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Zusammenfassung

Übersicht

In dieser Arbeit präsentieren wir die Ergebnisse der Gittersimulation einer dreidimension-
alen effektiven Theorie für eine SU(2) Eichtheorie bei endlichen Temperaturen. Unsere
Theorie verwendet thermische Wilson Linien und den dreidimensionalen magnetischen
Sektor als elementare Freiheitsgrade. Die Wirkung der effektiven Theorie respektiert alle
Symmetrien der Eichtheorie in vier Dimensionen. Sie ist invariant unter lokalen SU(2) Eich-
transformationen und zusätzlich invariant unter globalen Z(2) Transformationen, welche
dem Abel’schem Zentrum der SU(2) Gruppe entsprechen. Sie enthält das Quadrat des
dreidimensionalen Feldstärketensors, einen effektiven kinetischen Term der die Eichfelder
an die Wilson Linien koppelt und das störungstheoretische Potential der Wilson Lin-
ien bis zur ersten Ordnung. Zusätzlich wird ein “fuzzy bag” Term addiert, welcher einen
Phasenübergang erzeugt und nicht-störungstheoretische Fluktuationen zwischen Z(2) sym-
metrischen Grundzuständen generiert. Wir untersuchen die Theorie sowohl im Grenzfall
verschwindender Magnetfelder, als auch die volle Theorie in welcher dynamische Mag-
netfelder auftreten. Wir zeigen, dass die Theorie eine Phase mit spontan gebrochener
Z(2) Symmetrie besitzt in welcher der Polyakov Loop einen nicht-verschwindenden Wert
hat. In Analogie zur Quantenchromodynamik entspricht dies einer Aufhebung des Quark-
Confinement. Wir bestimmen das Phasendiagramm der Theorie und ermitteln die Ordnung
des Phasenübergangs an verschiedenen Stellen der Phasengrenze mittels Korrelationsfunk-
tionen und des Skalenverhaltens der Suszeptibilität. Wir zeigen dass im Bereich mittel
schwacher Kopplung nahe der Phasengrenze in der Symmetrie-gebrochenen Phase der “fuzzy
bag” Term Eigenwert Repulsion erzeugt, welche im Grenzfall extrem schwacher Kopplung
verschwindet. Wir zeigen dass ein nicht-triviales Z(2) symmetrisches Vakuum existiert.
Für die volle Theorie mit Eichfeldern untersuchen wir die räumliche String Spannung und
zeigen dass magnetische Observablen vom elektrischen Sektor nur schwach beeinflusst wer-
den. Desweiteren bestimmen wir das effektive Potential des Polyakov Loop, sowohl für den
Fall dass alle Fourier Moden betrachtet werden, als auch für “gekühlte” Konfigurationen
(“Block Spins”) in welchen das Polyakov Loop Feld über kleine Volumina gemittelt wird,
wodurch kurzreichweitige Fluktuationen unterdrückt werden. Für den ersten Fall finden wir,
dass eine Parametrisierung des Potentials nicht-analytische Terme enthält. Der zweite Fall
lässt sich in Analogie zur mittleren Feld Näherung (“mean field”) durch quadratische und
quartische Terme parametrisieren, plus einen Beitrag des Vandermonde Potentials, dessen
Stärke für verschiedene Regionen im Phasendiagramm variiert. Qualitative Vergleiche mit
der vierdimensionalen Eichtheorie zeigen dass das Verhalten des Block Spin Potentials in
der dreidimensionalen Theorie mit der vierdimensionalen Theorie übereinstimmt.
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Einleitung

Schwerionen Kollisions Experimente die am Relativistic Heavy Ion Collider (RHIC) im
Brookhaven National Lab in New York durchgeführt wurden haben einen Zustand der Ma-
terie erzeugt, in welchem Quarks und Gluonen aus ihrem hadronischen Bindungszustand
gelöst werden. Ein solches Verhalten wurde sowohl von Gittersimulationen der Quantenchro-
modynamik, als auch von analytischen Berechnungen im Hochtemperatur Limes der Theo-
rie vorhergesagt. Vieles deutet jedoch darauf hin dass bei den erzeugten Temperaturen, die
zwischen ein und dreimal der vorhergesagten kritischen Temperatur liegen, der erzeugte Ma-
teriezustand eher einer stark gebundenen Flüssigkeit als einem schwach gebundenem Plasma
entspricht. Der störungstheoretische Harte-Thermische-Schleifen (“Hard-Thermal-Loops”)
Formalismus kann thermodynamische Observablen wie den Druck oder die Entropiedichte
nur für Temperaturen oberhalb der doppelten Phasenübergangstemperatur beschreiben.
Dies impliziert dass der Temperaturbereich knapp oberhalb des Phasenuübergangs von nicht
perturbativen Effekten dominiert ist. Ebenso versagt in dieser Region die wohl bekannte
dreidimensionale effektive Theorie EQCD

Leff =
1

2
trF 2

ij + tr |DiA0|2 +m2
DtrA2

0 + · · · , (0.1)

welche den Hochtemperaturbereich der Quantenchromodynamik beschreibt und die statis-
chen Feldmoden des gluonischen Vektorpotentials als Freiheitsgrade verwendet.

Obige Ansätze gehen von der Annahme aus dass Fluktuationen in der Zeitkomponente des
Vektorpotentials als klein angesehen werden können. Dadurch verletzen sie die Z(3) Zen-
trumssymmetrie der SU(3) Eichgruppe. Numerische Berechnungen renormierter Polyakov
Loops haben gezeigt, dass diese Annahme bei Temperaturen ≥ 2Tc in guter Näherung erfüllt
ist. Das Hochtemperatur System ist in einem der (in der reinen Eichtheorie entarteten) Z(3)
Vakuumszustände fixiert. Knapp oberhalb des Phasenüberganges müssen jedoch Fluktua-
tionen zwischen Vakuumszuständen berücksichtigt werden. Eine effektive Theorie die dies
leistet, verwendet anstatt der Ai Felder die Matrix wertige thermische Wilson Linie

L(x) = Z−1
R P exp



ig
1/T∫

0

dτ A0(x, τ)



 , (0.2)

als effektiven Freiheitsgrad (Die Renormierungskonstante Z ist darstellungsabhängig. Wir
gehen wir von der Fundamentaldarstellung aus.). Im Rahmen eines solchen Ansatzes ist die
deconfined-Phase nicht als Gas freier Quasi-Teilchen beschrieben, sondern als Kondensat
Spin-artiger Matrix Variablen. Im Kontrast zu Modellen des Ferromagnetismus konden-
sieren diese jedoch bei hohen Temperaturen anstatt bei niedrigen. Die normierte Spur der
Wilson Linie

ℓ(x) =
1

N
TrL(x) , (0.3)

wird als Polyakov Loop bezeichnet und ist ein Ordnungsparameter für die spontane
Brechung der Z(3) Symmetrie, welche lokalen Eichtransformationen in der vierdimension-
alen Theorie die periodisch in Zeitrichtung bis auf einen globalen Z(3) Phasenfaktor sind
entspricht.
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Aufgrund der Z(3) Zentrumssymmetrie in der vollen Theorie kann der effektive elektrische
Beitrag zur dreidimensionalen effektiven Theorie nicht durch Ei(x) ∼ DiA0 gegeben sein.
Pisarski zeigte dass für eine effektive Theorie mit beliebig fluktuierendem A0, das effektive
elektrische Feld durch

Ei(x) =
T

ig
L†(x)Di(x)L(x) , (0.4)

gegeben ist. Im klassischen Limes ist die Lagrange Dichte einer Z(3) symmetrischen
effektiven Theorie daher durch

Leff
cl =

1

2
trF 2

ij +
T 2

g2
tr |L†DiL|2 . (0.5)

gegeben wobei Fij der dreidimensionale magnetische Feldstärketensor ist. Durch Schleifenko-
rrekturen muss jedoch auch das perturbative Potential der Wilson Linie berücksichtigt
werden. Dieses wurde von Gross, Pisarski und Yaffe bis zur ersten Schleifenordnung
berechnet und lautet

Leff
1−loop = − 2

π2
T 4
∑

n≥1

1

n4
|tr Ln|2 . (0.6)

Betrachtet man die Wirkung die durch die Summe der Terme (0.5) und (0.6) gegeben ist,
so sieht man dass diese durch das perturbative Vakuum, in welchem L ∼ 1 gilt, minimiert
wird. Um einen Phasenübergang herbeizuführen und nicht-perturbative Fluktuationen zu
erzeugen müssen zusätzliche Terme addiert werden. Eine Untersuchung der Temperat-
urabhängigkeit des Wechselwirkungsmaßes (“interaction measure”) suggeriert, dass der na-
heliegendste Ansatz ein Term der Form

Leff
non−pert. = BfT

2|trL|2 , (0.7)

ist, wobei der Vorfaktor Bf als “fuzzy bag” Konstante bezeichnet wird in Anlehnung an
das MIT Bag Modell. Im Kontrast zu diesem hat der “fuzzy bag” keinen scharf begrenzten
Rand.

In dieser Arbeit simulieren wir die effektive Theorie die durch die Summe der Terme (0.5),
(0.6) und (0.7) gegeben ist. Die vollständige Lagrange Dichte ist also

Leff =
1

2
trF 2

ij +
T 2

g2
tr |L†DiL|2 −

2

π2
T 4
∑

n≥1

1

n4
|trLn|2 +BfT

2|tr L|2 . (0.8)

Die Theorie ist nicht renormierbar und auf Längenskalen größer als 1/T gültig. Wir un-
tersuchen die SU(2) Theorie anstelle von SU(3) aufgrund der weniger komplexen Struktur
der Gruppenmannigfaltigkeit. Durch den nicht-abel’schen Charakter der SU(2) Theorie
reproduziert diese das qualitative Verhalten vieler Observablen der SU(3) Theorie in guter
Approximation.

Grundlagen der Gittersimulation

Wir simulieren die Theorie, welche durch (0.8) gegeben ist auf dreidimensionalen kubischen
Gittern mit periodischen Randbedingungen in allen Raumrichtungen. Wir machen zwei



vi Zusammenfassung

vereinfachende Annahmen: Zuerst vernachlässigen wir alle Terme des perturbativen Poten-
tials von höherer Ordnung als n = 1. Dadurch kann dass perturbative Potential mit dem
“fuzzy bag” Term zu einem einzigen Term ∼ |trL|2 zusammengefasst werden, welcher sich
wie ein Massenterm verhält. Wir weisen diesem Term eine Gitterkopplungskonstante m2 zu,
deren Betrag und Vorzeichen entscheiden ob perturbative oder nicht-perturbative Effekte
dominieren. Zweitens weisen wir dem magnetischen und elektrischen kinetischen Termen
eine gemeinsame Gitterkopplungskonstante β zu. Dies ist zulässig, da diese Arbeit die qual-
itativen Eigenschaften des Gittermodells untersucht und keine vollständige Anpassung der
Kopplungskonstanten an die 4D Theorie beabsichtigt.

Für den magnetischen Sektor wird die Standart Wilson Wirkung verwendet in welcher
die Eichfelder als Linkvariablen auftreten. Die zu (0.8) korrespondierende Gitterwirkung
lautet dann

S = β
∑

�

(1 − 1

2
ReTr U�) − 1

2
β
∑

〈ij〉

tr (LiUijL
†
jU

†
ij + h.c.) − m2

∑

i

|trLi|2 . (0.9)

Wir verwenden den Metropolis Algorithmus zur Erzeugung von Gitterkonfigurationen. Es
werden stochastische “Overrelaxation” Sweeps beigemischt um die Dekorrelation zu beschle-
unigen. Der Creutz Heat Bath Algorithmus wird zur Konsistenzprüfung implementiert,
kann aber aufgrund der quadratischen Terme nur im Fall m2 = 0 für das L Feld eingesetzt
werden. Es wird die Binning Methode verwendet um die integrierten Autokorrelationszeiten
elektrischer und magnetischer Operatoren abzuschätzen. Diese wird ausgenutzt um die op-
timale Anzahl der Sweeps zwischen einzelnen Messungen zu ermitteln.

Das Matrix wertige Feld L wurde über Kompaktifizierung der Euklidischen Zeitdimen-
sion erhalten. Im Falle nichtverschwindender Magnetfelder ist in der diskretisierten Gitter-
formulierung der kinetische Teil der Wirkung (0.9) äquivalent zu einer 4D Gittereichtheorie
mit Nτ = 1. Dies ermöglicht zwei verschiedene Update Verfahren für die Linkvariablen,
je nach Umgang mit den Randbedingungen in der kompaktifizierten Zeitrichtung, welche
als Zeit-Plaquetten Einfachzählung (“time-plaquette single counting”) und Doppelzählung
(“double counting”) bezeichnet werden. Wir stellen beide Vorgehensweisen gegenüber und
zeigen dass sie vergleichbare Ergebnisse liefern.

