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Nuclear Overhauser effects (NOEs) are influenced by motion. Here, we derive exact, analytical results for
a model of isotropic, harmonic fluctuations of atom positions that corresponds to the one underlying
crystallographic B-factors. The model includes steric repulsion and yields closed-form expressions for
the expected value of general invertible functions of the distance between two atoms, with the special
case r�6 for NOEs. We discuss the implications for the definition of an NOE-based B-factor in solution
NMR.
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1. Introduction importance of an analytical treatment of the effect of thermal fluc-
The nuclear Overhauser effect (NOE) [1–3] plays an outstanding
role in NMR spectroscopy, since it provides a way to measure, in a
single NOESY experiment [4], a large number of distances in a
macromolecule [5], from which its three-dimensional structure
can be calculated [6,7]. For two isolated spins in a rigid molecule
that undergoes isotropic Brownian motion in solution, the NOE
intensity is proportional to r�6, where r is the distance between
the two spins [1]. If the molecule is not rigid, averaging occurs as
a result of the internal motion. Because of the r�6-dependence of
the NOE, this averaging is highly non-linear [8]. NMR spectro-
scopists are generally aware, in a qualitative sense, of the poten-
tially significant effects of this non-linear averaging, but a
quantitative analytical treatment, in analogy to the theory of B-
factors (also called atomic displacement parameters or, although
somewhat inappropriately [9], temperature factors) in X-ray crys-
tallography [10–12], appears to be lacking, and the question has
been addressed mostly through generalized order parameters
[8,13] and by numerical methods, e.g. by molecular dynamics sim-
ulations [14]. Ambiguous distance restraints in NMR structure cal-
culations [15] make quantitative use of the r�6-dependence of the
NOE, but for the different purpose of handling assignment ambigu-
ity and peak overlap in NOESY spectra [16,17]. The recently intro-
duced eNOE approach for an accurate treatment of NOEs in terms
of spin diffusion and experimental conditions [18] underlines the
tuations on the NOE.
Here, we provide analytical formulas for quantification.

Although the underlying geometric model of atomic position fluc-
tuations is straightforward, simple approaches, as well as the use
of symbolic computation software, were in our hands unsuccessful
in providing the desired analytical solutions. We therefore present
in this paper explicit derivations and verify their correctness by
comparison with numerical simulations. Finally, we discuss the
implications of spatial averaging on the NOE and its relationship
with crystallographic B-factors.
2. Theory

In this section, we derive exact analytic expressions without
and with consideration of steric repulsion for the probability den-
sity in Eqs. (8, 21) and the expected value in Eqs. (9–11,22,23) of an
invertible function gðj~x�~yjÞ of the distance j~x�~yj between two
atoms whose positions fluctuate around mean positions, and we
evaluate these for the special cases gðxÞ ¼ x in Eqs. (12, 24),
gðxÞ ¼ x2 in Eqs. (14, 25), gðxÞ ¼ xn for any even n in Eq. (15),
gðxÞ ¼ x�6 in Eq. (26), and gðxÞ ¼ x�3 in Eq. (27).

2.1. Model

We consider a harmonic oscillator model for the fluctuations of
atom positions that is analogous to the one used to derive isotropic
B-factors in X-ray crystallography [10–12]. We assume the Carte-
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sian coordinates ~x and ~y of the two atoms to be uncorrelated and
normally distributed around their respective mean positions ~x0
and ~y0 with standard deviation r (Fig. 1). The probability density
qð~x;~yÞ for finding the first atom at position~x and the second atom
at position ~y is

qð~x;~yÞ ¼ 1ffiffiffiffiffiffiffi
2p

p
r

� �6

e�
1
2

j~x�~x0 j
r

� �2
e�

1
2

j~y�~y0 j
r

� �2
ð1Þ

This simple model with independent distributions of the two atoms
can be extended to include steric repulsion, i.e. that the atoms can-
not come too close to each other. This is essential to treat functions
gðj~x�~yjÞ that diverge quickly for vanishing distances j~x�~yj ! 0,
which is the case for NOEs. To take steric repulsion into account,
we assume that the atoms must always keep a distance of at least
the steric repulsion limit c, and replace the probability density
qð~x;~yÞ of Eq. (1) by

qcð~x;~yÞ ¼
1
jc

qð~x;~yÞH j~x�~yj � cð Þ; ð2Þ

where H is the Heaviside function and the normalization constant
jc is chosen such that qcð~x;~yÞ is normalized (see Eqs. 18,19 below).

