are non-empty A-contexts

(lapp) Rneed [((letrec Env in r) t)] → Rneed [(letrec Env in (r t))]

3.2 The Call-by-Name Calculus Lname

Now we define a call-by-name calculus on the Lneed -syntax. The syntax of the
calculus Lname is the same as that of Lneed , but the reduction rules are differ-
ent. This calculus Lname has a different call-by-name-reduction than the one in
[SS07], since that calculus treats only beta-redexes as call-by-name, but uses a
sharing variant for (cp).

The reduction contexts Rname are contexts of the form L[A] where the
context classes A and L are defined by L ∈ L ::= [·] | letrec Env in L;
A ∈ A ::= [·] | (A s) where s is any expression. Normal order reduction name−−−→ is
defined by the following three rules:

(lapp) Rname [(letrec Env in t) s] → Rname [letrec Env in (t s)]
(beta) Rname [((λx.s) t)] → Rname [s[t/x]]
(cp) L[letrec Env , x = s in Rname [x]] → L[letrec Env , x = s in Rname [s]]

Note that name−−−→ is unique. An Lname -WHNF is defined as an expression of
the form L[λx.s]. We write s↓name iff there is a normal-order reduction to a
Lname -WHNF, i.e. iff s

name,∗−−−−−→ L[λx.s′].



3.3 The Lazy Lambda Calculus

In this subsection we give a short description of the lazy lambda calculus [Abr90],
denoted with Llazy , which is a call-by-name lambda calculus. The set E of Llazy -
expressions is that of the usual (untyped) lambda calculus: s, si, t ∈ E ::= x |
(s1 s2) | (λx.s) where e, ei are expressions, and x means a variable. The set W
of values are the Llazy -abstractions. The reduction contexts Rlazy are defined

by Rlazy ∈ Rlazy := [·] | (Rlazy s) where s is any Llazy -expression. A
lazy−−→-

reduction is defined by the rule: (beta) Rlazy [((λx.s) t)] → Rlazy [s[t/x]]. The
lazy−−→-reduction is unique.

We repeat the definitions and the required properties of Llazy , where proofs
can be found in [How89,How96,Abr90,AO93]. For basic definitions and conflu-
ence see e.g. [Bar84]. Since this calculus is well-studied and some properties are
folklore, there are different and alternative proofs of the properties below.We give
a sketch of how these proofs can be constructed in the Appendix B. We require
these properties in other sections and as properties of the target of translations,
which allows us to lift the properties to the calculi Lname and Lneed .

Definition 3.7 (Simulation in Llazy). Let η be a binary relation on closed
Llazy -expressions. Then s [η]lazy t holds iff s↓λx.s′ implies

(
t↓λx.t′ and for

all closed Llazy -expressions r the relation s′[r/x] η t′[r/x] holds
)
. The relation

≤b,lazy is defined as the greatest fixpoint of the operator [·]lazy .

For a relation η on closed expressions, let the open extension ηo be defined
as s ηo t iff for all closing substitutions σ: σ(s) η σ(t). Note that by the theorem
below, this can be shown to be equivalent to: for all closing substitutions σ that
replace variables by closed abstractions or Ω: σ(s) η σ(t). As an example ≤o

b,lazy

is the open extension of ≤b,lazy .
There are several variants of behaviorally and contextually defined relations

in Llazy , that are all equivalent to contextual approximation. We omit the proof
here, but it can be found in Appendix B.

Theorem 3.8. In Llazy , all the following relations are equivalent to contextual
approximation ≤lazy :

1. ≤o
b,lazy .

2. The relation ≤lazy,1 where s ≤lazy,1 t iff for all closing contexts C: C[s]↓ =⇒
C[t]↓.

3. The relation ≤lazy,2, defined as: s ≤lazy,2 t iff for all closed contexts C and
all closing substitutions: C[σ(s)]↓ =⇒ C[σ(t)]↓.

4. The relation ≤o
b,lazy,1 where ≤b,lazy,1 is defined using the Kleene-construction:

≤b,lazy,1=
⋂

i≥0 ≤′b,i, where ≤′b,0 is the relation E×E, and ≤′b,i+1 := [≤′b,i]lazy
for all i.

5. The relation ≤o
b,lazy,2 where ≤b,lazy,2 is defined as: s ≤b,lazy,2 t iff for all

n ≥ 0 and all closed expressions ri, i = 1, . . . , n: s r1 . . . rn↓ =⇒ t r1 . . . rn↓.
6. The relation ≤o

b,lazy,3, where ≤b,lazy,3 is defined as: s ≤b,lazy,3 t iff for all
n ≥ 0 and all ri, i = 1, . . . , n, where ri may be a closed abstraction or Ω:
s r1 . . . rn↓ =⇒ t r1 . . . rn↓.



7. The relation ≤o
b,lazy,4, where ≤b,lazy,4 is the greatest fixpoint of the operator

[·]lazy,aΩ on closed expressions. By definition s [η]lazy,aΩ t holds iff s↓λx.s′

implies t↓λx.t′ and for all closed Llazy -abstractions r and r = Ω, the relation
s′[r/x] η t′[r/x] holds.

Beta-reduction is a correct program transformation in Llazy :

Theorem 3.9. Let s, t be Llazy -expressions. If s
beta−−−→ t, then s ∼lazy t. For all

Llazy -expressions s, t: Ω ≤lazy s. If s, t are closed and s⇑ and t⇑, then s ∼lazy t.

Also the following can easily be derived from Theorem 3.8 and Theorem 3.9.

Proposition 3.10. For open Llazy -expressions s, t, where all free variables of
s, t are in {x1, . . . , xn}: s ≤lazy t ⇐⇒ λx1, . . . xn.s ≤lazy λx1, . . . xn.t

Proposition 3.11. Given any two closed Llazy -expressions s, t: for all closed
Llazy -abstractions r and also for r = Ω s r ≤lazy t r ⇐⇒ s ≤lazy t.

Proof. The if-direction follows from the congruence property. The only-if direc-
tion follows from Theorem 3.8.

4 The Translation W : Lneed → Lname

The translation W : Lneed → Lname is defined as the identity on expressions
and contexts, but the convergence predicates are changed. We will prove that
contextual equivalence based on Lneed -evaluation and contextual equivalence
based on Lname -evaluation are equivalent. We will use infinite trees to connect
both evaluation strategies. Note that [SS07] already shows that infinite tree
convergence is equivalent to call-by-need convergence. Thus, we mainly treat
call-by-name evaluation in this section.

We recall the definition of an infinite tree from [SS07], and describe the set of
trees as a calculus in the sense of Section 2 called Ltree : The set of infinite trees
T is co-inductively defined using the grammar T ∈ T ::= x | (T1 T2) | λx.T | ⊥
where x is a variable, T, T1, T2 are infinite trees, ⊥ is a (special) constant. Con-
texts are trees with exactly one occurrence of a hole (as a subexpression).

Definition 4.1. Tree reduction contexts R for (infinite) trees are inductively
defined by R ::= [·] | (R T ), where T stands for an infinite tree. The only
reduction on trees is:

(betaTr) ((λx.s) r) → s[r/x]

If the reduction rule is applied in an R-context, it is a normal order reduction
on trees tree−−→. Values are trees of the form λx.T , i.e. abstractions.



Now we define a translation IT from Lname -expressions into Ltree -
expressions.

We use Dewey notation, i.e. strings over {1, 2}, as positions of infinite trees,
where numbers are separated by a period. Here 1 refers to the left and 2 to the
right subtree of an application, and 1 to the body of an abstraction. The empty
string is denoted as ε. For an infinite tree T its label at position p (written as T ºp)
is defined as usual, i.e. (T1 T2)º1.p = T1ºp, (T1 T2)º2.p = T2ºp, (λx.T )ºε = λx,
(T1 T2)ºε = app, xºε = x, and ⊥ºε = ⊥. The subtree of T at position p is T |p.

Definition 4.2. Given an expression t, the infinite tree IT (t) of t is defined by
the labels at valid positions, where the positions and the labels of IT (t) for every
position are computed by the following algorithm, using the notation C[t′¼p] if the
algorithm searches the label at position p and is currently at the subexpression
t′. Given the expression t and a position p, if and only if the following rules
( 7→) (where C, Ci are Lname-contexts, s, t are Lname-expressions) exhaustively
applied to t¼p end with a label l ∈ {λx, app, x,⊥}, then p is a position of IT (t)
and IT (t)ºp = l .

The final steps in the label computation are as follows:

C[(λx.s)¼ε] 7→ λx
C[(s t)¼ε] 7→ app
C[x¼ε] 7→ x if x is a free or a lambda-bound variable
C[letrec x = C[x¼ε],Env in s] 7→ ⊥
C[letrec x1 = C1[y1], . . . , xn = Cn[x1¼ε],Env in s] 7→ ⊥

For the general cases, we proceed as follows:

1. C[(λx.s)¼1.p] 7→ C[λx.(s¼p)]
2. C[(s t)¼1.p] 7→ C[(s¼p t)]
3. C[(s t)¼2.p] 7→ C[(s t¼p)]
4. C[(letrec Env in r)¼p] 7→ C[(letrec Env in r¼p)]
5. C1[(letrec x = s,Env in C2[x¼p])] 7→ C1[(letrec x = s¼p,Env in C2[x])]
6. C1[letrec x = s, y = C2[x¼p],Env in r] 7→ C1[letrec x = s¼p, y = C2[x],Env in r]

In all cases not mentioned above, the result is undefined, and hence the position
p is not a position of the tree.

Lemma 4.3. Let s, t ∈ Lname . Then s
name,cp−−−−−→ t or s

name,lapp−−−−−−−→ t implies
IT (s) = IT (t).