Ergebnisse

Effektive Theorie in drei Dimensionen ohne Magnetfelder

Erste Ergebnisse werden im Limes Ai = 0 erhalten (wodurch die Linkvariablen Uij auf
die Einheitsmatrix fixiert sind). Das resultierende Modell hat im Grenzfall m2 = 0 eine
globale SU(2)L × SU(2)R Symmetrie und keine lokalen Symmetriegruppen. Hinzufügen
des Massenterms bricht die globale Symmetrie explizit zu SU(2). Als Ordnungsparameter
werden sowohl der Erwartungswert des volumengemittelten Polyakov Loops 〈ℓ〉 betra-
chtet, als auch den Absolutbetrag u0 der “Länge” des gemittelten L Feldes im Raum der
Quaternionen, welche durch

u =

√
TrL

†
L/2 , u0 = 〈u〉 , (0.10)
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Figure 0.1: Phasendiagramm der effektiven Theorie ohne Eichfelder.

gegeben ist und von welcher ein endlicher Erwartungswert die spontane Brechung der
SU(2)L × SU(2)R Symmetrie zu SU(2)V signalisiert. Wir bezeichnen u0 aufgrund der Iso-
morphie SU(2)L×SU(2)R ≈ O(4) als O(4) Ordnungsparameter. Das ermittelte Phasendia-
gramm ist in Fig. 0.1 zusammengefasst. Es gibt zwei Phasengrenzen welche die Regionen in
denen SU(2)L ×SU(2)R gebrochen und ungebrochen ist und die Regionen gebrochener und
erhaltener Z(2) Symmetrie voneinander trennen. Messungen der inversen Korrelationslänge
welche mit der Matrix-Matrix Zweipunkt Funktion

CL(r) =
1

3

1

N3
s

∑

r̂,r0

1

2

〈
trL†(r0)L(r0 + r)

〉
, (0.11)

assoziiert ist bestätigen dass im linken oberen Bereich des Phasendiagramms Goldstone
Moden existieren welche den globalen SU(2)V Rotationen entsprechen. Extrapolationen der
Suszeptibilität zum Limes unendlichen Volumens, wie auch die im Folgenden Diskutierten
Eigenwertverteilungen, bestätigen dass der Phasenübergang in allen Bereichen zweiter Ord-
nung ist. Es werden Skalierungs-Exponenten der Korrelationslängen an der Phasengrenze
bestimmt.

Wir verallgemeinern die mittlere Feld Näherung welche von Kogut, Stone und Snow
für den Fall m2 = 0 diskutiert wurde auf den Fall m2 6= 0 und finden dass diese das
Modell in der Z(2) gebrochenen Phase nur in hinreichender Distanz von der Phasengrenze
beschreibt. Nahe der Phasengrenze wird die Gültigkeit der mittleren Feld Näherung durch
Fluktuationen zerstört.

Zuletzt bestimmen wir mit Histogrammen die Verteilungsfunktionen der Absolutbeträge
der Summe und Differenz der Eigenwerte λ1,2 der Wilson Linien L

ρ1(x) =
1

2
|λ1(x) − λ2(x)| , ρ2(x) =

1

2
|λ1(x) + λ2(x)| , (0.12)

in verschiedenen Regionen des Phasendiagramms. Wir finden dass für m2 = 0 und β < βC

die Verteilungen vollständig durch das SU(2) Gruppen Integrationsmaß dominiert sind.
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Figure 0.2: Links: Phasendiagramm der effektiven Theorie mit Zeit-Plaquetten Dop-
pelzählung. Rechts: Vergleich zur Zeit-Plaquetten Einfachzählung.

Der linke obere Bereich des Phasendiagramms entspricht einem nichttrivialen Z(2) sym-
metrischen Vakuum in welchem Confinement durch Eigenwertrepulsion erzeugt wird und in
welchem das mittlere Feld L im Unterraum der SU(2) Gruppe, welcher durch die Genera-
toren aufgespannt wird rotiert. Wir finden dass schwache Eigenwertrepulsion auch in der
deconfined Phase (rechts oben) nahe der Phasengrenze existiert und in Bereichen fern der
Phasengrenze unterdrückt ist.

Effektive Theorie in drei Dimensionen mit Magnetfeldern

Nach dem Hinzufügen des magnetischen Sektors hat das Modell die gewünschte lokale
SU(2) Symmetrie. Sowohl im Falle der Zeit-Plaquetten Einfachzählung als auch mit Dop-
pelzählung existiert nur eine einzige Phasengrenze welche der spontanen Brechung der glob-
alen Z(2) Zentrumssymmetrie entspricht. Die Phasendiagramme beider Updating Verfahren
sind in Fig. 0.2 dargestellt. Die Phasengrenzen weichen nur im Bereich m2 < 0 geringfügig
voneinander ab. Wir finden wiederum über das Skalenverhalten der Suszeptibilität und
der inversen Korrelationslänge der Matrix-Matrix Zweipunkt Funktion (welche um eichin-
variante Resultate zu liefern nun einen Paralleltransport der L Felder beinhaltet) an der
Phasengrenze dass der Phasenübergang in weiten Bereichen zweiter Ordnung ist. Allerd-
ings liefern die im Folgenden diskutierten Polyakov Loop Potentiale den Nachweis dass
für sehr große Werte des Parameters β der Phasenübergang zu einem erster Ordnung wird.
In keinem Bereich des Phasendiagramms sind masselose Goldstone Moden zu finden.

Nach Hinzufügen der Eichfelder sind eine Reihe von magnetischen Observablen zugänglich.
Wir untersuchen wie die Symmetriebrechung im elektrischen Sektor diese beeinflusst. Wir
bestimmen zuerst die, durch einen Faktor β geteilte, Wilson Wirkung

1

β
〈S�〉 =

〈
∑

�

(1 − 1

2
ReTr U�)

〉
(0.13)

im Limes m2 = 0 und finden dass diese mit steigendem β in guter Näherung exponentiell
abfällt. Desweiteren wird die räumliche Stringspannung

σS = a2 K , (0.14)
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bestimmt, indem Erwartungswerte rechteckiger geschlossener Raum-artiger Wilson Schleifen

W (C) =

〈
Tr

∏

i,j∈C

Uij

〉
. (0.15)

mit verschiedenem Flächeninhalt gemessen werden, und der Exponent des Potenzgesetzes

W (X,Y ) ∼ exp(−KXY ) , (0.16)

bestimmt wird, wobei X und Y die Seitenlängen der Wilson Schleife sind. Wir finden
dass auch σS mit steigendem β exponentiell abfällt. Sowohl σS als auch 〈S�〉/β weisen für
m2 = 0 keinerlei auffälliges Verhalten am Phasenübergangspunkt βC auf. Anschliessend
berechnen wir Zweipunkt Funktionen gleichsinnig orientierter, einander gegenüberliegender
Plaquetten um die effektive Masse magnetischer Anregungen abzuschätzen. Es zeigt sich
dass das Signal der Plaquetten Zweipunkt Funktion für β < βC sehr schwach wird und
für unsere numerische Genauigkeit im statistischen Rauschen verschwindet. Für β > βC

können wir eine Masse extrahieren welche im Rahmen der Meßgenauigkeit β unabhängig
ist.

In der m2 Abhängikeit von σS und 〈S�〉/β äussert sich der einzige beobachtete qualita-
tive Unterschied zwischen Zeit-Plaquetten Doppelzählung und Einfachzählung. In beiden
Fällen ist eine Diskontinuität von σS und 〈S�〉/β auf < 1% Niveau am Phasenübergang
zu beobachten. Die Größe des Sprungs nimmt mit steigendem β leicht zu. Ausserhalb der
Phasengrenze sind im Falle der Einzelzählung die magnetischen Observablen komplett m2

unabhängig. Für die Doppelzählung beobachten wir eine schwache Abhängigkeit, wiederum
im < 1% Bereich. Die magnetische Masse scheint in beiden Fällen nicht von β abzuhängen.

Wir bestimmen als nächstes das effektive Potential des Polyakov Loops, welches dem
Potential für die in Gleichung (0.12) definiterte Eigenwertfunktion ρ2 entspricht, da

ρ2(x) =
1

2
|λ1(x) + λ2(x)| =

√
ℓ2 . (0.17)

Das Potential wird aus der Verteilungsfunktion über

V (|ℓ|) = − logP (|ℓ|) (0.18)

erhalten. Wir finden, dass das so gewonnene effektive Potential sich in weiten Teilen des
Phasendiagramms durch den Ansatz

Vfit(ρ) = −1

2
log(1 − ρ2) + a− bρ+ cρ2 (0.19)

parametrisieren lässt. Dabei ist der Beitrag VVdm = −1
2 log(1 − ρ2) das Vandermonde

Potential welches durch das Gruppenmaß erzeugt wird. Der nicht-analytische Term ∼
ρ taucht nicht in der Gitterwirkung auf, wird also durch die Dynamik generiert. Wir
finden einfache heuristische Formeln um die β und m2 Abhängigkeiten der Konstanten
a, b, c zu beschreiben. Der quadratische Koeffizient c hängt in guter Näherung linear von
m2 ab. Der lineare Koeffizient b verschwindet in der confined Phase und steigt in der
deconfined Phase stetig an. Für β & 5 beobachten wir am Phasenübergang zwei verschiedene
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Potentialminima, was auf einen Übergang erster Ordnung hindeutet. Dort versagt auch der
Ansatz (0.19).

Als letztes bestimmen wir das effektive Potential für die langwelligen Feldmoden des ℓ(x)
Feldes. Dies wird erreicht, indem vor der Erstellung des Histogramms das Feld ℓ(x) über
kleine Würfel der Seitenlänge k gemittelt wird, also “Block Spins” der Form

ℓ̄
(k)
i =

1

k3

∑

n

1

2
TrL(i + n) , n = (0, 0, 0) . . . (k, k, k) ,

gebildet werden. Dies führt dazu, dass das effektive Potential steiler und symmetrischer um
das Minimum wird. Wir betrachten die Differenz zwischen Position des Potentialminimums
und numerischem Polyakov Loop Erwartungswert und nehmen diese, in Analogie zu einem
“mean field” Selbstkonsistenz Kriterium als Maß für die Vollständigkeit der Unterdrückung
kurzwelliger Fluktuationen. Wir finden dass mit unserer numerischen Präzision von k = 3
zu k = 4 keine signifikante Verbesserung zu sehen ist und nehmen k = 3 als hinreichend an.

Wir finden, dass eine Parametrisierung des effektiven Block Spin Potentials in weiten
Teilen des Phasenübergangs mit dem Ansatz

V (ρ) = −d0
1

2
log(1 − ρ2) + d1 + d2ρ

2 + d4ρ
4 , (0.20)

möglich ist. Die polynomischen Terme sind durch die Analogie zu einer Landau-Ginzburg
“mean field” Theorie motiviert. Es treten keine nicht-analytischen Terme auf. Wir finden,
dass ein variabler multiplikativer Parameter d0 für den Vandermonde Beitrag nötig ist.
Wir bestimmen die β und m2 Abhängigkeiten der Fitparameter. Auffällig ist, dass knapp
oberhalb des Phasenübergangs der Vandermonde Term stark unterdrückt ist und beim
entfernen von der Phasengrenze in Richtung steigender β und m2 ansteigt. Weit in der
deconfined Phase saturiert d0. Ein analoges Verhalten wird für k = 4 beobachtet. Wir zeigen
dass es möglich ist, die Unterdrückung des Vandermonde Terms in einen weiteren linearen
Term, der zum Potential addiert werden muss, absorbiert werden kann. Ein solcher Ansatz
führt aber in Bereichen des Phasendiagramms die nicht unmittelbar über der Phasengrenze
liegen zu einem unphysikalischen Potential welches nicht nach unten beschränkt ist.

Vergleich zur vierdimensionalen Yang-Mills Theorie

Wir führen Simulationen auch in der vollen vierdimensionalen SU(2) Eichtheorie durch, mit
der Standart Gitterwirkung

S = β
∑

�

(1 − 1

2
ReTr U�) . (0.21)

Das letztendliche Ziel einer solchen Untersuchung ist die genaue Anpassung der Kopplungpa-
rameter der dreidimensionalen effektiven Theorie an die 4D Eichtheorie (Dies wird erschwert
durch die Nicht-Renormierbarkeit der effektiven Theorie.). Dieses Ziel geht jedoch über den
Rahmen dieser Arbeit hinaus. Wir präsentieren lediglich einige qualitative Vergleiche.

Wir verwenden zur Simulation der 4D Theorie den Gittereichtheorie Code der MILC
Kollaboration1. Wir reproduzieren zunächst einige hinreichend bekannte Ergebnisse zur

1http://physics.utah.edu/˜detar/milc.html
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Konsistenzprüfung. Zu diesen gehört der Phasenübergangspunkt βC für verschiedene Nτ

und das Verhalten der Stringspannung als Funktion von β. Messungen der inversen Ko-
rrelationslängen bestätigen die Abwesenheit von Goldstone Moden. Anschliessend bes-
timmen wir für ein festes Nτ das effektive Potential des Polyakov Loops und der oben
definierten Block Spins. Wir zeigen, dass das Polyakov Loop Potential analog zu (0.19)
parametrisieren lässt, dass allerdings der quadratische Term sehr klein ist. Für das Block
Spin Potential finden wir ein Verhalten welches mit der 3D Theorie übereinstimmt: Eine
Parametrisierung durch (0.20) ist möglich und der Vandermonde Term ist knapp oberhalb
des Phasenübergangs unterdrückt.
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Abstract

We present lattice simulations of a center symmetric dimensionally reduced effective field
theory for SU(2) Yang Mills which employ thermal Wilson lines and three-dimensional
magnetic fields as fundamental degrees of freedom. The action is composed of a gauge in-
variant kinetic term, spatial gauge fields and a potential for the Wilson line which includes a
”fuzzy” bag term to generate non-perturbative fluctuations between Z(2) degenerate ground
states. The model is studied in the limit where the gauge fields are set to zero as well as the
full model with gauge fields. We confirm that, at moderately weak coupling, the ”fuzzy” bag
term leads to eigenvalue repulsion in a finite region above the deconfining phase transition
which shrinks in the extreme weak-coupling limit. A non-trivial Z(N) symmetric vacuum
arises in the confined phase. The effective potential for the Polyakov loop in the theory
with gauge fields is extracted from the simulations including all modes of the loop as well as
for cooled configurations where the hard modes have been averaged out. The former is found
to exhibit a non-analytic contribution while the latter can be described by a mean-field like
ansatz with quadratic and quartic terms, plus a Vandermonde potential which depends
upon the location within the phase diagram. Other results include the exact location of
the phase boundary in the plane spanned by the coupling parameters, correlation lengths
of several operators in the magnetic and electric sectors and the spatial string tension. We
also present results from simulations of the full 4D Yang-Mills theory and attempt to make
a qualitative comparison to the 3D effective theory.
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1 Notations and conventions

Here we summarize notations and conventions used throughout this work. We mostly follow
the conventions of Peskin and Schroeder [1] for continuum physics and of Creutz [2]
for lattice physics with a few additions and slight modifications.