2.2. Probability density of a distance-dependent function

The probability density ~qðzÞ that a function gðj~x�~yjÞ assumes
the value z, is related to the joint probability density qð~x;~yÞ for
the atom positions by

~qðzÞ ¼
Z
R6

d3xd3yqð~x;~yÞd gðj~x�~yjÞ � zð Þ; ð3Þ

where d denotes the Dirac d-distribution. To evaluate Eq. (3), we
first change variables from ~x and ~y to

~u ¼ 1ffiffiffi
2

p ð~x�~x0Þ þ ð~y�~y0Þð Þ; ~v ¼ 1ffiffiffi
2

p ð~x�~x0Þ � ð~y�~y0Þð Þ:

which yields for the probability density of Eq. (3),

qð~x;~yÞ ¼ b
p

� �3

e�bð~x�~x0Þ2 e�bð~y�~y0Þ2 ¼ b
p

� �3

e�b~u2 e�b~v2
; ð4Þ
Fig. 1. Illustration of the model for atom fluctuations. We consider functions gðj~x�~yj
normally with standard deviation r around the mean positions ~x0 and ~y0 that are a d
distributions of Eq. (1) with r ¼ 0:75 Å and d ¼ 3 Å.

2

with b ¼ ð2r2Þ�1. The Jacobi determinant of the transformation
T : ð~x;~yÞ # ð~u;~vÞ is det T� ¼ �1, where T� is the matrix of partial

derivatives. Let f ðx2Þ � gðxÞ, ~d ¼~x0 �~y0; d ¼ j~dj; v ¼ j~v j, and h be

the angle between ~d and ~v . Since

j~x�~yj2 ¼ j
ffiffiffi
2

p
~v þ~dj2 ¼ d2 þ 2v2 þ 2

ffiffiffi
2

p
~d �~v;

we obtain for the probability density of Eq. (3)

~qðzÞ ¼ b
p

� �3 Z
R6
d3ud3v jdetT�je�b~u2 e�b~v2

d f ðj~x�~yj2Þ� z
� �

¼ b
p

� �3=2 Z
R3
d3v e�bv2 d f ðd2þ2v2þ2

ffiffiffi
2

p
~d �~vÞ� z

� �

¼2p b
p

� �3=2 Z 1

0
dvv2e�bv2�Z p

0
dh sinh d f ðd2þ2v2þ2

ffiffiffi
2

p
dv coshÞ� z

� �

¼2p b
p

� �3=2 Z 1

0
dvv2e�bv2

Z 1

�1
dxd f ðd2þ2v2þ2

ffiffiffi
2

p
dvxÞ� z

� �

ð5Þ

To evaluate the distribution d f ðaþ bxÞ � zð Þ (a ¼ d2 þ 2v2,
b ¼ 2

ffiffiffi
2

p
dv), we use the well-known relation

d hðxÞð Þ ¼
X

xk : hðxkÞ¼0

dðx� xkÞ
jh0ðxkÞj

;

where the prime denotes the derivative and the sum runs over all
zeros xk of the function h. Here, hðxÞ ¼ f ðaþ bxÞ � z. Assuming f to
be an invertible function, it follows that the function h has a single

zero at x1 ¼ ðf�1ðzÞ � aÞ=b, and

jh0ðx1Þj ¼ bjf 0ðaþ bx1Þj ¼ b f 0 f�1ðzÞ
� �			 			 ¼ b

ðf�1Þ0ðzÞ
			 			 :

Hence,

d f ðaþ bxÞ � zð Þ ¼ 1
b

ðf�1Þ0ðzÞ
			 			d x� f�1ðzÞ � a

b

 !
:

Þ of the distance j~x�~yj between two atoms with position coordinates distributed
istance d apart. Colored dots represent 2000 positions sampled from the normal
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Therefore, the second integral in the probability density of Eq. (5) is

non-zero if and only if �1 6 ðf�1ðzÞ � aÞ=b 6 1, which is equivalent

to the condition b2 � ða� f�1ðzÞÞ2 P 0 and yieldsZ 1

�1
dxd f ðaþ bxÞ � zð Þ ¼ 1

b
ðf�1Þ0ðzÞ
			 			H b2 � ða� f�1ðzÞÞ2

� �
; ð6Þ

Because we have for w ¼
ffiffiffi
2

p
v

b2 � ða� f�1ðzÞÞ2 ¼ 4d2w2 � ðd2 þw2 � f�1ðzÞÞ2

¼ � w4 þ 2ðd2 þ f�1ðzÞÞw2 � ðd2 � f�1ðzÞÞ2
h i

¼ � w2 � dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f�1ðzÞ

q� �2
" #

w2 � d�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f�1ðzÞ

q� �2
" #

;

this quantity is positive if the two terms in brackets have opposite
signs, and the Heaviside function in Eq. (6) evaluates to

H b2 � ða� f�1ðzÞÞ2
� �

¼ 1;
			d�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f�1ðzÞ

q 			 6 w 6
			dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f�1ðzÞ

q 			;
0; otherwise:

8<
:

UsingZ v2

v1

dv v e�bv2 ¼ 1
2

Z v2
2

v2
1

dxe�bx ¼ 1
2b

e�bv2
1 � e�bv2

2

� �
;

we obtain for the probability density ~qðzÞ of Eq. (5),

~qðzÞ ¼ 1
d

ffiffiffiffiffiffiffi
b
2p

r
ðf�1Þ0ðzÞ
			 			 e�

b
2 d�

ffiffiffiffiffiffiffiffiffi
f�1ðzÞ

p� �2
� e�

b
2 dþ

ffiffiffiffiffiffiffiffiffi
f�1ðzÞ

p� �2
 �
; ð7Þ

or, switching back from f to g using the relation f�1 ¼ ðg�1Þ2, the
final result

~qðzÞ ¼ 1
d

ffiffiffiffiffiffiffi
b
2p

r
g�1ðzÞ ðg�1Þ0ðzÞ

			 			 e�
b
2ðd�g�1ðzÞÞ2 � e�

b
2ðdþg�1ðzÞÞ2

h i
: ð8Þ

Eq. (8) expresses the probability density that the function gðj~x�~yjÞ
takes a given value z in closed form.

2.3. Expected value of a distance-dependent function

The expected value of the function gðj~x�~yjÞ is given by

hgðj~x�~yjÞi ¼
Z

dz ~qðzÞz;

where the integration extends over the values z ¼ gðj~x�~yjÞ taken
by the function g. Changing the integration variable to the distance
y ¼ j~x�~yj ¼ g�1ðzÞ, which implies dy ¼ jðg�1Þ0ðzÞjdz, and using Eq.
(8), one obtains

hgðj~x�~yjÞi ¼ 1
d

ffiffiffiffiffiffiffi
b
2p

r Z 1

0
dyy e�

b
2ðd�yÞ2 � e�

b
2ðdþyÞ2

h i
gðyÞ ð9Þ

¼ 1
d

ffiffiffiffiffiffiffi
b
2p

r Z 1

�d
dx ðxþ dÞgðxþ dÞe�b

2x
2

�

�
Z 1

d
dx ðx� dÞgðx� dÞe�b

2x
2

 ð10Þ

¼ 1
d

ffiffiffiffiffiffiffi
b
2p

r Z 1

�1
dx ðxþ dÞgðjxþ djÞe�b

2x
2
: ð11Þ

Since y e�
b
2ðd�yÞ2 � e�

b
2ðdþyÞ2

h i
¼ Oðy2Þ asymptotically for y ! 0, this

expected value exists only if gðyÞ ¼ oðy�3Þ for y ! 0þ.
The expected value of the distance between the two atoms can

be calculated as a special case of Eq. (10):
3

hj~x�~yji ¼ 1
d

ffiffiffiffiffiffiffi
b
2p

r Z 1

�d
dxðxþ dÞ2 e�b

2x
2 �
Z 1

d
dxðx� dÞ2 e�b

2x
2

� 


¼ dffiffiffiffi
p

p
g2

Z 1

�g
dzðzþgÞ2 e�z2 �

Z 1

g
dzðz�gÞ2 e�z2

� 


¼ dffiffiffiffi
p

p
g2

Z g

�g
dzðz2 þ g2Þe�z2 þ4g

Z 1

g
dzze�z2

� 


¼ d 1þ 1
2g2

� �
UðgÞ þ e�g

2ffiffiffiffi
p

p
g

( )
;

ð12Þ

where

g ¼ d

ffiffiffi
b
2

r
¼ d

2r
; and UðxÞ � 2ffiffiffiffi

p
p

Z x

0
dze�z2 ð13Þ

is the error function. If the spread in the positions of the two atoms
goes to zero, i.e. if r! 0 or g! 1, the expected value of the dis-
tance between the two atoms becomes equal to d, as expected.
For r > 0, the average distance is always larger than the distance
between the mean atom positions, i.e. hj~x�~yji > d.

The expected value of the squared distance can be calculated
using Eq. (11):

hj~x�~yj2i ¼ 1
d

ffiffiffiffiffiffiffi
b
2p

r Z 1

�1
dx ðxþ dÞ3 e�b

2x
2

¼ 1
d

ffiffiffiffiffiffiffi
b
2p

r Z 1

�1
dx ðx3 þ 3dx2 þ 3d2xþ d3Þe�b

2x
2

¼
ffiffiffiffiffiffiffi
b
2p

r Z 1

�1
dx ðd2 þ 3x2Þe�b

2x
2

¼ d2 þ 3
b
¼ d2 þ 6r2 ¼ d2 1þ 3

2g2

� �
:

ð14Þ

This result can be verified by the simple reasoning

hj~x�~yj2i ¼ hjð~x0 �~y0Þ þ ð~x�~x0Þ � ð~y�~y0Þj2i
¼ d2 þ hj~x�~x0j2i þ hj~y�~y0j2i
¼ d2 þ 6hðxð1Þ � xð1Þ0 Þ2i ¼ d2 þ 6r2;

which is possible because the distributions of the individual coordi-
nates are assumed to be independent. It follows again that

hj~x�~yj2i ! d2 (g ! 1) and hj~x�~yj2i > d2, if g < 1.
In general, we obtain from Eq. (11) for n ¼ 0;1; . . .