Proof. For (cp) let s = C1[letrec x = s,Env in C2[x]] and t = C1[letrec x =
s,Env in C2[s]]. Then for IT (s) and IT (t) the only change may happen at the
position that corresponds to x in C2[x], but as the computation of the labels
shows, the labels remain unchanged.

For (lapp) let s = C[(letrec Env in s′) t′] and t = C[letrec Env in (s′ t′)].
Then it is again easy to observe that every label of every position is identical for
IT (s) and IT (t).



Lemma 4.4. Let s1 := Rname [(λx.s) t]
name,beta−−−−−−−→ Rname [s[t/x]] =: s2. Then

IT (s1 ) tree−−→ IT (s2 ).

Proof. The redex ((λx.s) t) is mapped by IT to a unique tree position within a
tree reduction context in IT (s1 ). The computation IT transforms ((λx.s) t) into
a subtree σ((λx.s) t), where σ is a substitution replacing variables by infinite
trees. The tree reduction replaces σ((λx.s) t) by σ(s)[σ(t)/x], hence the lemma
holds.

Proposition 4.5. Let s be an expression with s↓name . Then IT (s)↓tree .

Proof. This follows by induction on the length of a normal order reduction of s.
The base case holds, since IT (L[(λx .s)]) is always a value tree. For the induction
step we consider the first reduction of s, say s → s′. The induction hypothesis
shows IT (s ′)↓tree . If the reduction s → s′ is a (name,lapp) or (name,cp) re-

duction, then Lemma 4.3 implies IT (s)↓tree . If s
name,beta−−−−−−−→ s′, then Lemma 4.4

shows IT (s) tree−−→ IT (s ′) and thus IT (s)↓tree .

Now we show the other direction:

Lemma 4.6. Let s be an expression such that IT (s) = R[T ], where R is a
tree reduction context and T 6= ⊥. Then there is an expression s′ such that

s
name,(lapp)∨(cp),∗−−−−−−−−−−−−−→ s′, IT (s ′) = IT (s), s′ = R[s′′], IT (L[s ′′]) = T, where

R = L[A[·]] is a reduction context for some L-context L and some A-context A,
s′′ is a free variable, an abstraction or an application iff T is a free variable, an
abstraction or an application, respectively, and the position p of the hole in R is
also the position of the hole in A[·].

Proof. The tree T may be an abstraction, an application, or a free variable in
R[T ]. Let p be the position of the hole of R. We will show by induction on the

label-computation for p in s that there is a reduction s
name,(lapp)∨(cp),∗−−−−−−−−−−−−−→ s′,

where s′ as claimed in the lemma.
We consider the label-computation for p to explain the induction measure, where
we use the rule numbers of Definition 4.2. Let q be such that the label compu-
tation for p is of the form 4∗q and q does not start with 4. The measure for
induction is a tuple (a, b), where a is the length of q, and b ≥ 0 is the maximal
number with q = 2bq′. The base case is (a, a): Then the label computation is of
the form 2∗ and indicates that s is of the form L[A[s′′]] and satisfies the claim
of the lemma. For the induction step we have to check several cases:

1. The label computation is of the form 4∗2+4 . . .. Then a normal-order (lapp)
can be applied to s resulting in s1. The label-computation for p w.r.t. s1 is
of the same length, and only applications of 2 and 4 are interchanged, hence
the second component of the measure is strictly decreased.

2. The label computation is of the form 4∗2∗5 . . .. Then a normal-order (cp)
can be applied to s resulting in s1. The length q is strictly decreased by
1, and perhaps one 6.-step is changed into a 5.-step. Hence the measure is
strictly reduced. ut



Lemma 4.7. Let s be an expression with IT (s) tree−−→ T. Then there is some s′

with s
name,∗−−−−−→ s′ and IT (s ′) = T.

Proof. If IT (s) tree−−→ T , then IT (s) = R[(λx .t1 ) t2 ] where R is a reduction
context and T = R[t1[t2/x]]. Let p be the position of the hole of R in IT (s).
We first apply Lemma 4.6 to s and the tree context R[([·] t2)] and thus ob-
tain a reduction s

name,∗−−−−−→ s′, such that IT (s) = IT (s ′) and s′ = R[r] where
R = L[A[·]] is a reduction context and IT (L[r ]) = (λx .t1 ), and r is an ab-
straction. It is obvious that IT (s ′)|p.2 = t2 and that R = L[A′[[·] r2]]. Thus

s′ = L[A′[((λx.r1) r2)]]
name,beta−−−−−−−→ L[A′[r1[r2/x]] = s′′. Now one can verify that

IT (s ′′) = T must hold.

Proposition 4.8. Let s be an expression with IT (s)↓tree . Then s↓name .

Proof. We use induction on the length k of a tree reduction IT (s)
tree,k−−−−→ T ,

where T is a value tree. For the base case it is easy to verify that if IT (s) is
a value tree, then s

name,cp,∗−−−−−−−→ L[λx.s′] for some L-context and some s′. I.e.
s ↓name . The induction step follows by Lemma 4.7.

Corollary 4.9. For all Lname-expressions s: s↓name if, and only if IT (s)↓tree .

Theorem 4.10. ≤name = ≤need

Proof. We have shown that Lname -convergence is equivalent to infinite tree con-
vergence. In [SS07] it was shown that Lneed -convergence is equivalent to infinite
tree convergence. Hence, Lname -convergence and Lneed -convergence are equiva-
lent, which also implies that both contextual preorders and also the contextual
equivalences are identical.

Corollary 4.11. W is convergence equivalent and fully abstract.

5 Translation N : Lname → Llazy

We use multi-fixpoint combinators as defined in [Gol05] to translate letrec-
expressions into equivalent ones without a letrec. The translated expressions
belong to Llazy .

Definition 5.1. Given n > 1, a family of n fixpoint combinators Y n
i for i =

1, . . . , n can be defined as follows:

Y n
i := λf1, . . . , fn.( (λx1, . . . , xn.fi (x1 x1 . . . xn) . . . (xn x1 . . . xn))

(λx1, . . . , xn.f1 (x1 x1 . . . xn) . . . (xn x1 . . . xn))
. . .
(λx1, . . . , xn.fn (x1 x1 . . . xn) . . . (xn x1 . . . xn)))



The idea of the translation is to replace (letrec x1 = s1, . . . , xn = sn in r)
by r[S1/x1, . . . , Sn/xn] where Si := Y n

i F1 . . . Fn and Fi := λx1, . . . , xn.si.
In this way the fixpoint combinators implement the generalized fixpoint prop-

erty: Y n
i F1 . . . Fn ∼ Fi (Y n

1 F1 . . . Fn) . . . (Y n
n F1 . . . Fn). However, our transla-

tion uses modified expressions, as shown below.
Consider the expression Y n

i F1 . . . Fn. Expanding the notations,
we get ((λf1, . . . , fn.(Xi X1 . . . Xn)) F1 . . . Fn) where Xi =
λx1 . . . xn.(fi (x1 x1 . . . xn) . . . (xn x1 . . . xn)). Reducing further:

(λf1, . . . , fn.(Xi X1 . . . Xn)) F1 . . . Fn
β,∗−−→ (X ′

i X ′
1 . . . X ′

n),
where X ′

i = λx1 . . . xn.(Fi (x1 x1 . . . xn) . . . (xn x1 . . . xn))

We take the latter expression as the definition of the multi-fixpoint transla-
tion, where we avoid substitutions and instead generate β-redexes.

Definition 5.2. The translation N :: Lname → Llazy is recursively defined as:

– N(letrec x1 = s1, . . . , xn = sn in r) = ((λx1. . . . xn.(N(r))) U1 . . . Un)
where Ui = (λx1, . . . , xn.xi x1 . . . xn) X ′

1 . . . X ′
n,

X ′
i = λx1 . . . xn.Fi(x1x1 . . . xn) . . . (xnx1 . . . xn),

Fi = λx1, . . . , xn.N(si).
– N(s1 s2) = (N(s1) N(s2))
– N(λx.s) = λx.N(s)
– N(x) = x.

We extend N to contexts by treating the hole as a constant, i.e. N([·]) = [·].

Convergence equivalence of the translation N follows by inspecting the rela-
tion between Lname - and the translated Llazy -reductions. The full proof can be
found in Appendix C, Proposition C.6.

Proposition 5.3. N is convergence equivalent, i.e. ∀t ∈ Lname : t↓name ⇐⇒
N(t)↓lazy .

Lemma 5.4. The translation N is compositional, i.e. for all expressions t and
all contexts C: N(C[t]) = N(C)[N(t)].

Proof. This easily follows by structural induction on the definition.

Proposition 5.5. For all s, t ∈ Lname : N(s) ≤lazy N(t) =⇒ s ≤name t, i.e.
N is adequate.

Proof. Since N is convergence equivalent (Proposition 5.3) and compositional
by Lemma 5.4, we derive that N is adequate (see [SSNSS08] and Section 2).

Lemma 5.6. For letrec-free expressions s, t of Lname the following holds:
s, t ∈ Llazy and s ≤name t =⇒ s ≤lazy t.



Proof. Clearly every letrec-free expression of Lname is also an Llazy expression.
Let s, t be letrec-free such that s ≤name t. Let C be an Llazy -context such

that C[s]↓lazy , i.e. C[s]
lazy,k−−−−→ λx.s′. By comparing the reduction strategies in

Lname and Llazy , we obtain that C[s]
name,k−−−−−→ λx.s′ (by the identical reduction

sequence), since C[s] is letrec-free. Thus, C[s]↓name and also C[t]↓name , i.e.
there is a normal order reduction in Lname for C[t] to a WHNF. Since C[t] is
letrec-free, we can perform the identical reduction in Llazy and obtain C[t]↓lazy .