Units

We work in natural units, where

~ = c = 1 . (1.1)

In this system,

[length] = [time] = [energy]−1 = [mass]−1 . (1.2)

Also, we define

kB = 1 , (1.3)

which implies

[temperature] = [energy] . (1.4)

Tensors

We work exclusively in Euclidean space. The four-dimensional metric tensor is

gµν = gµν = diag(1, 1, 1, 1) , (1.5)

with greek indices running over 0, 1, 2, 3 or (τ ≡ it),x,y,z. Roman indices i, j, etc. denote
spatial components. Pairs of repeated indices are summed in all cases.

We use roman indices i, j, k also to label lattice sites and index pairs to label links. Where
the difference from vector and matrix elements does not follow directly from the context,
we will mention it explicitly in the text.

Four-vectors and numbers are denoted by light italic type. Three-vectors are written in
boldface type. We will distinguish between covariant and contravariant four-vectors, even
though their components are the same in this metric. For example:

xµ = (x0,x), xµ = gµνx
ν = (x0,x) ; (1.6)

p · x = gµνp
µxν = p0x0 + pipi = p0x0 + p · x (1.7)
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Group theory

For all matrices which are elements of the special unitary group SU(N), we define the
normalized trace trU (written in lower-case) as

trU =
1

N
TrU , U ∈ SU(N) , (1.8)

where TrU is the actual trace without any normalization factors. The summation convention
applies for repeated group indices. These are written as roman letters a, b, c. We use
a definition of unitary groups with Hermitian generators throughout most of this work.
The single exception is section 5.1 where anti-Hermitian generators are used for better
readability.

We have chosen to introduce group theoretical concepts relevant to this work in detail
in appendix A, separate from the main text to not interrupt the reader who is thoroughly
familiar with them. All SU(2) matrices considered in this work are parameterized by the
quaternionic parameterization (see eq. A.22 and following).

Lattice particulars

This work aims at investigating a lattice model in its own right. Thus throughout most
parts of this work, the lattice spacing will be set to one.

For a function f of a field L(x), defined on a three dimensional lattice, we denote the
ensemble average with angular brackets:

〈f(L)〉 =

∫ ∏

n

[dLn] f(L) e−S(L) . (1.9)

Here the product runs over all lattice sites. Volume averages are marked with a bar

L =
1

N3
S

∑

i

Li . (1.10)

Here the sum runs over all sites and NS is the spatial extent of the cubic lattice.
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2 Introduction

2.1 Quantum Chromodynamics

It is a well established fact today, that strongly interacting particles (hadrons) such as the
proton and the neutron, which are the building blocks of atomic nuclei, are not elementary
particles, but possess a sub-structure on length scales smaller than approximately 10−15

meters and are in fact bound states of smaller constituents. These constituents are spin-1/2
fermions called quarks and spin-1 gauge bosons, called gluons, which mediate the force that
quarks exert on each other. The quantum field theory which describes the interactions of
quarks and gluons is called Quantum Chromodynamics1 (QCD) [3, 4, 5]. It is similar to the
theory of electromagnetism, or the respective quantum field theory Quantum electrodynam-
ics (QED), in the sense that the fundamental matter fields are described by Dirac spinors,
which carry a charge and which interact by minimal coupling to quantized vector fields.

What distinguishes QCD from QED are essentially two things: Firstly, instead of having
only one charge that can have a positive or a negative sign, in QCD there are three charges
together with their negative counterparts. These are called color charges and often labeled
as red, green and blue in a loose analogy to the additive color model which describes how
humans perceive overlapping projected light2. Secondly, the gauge bosons of QCD them-
selves carry color charge and thus also interact with each other. This is in stark contrast
to electromagnetism, where the gauge bosons, in this case the photons, are blind to each
other if quantum loops are neglected and thus can be described by linear equations in the
classical limit.

Free color charges are not observed in our everyday low energy world. The color charges
in the bound mesonic and baryonic states, which are found in nature or produced in collider
experiments, cancel each other yielding a color neutral state. This is known as confinement
and is a feature of QCD, which to this day cannot be derived from first principles, but
is believed to be generated by the gluon-gluon interaction. A number of QCD inspired
models, such as the string model or the MIT bag model, as well as numerical results from
simulations in discretized space-time (lattice QCD) have generated much confidence in the
confinement hypothesis.

The Lagrange density of QCD (with a Euclidean metric) is

L =

Nf∑

i=1

[ψi(x)(γ
µ∂µ − igγµAa

µ(x)Ga +Mi)ψi(x)] −
1

4
Fµν

a F a
µν , (2.1)

where Nf labels the number of quark flavors. The field strength tensor Fµν
a is related to

the vector potential through

Fµν
a = ∂µA

a
ν − ∂νA

a
µ + g fabcA

b
µA

c
ν , (2.2)

1Chromos is greek for color.
2Aside from this analogy, the color charge is completely unrelated to the familiar phenomenon of color.
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where fabc are the structure constants of the special unitary group SU(3). The indices a, b, c
label the generators of the group, for which the commutation relation

[Ga, Gb] = ifabcGc , (2.3)

holds. The gluon self interaction is generated by the non-abelian contribution to the field
strength tensor ∼ Ab

µA
c
ν . In the 1970s David Politzer [5], Frank Wilczek and David

Gross [4] calculated the beta function of QCD, which encodes the renormalization scale
dependence of the coupling constant. To one loop order in perturbation theory, it is given
by

β(g) = µ
∂g

∂µ
= − g3

16π2

[
11

3
Nc −

2

3
Nf

]
, (2.4)

where Nc is the number of colors. This corresponds to a running coupling constant, which
in terms of the momentum scale Q2 is given by

g2(Q2)

4π
=

4π

(11NC/3 − 2Nf/3) log(Q2/Λ2
QCD)

. (2.5)

For large momentum transfer the coupling constant becomes small. This feature, which is
known as asymptotic freedom, implies that processes involving only high momentum or short
distance are well described by the perturbative expansion. Furthermore, it implies that the
thermodynamics of a quark-gluon system at very high temperatures is well described by
the equation of state of an ideal gas of non-interacting quarks and gluons. It has therefore
been speculated that for certain values of the temperature or pressure, a deconfining phase
transition occurs where quarks and gluons are liberated. A deconfined state of matter could
have existed in the early universe, could be produced in heavy-ion collisions and could exist
in the core of neutron stars.

Today the evidence, from heavy-ion experiments as well as lattice simulations, model
calculations, empirical nuclear physics and perturbative calculations in asymptotic regimes,
overwhelmingly supports the scenario that quarks and gluons are deconfined for energy
densities larger than 1 − 10 GeV/fm3, which is of the order of that of matter inside a
proton [6, 7, 8, 9]. A contemporary view of the phase diagram of QCD in the plane spanned
by the temperature T and the baryo-chemical potential µB (which is related to the baryon
density) is shown in Fig. 2.1. The deconfining phase transition for finite µB and zero T
is believed to be of first order. In contrast, the µB = 0, finite T phase transition is not
a real phase transition, in the sense that it exhibits discontinuities of an order parameter,
but rather a cross-over where the thermodynamic quantities change rapidly over a small
parameter range. The line across which the first order phase transition occurs is speculated
to end in a critical point, the exact location of which has yet to be determined.

2.2 The pure gauge limit and the Wilson criterium

Confinement in QCD is a strictly non-perturbative phenomenon. At an intuitive level this
can be understood by considering how a weak-coupling perturbative expansion works: At
the lowest order approximation in perturbation theory, particles are treated as if they can
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Figure 2.1: A semi-quantitative sketch of the QCD phase diagram. Figure taken from Ref.
[7].

propagate completely undisturbed through space-time. Interactions are introduced as a
disturbance, which successively becomes stronger when higher orders of the approximation
are included. The idea is that most of the dynamics of the system can be understood in terms
of the free propagation, while interactions are small corrections. For confined QCD however,
the observed state bears no resemblance whatsoever to the free solution. Furthermore, the
running coupling constant suggests that at low energies the coupling constant becomes very
large, so that rather than being a roughly non-interacting system with some corrections,
the system is completely dominated by the interactions.

A non-perturbative way to describe the confined phase of QCD in the limit of infinitely
massive quarks was formulated by Wilson [10]. In this limit quarks are “frozen”, in the
sense that they act only as static sources of color flux and there is no production of quark
anti-quark pairs. The dynamics is then completely determined by the gluonic sector. Wilson
calculated the quantum mechanical vacuum expectation value of the propagation of a heavy
pair of external test quarks and anti-quarks by computing closed loop integrals in the pure
gauge theory. He found that a static potential between a quark and an anti-quark, which
rises linearly at large distances, exists at low energies. Although a complete solution to the
physical problem of confinement must necessarily also include dynamical quarks and pair
production, the existence of a confinement potential in the pure gauge theory is generally
taken as evidence that a similar type of potential should be present also with dynamical
quarks. Indeed, lattice results for dependence of the quark susceptibilities [11] and the
pressure [12, 13] on the number of dynamical flavors suggest that the gluonic sector is a
crucial driving force for the confining phase transition. In the pure gauge theory, the order
parameter for the deconfining phase transition can be characterized exactly [14, 15, 16] as
the normalized trace of an operator L(x)

ℓ(x) = tr L(x) = trP exp



ig
1/T∫

0

dτ A0(x, τ)



 , (2.6)
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where L(x) is called the thermal Wilson line. It is the exponential of a path ordered
integral that wraps around the periodic boundary of the Euclidean time direction of finite
temperature field theory and integrates the time-like component of the gluonic vector po-
tential. ℓ(x) is called the Polyakov loop and measures the free energy of a static quark
[17, 18, 19]

〈|tr L(x)|〉 ∼ e−
Fq
T . (2.7)

In the deconfined phase the Polyakov loop acquires a non-zero expectation value but
vanishes in the confined phase3 [20]. The transition is of second order for two colors [21, 22,
23], of first order for Nc = 3 [24, 25] and becomes more strongly first order with rising Nc.
It becomes a cross over only when light quarks are included, however an approximate Tc

can then still be defined. The Polyakov loop is a bare quantity and must be renormalized
in order to obtain a non-zero continuum limit [26, 27, 28, 29, 30, 31].

2.3 The strongly coupled quark gluon plasma

At the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Labs in ultra-
relativistic heavy-ion collision experiments temperatures on the order of two times the QCD
critical temperature, Tc ∼ 190MeV , were created. Early data from RHIC indicated that
the created state of matter behaved more like a strongly coupled fluid, than a plasma of
weakly interacting partons [32, 6, 33]. This suggests that non-perturbative effects dominate
near Tc, even in the deconfined phase (see also Ref. [34]). Formal evidence for this sce-
nario can be obtained in a number of ways. It is convenient to plot what is known as the
“interaction measure”

Θ(T ) =
ε(T ) − 3p(T )

T 4
, (2.8)

where ε is the energy, p is the pressure and T is the temperature. This is sometimes also
referred to as the “trace anomaly” since it is equal to the trace of the energy momentum
tensor, divided by T 4. Θ(T ) is a dimensionless number that quantifies the deviation from
an ideal gas equation of state. Lattice results for Nc = 2 [22] and Nc = 3 [24] in the pure
gauge theory indicate that Θ(T ) is rather large up to T ≈ 3Tc in both cases. In Fig. 2.2
we show the SU(3) pure glue results. It can be seen that Θ(T ) is very small below Tc then
rises steeply around Tc and trails off slowly at larger temperatures.