hj~x�~yj2ni ¼ 1
d

ffiffiffiffiffiffiffi
b
2p

r Z 1

�1
dx ðxþ dÞ2nþ1 e�

b
2x

2

¼ d2nffiffiffiffi
p

p
Z 1

�1
dz 1þ z

g

� �2nþ1

e�z2

¼ d2nffiffiffiffi
p

p
X2nþ1

k¼0

2nþ 1
k

� �
1
gk

Z 1

�1
dzzk e�z2

¼ d2nffiffiffiffi
p

p
Xn
k¼0

2nþ 1
2k

� �
1
g2k

Z 1

�1
dzz2k e�z2

¼ d2nffiffiffiffi
p

p
Xn
k¼0

2nþ 1
2k

� �
1
g2k C kþ 1

2

� �

Using Legendre’s duplication formula (see [19], p. 200)

ffiffiffiffi
p

p
Cð2zÞ ¼ 22z�1CðzÞC zþ 1

2

� �

we obtain

Cðkþ 1
2Þ

ð2kÞ! ¼ Cðkþ 1
2Þ

Cð2ðkþ 1
2ÞÞ

¼
ffiffiffiffi
p

p

22kCðkþ 1Þ
¼

ffiffiffiffi
p

p

22k k!
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and finally

hj~x�~yj2ni ¼ d2n 1þ
Xn
k¼1

ð2nþ 1Þ!
k! ð2nþ 1� 2kÞ!

1

ð2gÞ2k
" #

¼ d2n 1þ
Xn
k¼1

ð2nþ 1Þ!
k! ð2nþ 1� 2kÞ!

r
d

� �2k" #
:

ð15Þ

For instance, the expected value of the sixth power of the distance is

hj~x�~yj6i ¼ d6 1þ 42
r
d

� �2
þ 420

r
d

� �4
þ 840

r
d

� �6
 �
: ð16Þ

2.4. Model including steric repulsion

To study the effect of motional averaging on nuclear Overhauser
effects, it is relevant to look at the case gðxÞ ¼ x�6. However, with
the uncorrelated normal distributions of the atomic coordinates
that have been assumed so far, the expected value diverges,

hj~x�~yj�6i ¼ 1. To obtain a meaningful result, it must be consid-
ered that the atoms cannot come too close to each other. To take
this into account, we assume that the atoms must always keep a
distance of at least c, and replace the probability density qð~x;~yÞ by

qcð~x;~yÞ ¼
1
jc

qð~x;~yÞH j~x�~yj � cð Þ ð17Þ

with 0 < c < d and jc such that qcð~x;~yÞ is normalized, i.e.

jc ¼
Z
R6

d3xd3yqð~x;~yÞH j~x�~yj � cð Þ: ð18Þ

Taking the derivative with respect to c yields

�djc

dc
¼
Z
R6

d3xd3yqð~x;~yÞd j~x�~yj � cð Þ

¼ 1
d

ffiffiffiffiffiffiffi
b
2p

r
c e�

b
2ðd�cÞ2 � e�

b
2ðdþcÞ2

h i
;

or

jc ¼ 1 � 1
d

ffiffiffiffiffiffiffi
b
2p

r Z c

0
dx x e�

b
2ðd�xÞ2 � e�

b
2ðdþxÞ2

h i
:

The integral can be evaluated asZ c

0
dx x e�

b
2ðd�xÞ2 � e�

b
2ðdþxÞ2

h i
¼

¼
Z d�c

d
dy ðy� dÞe�b

2y
2 �

Z dþc

d
dy ðy� dÞe�b

2y
2

¼
Z dþc

d�c
dy ðd� yÞe�b

2y
2

¼ d

ffiffiffiffiffiffiffi
b
2p

r
U

ffiffiffiffiffiffiffiffi
b=2

q
ðdþ cÞ

� �
�U

ffiffiffiffiffiffiffiffi
b=2

q
ðd� cÞ

� �
 �

�1
b

e�
b
2ðd�cÞ2 � e�

b
2ðdþcÞ2

h i
:

For jc one obtains finally

jc ¼ 1 � 1
2

Uðgþ
c Þ �Uðg�

c Þ �
1ffiffiffiffi
p

p
g

e�g
�
c
2 � e�g

þ
c
2

� �
 �
ð19Þ

with dimensionless

g ¼ d

ffiffiffi
b
2

r
¼ d

2r
and g�

c ¼ g 1� c
d

� �
: ð20Þ

Instead of ~qðzÞ, we obtain the probability density

~qcðzÞ ¼
Z

d3xd3yqcð~x;~yÞd gðj~x�~yjÞ � zð Þ

¼ 1
jc

~qðzÞH sgnðg0Þðz� gðcÞÞð Þ;
ð21Þ
4

where sgnðg0Þ denotes the sign of g0. Since we assume the function g
to be invertible, sgn g0ðxÞð Þ does not depend on x.