The language Llazy is embedded into Lname (and also Lneed) by the identity
embedding ι(s) = s. In the following proposition we show that every Lneed -
WHNF (and also every Lname -WHNF) is contextually equivalent to an abstrac-
tion:

Proposition 5.7. For all s ∈ Lname : s ∼name ι(N(s)). If s is an Lneed -WHNF
and N(s)↓lazyv where v is an abstraction, then s ∼need ι(v).

Proof. We first show that for all expressions s ∈ Lname : s ∼name ι(N(s)).
Since N is the identity mapping on letrec-free expressions of Lname and N(s)
is letrec-free, we have N(ι(N(s))) = N(s). Hence adequacy of N (Proposi-
tion 5.5) implies s ∼name ι(N(s)). Theorem 3.9 shows N(s) ∼lazy v and Propo-
sition 5.5 show that ι(v) ∼name ι(N(s)) ∼name s. Finally, Theorem 4.10 shows
the claim.

Proposition 5.8. For all s, t ∈ Lname : s ≤name t =⇒ N(s) ≤lazy N(t).

Proof. For this proof we treat Llazy expressions as Lname expressions. Let s, t ∈
Lname and s ≤name t. By Proposition 5.7: N(s) ∼name s ≤name t ∼name N(t)
and thus N(s) ≤name N(t). Since N(s) and N(t) are letrec-free, we can apply
Lemma 5.6 and thus have N(s) ≤lazy N(t).

Now we put all parts together, where (N ◦W )(s) means N(W (s)):

Theorem 5.9. N and N ◦ W are fully-abstract, i.e. for all Lneed -expressions
s, t: s ≤need t ⇐⇒ N(W (s)) ≤lazy N(W (t)).

6 On Simulation in Lneed

First we show that finite simulation (see [SSM08]) is correct for Lneed :

Proposition 6.1. Let s, t be closed expressions in Lneed . The following holds:(
For all closed abstractions r and for r = Ω: s r ≤need t r

)
⇐⇒ s ≤need t.

Proof. The ⇐ direction is trivial. We show the nontrivial part. Assume that for
all closed abstractions r and for r = Ω: s r ≤need t r. Then we transfer the
problem to Llazy as follows: N(s) and N(t) are closed expressions in Llazy . Since
the translation N is surjective, every closed Llazy -expression is in the image of N .
Thus for every closed Llazy -expression r′ that is an abstraction or Ω, there is some
Lneed -expression r, such that N(r) = r′. We have N(s) r′↓ =⇒ N(t) r′↓, since
N(s r) = (N(s) N(r)), and since N is fully abstract. We can apply Proposition
3.11 and obtain N(s) ≤lazy N(t). Now Theorem 5.9 shows s ≤need t.



Now we show that the co-inductive definition of an applicative simulation
results in a relation equivalent to contextual preorder. We show the following
helpful lemma:

Lemma 6.2. For all closed expressions s and r and Lneed -WHNFs w:
(s r)↓w ⇐⇒ ∃v : s↓v ∧ (v r)↓w.

Proof. In order to prove “⇒” let (s r)↓w. There are two cases,
which can be verified by induction on the length k of a reduc-
tion sequence (s r)

need,k−−−−→ w: (s r)
need,∗−−−−→ ((λx.s′) r)

need,∗−−−−→
w, where s

need,∗−−−−→ (λx.s′), and the claim holds. The other case is

(s r)
need,∗−−−−→ (letrec Env in ((λx.s′) r))

need,∗−−−−→ w, where s
need,∗−−−−→

(letrec Env in (λx.s′)). In this case ((letrec Env in (λx.s′)) r)
need,(lapp)−−−−−−−→

(letrec Env in ((λx.s′) r))
need,∗−−−−→ w, and thus the claim is proven. The “⇐”-

direction can be proven in a similar way using induction on the length of reduc-
tion sequences.

Definition 6.3. We define in Lneed a simulation ≤b,need as follows:
Let s, t be closed expressions and η be a binary relation on closed expressions.
Then s [η]need t holds iff s↓needv implies that t↓needw, and for all closed letrec-
free abstractions r and for r = Ω: (v r) η (w r).

The relation ≤b,need is defined to be the greatest fixpoint of [·]need within
binary relations on closed expressions. Its open extension is denoted with ≤o

b,need .

Proposition 6.4. In Lneed , for closed s, t the statement s ≤b,need t is equivalent
to the following condition for s, t:
∀n ≥ 0, and for all ri, i = 1, . . . , n that may be closed letrec-free abstractions or
Ω: (s r1 . . . rn)↓need =⇒ (t r1 . . . rn)↓need .

Proof. Lemma 6.2 makes Theorem A.11 (see Appendix A) applicable for the
tests ([·] r) where r is a closed letrec-free abstraction or Ω.

Now we can prove that the simulation relation ≤b,need is equivalent to the
contextual preorder on closed expressions:

Theorem 6.5. For closed expressions s, t: s ≤b,need t ⇐⇒ s ≤need t.

Proof. Let ≤need,0 the restriction of ≤need to closed expressions. It is easy
to verify that ≤need,0 ⊆ [≤need,0]need and thus for closed expressions s, t:
s ≤need t =⇒ s ≤b,need t. For the other direction let s ≤b,need t. The cri-
terion in Proposition 6.4 then implies that for all n ≥ 0 : s r1 . . . rn ↓need

=⇒ t r1 . . . rn ↓need , where ri are closed letrec-free abstractions or Ω. Full-
abstraction of N ◦W (see Theorem 5.9) implies that N(W (s r1 . . . rn)) ↓lazy
=⇒ N(W (t r1 . . . rn)) ↓lazy . Since N and W translate applications into
applications, this also shows that N(W (s)) N(W (r1)) . . . N(W (rn)) ↓lazy
=⇒ N(W (t)) N(W (r1)) . . . N(W (rn)) ↓lazy . Moreover, since every Llazy -
abstractions is an N ◦W -image of a letrec-free abstraction, we also conclude that
N(W (s)) ≤b,lazy,3 N(W (t)). Now Theorem 3.8 and full abstraction of N ◦ W
finally show s ≤need t.



Using the characterization in Proposition 6.4, it is possible to prove non-
trivial equations, as shown in the example below.

Example 6.6. We consider two fixpoint combinators Y1 and Y2, where Y1 is
defined non-recursively, while Y2 uses recursion. The definitions are: Y1 :=
λf.((λx.f (x x))(λx.f (x x))), Y2 := letrec fix = λf .f (fix f ) in fix .

Using Proposition 6.4 we can easily derive that Y1 K ∼need Y2 K where
K := λa.(λb.a). This follows since (Y1 K r1 . . . rn) converges for all n.
The obtained WHNF is equivalent (some letrec-bindings are garbage col-
lected, and some variable-to-variable chains are eliminated) to (letrec w =
(x x), k = (λa.(λb.a)), x = (λy.(k(yy))) in λu.w). Normal-order reduction of
(Y2 K r1 . . . rn) also always converges, where the WHNF is equivalent to the ex-
pression (letrec w = (fix k),fix = (λf .(f (fix f ))), k = (λa.(λb.a)) in (λu.w)).
Thus Y1 K ∼need Y2 K and both expressions are greatest elements w.r.t. ≤need .

For open expressions, we can lift the properties from Llazy , which also follows
from full abstraction of N ◦W and from Lemma 3.10.

Lemma 6.7. Let s, t be any expressions, and let the free variables of s, t be in
{x1, . . . , xn}. Then s ≤need t ⇐⇒ λx1, . . . , xn.s ≤need λx1, . . . , xn.t

The results above imply the following theorem:

Main Theorem 6.8 ≤need = ≤o
b,need .

The main theorem implies that our embedding of the call-by-need letrec
calculus into Abramsky’s lazy lambda calculus is isomorphic w.r.t. the corre-
sponding term models, i.e.:

Theorem 6.9. The identical embedding ι : Elazy → Eneed leads to an isomor-
phism between the term-models: Let the preorder, the quotients modulo ∼lazy and
∼need , and the lifting of ι be marked with an overbar. Then ι : Elazy → Eneed is
a bijection, and for all s1, s2 ∈ Elazy : s1 ≤lazy s2 ⇐⇒ ι(s1) ≤need ι(s2).

7 The Call-by-Need Lambda Calculus of Ariola &
Felleisen

For the sake of completeness we show that our results are transferable to the
call-by-need lambda calculus with letrec of [AF97]. The syntax is identical to
the calculus Lneed , but the standard reduction strategy of [AF97] differs from
our normal order reduction. In particular [AF97] do not provide a standard
reduction strategy but an equational system from which we will derive a standard
reduction.

We will show that the normal order reduction and the standard reduction
corresponding to the equational system of [AF97] are interchangeable and thus
define the same notion of contextual equivalence. As a further result we show
that bisimilarity can also be based on the strategy according to [AF97] and
coincides with contextual equivalence.



We recall the standard reduction strategy of [AF97]. We will denote the
notions related to Ariola & Felleisen’s calculus with a prefix or mark “AF”,
if necessary. First we introduce AF-evaluation contexts RAF that play a role
similar to our reduction contexts:

RAF ::= [·] | (RAF s) | letrec Env in RAF | letrec Env , x = RAF in RAF [x]
| letrec x1 = RAF , x2 = RAF [x1], . . . xn = RAF [xn−1],Env in RAF [xn]

In Figure 3 the standard reductions (abbreviated as AF-reduction) of [AF97,
Section 8] are shown where L is an L-context as introduced in Sect. 3.2 and
RAF,i, R

′
AF , R′′

AF are RAF -contexts. The calculus of [AF97] uses the notion of
a black hole which represents a cyclic dependency of the form letrec x1 =
RAF [xn], x2 = RAF [x1], . . . xn = RAF [x1]. In contrast to [AF97], we do not
consider a black hole to be an answer and therefore do not copy it in (deref)
rules. This reflects the authors’ intention, as shown by a similar copy restriction
in [AK94].