The naive weak-coupling perturbative expansion for the QCD pressure is known to fail at
temperatures on the order of 105 GeV , which corresponds to roughly 5 ·105 TC and is orders
of magnitude higher than the temperatures generated at RHIC or LHC [35]. However,
various programs to reorganize the weak-coupling perturbative series to increase its radius
of convergence and extend its validity to lower temperatures exist [35, 36]. One successful
approach has been the addition of a variational mass parameter to the bare Lagrangian.
This is known as Hard-Thermal-Loop (HTL) perturbation theory [37, 38, 39, 40, 41]. In
Fig. 2.3 the HTL results for the pressure of a gluon gas, divided by the pressure of an ideal

3As we will discuss in detail in the following chapters of this work, this phase transition is related to the
spontaneous breaking of a global Z(N) symmetry.
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Figure 2.2: Interaction measure in SU(3) pure gauge theory. Figure taken from Ref. [24].
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Figure 2.3: Hard thermal loop and lattice results for pressure of Nc = 3 gluon gas, scaled
by the pressure of an ideal bose gas. Figure taken from Ref. [37].

bose-gas, at leading order (LO), next to leading order (NLO), and next to next to leading
order (NNLO) are shown, in comparison to the lattice results of 4D SU(3) pure gauge
theory. The error band indicates variations of the renormalization scale. The NNLO results
seem to describe the pressure extremely well, down to temperatures of T ≈ 2Tc. Below
2Tc, in the same region where the interaction measure peaks, however, the deviations from
the lattice results are huge. The HTL results for the entropy density [37] exhibit a similar
behavior. The magnitude of the deviation at NNLO suggests that the problem may not
be solved by simply going to higher order loop calculations. Moreover, as we will discuss
in the following chapters, the perturbative method is based on assumptions that violate a
symmetry of the SU(N) pure gauge theory, so a breakdown of perturbation theory at some
point is expected.

More evidence for the shortcomings of perturbation theory close above Tc comes from
numerical and analytical computations of the ratio of screening masses defined from two-
point correlation functions of the real and the imaginary part of the Polyakov loop [42, 43].
The ratio mi/mr changes from 3/2 at high temperatures (which is the leading order result
from perturbation theory) to mi/mr ≈ 3 near Tc.

2.4 Effective theories

Aside from numerical simulations and perturbative calculations in full QCD or Yang-Mills
theory, there are also effective theory approaches. The underlying principle of these is that
in different limits of the full theory (extremely high or low temperatures, close to the phase
boundary or far from it) the dynamics is dominated by very different aspects of the full
theory, such that it is sensible to use an effective description in terms of the specific degrees
of freedom that are relevant in this particular regime, which is stripped of all features that
play no dominant role for this case. Such theories also often have a different number of
space-time dimensions than the full theory. Once such a theory has been constructed, it
can then again be studied analytically by perturbative expansion in an appropriate small
parameter, or numerically by lattice simulations. For QCD, a common approach is to
exploit universality [15] to construct a theory in terms of Polyakov loop spin variables
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[44, 45, 46, 47, 48, 49]. In this work we perform lattice simulations of a matrix model of
the thermal Wilson line L(x), which was proposed by Pisarski [50, 51, 52]. The theory
is defined in three dimensional space and is constructed to respect all symmetries of the
underlying pure gauge theory. It is valid from the high temperature limit all the way down
to Tc, even in the range between Tc and T ≈ 2Tc where perturbation theory fails. We
currently focus on the gauge group SU(2) instead of SU(3), since the group manifold has
a simpler structure, which reduces the complexity of the simulation algorithm greatly and
allows for results to be obtained with high numerical precision. Aside from these practical
considerations however, there are also physical reasons to be interested in SU(2) specificly:
It appears that a deconfining phase transition is a universal feature of SU(N) gauge theories
an thus much effort has gone into the study of the dependence of various thermodynamic
observables on the number of colors [53, 44, 50]. Furthermore, the first order phase transition
in N = 3 gauge theory is of very weak first order [24, 25], such that it is close to the second
order transition known to occur for two colors.

2.5 Outline of this work

This work is structured as follows:

In chapter 3 we start by discussing in general terms the method of dimensional reduction.
Then we introduce the three dimensional effective theory of the Wilson line L(x) which is
studied in this work, motivate the different terms that enter into the Lagrangian and discuss
how the theory is related to the usual three dimensional effective theory EQCD. We discuss
how non-perturbative effects are introduced into the effective theory.

In chapter 4 we explain the basics of the lattice simulation techniques which are used
throughout this work. We start by introducing the underlying principles of Monte Carlo
simulations using Markov chains. We then discuss the Metropolis algorithm, the heat
bath methods of Creutz and those of Kennedy and Pendleton, as well as over-relaxation
techniques. We then proceed to derive a lattice action for the effective theory from the
continuous Lagrange density in chapter 5.

In chapter 6 we present results, which were obtain in a limiting case of the theory where the
spatial magnetic sector is neglected. We introduce different order parameters of the model
and study the phase diagram of the theory in detail. We present mean field results for the
deconfined phase of the model and compare them to simulation. We compute two point
functions and respective correlation lengths to confirm the second order phase transition
and the presence of Goldstone modes in the confined phase. We then proceed to study the
distribution of eigenvalues and show that in certain parts of the phase diagram confinement
is driven by eigenvalue repulsion. We also confirm that weak repulsion of eigenvalues exists
in the deconfined phase close to the phase boundary. The material found in this chapter is
published in part in Ref. [54].

In chapter 7 we present results obtained in the full theory with gauge fields. We first
present a study of the phase diagram of the theory, by measuring Polyakov loops, sus-
ceptibilities and two-point correlation functions. We study also magnetic observables such
as the average Wilson action and the spatial string tension. We then extract an effective
potential for the Polyakov loop at a single site, as well as of for “block spins” where the
loops where averaged over small volumes in different regions of the phase diagram. We
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discuss in detail how these potentials may be parameterized. The material is published in
part in Refs. [55, 56].

Chapter 8 summarizes our attempts to compare the 3D effective theory to full Yang-
Mills theory in four dimensions. We then conclude and offer a short outlook in chapter 9.
The appendices contain a summary of cross checks with existing literature and a collection
of the group theoretical concepts which are used throughout this work.
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3 Center symmetric effective field theory

3.1 Dimensional reduction

The use of three dimensional effective theories to calculate static quantities such as the
pressure or screening lengths of a quantum field theory at finite temperatures has a long
history [57, 58, 59, 60, 61, 62]. The underlying principle is the expansion of a field in terms of
Matsubara frequencies. Consider a generic field Φ with a Lagrange density L(Φ, ∂µΦ).
Its thermodynamic properties are given by the partition function Z, which is computed in
the imaginary time formalism as a functional integral

Z = N

∫

periodic
[dΦ] exp

(∫ β

0
dτ

∫
d3x L

)
, (3.1)

where N is a normalization constant. For a bosonic field Φ the integral runs over all field
configurations which are periodic in the Euclidean imaginary time direction1

Φ(x, β) = Φ(x, 0) ∀x . (3.2)

The field can be Fourier expanded as

Φ(x, τ) =
√
β
∑

n

∫
dp Φn(p) eipx+iωnτ , (3.3)

where due to the constraint of periodicity in τ the expansion in the time-like direction is a
discrete sum rather than an integral. The ωn are called Matsubara frequencies and are
given by

ωn = 2πnT . (3.4)

This suggests that a thermal field theory of a single field Φ in d+1 dimensions is equivalent to
a Euclidean field theory in d dimensions with infinitely many fields, namely the individual
time-like Fourier modes of Φ. One can calculate the free propagator in momentum space
for each individual mode [63, 64]. For the n-th component of the field Φ it is given by

∆(ωn,p) =
1

p2 + ω2
n

. (3.5)

Thus the Matsubara frequencies act like masses, by shifting the pole of the propagator.
From (3.4) it follows that the static n = 0 mode is massless, while all non-static modes have
a mass ∼ T .

1Fermions are anti-periodic. We do not consider them here however.
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One can now construct an effective theory for the three-dimensional static n = 0 mode
by integrating out all non-static modes (as well as any present Fermionic fields). By the
theorem of Appelquist and Carazzone [65] the non-static modes decouple from the
dynamics on length scales ≫ 1/T (see also Refs. [66, 67, 68, 69, 70]) and contribute only
to the parameters of the three-dimensional theory. Such theories generally contain many
interaction terms, the parameters of which must be determined by a matching procedure to
the full theory.

The reduction procedure can also be applied to (Abelian and non-Abelian) gauge the-
ories. For SU(3) Yang-Mills theory, one can construct an effective theory in terms of the
electrostatic field Aa

0(x), which behaves like a scalar field in the adjoint representation of
the gauge group and of the magneto-static fields Ai(x). This effective theory is known as
electrostatic QCD (EQCD) and is defined by the Lagrange density

Leff =
1

2
trF 2

ij + tr |DiA0|2 +m2
DtrA2

0 + · · · . (3.6)

It has been successfully applied to calculations of the free energy and the pressure in the high
temperature limit. However, as we will discuss in the following sections, the assumption
of static Aa

0(x) violates a symmetry of the underlying Yang-Mills theory, which leads to
the breakdown of (3.6) close to Tc. We will then proceed to discuss an alternative to the
explicit reduction procedure for the construction of an effective theory in three dimensions
that respects all of the symmetries.

3.2 Symmetries of SU(N) Yang-Mills theory

The action of SU(N) Yang-Mills theory, which is given by

S = −1

4

∫ β

0
dτ

∫
d3x Fµν

a F a
µν , Fµν

a = ∂µA
a
ν − ∂νA

a
µ + g fabcA

b
µA

c
ν , (3.7)

is invariant under certain types of local gauge transformations

Aµ(x) 7→ s(x)(Aµ(x) + i∂µ)s(x)† , s(x) ∈ SU(N) . (3.8)

Firstly, it is invariant under transformations which are strictly periodic in the Euclidean
time direction:

s(x, β) = s(x, 0) ∀x . (3.9)

However, in addition there is also an invariance under transformations which are periodic
only up to a global “twist” factor z, which is an element of the Z(N) center of the SU(N)
gauge group, i.e. transformations of the form

s(x, β) = z s(x, 0) z ∈ Z(N) . (3.10)

The Polyakov loop

ℓ(x) =
1

N
TrL(x) , with L(x) = Z−1

R P exp



ig
1/T∫

0

dτ A0(x, τ)



 , (3.11)
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which we introduced in the previous chapter is an order parameter for the spontaneous
breaking of the global Z(N) center symmetry. This can be seen, by considering that the
thermal Wilson line L(x) is a parallel transporter2 in the time direction, which transforms
under s(x) as

L(x) 7→ s(x, β)L(x) s(x, 0) . (3.12)

Thus, due to the cyclic property of the trace, under “twisted” transformations the Polyakov
loop ℓ(x) transforms as

ℓ(x) 7→ z ℓ(x) . (3.13)

If the expectation value of ℓ(x) is non-zero, then the transformation (3.13) changes the
vacuum state. Since

〈|tr L(x)|〉 ∼ e−
Fq
T , (3.14)

the theory possesses N degenerate ground states with the same free energy Fq, which are
obtained from each other by such Z(N) center transformations.

3.3 Center symmetric effective theory of Wilson lines

The discussion of the previous section suggests that the full dynamics of SU(N) Yang-
Mills theory is influenced by the presence of the Z(N) ground states. However, if for a
certain range of temperatures the Z(N) symmetry is strongly broken, such that tunneling
between the different states can be neglected, then it is reasonable in this regime to expand
around one specific ground-state. Perturbative methods such as the Hard-Thermal-Loop
formalism discussed in chapter 2 exploit this: In HTL one expands around a state where
A0/T ≪ 1, which corresponds to the Z(N) ground-state where L ∼ 1. The effective theory
EQCD (3.6) is based on the assumption of static A0 fields, which again corresponds to a
system that is “frozen” in a specific Z(N) state. Such theories should fail however, when
fluctuations between Z(N) ground states become relevant.

Consider Fig. 3.1. It shows numerical results for renormalized SU(3) Polyakov loops
(obtained by Gupta et al, see Ref. [31]). The figure shows a broad range of temperatures,
starting from Tc upward. The expectation value of Polyakov loop 〈ℓ〉 is close to one at high
temperatures3, which indicates a suppression of Z(N) tunneling. For temperatures below
≈ 3Tc it is non-zero but drops far below one, down to 〈ℓ〉 ≈ 0.5 right above Tc. Therefore,
in the region close above Tc the dynamics should be heavily influenced by non-perturbative
fluctuations. This is in agreement with discussions in section 2.3, where we presented
evidence for the failure of perturbative methods for Tc < T . 3Tc. Correspondingly, in this
region the interaction measure is large.

As an alternative to the explicit integration of non-static field modes, several authors have
discussed the construction of effective field theories by identifying appropriate degrees of

2A detailed introduction into the concept of parallel transport is found in Chapter 5. There we will also
discuss the transformation law of L(x) in detail.

3Actually one can see that 〈ℓ〉 is slightly larger then one for large temperatures, which is a well understood
systematic error that stems from the fact that Ref. [31] calculates the renormalization to one loop order.
The full result should yield an expectation value which is bounded by one from above.
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Figure 3.1: Renormalized SU(3) Polyakov loop for T > Tc. Figure taken from Ref. [31]

freedom of the underlying theory, from which terms that respect all of the symmetries of
the full theory can be constructed, writing down Lagrangians containing such terms only
and imposing the condition that correlation functions of the underlying theory should be
reproduced at large distances [35, 71, 72, 73, 74]. In the case of QCD, this has lead to
investigations of effective theories of Polyakov loops, considered as Z(N) spin variables,
as well as theories for the thermal Wilson line as a SU(N) matrix model [75, 50, 51, 52].