2.5. Expected value of a distance-dependent function with steric
repulsion

The expected value of the function gðj~x�~yjÞ becomes

hgðj~x�~yjÞic ¼
Z

dz ~qcðzÞz

¼ 1
jcd

ffiffiffiffiffiffiffi
b
2p

r Z 1

c
dyy e�

b
2ðd�yÞ2 � e�

b
2ðdþyÞ2

h i
gðyÞ

¼ 1
jcd

ffiffiffiffiffiffiffi
b
2p

r Z 1

�dþc
dx ðxþ dÞgðxþ dÞe�b

2x
2

�

�
Z 1

dþc
dx ðx� dÞgðx� dÞe�b

2x
2



ð22Þ

or

hgðj~x�~yjÞic ¼ g
jc

ffiffiffiffi
p

p
Z 1

c=d
dxx e�g

2ð1�xÞ2 � e�g
2ð1þxÞ2

h i
gðxdÞ

¼ 2ge�g2

jc
ffiffiffiffi
p

p
Z 1

c=d
dxxe�g

2x2 sinhð2g2xÞgðxdÞ
ð23Þ

For instance,

hj~x�~yjic ¼
d
jc

1þ 1
2g2

� �
Uðgþ

c ÞþUðg�
c Þ

2
þg�

c e
�gþc

2 þ gþ
c e

�g�c 2

2
ffiffiffiffi
p

p
g2

( )
ð24Þ

and

hj~x�~yj2ic ¼ d2

jc
1þ 3

2g2

� �
1�Uðgþ

c Þ �Uðg�
c Þ

2

� ��

þ 1
2
ffiffiffiffi
p

p
g3

ð1þ g�
c
2 þ 3g2 � 3gg�

c Þe�g
�
c
2

�
�ð1þ gþ

c
2 þ 3g2 � 3ggþ

c Þe�g
þ
c
2
�o

:

ð25Þ

In the case gðxÞ ¼ x�6 that is relevant for the NOE, one obtains�
1

j~x�~yj6
�

c

¼ 1

d6

g
jc

ffiffiffiffi
p

p
Z 1

c=d
dx

e�g
2ð1�xÞ2 � e�g

2ð1þxÞ2

x5

¼ 1

d6

2ge�g2

jc
ffiffiffiffi
p

p
Z 1

c=d
dx

e�g
2x2 sinhð2g2xÞ

x5
:

ð26Þ

Eq. (26) describes the averaging of the NOE in closed form. No
approximations were made in deriving Eq. (26) and all preceding
results. These are therefore exact for the given model. The integral
in Eq. (26) cannot be expressed by elementary functions; it has to
be evaluated by numerical integration.

The analogous result for gðxÞ ¼ x�3, which bears relevance for
the averaging of the NOE in the fast motion regime [20], is�

1

j~x�~yj3
�

c

¼ 1

d3

g
jc

ffiffiffiffi
p

p
Z 1

c=d
dx

e�g
2ð1�xÞ2 � e�g

2ð1þxÞ2

x2

¼ 1

d3

2ge�g2

jc
ffiffiffiffi
p

p
Z 1

c=d
dx

e�g
2x2 sinhð2g2xÞ

x2
:

ð27Þ

2.6. Numerical simulation

The analytical results obtained so far can be corroborated by
numerical simulation. To this end, we generate a large number n
of samples of positions~xðiÞ and~yðiÞ (i ¼ 1; . . . ;n) from normal distri-
butions with standard deviation r, centered, without loss of gener-
ality, at ~x0 ¼ ð0;0;0Þ and ~y0 ¼ ðd;0;0Þ, and subject to the the
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condition j~xðiÞ �~yðiÞj > c. We can then approximate the expected
value of the function gðj~x�~yjÞ by

hgðj~x�~yjÞic �
1
n

Xn
i¼1

gðj~xðiÞ �~yðiÞjÞ ð28Þ
3. Results

Results can be given in universal manner by scaling all param-
eters by the distance d between the centers of the normal distribu-
tions of the two atom positions, i.e., by assuming units for which
d ¼ 1.

The influence of steric repulsion on the distribution of atom
positions is in most cases small, as evidenced by values of the nor-
malization constant jc close to one (Table 1). The normalization
constant jc is a measure of the accessible configuration space, rel-
ative to the configuration space that the two atoms could occupy
without steric repulsion. In all cases, jc < 1 because steric repusl-
sion decreases the accessible configuration space. The smallest
value jc ¼ 1=2 is obtained for c ¼ d in the limit r! 0, where
exactly half the original configuration space becomes inaccessible.

The average value hj~x�~yjic of the distance between two atoms
with thermal fluctuations that can be modeled by normal distribu-
tions is obtained from Eq. (12) if the fluctuations of the two atom
positions are totally independent from each other, or from Eq.
(24) if steric repulsion is considered. Numeric values are given in
Table 2 and plotted in Fig. 2a. They show, as expected, that
hj~x�~yjic is close to d for small amplitude fluctuations. For medium
fluctuation sizes, e.g., r ¼ 0:5d, the average values increase signif-
icantly because there are more configurations with j~x�~yj > d than
j~x�~yj < d. For (unrealistically) large standard deviations r	 d,
the average distance becomes proportional to r, i.e.,
hj~x�~yjic � 4r=

ffiffiffiffi
p

p � 2:26r. The effect of steric repulsion is mini-
mal, the average distance values in Table 2 increase only very little
with increasing steric repulsion limit c.