(βneed) RAF [(λx.s) r] → RAF [(letrec x = r in s)]
(lift) RAF [(letrec Env in L[λx.s]) r] → RAF [letrec Env in (L[λx.s] r)]
(deref) RAF,1[letrec Env , x = λy.s in RAF,2[x]]

→ RAF,1[letrec Env , x = λy.s in RAF,2[λy.s]]
(derefenv) R′

AF [letrec x1 = λy.s, x2 = RAF,2[x1], . . . , xn = RAF,n[xn−1],Env in R′′
AF [xn]]

→ R′
AF [letrec x1 = λy.s,

x2 = RAF,2[λy.s], . . . , xn = RAF,n[xn−1],Env in R′′
AF [xn]]

(assoc) RAF,1[letrec Env1, x = (letrec Env2 in L[λx.s]) in RAF,2[x]]
→ RAF,1[letrec Env1,Env2, x = L[λx.s] in RAF,2[x]]

(assocenv) R′
AF [letrec x1 = (letrec Env2 in L[λx.s]),

x2 = RAF,2[x1], . . . , xn = RAF,n[xn−1],Env1 in R′′
AF [xn]]

→ R′
AF [letrec Env2, x1 = L[λx.s],

x2 = RAF,2[x1], . . . , xn = RAF,n[xn−1],Env1 in R′′
AF [xn]]

Fig. 3. Reduction rules defining AF−−→

AF-answers are terms of the form L[λx.s]. We write s
AF−−→ t, iff s is trans-

formed into t by one of the rules in Fig. 3. If s
AF,∗−−−→ v where v an AF-answer,

then we write s ↓AF v or s ↓AF , resp. if the answer v is not of interest. For the
corresponding contextual approximation and equivalence we use ≤AF and ∼AF

as symbols.
Compared to the reduction strategy in Lneed , the AF-reduction performs the

let-shiftings (lapp), (llet-in), (llet-e) as late as possible. A difference from Lneed

is that sometimes reduction steps must be performed in deeply nested lets. For
instance, in letrec x = (letrec y = λz.z in (λu.z)(λuu)) in x the Lneed

reduction will apply (llet-e) immediately, whereas AF will reduce (λu.z)(λuu)
first, and only then apply (assoc).



Theorem 7.1. ↓need = ↓AF , ≤need = ≤AF and ∼need = ∼AF .

Proof. The proof of the first claim can be found in appendix E, Proposition E.5
and the other claims follows easily from the first.

Definition 7.2 (AF-simulation). Let s, t be closed expressions and η be a bi-
nary relation on closed expressions. Then s [η]AF t holds iff s↓AF v implies that
t↓AF w, where v and w are answers, and for all closed letrec-free abstractions
r and for r = Ω: (v r) η (w r). The relation ≤b,AF is defined to be the great-
est fixpoint of [·]AF within the binary relations on closed expressions. Its open
extension is denoted with ≤o

b,AF .

It remains to show that ≤o
b,AF = ≤AF . As a first step we derive an alternative

characterization of ≤b,AF .

Proposition 7.3. For closed s, t ∈ Lneed the relation s ≤b,AF t is equivalent
to: ∀n ≥ 0, and for all ri, i = 1, . . . , n that may be letrec-free abstractions or Ω:
(s r1 . . . rn)↓AF =⇒ (t r1 . . . rn)↓AF .

Proof. For all closed expressions s, r it holds: (s r) ↓AF w ⇐⇒
∃AF-answer v : s ↓AF v ∧ (v r) ↓AF . This follows since AF-reduction first evalu-
ates the argument in function position of an application to an AF-answer before
the second argument is evaluated. Now Theorem A.11 shows the claim.

Proposition 7.4. ≤b,need = ≤b,AF

Proof. Since ↓need = ↓AF the previous proposition and Proposition 6.4 show the
claim.

From Theorem 6.5 we already know that ≤b,need is equivalent to ≤need on
closed expressions. Thus ≤b,AF is identical to ≤need on closed expressions. This
easily extends to the open extension of ≤b,AF . Thus we have:

Theorem 7.5. ≤AF = ≤o
b,AF

8 Conclusion

In this paper we show that co-inductive bisimulation, in the style of Howe, is
equivalent to contextual equivalence in a deterministic call-by-need calculus with
letrec (i.e. let with cyclic bindings). As a further work one may extend the proof
to a call-by-need letrec calculus with case, constructors, and seq, but not to non-
determinism, since counterexamples exist that show that contextual equivalence
cannot be characterized by the usual notion of bisimulation.



References

AB02. Zena M. Ariola and Stefan Blom. Skew confluence and the lambda calculus
with letrec. Annals of Pure and Applied Logic, 117:95–168, 2002.

Abr90. Samson Abramsky. The lazy lambda calculus. In D. A. Turner, editor, Re-
search Topics in Functional Programming, pages 65–116. Addison-Wesley,
1990.

AF97. Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. J. Funct.
Programming, 7(3):265–301, 1997.

AFM+95. Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A
call-by-need lambda calculus. In POPL’95, pages 233–246, San Francisco,
California, 1995. ACM Press.

AK94. Z. M. Ariola and Jan Willem Klop. Cyclic Lambda Graph Rewriting. In
Proc. IEEE LICS, pages 416–425. IEEE Press, 1994.

AO93. Samson Abramsky and C.-H. Luke Ong. Full abstraction in the lazy lambda
calculus. Inf. Comput., 105(2):159–267, 1993.

Bar84. H. P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-
Holland, Amsterdam, New York, 1984.

Fel91. Matthias Felleisen. On the expressive power of programming languages.
Science of Computer Programming, 17(1–3):35–75, December 1991.

Gol05. Mayer Goldberg. A variadic extension of Curry’s fixed-point combinator.
Higher-Order and Symbolic Computation, 18(3-4):371–388, 2005.

How89. D. Howe. Equality in lazy computation systems. In 4th IEEE Symp. on
Logic in Computer Science, pages 198–203, 1989.

How96. D. Howe. Proving congruence of bisimulation in functional programming
languages. Inform. and Comput., 124(2):103–112, 1996.

Jef94. Alan Jeffrey. A fully abstract semantics for concurrent graph reduction. In
Proc. IEEE LICS, pages 82–91, 1994.

MOW98. John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda
calculus. J. Funct. Programming, 8:275–317, 1998.

MSS10. Matthias Mann and Manfred Schmidt-Schauß. Similarity implies equiva-
lence in a class of non-deterministic call-by-need lambda calculi. Informa-
tion and Computation, 208(3):276 – 291, 2010.

SS07. Manfred Schmidt-Schauß. Correctness of copy in calculi with letrec. In
Term Rewriting and Applications (RTA-18), volume 4533 of LNCS, pages
329–343. Springer, 2007.

SSM08. Manfred Schmidt-Schauß and Elena Machkasova. A finite simulation
method in a non-deterministic call-by-need calculus with letrec, construc-
tors and case. In Proc. of RTA 2008, number 5117 in LNCS, pages 321–335.
Springer-Verlag, 2008.

SSMS09. Manfred Schmidt-Schauß, Elena Machkasova, and David Sabel. Counterex-
amples to simulation in non-deterministic call-by-need lambda-calculi with
letrec. Frank report 38, Inst. f. Informatik, Goethe-University, Frankfurt,
2009.

SSNSS08. Manfred Schmidt-Schauß, Joachim Niehren, Jan Schwinghammer, and
David Sabel. Adequacy of compositional translations for observational
semantics. In 5th IFIP TCS 2008, volume 273 of IFIP, pages 521–535.
Springer, 2008.



SSNSS09. Manfred Schmidt-Schauß, Joachim Niehren, Jan Schwinghammer, and
David Sabel. Adequacy of compositional translations for observational se-
mantics. Frank report 33, Inst. f. Informatik, Goethe-University, Frankfurt,
2009.



A Characterizations of Similarity in Deterministic
Calculi

In this section we prove in a general way that for deterministic calculi (DC,
see Def. 2.1), the applicative similarity that is usually defined as the greatest
fixpoint of an operator on relations, is equivalent to the inductive definition
using Kleene’s fixpoint theorem. Moreover, we show that applicative similarity
can be equivalently defined as s ≤b t, iff for all n > 0 and closed expressions
ri, i = 1, . . . , n, the implication (s r1 . . . rn)↓ =⇒ (t r1 . . . rn)↓ holds, provided
the calculus is convergence-admissible, which means that for all r: (s r)↓v ⇐⇒
∃v′ : s↓v′ ∧ (v′ r)↓v.

Definition A.1. Let D = (E , C,→,W) be an untyped deterministic calculus and
let Q ⊆ C be a set of functions on expressions (i.e. ∀Q ∈ Q : Q :: E → E). Then
the Q-experiment operator [·]Q :: (E × E) → (E × E): is defined as follows

e1 [η]Q e2 iff e1 ↓ v1 =⇒ (e2 ↓ v2 ∧ ∀Q ∈ Q : Q(v1) η Q(v2))

We define Q-similarity ≤b,Q as the greatest fixed point of [·]Q

In the following we implicitly assume (E , C,→,W) to be an untyped deter-
ministic calculus and Q ⊆ C be a set of functions on expressions.