We study an effective theory of the thermal Wilson line, coupled to the static gauge sector
which was first proposed in Ref. [51]. The kinetic energy contribution to the Lagrangian
from the three dimensional magnetic fields is simply

Leff
mag =

1

2
trF 2

ij , (3.15)

which is of the same form as in (3.6). However, due to the Z(N) center symmetry the
effective electric field cannot simply be Ei(x) ∼ DiA0(x) [51, 76, 77, 78]. As shown in Ref.
[51] the effective electric field for arbitrary A0 is given by

Ei(x) =
T

ig
L†(x)Di(x)L(x) . (3.16)

This leads to a three dimensional theory, which in the classical limit is given by

Leff
cl =

1

2
trF 2

ij +
T 2

g2
tr |L†DiL|2 . (3.17)

However, quantum corrections also introduce a potential term for the Wilson line. It
was obtained to one-loop order, by computing the fluctuation determinant in a constant
background A0 (or L) field in Ref. [79], and is of the form

Leff
1−loop = − 2

π2
T 4
∑

n≥1

1

n4
|trLn|2 . (3.18)

This potential is evidently minimized by the perturbative vacuum, where the Wilson line
is L ∼ 1.
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Figure 3.2: Figure taken from Ref. [80]

To generate non-perturbative fluctuations and induce a phase transition, additional terms
must be added. While a large variety of terms are conceivable, a simple ansatz for the
non-perturbative effects is motivated by the form of the interaction measure Θ(T ) in the
deconfined phase [22, 24]. Consider Fig. 3.2. There we show

T 2Θ(T ) =
ε(T ) − 3p(T )

T 4
T 2 . (3.19)

One can see that T 2Θ(T ) is essentially constant above Tc. This observation has led to the
conclusion that the pressure of QCD in the deconfined phase can be expanded in a power
series in 1/T 2 times the ideal T 4 term

p(T ) ≈ fpert T
4 −Bfuzzy T

2 −BMIT + · · · . (3.20)

This has been labeled the “fuzzy” bag model [80]. Here fpert is dimensionless, BMIT is the
usual MIT bag constant of mass dimension four, and Bfuzzy is a “fuzzy” bag constant with
mass dimension two (which can be ignored in the high temperature limit). The model (3.20)
suggests that the simplest ansatz for the non-perturbative contributions in the effective
theory is a term of the form

Leff
non−pert. = BfT

2|trL|2 . (3.21)

Effective theories containing contributions such as (3.21) have hence been considered by
several authors [81, 51, 82, 83, 84, 85]. There are also attempts to calculate transport
properties in a “semi” quark gluon plasma, which assume non-perturbative terms of mass
dimension two [86, 87]. At sufficiently low temperature, (3.21) dominates over the pertur-
bative potential and induces a transition to a confined phase with 〈trL〉 = 0. It was further
suggested in [51] that terms such as (3.21) lead to “repulsion” of eigenvalues of the Wilson
line in some temperature range above Tc. In other words, such terms drive the N distinct
complex eigenvalues of L, which lie on the complex unit circle, to maximize their respective
distances from one another.
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So finally, the complete Lagrangian of the effective theory studied in this work is given by

Leff =
1

2
trF 2

ij +
T 2

g2
tr |L†DiL|2 −

2

π2
T 4
∑

n≥1

1

n4
|trLn|2 +BfT

2|trL|2 . (3.22)

It is defined with a spatial cutoff on the order of the inverse temperature, is non renormal-
izable in three dimensions4 and is valid only over distance scales larger than 1/T . We shall
focus in particular on measuring the eigenvalue distribution above and at the deconfining
phase transition to test the presence of eigenvalue repulsion in the phase transition region,
and on obtaining a parameterization for the effective potential of the Polyakov loop, which
arises from the dynamics.

4A related renormalizable theory has been formulated in refs. [88, 71]. Ref. [89] derived the relations
between lattice and continuum theories to leading order in lattice perturbation theory.
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4 Lattice simulation

The idea to formulate finite temperature quantum field theory in general, and QCD in
particular, on a discretized space-time lattice and to obtain non-perturbative information
from such a formulation via Monte-Carlo simulations dates back to the early 1970s and was
pioneered by Wilson, Wegner, Polyakov, Creutz and several others who we cannot
possibly all mention here. The principle idea, which rests upon the solid bedrock of the
Feynman path integral formalism, is rather simple: A field, which is a continuous function
of space-time, is approximated by a finite set of field variables, which are chosen to lie on
the points (sites) or links of a space-time grid (lattice) with finite spacing. The lattice acts
as a regulator and removes all field modes with wavelengths smaller than twice the lattice
spacing. For any fixed value of the lattice coupling, which defines a bare coupling constant at
the finite spacing, numerical estimates for bare observables are obtained by approximating
the functional integral for the partition function by a finite number of representative lattice
configurations, which are generated by appropriate algorithms. Physical results for the
continuum theory are then obtained via a limiting procedure, where the lattice spacing is
taken to zero.

We do not discuss the entire formal derivation of the method here. The subject has been
reviewed excessively in literature and several excellent textbook treatments exist (see e.g.
Refs. [2, 90, 91] and [92]). We rather take a practical approach: In this chapter we assume
that a quantum field theory has been formulated on a finite lattice with a fixed spacing in
such a way, that the action S can be written as a function of the lattice field variables and
that the continuum Lagrange density is reproduced when the lattice spacing vanishes.
We also assume that the number of coupling constants is finite. We proceed to discuss
general technical issues regarding the generation of representative lattice configurations for
the thermal ensemble defined by the action S via Markov chains. In the following chapter
we then present a detailed derivation of the lattice action for the theories studied in this
work.

We follow mostly the treatment of Refs. [2] and [92] in this chapter and often restrict
ourselves to summarizing definitions and concepts without lengthy derivations. However, we
describe in detail the updating algorithms which we use throughout this work to simulate
4D Yang-Mills theory and the 3D effective theory of Wilson lines introduced in the
previous chapters.

4.1 Markov Chain Monte Carlo

Let us consider the calculation of an expectation value of an observable O in a thermal
ensemble defined by a fixed set of external parameters gi. For a system with a finite number
of micro-states K (in our case the lattice configurations) the expectation value is given by
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the sum

〈O〉 = Z−1
K∑

k=1

O(k) e−S(gi)(k)
(4.1)

where

Z = Z(gi) =

K∑

k=1

e−S(gi)(k)
(4.2)

is the partition function. The index k labels all configurations. It is in principle conceiv-
able that, given an infinite amount of computing time, an expression such as (4.1) could be
evaluated exactly. It becomes immediately clear however, that in practice an exact evalu-
ation is impossible. If we take the simplest possible non-trivial space of field variables, an
Ising model where each lattice site is assigned a value ±1, then for a modest cubic lattice
of side-length Ns = 10 the sum in (4.2) has 21000 terms. Barring a revolutionary break-
through in quantum computing, no computer that we can ever hope to build could compute
a perceptible fraction of these terms during the lifetime of a human being. Moreover, most
physically interesting systems possess much more complicated, usually continuous manifolds
from which field variables are drawn. The continuity of the field space does not generate
any new conceptual problems. In principle the sum in (4.2) should then be replaced by an
integral, but a convergent integral can always be arbitrarily well approximated by a finite
sum. However, it is clear that the number of terms is then even vastly larger. On a com-
puter, all systems are discrete because of finite word length. Without restricting generality,
the discussions in this section will be in terms of sums rather than integrals.

The large number of terms suggests a statistical treatment. More so, since the sum in (4.1)
is strongly dominated by a small subset of configurations, which characterize the “thermal”
equilibrium of the system with respect to the parameters gi. The goal of a Monte Carlo
simulation is to perform importance sampling , i.e. to stochastically generate a small number
of representative configurations which are typical for the equilibrium distribution. Given
that configurations are produced according to their Boltzmann weights with probability

P
(k)
B = cB w

(k)
B = cB e−S(gi)(k)

, (4.3)

where cB is a normalization constant which is determined by the condition
∑

k P
(k)
B = 1,

the expectation value (4.1) becomes the arithmetic average

〈O〉 = lim
NK→∞

1

NK

NK∑

n=1

O(kn), (4.4)

which can be estimated by truncating the sum at some finite NK .

It is usually not possible to generate configurations directly with probability (4.3). In
practice, one uses a Markov chain: A stochastic process that generates configuration ki+1

from configuration k without requiring knowledge of prior configurations in such a way that
the time series of configurations ki−2, ki−1, . . . moves through phase space along a path that

is consistent with the probability distribution P
(k)
B .
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The Markov chain is defined by the transition matrix

W =
(
W (l)(k)

)
, (4.5)

where the matrix element W (l)(k) = W [k → l] contains the probability to reach configura-
tion l from configuration k in one step. It has been shown [92] that in order to generate
configurations with the desired probabilities (4.3), the transition matrix W must fulfill three
conditions:

(i) Ergodicity:

If e−S(k)
> 0 and e−S(l)

> 0 then a positive finite integer number n exists, so that
(W n)(l)(k) > 0. In words: Each configuration is accessible from any other configuration
by a finite number of steps (but not necessarily by a single step).

(ii) Normalization:

For a given initial state k, the transition probabilities to all possible final states l add
to one:

∑
lW

(l)(k) = 1.

(iii) Balance:

The Boltzmann ensemble (4.3) is an eigenvector of the transition matrix with eigen-

value 1, in the sense that
∑

k W
(l)(k)e−S(k)

= e−S(l)
.

There are many ways to construct algorithms that satisfy these conditions. Often in practice,
Monte Carlo algorithms fulfill a stronger condition than balance, namely

(iii’) Detailed balance:

W (l)(k) e−S(k)
= W (k)(l) e−S(l)

,

which implies balance together with the normalization condition (ii). We define an equi-
librium ensemble as a probability distribution Peq which is invariant under the transfer
matrix:

W Peq = Peq −→ P (l)
eq =

∑

k

W (l)(k)P (k)
eq . (4.6)

It has been shown that under the conditions (i), (ii) and (iii) the Boltzmann state is the
only equilibrium ensemble of the process and furthermore, that any distribution P ′ will
converge to the Boltzmann state under repeated action of W . This last statement is of
major practical relevance since, given a proper algorithm has been constructed, it allows
one to start with nearly arbitrary initial conditions as long as one allows the system enough
time to approach equilibrium before taking measurements.

4.2 Autocorrelations

A consequence of using a Markov chain to generate an ensemble is that subsequent con-
figurations are not statistically independent. Possibly strong autocorrelations exist in the
time series of measurements obtained from any sequence of configurations.
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There are several good reasons why a detailed study of autocorrelations is of major im-
portance: The first is that the statistical error will generally be underestimated if one treats
correlated data as independent.

The second (related) reason is that measuring observables can generally be very costly in
terms of computer time (for complex operators often much more costly than generating con-
figurations) so in order to improve the efficiency of the code one requires a precise knowledge
of the optimal number of Monte Carlo steps between two subsequent measurements.

The third reason is that, as indicated in the previous section, one often starts the lattice
simulation with an initial condition that has an extremely small probability in the Boltz-
mann ensemble and one thus should grant the system a proper amount of equilibration
steps, after which it can be assumed that the system has “forgotten” about its initial state,
before taking data.

Last but not least, there is also a physical reason to be interested in autocorrelations:
A system that is close to a phase transition will generally exhibit a major increase in
autocorrelation times when approaching the phase boundary. This effect, which is known as
critical slowing down, aside from the technical difficulties it creates for precise measurements
in such a region, may also be exploited as an indicator of a phase transition when mapping
the phase diagram of some particular model.

We now discuss autocorrelations of a lattice observable O obtained from a Markov chain
of configurations. Consider a time series of measurements

Oi = Oi(xi), i = 1, . . . , N , (4.7)

where xi are the generated lattice configurations in the order in which they occur in Monte
Carlo time. The autocorrelation function is defined as

Ĉ(t) = Ĉij = 〈(Oi − 〈Oi〉)(Oj − 〈Oj〉)〉
= 〈OiOj〉 − 〈Oi〉〈Oj〉
= 〈O0Ot〉 − 〈O〉2 (4.8)

with the notation t = |i−j|. Ĉ(t) measures the statistical dependence of two measurements,
taken a time t apart, on one another (Note that for t = 0 (4.8) is equal to the variance.).
Measurements are statistically independent when Ĉ(t) vanishes.

The asymptotic behavior of (4.8) for t→ ∞ is

Ĉ(t) = const exp
(
− t

τexp

)
. (4.9)

The decay constant τexp is called exponential autocorrelation time. For finite τexp, the
function (4.9) can of course never reach exactly zero, but in practice measurements are
taken to be independent if the time between them is much larger than τexp.

Note that generally different autocorrelation times reign for different operators. For a field
theoretical simulation which involves several different coupled field variables, one should
obtain τexp for representative observables of each field individually, and use the largest
autocorrelation time as a measure for the number of configurations to discard between
measurements.
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Estimating τexp is generally very costly in terms of computer time, since the signal for

Ĉ(t) quickly becomes very noisy when t is large. Usually it is more efficient to use a different
quantity, the integrated autocorrelation time which is defined as

τint =
[
1 + 2

N−1∑

t=1

(
1 − t

N

)
ĉ(t)
]

with ĉ(t) =
Ĉ(t)

Ĉ(0)
. (4.10)

If the autocorrelation function is dominated by a single exponential autocorrelation time,
and τexp is much larger than one, then τint ≈ 2τexp [92]. Usually the situation is more
complicated and there is a factor distinct from two between τexp and τint. However, in
practice one is on the safe side if one relies on τint when working to improve the efficiency
of an updating algorithm, since it is in general larger than τexp and the loss of accuracy in
determining the optimal number of steps between measurements is outweighed by the fact
that τint is much cheaper to compute than τexp. The integrated autocorrelation time can be
reliably estimated via the Binning method.