The picture is similar for the root-mean-square distance

hj~x�~yj2i1=2c that is given for selected values of the standard devia-
Table 1
Values of the normalization constant jc of Eq. (19) for different standard deviations r and

r=d c ¼ 0 c ¼ 0:2d c ¼ 0:4d

0.01 1.00000 1.00000 1.00000
0.02 1.00000 1.00000 1.00000
0.05 1.00000 1.00000 1.00000
0.10 1.00000 1.00000 1.00000
0.20 1.00000 0.99972 0.99495
0.50 1.00000 0.99780 0.98286
1.00 1.00000 0.99942 0.99541
2.00 1.00000 0.99991 0.99930
5.00 1.00000 0.99999 0.99995
10.00 1.00000 1.00000 0.99999

Table 2
Average distance hj~x�~yjic=d of Eq. (24) for different standard deviations r and steric repu

r=d c ¼ 0 c ¼ 0:2d c ¼ 0:4d

0.01 1.00020 1.00020 1.00020
0.02 1.00080 1.00080 1.00080
0.05 1.00500 1.00500 1.00500
0.10 1.02000 1.02000 1.02000
0.20 1.08000 1.08025 1.08383
0.50 1.47160 1.47451 1.49205
1.00 2.44028 2.44162 2.45016
2.00 4.60697 4.60736 4.60999
5.00 11.32137 11.32143 11.32189
10.00 22.58638 22.58640 22.58652

5

tion r and the steric repulsion limit c in Table 3, and plotted in
Fig. 2b.

In the case hj~x�~yj�6ic that is relevant for NOEs and shown in
Table 4 and plotted in Fig. 3a, the situation is quite different.
Because of the r�6-dependence, it is the small distance values that
dominate the calculation of the expected value. Hence, the steric
repulsion limit becomes an important parameter with a practically
relevant value of c � 2 Å, given by twice the repulsive core radius

of a hydrogen atom. In fact, hj~x�~yj�6ic diverges if steric repulsion
is not taken into account. The effect of averaging can be very pro-
nounced, as can be seen, for instance, for d ¼ 5 Å, r ¼ 1 Å, and
c ¼ 2 Å (corresponding to r ¼ 0:2d and c ¼ 0:4d in Table 4), where
the NOE is expected to be about 3.6 times stronger than in the

absence of internal motion. On the other hand, hj~x�~yj�6ic becomes
very small for large values of the standard deviation r, i.e., NOEs
are quenched by large atom position fluctuations as they occur,
for instance, in flexible tails and disordered loops in proteins,
where typically only very short-range NOEs can be observed.

When NOEs are used to obtain distance restraints for NMR
structure calculations, they are traditionally converted into upper
distance bounds according to a r�6 relationship using the isolated
spin pair approximation. In the presence of internal motion, this
can lead to incorrect distances. The effect can be quantified by
the ‘‘effective” distance

deff ¼ hj~x�~yj�6i�1=6
c : ð29Þ

Values of deff are given for selected values of the standard deviation
r and the steric repulsion limit c in Table 5, and plotted in Fig. 3b.
Specific examples are given in Fig. 4 for a strong, medium, and weak
NOE (d ¼ 2:4, 3.5, and 5.0 Å, respectively), fixed c ¼ 2 Å, and r in the
range of 0–8 Å.

For small r; deff is close to the distance d between the mean
positions, whereas intermediate values of r may lead to an
underestimation of the true distance between the centers of the
atom distributions, for instance by 20% for d ¼ 5 Å, r ¼ 1 Å, and
c ¼ 2 Å (corresponding to r ¼ 0:2d and c ¼ 0:4d in Table 5). For
even larger r, the effective distance significantly overestimates
steric repulsion limits c.

c ¼ 0:6d c ¼ 0:8d c ¼ d

1.00000 1.00000 0.50564
1.00000 1.00000 0.51128
1.00000 0.99818 0.52821
0.99869 0.94211 0.55642
0.96286 0.84813 0.61284
0.94460 0.87679 0.77927
0.98488 0.96537 0.93529
0.99765 0.99447 0.98935
0.99984 0.99962 0.99926
0.99998 0.99995 0.99991

lsion limits c.

c ¼ 0:6d c ¼ 0:8d c ¼ d

1.00020 1.00020 1.01136
1.00080 1.00080 1.02285
1.00500 1.00541 1.05814
1.02060 1.03718 1.11937
1.10242 1.15460 1.24939
1.53175 1.59549 1.68194
2.47088 2.50649 2.55797
4.61678 4.62924 4.64853
11.32311 11.32544 11.32920
22.58683 22.58744 22.58843



Fig. 2. Plots of (a) the average distance hj~x�~yjic and (b) the root-mean-square distance hj~x�~yj2i�1=2
c as a function of the standard deviation r for different values of the steric

repulsion limit c.