Lemma A.2. For all expressions e1, e2 ∈ E the following holds: e1 ≤b,Q e2 if,
and only if e1 ↓ v1 =⇒ (e2 ↓ v2 ∧ ∀Q ∈ Q : Q(v1) ≤b,Q Q(v2)).

Proof. Since ≤b,Q is a fixed point of [·]Q, we have ≤b,Q = [≤b,Q]Q. This equation
is equivalent to the claim of the lemma.

Now we show that the operator [·]Q is monotonous and lower-continuous,
and thus we can apply Kleene’s fixpoint theorem to derive an alternative char-
acterization of ≤b,Q.

Lemma A.3. The operator [·]Q is monotonous w.r.t. set inclusion, i.e. for all
binary relations η1, η2 on expressions η1 ⊆ η2 =⇒ [η1] ⊆ [η2].

Proof. Let η1 ⊆ η2 and e1 [η1]Q e2. The latter assumption implies that e1 ↓
v1 =⇒ (e2 ↓ v2 ∧ ∀Q ∈ Q : Q(v1) η1 Q(v2)) holds. From η1 ⊆ η2 we have e1 ↓
v1 =⇒ (e2 ↓ v2 ∧ ∀Q ∈ Q : Q(v1) η2 Q(v2)) . Thus, e1 [η2]Q e2.

For infinite chains of sets S1, S2 . . . , we define the greatest lower bound w.r.t.

set-inclusion ordering as glb(S1, S2, . . .) =
∞⋂
i=1

Si.

Proposition A.4. [·]Q is lower-continuous w.r.t. countably infinite descending
chains C = η1 ⊇ η2 ⊇ . . ., i.e. glb([C]Q) = [glb(C)]Q where [C]Q is the infinite
descending chain [η1]Q ⊇ [η2]Q ⊇ . . ..



Proof. “⊇”: Since glb(C) =
∞⋂
i=1

ηi, we have for all i: glb(C) ⊆ ηi. Applying

monotonicity of [·]Q yields [glb(C)]Q ⊆ [ηi]Q for all i. This implies [glb(C)]Q ⊆
∞⋂
i=1

[ηi]Q, i.e. [glb(C)]Q ⊆ glb([C]Q).

“⊆”: Let (e1, e2) ∈ glb([C]Q), i.e. for all i: (e1, e2) ∈ [ηi]Q. Unfolding the
definition of [·]Q gives: ∀i : e1 ↓ v1 =⇒ (e2 ↓ v2 ∧ ∀Q ∈ Q : Q(v1) ηi Q(v2)).
Now we can move the universal quantifier for i inside the formula: e1 ↓ v1 =⇒
(e2 ↓ v2 ∧ ∀Q ∈ Q : ∀i: Q(v1) ηi Q(v2)). This is equivalent to e1 ↓ v1 =⇒ (e2 ↓
v2 ∧ ∀Q ∈ Q : Q(v1)

( ∞⋂
i=1

ηi

)
Q(v2)) or e1 ↓ v1 =⇒ (e2 ↓ v2 ∧ ∀Q ∈ Q :

(Q(v1), Q(v2)) ∈ glb(C)) and thus (e1, e2) ∈ [glb(C)]Q.

Definition A.5. Let ≤b,Q,i for i ∈ N0 be defined as follows:

≤b,Q,0 = E × E and ≤b,i = [≤b,Q,i−1]Q, if i > 0

Theorem A.6. ≤b,Q =
∞⋂

i=1

≤b,Q,i

Proof. This follows by Kleene’s fixpoint theorem, since [·]Q is monotonous and
lower-continuous, and since ≤b,Q,i+1 ⊆ ≤b,Q,i for all i ≥ 0.

Note that this representation of ≤b,Q allows inductive proofs to show simi-
larity.

A.1 Q-Similarity for Convergence-Admissible DC

In this section we show that under certain conditions Q-similarity is identical to
≤Q which is defined below and can be interpreted as a observational preorder,
which uses the functions of Q as observers:

Definition A.7. Let (E , C,→,W) be an untyped deterministic calculus, and
Q ⊆ C. Then the relation ≤Q is defined as follows:

e1 ≤Q e2 iff ∀n ≥ 0, Qi ∈ Q : Q1(Q2(. . . (Qn(e1)))) ↓ =⇒ Q1(Q2(. . . (Qn(e2)))) ↓

Our characterization result will only apply if the underlying calculus is
convergence-admissible w.r.t. Q:

Definition A.8. An untyped deterministic calculus (E , C,→,W) is
convergence-admissible w.r.t. Q if, and only if ∀Q ∈ Q, e ∈ E : Q(e) ↓
v ⇐⇒ ∃v′ : e ↓ v′ ∧Q(v′) ↓ v

We show some helpful properties of ≤Q:

Lemma A.9. Let (E , C,→,W) be convergence-admissible w.r.t. Q. Then the
following holds:

– e1 ≤Q e2 =⇒ Q(e1) ≤Q Q(e2) for all Q ∈ Q



– e1 ≤Q e2, e1 ↓ v, and e2 ↓ w =⇒ v ≤Q w

Proof. The first part is easy to verify.
For the second part let e1 ≤Q e2, and e1 ↓ v, e2 ↓ w hold. Assume that

Q1(. . . (Qn(v))) ↓ v′ for some n ≥ 0 where all Qi ∈ Q. Convergence-admissibility
implies Q1(. . . (Qn(e1))) ↓ v′. Now e1 ≤Q e2 implies Q1(. . . (Qn(e2))) ↓ w′.
Finally, convergence-admissibility (applied multiple times) shows that e2 ↓ w
and Q1(. . . (Qn(w))) ↓ w′ holds.

We prove that ≤b,Q respects functions Q ∈ Q provided the underlying DC
is convergence-admissible w.r.t. Q:

Lemma A.10. Let (E , C,→,W) be convergence-admissible w.r.t. Q. Then for
all e1, e2 ∈ E : e1 ≤b,Q e2 =⇒ Q(e1) ≤b,Q Q(e2) for all Q ∈ Q

Proof. Let e1 ≤b,Q e2, Q0 ∈ Q, and Q0(e1) ↓ v1. By convergence admissibility
e1 ↓ v′1 holds and Q0(v′1) ↓ v1. Since e1 ≤b,Q e2 this implies e2 ↓ v′2 and for all
Q ∈ Q : Q(v′1) ≤b,Q Q(v′2). Hence, from Q0(v′1) ↓ v1 we derive Q0(v′2) ↓ v2. By
convergence admissibility this also implies Q0(e2) ↓ v2.

It remains to show for all Q ∈ Q: Q(v1) ≤b,Q Q(v2): Since Q0(v′1) ↓ v1 and
Q0(v′2) ↓ v2, applying Lemma A.2 to Q0(v′1) ≤b,Q Q0(v′2) implies Q(v1) ≤b,Q
Q(v2) for all Q ∈ Q.

We now prove that ≤Q and Q-similarity coincide for convergence-admissible
DC:

Theorem A.11. Let (E , C,→,W) be convergence-admissible w.r.t. Q. Then
≤Q = ≤b,Q holds.

Proof. “⊆”: Let e1 ≤Q e2. We use Theorem A.6 and show e1 ≤b,Q,i e2 for all
i. We use induction on i. The base case (i = 0) obviously holds. Let i > 0
and let e1 ↓ v1. Then e1 ≤Q e2 implies e2 ↓ v2. Thus, it is sufficient to show
that Q(v1) ≤b,Q,i−1 Q(v2) for all Q ∈ Q: As induction hypothesis we use that
≤Q ⊆ ≤b,Q,i−1 holds. Using Lemma A.9 twice and e1 ≤Q e2, we have
Q(v1) ≤Q Q(v2). The induction hypothesis shows that Q(v1) ≤b,Q,i−1 Q(v2).

“⊇”: Let e1 ≤b,Q e2. By induction on the number n of observers we show
∀n, Qi ∈ Q : Q1(. . . (Qn(e1))) ↓ =⇒ Q1(. . . (Qn(e2))) ↓. The base case fol-
lows from e1 ≤b,Q e2. For the induction step we use the following induction
hypothesis: e′1 ≤b,Q e′2 =⇒ ∀j < n, Qi ∈ Q : Q1(. . . (Qj(e′1))) ↓ =⇒
Q1(. . . (Qj(e′2))) ↓ for all e′1, e

′
2. Let Q1(. . . (Qn(e1))) ↓. From Lemma A.10 we

have e′′1 ≤b,Q e′′2 , where e′′i = Qn(ei). Now the induction hypothesis shows that
Q1(. . . (Qn−1(e′′1))) ↓ =⇒ Q1(. . . (Qn−1(e′′2))) ↓ and thus Q1(. . . (Qn(e2))) ↓.

B The Lazy Lambda Calculus: Citations and Sketch of
Proofs

In this section we prove Theorem 3.8 by using the results of the appendix A and
the proved equivalences in [How89,How96,Abr90]. For basic definitions and for
proofs of confluence of the unrestricted reduction see [Bar84].



Theorem B.1. In Llazy , all the following relations are identical:

1. ≤lazy .
2. ≤o

b,lazy .
3. The relation ≤lazy,1, defined as: s ≤lazy,1 t iff for all closing contexts C:

C[s]↓ =⇒ C[t]↓.
4. The relation ≤lazy,2, defined as: s ≤lazy,2 t iff for all closed contexts C and

all closing substitutions: C[σ(s)]↓ =⇒ C[σ(t)]↓.
5. The relation ≤lazy,3, defined as: s ≤lazy,3 t iff for all multi-contexts

M [·, . . . , ·] and all substitutions: M [σ(s), . . . , σ(s)]↓ =⇒ M [σ(t), . . . , σ(t)]↓.
6. The relation ≤lazy,4, defined as: s ≤lazy,4 t iff for all contexts C[·] and all

substitutions: C[σ(s)]↓ =⇒ C[σ(t)]↓.
7. The relation ≤o

b,lazy,1 where ≤b,lazy,1 is defined using the Kleene-construction:
I.e. ≤b,lazy,1=

⋂
i≥0 ≤′b,i, where ≤′b,0 is the full relation, and ≤′b,i+1:= [≤′b,i

]lazy for all i.
8. The relation ≤o

b,lazy,2 where ≤b,lazy,2 is defined as: s ≤b,lazy,2 t iff for all
n ≥ 0 and all closed expressions ri, i = 1, . . . , n: s r1 . . . rn↓ =⇒ t r1 . . . rn↓.