Binning

For correlated data, the actual variance of the mean σ2(〈O〉) is a factor of τint larger than
the variance of the mean of a corresponding uncorrelated data set. This implies:

τint =
σ2(〈O〉)
σ2

u(〈O〉) . (4.11)

Here σ2
u(〈O〉) is simply the naive variance of the mean, calculated from the given set of mea-

surements Oi under the assumption that all measurements were statistically independent,
with the usual formula

σ2(〈O〉) =
1

N
σ2(O) =

1

N
(〈O2〉 − 〈O〉〈O〉) =

Ĉ(0)

N
. (4.12)

One exploits this fact, to estimate τint: A sequence of binned data points is obtained by
grouping Nb successive data points together and calculating the average of each bin

Obin
j (Nb) =

1

Nb

(j+1)Nb−1∑

i=jNb

Oi . (4.13)

If the bin-size Nb is large enough, then the sequence of bins Obin
j are uncorrelated. One

then calculates the variance of the mean for the binned data points

σ2
Nb

=
1

Nbs

Nbs−1∑

j=0

(
Obin

j (Nb) − 〈Obin〉
)2

. (4.14)

Assuming that correlations between subsequent bins vanish, one obtains an estimate for
integrated autocorrelation time τint by comparing the variance of the mean of the binned
and the original series:

τint(Nb) =
σ2

Nb

σ2
. (4.15)
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Of course one initially has no way of knowing how Nb should be chosen. Ideally one wants to
choose Nb just barely large enough, to get the smallest possible statistical error for τint. In
practice, to get the best result one calculates τint starting at Nb = 1 and then successively
increases Nb until a region is reached where the estimate of τint is stable under further
increases of Nb. This is then taken as the final estimate. The binning method is used
exclusively throughout this work for autocorrelation estimates.

4.3 Metropolis algorithm

The Metropolis algorithm is a simple algorithm that uses a Markov chain to generate
random variables of a given probability distribution and is widely used in lattice simulations
to generate a thermal ensemble of lattice configurations. It was derived by Metropolis,
Rosenbluth, Rosenbluth, Teller and Teller and was shown to fulfill the requirements
of ergodicity, normalization and balance [93]. We use the Metropolis algorithm exclusively
for the three dimensional effective theory (since non-linear terms in the action rule out using
the more efficient Heat bath algorithms).

The method is applied as follows: Starting from a given lattice configuration Si, one
generates from it a new trial configuration Si+1 in a convenient way, e.g. for a theory
with matrix valued degrees of freedom by rotating a single matrix by a small angle in a
random direction. One then calculates the difference of action between the old and the new
configuration ∆S = Si+1 − Si. The trial step is accepted with probability

p = min[1, exp(−∆S)] . (4.16)

This is known as the Metropolis criterium. In words: The step is automatically accepted
if it leads the system towards the state of minimal action, i.e. if exp(−∆S) > 1. For the
case exp(−∆S) < 1 the step is accepted if exp(−∆S) is larger than a random number drawn
from a uniform distribution in the range [0, 1].1 Otherwise the trial step is rejected and one
moves to the next site or link. One defines the acceptance rate as the ratio of accepted
steps over proposed moves. It generally depends on the distance in phase space between
the old and the proposed configurations. Large proposed steps quickly lead to a declining
acceptance rate, however choosing the steps too small leads to large autocorrelations. A
general rule of thumb in lattice simulations is that tuning the acceptance rate to ≈ 50% is
a good compromise.

For a valid updating algorithm, all lattice sites must be eventually proposed for updating.
This is automatically achieved if one moves through the lattice systematically and generates
Metropolis trial steps for each site. This is known as sequential updating. However, one
can also propose the sites randomly with a uniform probability. One defines a sweep as
proposing each site once on average in NS trial steps, where NS is the number of sites.
For sequential updating, each site is proposed exactly once per sweep. The advantage of
sequential updating is that it generally leads to shorter autocorrelation times than random
updating. We use sequential updating exclusively throughout this work.

1We use the standard random number generator of the GNU Compiler Collection (gcc) for this purpose.
We assume that the pseudo random numbers generated in such a way fulfill the standard criteria of
randomness.
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In our code, random Metropolis trial steps are proposed by first generating a SU(2)
matrix

U = a01 − i ajσj, (4.17)

not too far from the identity. We generate a1,2,3 randomly in the interval [−0.5, 0.5] and fix
a0 to

a0 =



1 −
3∑

j=1

a2
j




1/2

. (4.18)

A trial configuration is then generated by multiplying a single site or link by U .
There is a large amount of freedom in choosing the trial steps. If we denote the normalized

probability to propose configuration k from configuration l as f(k, l), then detailed balance
can be fulfilled if

f(k, l) = f(l, k) . (4.19)

However one can still fulfill the weaker condition of balance (which, as we have discussed,
is sufficient for simulation of an equilibrium ensemble) with non-symmetric proposal prob-
abilities. One can even choose some of the trial steps deterministically. Ergodicity and
balance are preserved as long as one mixes deterministic and stochastic trial steps. We
take advantage of this by including Over-relaxation into our updating procedure, which is
discussed in the following section.

In general one has to take care that a given algorithm generates random matrices with
the correct Haar measure2. For the Metropolis algorithm this is automatic, as long as
the matrix U that multiplies a given field variable to obtain a trial step is a group element
[2]. Because of this fact, the Metropolis algorithm is applicable even in cases where no
exact expression for the group measure is known.

One generally can attempt to update a single matrix several times before moving to the
next one. This is useful, when the computing time for calculating the contribution to the
action from interactions of a given matrix greatly exceeds the time it takes to generate a
trial step. A procedure where each site or link is attempted N times before moving to the
next one is called N-hit-Metropolis. For N → ∞ this becomes equivalent to the heat bath
algorithm, which generates sites and links directly according to their Boltzmann weights
in the thermal ensemble.

4.4 Over-relaxation

Several authors3 have discussed how to accelerate decorrelation of subsequent lattice con-
figurations in theories with SU(N) degrees of freedom, by performing over-relaxation. The
general idea is that one wants to perform some Monte-Carlo steps that take one to a distant
region in phase space, but only lead to minor changes in energy so that the Metropolis
criterium can be applied with a good acceptance rate. Usually this is done by taking steps in

2See appendix A, eq. A.37 and following, for a general discussion of group integration.
3See for example Refs.[94, 95, 96] and references therein or Ref.[90] for a textbook treatment.
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the direction in phase space that minimizes the local action, but going beyond the minimum
to the mirror image of the starting point.

Consider a situation where Uold is a single matrix variable which should be updated. If U0

is the matrix which minimizes the local action, i.e. the contribution to the total action from
all interactions containing this matrix variable, then (U0U

−1
old ) is a rotation to this minimum:

U0 = (U0 U
−1
old )Uold . (4.20)

Over-relaxation consists of applying this rotation twice [94]:

Unew = (U0 U
−1
old )2 Uold = U0 U

−1
old U0 . (4.21)

For theories where the local action of each variable is is symmetric around its minimum, such
an operation can always be applied to arbitrary matrices of a given lattice configuration.
Since the change of action is then zero, a Metropolis trial step of such kind is always
accepted. For this case the over-relaxation procedure is deterministic.

The above assumes the minimum of the action is exactly known. However, in principle
any step of the form

Unew = X̂U †
oldX̂ , (4.22)

where X̂ is a group element, leads to a valid updating algorithm as long as one performs a
Metropolis check after application of (4.22). We choose to approximate U0 by

X̂ = S [det(S)]−1/2 , (4.23)

where S is the staple matrix that contains the nearest neighbor matrices of the kinetic term.
This choice is reasonable for the thermalized system and appears to give good acceptance
rates. Exact non-stochastic over-relaxation is not applied in our case, since due to the non
linear terms in the action there is no straight forward way to find an exact expression for
the matrix which minimizes the local action.

4.5 Heat bath

For some actions, it is possible to construct algorithms that generate individual site or link
matrices Unew directly with an equilibrium distribution with respect to the other matri-
ces they interact with, independent of the prior state of Uold. The class of methods that
accomplish this are known as heat bath algorithms. The big advantage, compared to the
Metropolis algorithm, is a much faster decorrelation of lattice configurations.

In practice however, it is extremely difficult to construct such algorithms for different
actions and symmetry groups, since a detailed knowledge of the structure of the group
manifold, as well as an exact expression for the group measure is required. For a theory
with SU(N) variables, another general requirement is that the local action of a single matrix
U can be rewritten into the form

S(U) ∝ const.+ ReTr(UM) , (4.24)

where the matrix M is a finite sum over SU(N) matrices and contains all interactions of U
with other field variables. A necessary criterium for this is that interactions between field
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variables are bounded to a finite (spatial and temporal) domain and the action does not
contain any non-linear powers of U .

Exact heat bath algorithms for actions that are relevant to physics are only known for a
rather small number of cases. For SU(2) pure gauge theory, a heat bath algorithm was first
constructed by Creutz [97]. It generalizes immediately to any theory containing exclusively
SU(2) variables. An improved version of the algorithm was developed by Kennedy and
Pendleton [98], which has a greater efficiency for a large parameter range in pure gauge
theory. These algorithms also provide the basis for the widely used quasi-heat-bath method
of Cabibbo and Marinari [99], which updates SU(N) variables by successively updating
SU(2) subgroups.

The Creutz heat-bath algorithm is implemented in our 3D code for cross checking the
Metropolis results. It is applied to the limiting cases where non-linear terms in the action
are zero. For the 4D simulations the improved heat-bath algorithm is used exclusively. In
the following sections we describe both procedures.

Creutz heat-bath

The Creutz heat-bath algorithm for updating lattice models with SU(2) degrees of freedom
relies on the concept of the invariant group measure (discussed in appendix A, see eq. (A.37)
and following). Consider an action that fulfills (4.24). The partition function of a single
matrix variable to be updated at some given step can be written as

Z =

∫
dU exp (β tr (UM)) , (4.25)

with some coupling constant β.4

The trace is always real for SU(2). Since M is a sum of SU(2) matrices, it is proportional
to another SU(2) matrix:

M = cU with c = |detM | 12 . (4.26)

Exploiting the invariance of dU , the partition function (4.25) can be re-expressed by applying
the transformation

U → U U
†
. (4.27)

This yields the simple form form

Z =

∫
dU exp (β c trU) = π−2

∫ ∞

−∞
d4a δ(a2 − 1) exp(β c a0) , (4.28)

where the explicit form of the Haar measure (A.40) for the quaternionic parameterization
was inserted after the second equality. We separate the “spatial” components ai from a0

and get

Z = π−2

∫ 1

−1
da0

∫ ∞

−∞
d3a δ(a2

0 + a2 − 1) exp(β c a0) . (4.29)

4Note that it is generally not straight forward to construct mean field approximations with any predictive
power for the bulk system from Eq. (4.25), since M is usually a complicated function of the fields on
other sites.
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Note that the boundaries of the integrals can be set to ±1 at will, due to the constraint of
the delta function. The spatial integral can then be transformed into spherical coordinates
with a2 = r2 and d3a = r2 dr dΩ:

Z = π−2

∫
dΩ

∫ 1

0
r2 dr

∫ 1

−1
da0δ(a

2
0 + r2 − 1) exp(β c a0)

=
π−2

2

∫
dΩ

∫ 1

−1
da0 (1 − a2

0)
1
2 exp(β c a0) . (4.30)

In the second step the well-known theorem for the delta function

δ(g(x)) =
n∑

i=1

δ(x− xi)

|g′(xi)|
, g(xi) = 0 , (4.31)

was used and the negative solution to r2 = 1− a2
0 dropped. The problem is thus reduced to

generating a0 with the correct weighting

pa0(a0) da0 ∼ (1 − a2
0)

1
2 exp(β c a0) da0 , (4.32)

in the interval [−1, 1], then choosing a random direction for a and adjusting its length to
fulfill a2 = 1.

To generate a0 with the correct probability distribution one can use a random number gen-
erator with a uniform distribution: A series of weighted random numbers can be obtained,
by first drawing a uniform random number x from the allowed interval. One then draws a
second random number y and accepts x as part of the weighted series, if y is smaller than
pa0(x). Repeating this procedure by taking the second number y as the new initial number
x at each step eventually produces a series of accepted numbers with the desired weight-
ing. In our case one would terminate the procedure whenever the first accepted number is
generated and move to the next lattice site.

However, the weight function (4.32) is strongly peaked, which implies a low acceptance
rate for the above procedure. It thus may take very long to produce a single usable number.
In practice, one therefore applies another transformation of variables to improve efficiency.
In order to smear out the peak of (4.32), one transforms a0 and da0 to

z = exp(βca0) , dz = βcz da0 . (4.33)

The distribution of the new variable z is then

pz(z) dz ∼ (1 − β−2k−2 log2 z)
1
2 dz , (4.34)

which is distributed much more evenly over the allowed interval. To obtain the weighted
series, trial numbers for z are drawn from

e−βc ≤ z ≤ e+βc (4.35)

and accepted or rejected as explained above. To obtain a series of a0 one then applies the
inverse of (4.33).