Table 3
Root-mean-square distance hj~x�~yj2i1=2c =d of Eq. (25) for different standard deviations r and steric repulsion limits c.

r=d c ¼ 0 c ¼ 0:2d c ¼ 0:4d c ¼ 0:6d c ¼ 0:8d c ¼ d

0.01 1.00030 1.00030 1.00030 1.00030 1.00030 1.01139
0.02 1.00120 1.00120 1.00120 1.00120 1.00120 1.02300
0.05 1.00747 1.00747 1.00747 1.00747 1.00784 1.05903
0.10 1.02956 1.02956 1.02956 1.03004 1.04465 1.12284
0.20 1.11355 1.11370 1.11613 1.13046 1.17512 1.26235
0.50 1.58114 1.58286 1.59434 1.62301 1.67299 1.74537
1.00 2.64575 2.64652 2.65177 2.66537 2.69027 2.72834
2.00 5.00000 5.00022 5.00175 5.00585 5.01366 5.02621
5.00 12.28821 12.28824 12.28850 12.28919 12.29053 12.29274
10.00 24.51530 24.51531 24.51537 24.51555 24.51589 24.51645
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the true distance. This is not a serious problem for conventional
NMR structure calculations where it is implicitly taken into
account by applying NOE-derived distances only as upper distance
bounds. The underestimation for medium standard deviations, on
the other hand, can result in inconsistent upper distance bounds
and/or structural distortions. Fig. 4 shows that the underestimation
is negligible for strong NOEs (e.g., d ¼ 2:4 Å), noticeable for
medium-strength NOEs (e.g., d ¼ 3:5 Å) in the range of r � 0:2–2
Å, and can be significant for weak NOEs (e.g., d ¼ 5 Å) in the range
of r � 0:4–4 Å.
6

Fig. 4 also shows that the analytical result is in agreement with
simulations using Eq. (28). Not surprisingly, the simulations are
very accurate for small standard deviations r and become noisy
for large standard deviations (dotted lines in Fig. 4).
4. Discussion

In this paper we have derived, for a harmonic model of atom
position fluctuations that is very similar to the one assumed in
the theory of the crystallographic B-factor, exact results for the spa-



Table 4
d6hj~x �~yj�6ic of Eq. (26) for different standard deviations r and steric repulsion limits c.

r=d c ¼ 0:2d c ¼ 0:4d c ¼ 0:6d c ¼ 0:8d c ¼ d

0.01 1.00301 1.00301 1.00301 1.00301 0.93587
0.02 1.01214 1.01214 1.01214 1.01214 0.87820
0.05 1.08068 1.08068 1.08068 1.07440 0.73578
0.10 1.42281 1.42098 1.37637 1.07182 0.56834
0.20 10.22288 3.64073 1.72165 0.80914 0.37256
0.50 33.39056 3.81099 0.99217 0.35828 0.15435
1.00 8.95396 1.05735 0.28887 0.11049 0.05070
2.00 1.37099 0.16824 0.04846 0.01972 0.00968
5.00 0.09299 0.01158 0.00341 0.00143 0.00073
10.00 0.01172 0.00146 0.00043 0.00018 0.00009

Fig. 3. Plots of (a) the NOE intensity hj~x�~yj�6ic , relative to an NOE between two non-fluctuating atoms at distance d, and (b) the NOE-derived distance deff ¼ hj~x�~yj�6i�1=6
c as

a function of the standard deviation r for different values of the steric repulsion limit c.
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tial impact of the motion on nuclear Overhauser effects and the dis-
tances that are derived from them for the purpose of NMR structure
determination. Effects are small for strong NOEs that correspond to
small distances but can reach to up to 20% underestimation of the
true distance for weak NOEs between atoms further apart. The
results also explain, on geometrical grounds, the general absence
of non-local NOEs in highly flexible structures, such as disordered
chain termini or loops and intrinsically disordered or denatured
proteins, unless residual local structure is present [21].
7

This treatment is, despite the exact handling of the spatial aver-
aging, an approximation for the NOE, which is a dynamic cross-
relaxation effect that also depends on the time-scales of the motion
involved.