9. The relation ≤o
b,lazy,3, where ≤b,lazy,3 is defined as: s ≤lazy,3 t iff for all

n ≥ 0 and all ri, i = 1, . . . , n, where ri may be a closed abstraction or Ω:
s r1 . . . rn↓ =⇒ t r1 . . . rn↓.

10. The relation ≤o
b,lazy,4, where ≤b,lazy,4 is the greatest fixpoint of the operator

[·]lazy,aΩ on closed expressions: for all n ≥ 0 and all ri, i = 1, . . . , n, where
ri may be a closed abstraction or Ω: Then s [η]lazy,aΩ t holds iff s↓λx.s′

implies t↓λx.t′ and for all closed Llazy -abstractions r and r = Ω, the relation
s′[r/x] η t′[r/x] holds. The relation ≤b,lazy,4 is defined as the greatest fixpoint
of the operator [·]lazy,aΩ.

Proof. – (2) ⇐⇒ (3): This was proved in [How89,How96].
– (2) ⇐⇒ (4): This was proved in [Abr90]. This also implies that (β) is

correct for ∼lazy,2 and by the previous item it also correct for ∼lazy,1 (where
∼lazyi

=≤lazy,i ∩ ≥lazy,i).
– (1) ⇐⇒ (3): The “⇒”-direction is obvious. For the other direction let

s1 ≤lazy,1 s2 and let C be a context such that FV (C[s1]) ∪ FV (C[s2]) 6=
∅ = {x1, . . . , xn} and let C[s1] ↓, i.e. C[s1]

lazy,∗−−−−→ λx.t1. Let C ′ =

(λx1, . . . , xn.C) Ω . . . Ω︸ ︷︷ ︸
n-times

. Then si
lazy,β−−−−→ s′i = C[si][Ω/x1, . . . , Ω/xn] for

i = 1, 2. It is easy to verify that the reduction for C[s1] can also be performed

for s′i, since every reduction in the sequence C[s1]
lazy,∗−−−−→ λx.t1 cannot be

of the form R[xi] with R being a reduction context. Thus si ↓. Since C ′[si]
must be closed for i = 1, 2, the precondition implies C ′[s2] ↓ and also s′2 ↓.
Wlog. let s′2

lazy,∗−−−−→ λy.t2. It is easy to verify that every term in this sequence
cannot be of the form R[Ω] where R is a reduction context, since otherwise

the reduction would not terminate (since R[Ω]
lazy,+−−−−→ R[Ω]). This implies

that we can replace the Ω-expression by the free variables, i.e. that C[s2] ↓.
Note that this also shows by the previous items that (β) is correct for ∼lazy .



– (6) ⇐⇒ (1) One direction is trivial. For the other direction let s ≤lazy t
and let C be a context, σ be a substitution, such that C[σ(s)] ↓. Let σ =
{x1 → s1, . . . xn → sn} and let C ′ = C[(λx1, . . . , xn.[·]) s1 . . . sn]. Then

C ′[s]
β,n−−→ C[σ(s)]. Since (β)-reduction is correct for ∼lazy , we have C ′[s] ↓.

Applying s ≤lazy t yields C ′[t] ↓. Since C ′[t]
β,n−−→ C[σ(t)] and (β) is correct

for ∼lazy , we have C[σ(t)] ↓.
– (5) ⇐⇒ (6): Obviously, s ≤lazy,3 t =⇒ s ≤lazy,4 t. We show the other

direction by induction on n – the number of holes in M – that for all ex-
pressions s, t: s ≤lazy,4 t implies M [σ(s), . . . σ(s)] ↓ =⇒ M [σ(t), . . . σ(t)] ↓.
The base cases for n = 0, 1 are obvious. For the induction step as-
sume that M has n > 1 holes. Let M ′ = M [σ(s), ·2, . . . , ·n] and M ′′ =
M [σ(t), ·2, . . . , ·n] Then obviously M ′[σ(s), . . . , σ(s)] = M [σ(s), . . . , σ(s)]
and thus M ′[σ(s), . . . , σ(s)] ↓. For C = M [·1, σ(s), . . . , σ(s)] we have
C[σ(s)] = M ′[σ(s), . . . , σ(s)] and C[σ(t)] = M ′′[σ(s), . . . , σ(s)] Since
C[σ(s)] ↓, the relation s ≤lazy,4 t implies that C[σ(t)] ↓ and
thus M ′′[σ(s), . . . , σ(s)] ↓. Now the induction hypothesis shows that
M ′′[σ(t), . . . , σ(t)] ↓, since the number of holes of M ′′ is strictly smaller than
n. Since M ′′[σ(t), . . . , σ(t)] = M [σ(t), . . . , σ(t)] we have M [σ(t), . . . , σ(t)] ↓.

– (7) ⇐⇒ (2): This was proven in [Abr90] and also follows from Theo-
rem A.6, since the lazy lambda calculus is a DC we can choose Q = {[·] t |
t is a closed expression} and since (λx.s) t

lazy−−→ s[t/x].
– (8) ⇐⇒ (2): This follows for the relations on closed expressions by Theo-

rem A.11, since the DC for Llazy described before is convergence admissible.
It also holds for the extensions to open expressions, since the construction
for the open extension is identical for both relations.

– (9) ⇐⇒ (10): This follows for the relations on closed expressions by Theo-
rem A.11, since the DC for Llazy with Q = {[·] t | t is an abstraction or Ω} is
convergence admissible. It also holds for the extensions to open expressions,
since the construction for the open extension is identical for both relations.

– (8) ⇐⇒ (9): One direction is trivial. For the other direction let s ≤o
b,lazy,3 t

and let σ(s) r1 . . . rn ↓ for some closing substitution σ and closed ex-
pressions r1, . . . , rn. Since (β) is correct for ∼lazy for every expression
ri holds ri ∼lazy r′i where r′i is either a closed abstraction or Ω. Thus
(σ(s) r1 . . . rn) ∼lazy (σ(s) r′1 . . . r′n), which implies (σ(s) r′1 . . . r′n) ↓.
Now s ≤o

b,lazy,3 t shows (σ(t) r′1 . . . r′n) ↓. Applying contextual equivalence
again shows (σ(t) r1 . . . rn) ↓, i.e. s ≤o

b,lazy,2 t. ut

C Convergence Equivalence of N

The proof of convergence equivalence of the translation N may be performed
directly, but it would be complicated due to the additional (β)-reductions re-
quired in Llazy . For this technical reason we provide a second translation N ′,
which requires a special treatment for the translation of contexts and uses a
substitution function σ:



Definition C.1. The translation N ′ :: Lname → Llazy for expressions is recur-
sively defined as:

– N ′(letrec x1 = s1, . . . , xn = sn in r) = σ(N ′(r)) where

σ = {x1 7→ U1, . . . xn 7→ Un}
Ui = (X ′

iX
′
1 . . . X ′

n),
X ′

i = λx1 . . . xn.Fi(x1x1 . . . xn) . . . (xnx1 . . . xn),
Fi = λx1, . . . , xn.N ′(si).

– N ′(s1 s2) = (N ′(s1) N ′(s2))
– N ′(λx.s) = λx.N ′(s)
– N ′(x) = x.

The extension of N ′ to contexts requires that contexts are represented using
an additional substitution, i.e. a context translates into a pair (D,σ) acting as
a function on expressions. Filling the hole of a context (D,σ) by an expression
t is by definition (D,σ)(t) = D[σ(t)]. The translation is defined as

N ′(C) = (C ′, σ), if the hole of C is not inside the right hand side of any
letrec-binding. C ′ and σ are calculated by applying N ′

to C: for calculating C ′ the hole of C is treated as a
constant, and σ is the substitution affecting the hole of
C ′.

N ′(C) = (N(C), σ∅), if the hole of C is inside the right hand side of some
letrec-binding, N(C) treats the hole as a constant and
σ∅ is the empty substitution

This translation guarantees that the hole of contexts is not duplicated by the
translation. Note that using the translation N ′ for all contexts (without using
N) would lead to scoping problems when the context hole becomes a part of an
expression Ui.

Lemma C.2. The translation N is equivalent to N ′ on expressions, i.e. for all
Lname-expressions t the equivalence N(t) ∼lazy N ′(t) holds.

Proof. This follows from the definitions and correctness of beta-reduction in
Llazy by Theorem 3.9.

Now we first prove that the translation N ′ is convergence-equivalent. Due to
Lemma C.2 this will also imply that N is convergence-equivalent. All reduction
contexts in Lname translate into reduction contexts in Llazy , since removing the
case of letrec from the definition of a reduction context in Lname results in
the reduction context definition in Llazy . However, this can not be reversed,
since a letrecexpression applied to an expression is a (lapp) redex and does
not allow the marking algorithm to descend into the expression inside a letrec.
The lemma below gives a more precise characterization of this relation:



Lemma C.3. If C is a reduction context in Lname , then N ′(C) = C ′[σ(·)],
where C ′ is a reduction context in Llazy and σ is a substitution.