Often one is interested in limiting cases of a given theory, thus the parameter β can be quite
large. For very large β, the smearing will not be sufficient to get significant improvements of
the acceptance rate. In such a case, one can use the method of Kennedy and Pendleton,
which provides an efficient way to generate a0 with the distribution (4.32).
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Kennedy-Pendleton heat bath

Consider another transformation of variables

a0 = 1 − η2 , da0 = 2η dη . (4.36)

The method of Kennedy and Pendleton consists of generating η according to its respec-
tive distribution, and then obtaining a0 by applying (4.36). With (4.32), one finds that η is
distributed according to

pη(η)dη ∼
(

1 − 1

2
η2

) 1
2

exp(−βc η2) η2 dη , (4.37)

in the interval [0,
√

2]. For large values of βc, this distribution is strongly peaked near η = 0.
We use a two step process to generate (4.37). First we generate random variables according
to a different distribution

p′η(η)dη ∼ exp(−βc η2) η2 dη , (4.38)

and then use a accept/reject step to impose a factor of
(
1 − 1

2η
2
) 1

2 .

Note first that, given a random variable x distributed according to some weight function
f(x), one can obtain the distribution fg(g) of some quantity g that is a function of x by
solving

fg(g
′) dg′ =

(∫ b

a
dx f(x) δ(g′ − g(x))

)
dg′ , (4.39)

where [a, b] is the total range of x. The range of the random variable g is then [g(a), g(b)].
The transformations discussed previously were just special cases of (4.39), which is the
general formula. This can also immediately be generalized to functions of two (or several
more) random variables. For r(x, y) one gets

fr(r
′) dr′ =

(∫
dx

∫
dy fx(x)fy(y) δ(r

′ − r(x, y))

)
dr′ . (4.40)

Now consider the quantity

ξ =

(− lnX

βc

) 1
2

, (4.41)

and let X be a random variable, uniformly distributed in [0, 1]. By using (4.39) and (4.31)
one gets for the distribution of ξ:

pξ(ξ) dξ =

(∫ 1

0
dXδ

(
ξ − [(− lnX)/βc]

1
2

))
dξ

=

(∫ 1

0
dX

δ
(
X − exp(−ξ2βc)

)

|(2ξβc)−1 exp(ξ2βc)|

)
dξ = 2ξβc exp(−βcξ2) dξ . (4.42)
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The random variable ξ can take values from zero to infinity. Using a random variable
distributed by (4.42) one can generate variables with a Gaussian distribution. Consider the
variables

ρ = χ cos(θ) with θ = 2πX ′ , (4.43)

where X ′ is another uniform random variable in [0, 1] and χ is distributed according to
(4.42). Using (4.40) one finds that the distribution of ρ is given by

pρ(ρ) dρ =

(∫ ∞

0
dχ

∫ 1

0
dX ′ pξ(χ)δ

(
ρ− χ cos(2πX ′)

))
dρ

=

(∫ ∞

0
dχ

∫ 2π

0
dθ
χβc

π
exp(−βcχ2) δ(ρ − χ cos θ)

)
dρ . (4.44)

To solve this integral one uses a trick: The coordinates χ and θ are considered to be polar
coordinates. They are related to the Cartesian coordinates a and b by

a = χ cos θ , b = χ sin θ , a2 + b2 = χ2 , da db = χdχdθ . (4.45)

In terms of a and b, equation (4.44) becomes

pρ(ρ) dρ =

(∫ ∞

−∞
da

∫ ∞

−∞
db
βc

π
exp[−βc(a2 + b2)]δ(ρ − a)

)
dρ . (4.46)

where the boundaries of the integrals have been adjusted. The integral over da can be
carried out immediately:

pρ(ρ) dρ =

(∫ ∞

−∞
db
βc

π
exp[−βc(ρ2 + b2)]

)
dρ . (4.47)

The exponential can be factorized. The integral over db is a simple Gaussian integral of the
form

∫ ∞

−∞
dx e−cx2

=

√
π

c
. (4.48)

Carrying out the integral then yields

pρ(ρ) dρ =

(∫ ∞

−∞
db
βc

π
exp(−βcb2) exp(−βcρ2)

)
dρ =

√
βc

π
exp(−βcρ2) dρ , (4.49)

which is a Gaussian distribution for ρ (with the range [−∞,∞]). Moreover, the quantity
ρ′ = χ sin θ is also distributed according to (4.49) and is independent of ρ. Assuming we
have applied the above procedure to generate random numbers distributed by (4.49) and
(4.42), we can now use them to generate the distribution (4.38). Define

η = (ξ2 + ρ2)1/2 . (4.50)
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One then finds

p′′(η) dη =

(∫ ∞

0
dξ

∫ ∞

−∞
dρ pξ(ξ)pρ(ρ)δ(η − (ξ2 + ρ2)1/2)

)
dη

=

(∫ ∞

0
dξ

∫ ∞

−∞
dρ

√
4β3c3ξ2

π
exp

[
−βc(ξ2 + ρ2)

]
δ(η − (ξ2 + ρ2)1/2)

)
dη .

(4.51)

This integral can conveniently solved in the polar coordinate system

r = (ξ2 + ρ2)1/2 , ξ = r cosφ , ρ = r sinφ , dξ dρ = r dr dφ . (4.52)

Because of the boundaries of the dξ integral one considers only the upper half-plane, where
φ = [−π

2 ,
π
2 ]. One finds that η is distributed according to

p′′η(η) dη =

(∫ ∞

0
dr

∫ π/2

−π/2
dφ 2βcr2

√
βc

π
cos(φ) exp(−βcr2)δ(η − r)

)
dη

=

(
2βc

√
βc

π

∫ π/2

−π/2
dφ cos(φ)η2 exp(−βcη2)

)
dη

= 4βcη2

√
βc

π
exp(−βcη2) dη . (4.53)

which is equal to (4.38) up to a normalization factor and ranges in the interval [0,∞]. One
can now get to (4.37), by generating a random variable η distributed by p′′η(η) and imposing

an additional factor v(η) = (1− 1
2η

2): After η was produced according to (4.53), one rejects
it if η 2 ≥ 2. If η 2 ≤ 2, one generates another uniform random number X ′′ in [0, 1] and
accepts η, if X ′′ ≤ v(η). From the resulting series of random number, one obtains a0 by
applying (4.36).

We summarize the individual steps of the method in the following list:

(i) Generate two uniform random variables X and X ′ in the interval [0, 1].

(ii) Use them to compute ξ = (− lnX/βc)1/2 and further ρ1 = ξ cos(2πX ′) and ρ2 =
ξ sin(2πX ′). ρ1,2 are independent Gaussian random variables. Each of these can be
used for the following steps.

(iii) Generate another uniform random variable X ′′ in [0, 1] and use it to obtain ξ′ =

(− lnX/βc)1/2. Compute η = (ξ′2 + ρ2)1/2.

(iv) For any η generated in such a way perform the following accept/reject step: Reject if
η2 > 2. Otherwise, generate a third uniform variable X ′′′ in [0, 1] and accept η only if
X ′′′ ≤ (1 − 1

2η
2).

(v) If the η obtained from both ρ1,2 are rejected start again with the first step. If a η is
accepted, calculate a0 = 1 − η2 and use this number.
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While the method described in this section initially appears much more complex than the
original heat bath algorithm of Creutz, it does in fact increase the efficiency of a simulation
of (4.25) greatly when β is large and is a widely used standard for lattice gauge theory
simulations. A quantitative comparison of the acceptance probabilities of both methods for
the Wilson action can be found in the original article [98].
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5 Derivation of lattice action

In this chapter we derive the lattice action, which is used throughout this work for simula-
tions of the 3D effective theory defined by the Lagrangian

Leff =
1

2
trF 2

ij +
T 2

g2
tr |L†DiL|2 −

2

π2
T 4
∑

n≥1

1

n4
|trLn|2 +BfT

2|tr L|2 . (5.1)

We start this discussion with a few general remarks: The most fundamental necessary
requirement, which a particular lattice action must meet in order to be useful for field
theoretical simulations, is that the correct continuum form is obtained when the lattice
spacing is formally taken to zero (this applies even if the continuous theory is defined with a
cut-off, as for our case). However, this requirement does not uniquely constrain the lattice
action for a particular theory and much effort is put into the search for improved actions
for known theories, which approach the continuum limit faster when the lattice spacing
shrinks or which reduce the complexity of the updating algorithm. Often lattice actions
exhibit unphysical features (e.g. phase transitions which are not present for the continuum
theory or the well-known Fermion doubling effect), which are discretization artefacts. Such
qualitative features must be well understood and a prescription to subtract their effect
from physical predictions must be formulated if sensible results are to be obtained. This
often involves adding terms to the action, which vanish in the continuum limit and which
sometimes explicitly break symmetries of the underlying continuum theory.

In this work we will use a lattice action which is constructed in close analogy to the elegant
formulation of lattice gauge theory, introduced by Wilson, which relies on the definition of
a gauge theory as a path dependent phase factor. This form is widely used for 4D Yang-
Mills theory simulations. Its most striking feature is that gauge freedom remains as an
exact local symmetry at finite spacing. In this formulation, an element of the gauge group
is associated with each bond, connecting a pair of nearest neighbor lattice sites (i, j)

Uij = e−ig0Aµ(xµ)a ∈ G . (5.2)

The Uij are called link variables. However, in our case the pure gauge sector is constrained
to three dimensions and in addition to the space-like links the Lagrangian (5.1) also contains
the thermal Wilson line L(x), which transforms under the static local gauge transformation
ω(x) ∈ SU(N)1 as

L(x) 7→ ω(x)L(x)ω(x)−1 . (5.3)

The origin of this transformation law will become clear in the course of this chapter. We
associate the L(x) with the lattice sites. Given that the periodic boundary condition of the
time dimension is preserved by compactification, the Wilson line L(x) can also be viewed

1Note that ω depends on spatial coordinates x only.
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as the single time-like link variable of a Nτ = 1 gauge theory. As we will discuss at the end
of this chapter, this allows for two different updating schemes for the space-like links, which
we both consider in this work.

This chapter proceeds as follows: First we obtain a lattice formulation for the terms in
the action containing the Wilson line L(x). These expressions will be derived from first
principles. The kinetic term in (5.1) contains the gauge covariant derivative DiL, thus it will
be necessary to define covariant differentiation at finite spacing. We therefore introduce the
concept of parallel transport. For the magnetic sector we will take the opposite approach: We
consider the well known Wilson action , which is widely used for 4D lattice gauge theory
simulations and note that this easily generalizes to three dimensions. We then review the
crucial steps that show that it has the correct continuum limit.

We currently employ several approximations. We consider only the n = 1 term of the
perturbative potential, which then can be combined with the “fuzzy” bag term into a single
quadratic expression which acts like a mass term in the Lagrangian. Also, we define a
common lattice coupling constant β for both the kinetic energy term of the Wilson line
and the magnetic sector. The motivation behind these simplifications is that this work
investigates the properties of the lattice model in its own right, and does not aim at matching
the coupling constants to the 4D theory yet. For the same reason we will set the lattice
spacing a equal to one in later chapters.

Note that in the following section we define the generators of the SU(N) group to be
anti-Hermitian rather than Hermitian. This is a matter of convention, since both choices
give equally valid definitions of a Lie algebra. We have chosen anti-Hermitian generators
here out of convenience, since it makes the derivations in this section easier to read. We
have also absorbed the coupling constant g into the definition of the gauge field Ai. We use
these conventions only in section 5.1. In the remainder of the text Hermitian generators
are used and coupling constants are written explicitly.

5.1 Wilson line action

The effective theory (5.1) is constructed to respect all symmetries of 4D Yang-Mills theory.
Thus, all terms must respect local invariance under static gauge transformations ω(x). We
can immediately write down the contribution to the lattice action that arises from the
quadratic terms as

Spot = −m2
∑

i

|tr Li|2 , (5.4)

where the sum runs over all lattice sites and see that it is unchanged under transformations
of the form (5.3), due to the cyclic property of the trace. The kinetic term

Lkin =
T 2

g2
tr |L†DiL|2 (5.5)

contains the covariant derivative DiL(x), which is generally defined in such a way, that
under action of ω(x) it has the same transformation law as the un-differentiated field L(x).
Thus with (5.3) we demand that

DiL 7→ ω(x)DiL(x)ω(x)−1 , (5.6)
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must hold. Gauge invariance of the kinetic energy then follows simply by permutating the
terms under the trace and using

ω(x)ω(x)−1 = 1 . (5.7)

One can show that (5.6) is fulfilled, if DiL has the form

DiL = ∂iL − [Ai,L] , (5.8)

and if the gauge field Ai(x) is a matrix valued field that obeys the transformation law

Ai(x) 7→ Aω
i (x) = ω(x)Ai(x)ω(x)−1 + ∂iω(x)ω(x)−1 . (5.9)

By applying the transformation laws (5.3) and (5.9) to (5.8) one gets

DiL 7→ (DiL)ω = ∂i(ωLω−1) − [ωAiω
−1 + (∂iω)ω−1, ωLω−1] (5.10)

= (∂iω)Lω−1 + ω(∂iL)ω−1 + ωL(∂iω
−1)

−ωAiω
−1ωLω−1 − (∂iω)ω−1ωLω−1

+ωLω−1ωAiω
−1 + ωLω−1(∂iω)ω−1

= ω(∂iL)ω−1 + ωL(∂iω
−1) − ωAiLω

−1

+ωLAiω
−1 + ωLω−1(∂iω)ω−1 .