The impact of (apart from steric repulsion) isotropic motion on
the NOE is under certain conditions not negligible, and one can
consider whether it should and how it could be included into
NMR structure calculation or refinement. Typical B-factors in crys-
tal structures are well below 100 Å2 [22], indicating that thermal



Table 5
deff=d for deff ¼ hj~x�~yj�6i�1=6

c obtained from Eq. (26) for different standard deviations r and steric repulsion limits c.

r=d c ¼ 0:2d c ¼ 0:4d c ¼ 0:6d c ¼ 0:8d c ¼ d

0.01 0.99950 0.99950 0.99950 0.99950 1.01111
0.02 0.99799 0.99799 0.99799 0.99799 1.02188
0.05 0.98715 0.98715 0.98715 0.98811 1.05247
0.10 0.94292 0.94312 0.94815 0.98851 1.09875
0.20 0.67879 0.80625 0.91343 1.03593 1.17887
0.50 0.55727 0.80013 1.00131 1.18658 1.36537
1.00 0.69395 0.99075 1.22994 1.44360 1.64376
2.00 0.94877 1.34590 1.65613 1.92388 2.16631
5.00 1.48569 2.10226 2.57704 2.97929 3.33592
10.00 2.09816 2.96767 3.63550 4.19928 4.69686

Fig. 4. Plot of the ‘‘effective” distance deff ¼ hj~x�~yj�6i�1=6
c (solid lines) as a function of the standard deviation r for three values of the distance between the two centers of the

atom distributions, d ¼ 2:4, 3.5, and 5.0 Å (indicated by horizontal dashed lines), that correspond to a strong, medium, and weak NOE, respectively. The steric repulsion limit
was set to c ¼ 2 Å. The dotted lines show corresponding results of numerical simulations using Eq. (28) with n ¼ 104 sample point pairs. The horizontal axis at the top shows
corresponding values of the crystallographic B-factor, B ¼ 8p2r2.

P. Güntert Journal of Magnetic Resonance 338 (2022) 107189
fluctuations of atom positions in crystals are below 1 Å, especially
if one takes into account that only part of the B-factors originates
from thermal fluctuations, i.e., that contributions also result from
absorbing other errors in fitting diffraction data to models [9].
Observed crystallographic B-factor values correspond to the left-
most 10% of the r-range depicted in Fig. 4. In this respect, it should
be kept in mind that internal motion in crystal structures is in gen-
eral reduced by conducting diffraction measurements at low tem-
peratures [23] and possible restrictions imposed by crystal
packing. Larger and more relevant internal motion is expected in
solution NMR experiments that are performed near physiological
conditions, and in particular for in-cell NMR [24] that studies pro-
teins in a cellular environment more heterogeneous than aqueous
solution. While motions of flexible parts of a protein can certainly
have amplitudes much larger than 1 Å in solution (while being
‘‘frozen” in crystals), this is less likely for ordered core regions,
where such large motions would probably weaken the dense but
nevertheless delicate network of non-bonded interactions, e.g.,
hydrogen bonds, that stabilizes the tertiary structure, and thus
impair the stability of native protein structures that is observed
under physiological conditions.

Would it be possible to determine an ‘‘NOE B-factor” by com-
paring NOEs with a three-dimensional structure? Possibly, if accu-
rately measured NOEs and an equally accurate structure are
8

available. In such an approach, the NOE measurement would yield
the experimental value for deff , while the structure provides the
value for d. In the present theory, these two quantities are con-
nected by Eqs. (29) and (26) that can be solved for the standard
deviation r. Whenever deff < d, there are two possible solutions
for r (or none, if deff is inconsistently short), as can be seen in
Fig. 4. In most cases, the smaller of the two possible r values would
be the relevant one, and the larger solution can be dismissed as
corresponding to unrealistically large fluctuations. Nevertheless,
the NOE has the potential to characterize fluctuations significantly
larger then those observable in high-resolution X-ray structures,
where the Gaussian form of the B-factor term implies that the scat-
tering power of an atom with high B-factor (e.g., above 100 Å2) and
its contribution to the calculated structure factors are negligible
[22].

However, there are also potential pitfalls in this ‘‘NOE B-factor”
scenario. On the experimental side, traditional, semi-quantitative
NOEs are too imprecise, but eNOEs, which compensate for spin-
diffusion and most of the dynamic and technical (pulse
sequence-related) influences [18,25,26] and can reach distance
accuracies better than 2% [27], can be accurate enough for the pur-
pose. Likewise, accurate mean positions of the atoms (to calculate
d) can be obtained from a high-resolution X-ray or high-quality
NMR structure. More challenging are probably theoretical limita-



P. Güntert Journal of Magnetic Resonance 338 (2022) 107189
tions inherent in the simple model that was assumed for this
study: In practice, fluctuations may often deviate from being iso-
tropic and harmonic. These effects have also been studied exten-
sively in X-ray crystallography, where they can be accounted for,
to a certain degree, by anisotropic displacement parameters
[9,28]. Fluctuations may also differ in size or being correlated for
the two atoms involved in an NOE; both are not accounted for
explicitly in the present exact theory, but could be considered
numerically. In addition, the present formalism does not explicitly
treat NOEs involving methyl protons, degenerate methylene pro-
ton pairs, and degenerate aromatic ring protons.

In conclusion, it is clearly advantageous for the study and dis-
cussion of the motional influence on the NOE to have at one’s dis-
posal the exact, analytical results for a relevant model that we have
derived in this paper.
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