If C is a reduction context in Llazy , and N ′(C ′) = (C, σ) for some substitution
σ and some context C ′ in Lname , then C ′ is a W-context, which are defined as
W = L[W] | A[W] | [·] (L- and A-contexts are defined as before in Sect. 3.2).

Proof. The first claim can be shown by structural induction on C. It holds,
since applications are translated into applications and letrec-expressions are
translated into substitutions.

The other part can be shown by induction on the number of translations
steps. It is easy to observe that the definition of a reduction context in Lname

does not descend into letrec-expressions below applications. For instance, in
((letrec Env in ((λx.s) t)) r) the reduction contexts are [·] and ([·] r) and the
redex is (lapp), i.e. the reduction context does not reach ((λx.s) t). In general,
applications in such cases appear in contexts of the form W, as defined in the
lemma. By examining the expression definition we observe that these (lapp)-
redexes are the only cases where non-reduction contexts may be translated into
reduction contexts.

We inspect how WHNFs and values of both calculi are related w.r.t.l N ′:

Lemma C.4. Let s be a Lname-expression. Then s is a WHNF in Lname iff
N ′(s) is a WHNF in Llazy .

Proof. If s = L[λx.t] then N ′(s) = λx.σ(N ′(t)) is a WHNF. For the other di-
rection we assume that N ′(s) is an abstraction in Llazy . Then s cannot have a
beta redex or a (lapp) redex since both of these cases translate into an appli-
cation. To show that s cannot have a (cp)-redex, we consider the translation of
(L[letrec Env in R[x]]): N ′(L[letrec Env in R[x]]) results in R′[σ(N ′(x))]
where N ′(L[letrec Env in R]) = (R′, σ), N ′(x) = x, and σ maps x into an
application. R′ is a reduction context by Lemma C.3, and since σ(N ′(x)) is an
application, the expression N ′(s) has a beta-redex in a reduction context.

As the last case we need to verify that if s is irreducible but not a Lname -
WHNF then N ′(s) cannot be a WHNF. The only case needed to be inspected is
s = R[x] where x is a free variable, but then N ′(s) = R′[x] where R′ is a Llazy -
reduction context and x is free in N ′(s), i.e. N ′(s) is not a WHNF. Therefore it
cannot be the case that N ′(s) is a WHNF when s is not.

In the remaining part of this section we use reduction diagrams to show that
N ′ reflects and preserves convergence.

Transferring Lname-reductions into Llazy-reductions
In this section we analyze how normal order reduction in Lname can be trans-
ferred into Llazy via N ′. We illustrate this by using reduction diagrams. For
s1

name−−−→ s2 we analyze how the reduction transfers to N ′(s1). The cases are on
the rule used in s1

name−−−→ s2:



– (β) Let s = R[(λx.t)r] be an expression in Lname , where R is a reduction
context. We observe that in Lname : s

name−−−→ s′ = R[t[r/x]]. Let N ′(R[·]) =
(R′, σ). Then the translations for s and s′ are as follows:

N ′(s) = R′[σ(N ′((λx.t) r))] = R′[(λx.σ(N ′(t))) σ(N ′(r))]

N ′(s′) = N ′(R[t[r/x]]) = R′[σ(N ′(t[r/x]))] = R′[σ(N ′(t))[σ(N ′(r))/x]]

Since R′ is a reduction context in Llazy , this shows N ′(s)
lazy−−→ N ′(s′). Thus

we have the following diagram:

· N ′
//

name,β ��

·
lazy,β��

· N ′
// ·

– (cp) Consider the (cp) reduction. Without loss of generality we assume that
x1 is the variable that gets substituted:

t = L[letrec x1 = s1, . . . , xn = sn in R[x1]]
name,cp−−−−−→

t′ = L[letrec x1 = s1, . . . , xn = sn in R[s1]]

Let N ′(L) = ([·], σL), N ′(letrec x1 = s1, . . . , xn = sn in [·]) = ([·], σEnv ),
and N ′(R) = (R′, σR) where R′ is a reduction context. Then

N ′(t) = σL(σEnv (R′[σR(x1)])) = σL(σEnv (R′))[σL(σEnv (σR(x1)))]
= σL(σEnv (R′))[σL(σEnv (x1)))]

where the last step follows, since x1 cannot be substituted by σR, and

N ′(t′) = σL(σEnv (R′))[σL(σEnv (N ′(s1))))]

where it is again necessary to observe that σR(s1) = s1 must hold. The con-
text R′′ = σL(σEnv (R′)) must be a reduction context, since R′ is a reduction

context. This means that we need to show that R′′[σL(σEnv (x1)))]
lazy,∗−−−−→

R′′[σL(σEnv (N ′(s1)))] holds.
By definition of the translation N ′ (Definition C.1) σL(σEnv (x1)) = U1 =
(X ′

1X
′
1 . . . X ′

n), where X ′
i = λx1 . . . xn.Fi(x1x1 . . . xn) . . . (xnx1 . . . xn), and

Fi = λx1, . . . , xn.σL(N ′(si)), i.e., N ′(t) = R′′[U1].
Performing the applications, we transform U1 in 2n steps as

(λx1, . . . , xn.(F1(x1x1 . . . xn) . . . (xnx1 . . . xn)) X ′
1 . . . X ′

n
β,n−−→ F1 (X ′

1X
′
1 . . . X ′

n) . . . (X ′
nX ′

1 . . . X ′
n)

= (λx1, . . . , xn.σL(N ′(s1)) (X ′
1X

′
1 . . . X ′

n) . . . (X ′
nX ′

1 . . . X ′
n)

β,n−−→ σL(N ′(s1))[U1/x1, . . . , Un/xn].

Obviously, for all reduction contexts in Llazy we have: s
no−→ t implies

R[s] no−→ R[t]. Hence N ′(t)
2n,lazy,β−−−−−−→ R′′[σL(N ′(s1))[U1/x1, . . . , Un/xn]]



holds. Since x1, . . . , xn cannot occur free in L, the last expression is the
same as R′′[σL(σEnv (N ′(s1)))]. Thus the diagram is as follows:

· N ′
//

name,cp ��

·
lazy,β,2n��

· N ′
// ·

where n is the number of bindings in the letrec-subexpression where the
copied binding is.

– (lapp) The diagram for this case is:

· N ′
//

name,lapp ��

·

· N ′

::tttttt

This is because the argument in the (lapp) reduction does not depend on
the letrec environment:

R[(letrec Env in s) t] name−−−→ R[(letrec Env in (s t))]

Here free variables of t do not depend on Env so the translation of
t does not change by adding Env. I.e., for N ′(R) = (R′, σR) and
N ′(letrec Env in [·]) = ([·], σEnv) we have N ′(R[(letrec Env in s)t]) =
R′[σR(σEnv(N ′(s)) N ′(t))] = R′[σR(σEnv(N ′(s) N ′(t))] =
N ′(R[(letrec Env in (s t)]).

Transferring Llazy-reductions into Lname-reductions
We will now analyze how normal order reductions for N ′(s) can be transferred
into normal order reductions for s in Lname .

Let s be an Lname expression and N ′(s)
lazy−−→ s′. We split the argument into

three cases based on whether or not a normal order reduction is applicable to s:

– If s
(name)−−−−−→ t′, then we can use the already developed diagrams, since normal-

order reduction in both calculi is unique.
– s is irreducible and a WHNF. This case cannot happen, since then N ′(s)

would also be a WHNF (see Lemma C.4) and thus irreducible.
– s is irreducible but not a WHNF. Then s must be of the form R[x] where x is

a free variable in s. For the translation N ′(s) this would result in R′[σR(x)]
where N ′(R) = (R′, σR), R′ is a reduction context in Llazy . Since σR cannot
substitute x (x is free), we have N ′(s) = R′[x] which is impossible, since

N ′(s) is reducible by the assumption N ′(s)
lazy−−→ s′.

We summarize the diagrams in the following lemma:

Lemma C.5. Normal-order reductions in Lname can be transferred into reduc-
tions in Llazy , and vice versa, by the following diagrams:

· N ′
//

name,β ��

·
lazy,β��

· N ′
//

name,cp ��

·
lazy,β,2n��

· N ′
//

name,lapp ��

·

· N ′
// · · N ′

// · · N ′

==zzzzz



Proposition C.6. N ′ and N are convergence equivalent, i.e. for all Lname-
expressions t: t↓name ⇐⇒ N ′(t)↓lazy ( t↓name ⇐⇒ N(t)↓lazy , resp.).

Proof. We first prove convergence equivalence of N ′: Suppose t↓name . Let

t
name,k−−−−−→ s where s is a WHNF. We show that there exists an Llazy -WHNF

s′ such that N ′(t)
lazy,∗−−−−→ s′ by induction on k. The base case follows from

Lemma C.4. The induction step follows by applying a diagram from Lemma C.5
and then using the induction hypothesis.

For the other direction we assume that N ′(t)↓lazy , i.e. there exists a WHNF

s′ ∈ Llazy s.t. N ′(t)
lazy,k−−−−→ s′. By induction on k we show that there exists a

Lname -WHNF s such that t
name,∗−−−−−→ s. The base case is covered by Lemma C.4.

The induction step uses the diagrams. Here it is necessary to observe that the
(lapp)-diagram cannot be applied infinitely often without being interleaved with
other reductions. This is obvious, since there are no infinite sequences of (lapp)-
reductions.

It remains to show convergence equivalence of N : Let s↓name then N ′(s)↓lazy ,
since N ′ is convergence equivalent. Lemma C.2 implies N ′(s) ∼lazy N(s) and
thus N(s)↓lazy must hold. For the other direction Lemma C.2 shows that
N(s)↓lazy implies N ′(s)↓lazy . Using convergence equivalence of N ′ yields s↓name .

D Correctness of Reduction Rules in Lneed

A program transformation T is a binary relation on expressions. A transforma-
tion T is called correct, if it is included in the contextual equality, i.e. T ⊆ ∼c.
Note that a correct program transformation can be applied in any context since
contextual equivalence is a congruence. In this section we show that all calculus
reductions of Lneed preserve contextual equivalence.

Proposition D.1. The transformation (lbeta), (llet-in), and (lapp) are correct
program transformations for Lneed .

Proof. Let s, t be closed Lneed -expressions such that s
a−→ t where a is a (lbeta),

(llet-in), or (lapp) reduction. Recall that ≤b,need is defined in Definition 6.3.
We show that S := ({(s, t), (t, s)} ∪ ≤b,need) ⊆ ≤b,need : by proving that S
is [ ]need -dense, i.e. S ⊆ [S]need . For (s1, t1) ∈ ≤b,need obviously the following
holds: (s1, t1) ∈ [S]need , since ≤b,need is the greatest fixpoint of [ ]need . Let
s

a−→ t, and s ↓need v. Since s
a−→ t is the first step of the unique normal order

reduction of s, we have t ↓need v. Let r be a closed abstraction or Ω. Obviously
((v r), (v r)) ∈ ≤b,need ⊆ S. Now assume that t ↓need v. Since s

a−→ t is a normal
order reduction, we can reason as before and thus have S is [ ]need -dense. This
shows s ≤b,need t and t ≤b,need s. Since s, t were chosen arbitrarily this extends
to open terms in the usual way, and thus we have that (lbeta), (llet-in) and
(lapp) are correct program transformations.



Note that we cannot reason in the same way for (llet-e), (cp-in), and (cp-e),
since they are not necessarily normal order reductions of Lneed even if they are
applied in the empty context. E.g. the transformation letrec x = (letrec y =
λw.w in y) in((λu.u) x) → letrec x = y, y = λw.w in((λu.u) x) is a (llet-e)-
transformation, but not a normal order reduction.

Proposition D.2. The transformation (llet-e) is a correct program transforma-
tion.

Proof. Let s, t be closed Lneed -expressions such that s
llet−e−−−−→ t. We use Propo-

sition 6.4 to show that s ∼b,need t holds. First we show s ≤b,need t: With
i,llet−e−−−−−→ we denote internal (llet-e)-reductions, i.e. (llet-e)-reductions that are
not normal order. Let ri, i = 1, . . . , n, n ≥ 0 be closed abstractions or Ω. Let
s′ = s r1 . . . rn ↓need . If s′ is a WHNF, then t′ = t r1 . . . rn must be a WHNF,
too. Now assume that s′ is not a WHNF. We split the proof into two cases:

– n = 0 Then a case analysis shows that the following diagrams always holds
(where the normal order reduction cannot be a (lapp)-reduction):

s
i,llet−e //

need ��

t
need��

s0
i∨n,llet−e

// t0

– n > 0: Then the following diagram holds:

s
i,llet−e //

need,lapp ��

t
need,lapp��

s0
i∨n,llet−e

// t0

Now we can perform an induction on the length of the reduction sequences
s′

need,∗−−−−→ v where v is a WHNF, to show that t′ ↓need : The base case is already
covered. For the other cases we apply the overlapping diagrams to construct a
successful normal order reduction sequence for t′. Either the bottom reduction
in the diagram is

i,llet−e−−−−−→ and we can use the induction hypothesis, or it is a
n,llet−e−−−−−→-reduction, and the reduction sequences are joined.

Now we show t ≤b,need s: Let t′ = t r1 . . . rn ↓need where ri are closed
abstractions or Ω. If t′ is a WHNF, then s′ = s r1 . . . rn must be a WHNF, too.
If s −→ t is a normal order reduction, then the claim follows. For the other cases
we can construct a successful reduction sequence for s′ where the overlappings
are as before.

After extending this argument to open expressions in the obvious manner
the claim follows.

Proposition D.3. The transformations (cp-in) and (cp-e) are correct.



Proof. This has been proved in [SS07] for a more general rule, which allows to
copy arbitrary expressions.

We summarize that all calculus reductions of Lneed are correct:

Theorem D.4. The reduction rules (lbeta), (cp-in), (cp-e), (llet-e), (llet-in),
and (lapp) are correct program transformations in Lneed .

E The Call-by-Need Lambda Calculus of Ariola &
Felleisen

In this section we analyze the call-by-need lambda calculus with letrec of [AF97].
We first prove that AF-convergence and Lneed -convergence coincide. It is easy
to verify that AF-answers reduce to Lneed -WHNFs:

Lemma E.1. If s is an AF-answer, then s
need,llet−in,∗−−−−−−−−−→ s′ where s′ is a Lneed -

WHNF.

Lemma E.2. If s
AF−−→ t, then s ∼need t

Proof. This follows from Theorem D.4, since all AF-reductions are also correct
program transformations in Lneed which is shown by the following table:

AF-reduction need -transformation (usual non-standard)
βneed (lbeta)
(lift) (lapp)
(deref) (cp-in)
(derefenv) (cp-e)
(assoc) (llet-e)
(assocenv) (llet-e)

Proposition E.3. s ↓AF =⇒ s ↓need

Proof. Let s0 ↓AF , i.e. s0
AF−−→ s1

AF−−→ . . .
AF−−→ sn, where sn is an AF-answer. We

use induction on n. If n = 0, then Lemma E.1 shows the claim. For the induction
step we assume as induction hypothesis, that s1 ↓need holds. Since every AF-
reduction preserves contextual equivalence in Lneed , we have s0 ∼need s1 and
thus s0 ↓need must hold.

Lemma E.4. Let s
need−−−→ t and t ↓AF . Then s ↓AF holds.

Proof. Let s
need−−−→ t

AF,n−−−→ v where v is an AF-answer and n ≥ 0. By induction
on n we show that s ↓AF . For the base case t is AF-answer. By inspecting all
Lneed -reduction one can verify, that either s must be also be an AF-answer, or
s

AF−−→ t. Thus we have s ↓AF . For the induction step let t
AF−−→ t′

AF,n−1−−−−−→ v.



We need to consider overlappings of AF- and normal order reductions of the
following form:

s
need // t

AF��
t′

If the reduction s
need−−−→ t is also an AF-reduction then we are finished since then

obviously s ↓AF . Hence we only treat the other cases where we use as induction
hypothesis that for all r with r

need−−−→ t′ we have r ↓AF .

– s
need,lbeta−−−−−−→ t. Then s

βneed−−−→ t and thus the case trivially holds.
– s

need,lapp−−−−−−→ t. Suppose that this reduction is not an AF-reduction. Then
s = A[((letrec Env in r1) r2)] and t = A[letrec Env in (r1 r2)]. An
AF-reduction may modify the term t inside Env , inside r1 or for a copy-
operation the letrec-expression with the target in Env or r1. Nevertheless
the same reduction is applicable to s, i.e. the terms can be joined as follows:

s
AF ���

�
need,lapp// t

AF��
s′
need,lapp

//___ t′

The induction hypothesis shows s′ ↓AF and thus s ↓AF .
– s

need,llet−in−−−−−−−−→ t or s
need,llet−e−−−−−−−→ t. Suppose that this is not an AF-reduction.

Then again the AF-reduction for t can also be performed for s such that
there results are related by a normal order llet-reduction. Note that it may
happen that a deref or a assoc reduction for t is a derefenv or a assocenv

reduction for s.

s
AF ���

�
need,llet// t

AF��
s′

need,llet
//___ t′

Again the induction hypothesis shows s′ ↓AF and thus s ↓AF .
– s

need,cp−−−−−→ t. If an abstraction is copied, then s
AF−−→ t by a (deref) or

(derefenv) reduction. Thus this case is straightforward. If a variable is copied,
then this reduction cannot be an AF-reduction. Since the AF strategy fol-
lows variable-to-variable chains, every AF-reduction performed for t can also
be performed for s. In this case both terms result in the same expression.
For instance, let s = letrec x = λz.r, y = x in y. Then s

need,cp−−−−−→ t =
letrec x = λz.r, y = x in x, t

AF−−→ t′ = letrec x = λz.r, y = x in λz.r,
and s

AF−−→ t′. In summary this gives two situations:

s
AF ���

�
need,cp // t

AF��
s′

need,cp
//___ t′

s

AF $$I
I

I
need,cp// t

AF��
t′



For the first diagram we apply the induction hypothesis to s′ and then derive
s ↓AF . The second case is obvious.

Proposition E.5. s ↓need =⇒ s ↓AF .

Proof. Let s
need,n−−−−→ v where v is a WHNF and n ≥ 0. We use induction on n

to show s ↓AF . For the base case s is an Lneed -WHNF. Then s is an AF-answer,
too, i.e. s ↓AF . For the induction step let s

need−−−→ t
need,n−1−−−−−−→ v. As induction

hypothesis we use t ↓AF , i.e. there exists a reduction sequence t
AF,m−−−−→ w, where

w is an AF answer and m ≥ 0. I.e. this can be depicted as follows:

s
need // t

AF,m��

need,n−1 // v

w

Now we can apply Lemma E.4 to s
need−−−→ t

AF,m−−−−→ w and have s ↓AF .

Theorem E.6. ≤need = ≤AF and ∼need = ∼AF .

Proof. This follows since Lneed -convergence and AF-convergence are equivalent
predicates.


	Simulation in the Call-by-Need Lambda-Calculus with letrec
	Manfred Schmidt-Schauss and David Sabel and Elena Machkasova