Here we have suppressed the x dependence. With

∂i(1) = ∂i(ωω
−1) = (∂iω)ω−1 + ω(∂iω

−1) = 0 (5.11)

one sees that the second and the last term of (5.10) cancel, which then leaves the desired
transformation law

(DiL)ω = ω(∂iL)ω−1 − ωAiLω
−1 + ωLAiω

−1 (5.12)

= ω{∂iL − [Ai,L]}ω−1 = ω(DiL)ω−1 .

Thus the expression (5.8) apparently works in the continuum. However, as it stands, this
particular form is not applicable on the lattice. The expression contains the continuous
derivative ∂iL, which is not well-defined on the lattice since there one always has a finite
spacing i.e. a smallest possible separation between two points. To obtain a usable expression
the continuous derivative must therefore be replaced by a finite differential of some sort.
The naive replacement

∂iL −→ L(x + ∆x) − L(x)

∆x
(5.13)

does not work, since it does not transform covariantly. Moreover, the forms (5.8) and (5.9),
even though they generate the desired transformation law, appear somewhat arbitrary. We
have simply postulated them here without really motivating them from basic principles.
We will show in the following, that both of these issues can be solved simultaneously. By
introducing the parallel transporter one can obtain a general covariant differential with the
correct transformation law, which converges to (5.8) in the limit of vanishing distances.
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Parallel transport and lattice covariant derivative

The concept of parallel transport provides an elegant way to define a local SU(N) symmetry.
Consider a N component complex vector field Φ(x) and demand that expressions containing
scalar products of Φ at different arbitrary points x1 and x2, e.g.

Φ†(x1)Φ(x2) (5.14)

should be unchanged under a local change of basis

Φ(x) 7→ ω(x)Φ(x) ω(x) ∈ SU(N) . (5.15)

Since every point x is assigned a different set of unit vectors, Φ(x1) and Φ(x2) belong to
different vector spaces V1 and V2 and expressions such as (5.14) are not well-defined. To
obtain an invariant product one must define some operator U , which provides a mapping
between vector spaces at different points in a continuously differentiable way. As we will
see, this mapping generally depends on the unique path between x1 and x2.

Now let Cxy be some curve in space from a point x to a point y that is parameterized in
some convenient way. With every curve Cyx, one associates an operator U(Cyx) ∈ SU(N)
which fulfills the conditions:

(i) U(0) = 1, i.e. the unit operator is associated with a curve of length zero.

(ii) U(C2 ◦ C1) = U(C2)U(C1) where C2 ◦ C1 is the path that is obtained by connecting
the curves C1,2.

(iii) U(−C) = U−1(C), where −C is the curve C, traversed in the opposite direction.

One further demands that under local gauge transformations, U(Cyx) transforms as

U(Cyx) 7→ U(Cyx)ω = ω(y)U(Cyx)ω(x)−1 . (5.16)

The vector

U(Cyx)Φ(x) ∈ Vy (5.17)

is the vector Φ(x), parallel transported to the point y along the curve Cyx. With the above
definitions, the product

Φ(y)†U(Cyx)Φ(x) (5.18)

is invariant under local gauge transformations.
The operators U(Cyx) are elements of the Lie group SU(N), so

U−1 = U † . (5.19)

Due to U(0) = 1, for infinitesimal displacements one thus can write

Ux+dx,x = 1 +Ai(x)dxi (5.20)

where the field Ai(x) associates an element of the Lie algebra of SU(N), i.e. a traceless
anti-Hermitian N ×N matrix, with every spatial coordinate x. One sees immediately, that
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if one identifies the Ai(x) with the gauge fields introduced above, the transformation law
(5.9) follows from (5.16). By choosing y = x + dx and Taylor expanding U(Cyx)ω and
U(Cyx) one gets

1 +Aω
i (x)dxi = ω(x + dx)ω−1(x) + ω(x + dx)Ai(x)ω−1(x) dxi . (5.21)

Some slight rearrangements and making the replacement 1 = ω(x)ω−1(x) yields

Aω
i (x)dxi = [ω(x + dx) − ω(x)]ω−1(x) + ω(x + dx)Ai(x)ω−1(x) dxi . (5.22)

The desired transformation law (5.9) follows after dividing by dxi and taking the limit
dx → 0. Note that the parallel transporter U along a curve Cs can be obtained from the
Ai(x) by using Dyson’s formula

U(Cs) = P exp

(
−
∫

Cs

Ai dxi

)
. (5.23)

Here the operator P denotes path ordering of the integral, with respect to the parameter s.
From this formula, the expression (5.2) for the link variable Uij follows, with |dxi| ≡ a and
Ai(x) = const. over the length of one lattice spacing. Also, we see that the definition of
the Wilson line (2.6) is of the form (5.23), so the transformation law of L(x) follows from
(5.16).

We now look for an expression analogous to (5.13) but with the correct transformation law.
Derivatives on the lattice are generally written as finite difference quotients, but in order to
compare L(x + dx) with the field at a different point L(x), it must be parallel transported
to x. We have seen above in eq. (5.17) how a vector Φ(x) is parallel transported. The field
L(x) however is a rank two tensor. The analogous expression to (5.17) is

U(Cyx)L(x)U(Cyx)−1 ∈ Vy . (5.24)

In analogy to (5.13) now one can define the lattice covariant derivative as

DL(x) dx = U−1
x+dx,xL(x + dx)Ux+dx,x − L(x) (5.25)

It transforms covariantly and converges to (5.8) when taking dx → 0. This is shown by two
short calculations. We expand the U in terms of the Ai

DL(x)dx ≈ (1−Ai(x)dxi)L(x + dx)(1 +Ai(x)dxi) − L(x) (5.26)

= L(x + dx) − L(x) − [Ai(x),L(x + dx)]dxi + O(dx2
i ) ,

and find that (5.8) is reproduced. Applying a local gauge transformation ω(x) to (5.25)
yields

(DL(x))ωdx = ω(x)U−1
x+dx,xω

−1(x + dx)ω(x + dx)L(x + dx) (5.27)

× ω−1(x + dx)ω(x + dx)Ux+dx,xω
−1(x) − ω(x)L(x)ω−1(x)

= ω(x)U−1
x+dx,xL(x + dx)Ux+dx,xω

−1(x) − ω(x)L(x)ω−1(x)

= ω(x)
(
U−1

x+dx,xL(x + dx)Ux+dx,x − L(x)
)
ω−1(x)

= ω(x)DL(x) dxω−1(x)

which has the desired form.
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Kinetic term for the Wilson lines

The kinetic energy on the lattice is obtained by inserting (5.25) into (5.5). With

Lkin =
T 2

g2
tr |L†DiL|2 =

T 2

g2
tr
[
L†(DiL)(DiL)†L

]
=
T 2

g2
tr
[
(DiL)(DiL)†

]
(5.28)

one gets

Lkin ∼ tr
{
L†(x)

[
U †

x+dx,xL(x + dx)Ux+dx,x − L(x)
]

(5.29)

×
[
U †

x+dx,xL
†(x + dx)Ux+dx,x − L†(x)

]
L(x)

}

And after some rearrangements

Lkin ∼ tr
{[

L†(x)U †
x+dx,xL(x + dx)Ux+dx,x − 1)

]
(5.30)

×
[
U †

x+dx,xL
†(x + dx)Ux+dx,xL(x) − 1

]}

= −tr
{
L†(x)U †

x+dx,xL(x + dx)Ux+dx,x + h.c.
}

+ tr (21)

To get the action, the Lagrangian is integrated over the entire volume

S =

∫
Leff(x)d3x . (5.31)

The constant tr (2 ∗ 1) can be neglected. With finite lattice spacing a ≡ 1 the integral
becomes a simple sum over all sites or links. The contribution from the kinetic energy can
therefore be written as

Skin = −β
2

∑

<ij>

tr (L†
iU

†
jiLjUji + h.c.) (5.32)

where the sum runs over all pairs of nearest neighbors. The relationship between β and the
coupling constant in the continuum must later be determined. The factor 1/2 accounts for
double counting.

5.2 Action of pure gauge sector

The elegant lattice formulation of the action of the four-dimensional Yang-Mills field,
which uses the elementary plaquette was first introduced by Wilson [10] and has since
been discussed excessively (e.g. see Refs. [100, 90, 2, 101]). It is considered a standard
today. The concept is easily generalized to the three dimensional theory. We review the
crucial steps in this section, following the treatment of Ref. [2]. We will take the opposite
approach compared to our previous discussion of the kinetic term. Instead of deriving the
lattice action from first principles we just postulate the Wilson action and show that it
gives the correct result in the continuum limit. Consider a group element

Uij = e−ig0Aµ(xµ)a , (5.33)
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to be associated with each link (i,j). Traversing the link in the opposite direction should give
the inverse element. Here the Lorentz index µ is the direction of the link. The coordinate
xµ associated with a particular link is assumed to lie in the middle of the link

xµ =
a

2
(iµ + jµ) . (5.34)

The action is simply a sum over all plaquettes, which are elementary squares on the lattice

S =
∑

�

S� , (5.35)

with the contribution of each individual plaquette being

S� = β

{
1 − 1

N
ReTr (Uij Ujk Ukl Uli)

}
. (5.36)

The sites i, j, k, l lie at the corner points of the square. With (5.33) the contribution of a
plaquette, centered at xµ and oriented in the (1, 2) plane is written as

S� = β

{
1− 1

N ReTr
[
exp

(
− ig0aA1(xµ − a

2δµ2)
)

exp
(
− ig0aA2(xµ + a

2δµ1)
)

× exp
(
ig0aA1(xµ + a

2δµ2)
)

exp
(
ig0aA2(xµ − a

2δµ1)
)]}

(5.37)

Using f(x0 + ∆x) ≈ f(x0) + ∆xf ′(x0) we expand the vector potential Aµ in powers of a:

S� = β

{
1− 1

N ReTr
[
exp

(
−ig0aA1 + ig0

a2

2 (∂2A1)
)

exp
(
−ig0aA2 − ig0

a2

2 (∂1A2)
)

× exp
(
ig0aA1 + ig0

a2

2 (∂2A1)
)

exp
(
ig0aA2 − ig0

a2

2 (∂1A2)
) ]}

. (5.38)

Terms of order O(a3) are dropped since they are sub-leading in the continuum limit a→ 0.
We must keep the O(a2) since otherwise the linear terms would simply cancel and the action
would be zero for any β.

Since all nested commutators of the form [A, [A,B]], of operators appearing in the expo-
nents of (5.38) are of order O(a3) we can drop them and use the simple Baker-Campbell-
Hausdorff formulas

eXeY = eY eXe[X,Y ] , eX+Y = eXeY e−[X,Y ]/2 , (5.39)

to rearrange (5.38)

S� = β

{
1 − 1

N
ReTr

[
exp

(
−ig0a2(∂1A2 − ∂2A1)

)
exp (−ig0a(A1 +A2))

× exp (ig0a(A1 +A2)) exp (ig0a ig0a[A1, A2])
]}

= β

{
1 − 1

N
ReTr

[
exp

(
−ig0a2(∂1A2 − ∂2A1 − ig0[A1, A2])

) ]}
. (5.40)
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After identifying the element of the field strength tensor F12 = ∂1A2 − ∂2A1 − ig0[A1, A2]
we get

S� = β

{
1 − 1

N
ReTr

[
exp

(
−ig0a2F12

) ]}
. (5.41)

We now expand the exponential. Since we are dealing with unitary groups, the Aµ that
appear in Fµν are hermitian operators. Thus their trace is always real and the O(a2) terms
vanish because of the factor i. We obtain finally

S� = β
g0a

4

2N
Tr(F 2

12) + O(a6) . (5.42)

5.3 Time-like plaquette single counting vs. double counting

Setting m2 = 0 yields the lattice action

S = β
∑

�

(1 − 1

2
ReTr U�) − 1

2
β
∑

〈ij〉

tr (LiUijL
†
jU

†
ij + h.c.) . (5.43)

With our choice2 of setting the coupling parameter of the gauge sector equal to that of
the kinetic energy term of the Wilson line, we have obtained a lattice action that in the
m2 = 0 limit is equivalent to the Nτ = 1 case of 4D Yang-Mills theory, if one considers
the Wilson line Li to be the single link in the time direction for each site.

TheNτ = 1 case however, is a special case of 4D Yang-Mills since it allows for two differ-
ent formulations, depending how one chooses to deal with the periodic boundary conditions
in the τ -direction.

Motivated by the sum over plaquettes in the partition function, one may assume that
there is one time-like plaquette for each coordinate. In this case, space-like links require a
special treatment, because they possess conjugate staples only in the positive time-direction
direction (while there are two staples in each space-like direction). Space-like links differ
from time-like links, because they are connected to five staples instead of six. Following the
discussion in Ref. [102], we refer to this as time-like plaquette single counting. A second
way is to consider Nτ = 1 to be the limiting case of arbitrary Nτ . In this case, there is
no special treatment of space-like links. They possess staples in the positive as well as the
negative time direction, which happen to give equal contributions. This case we refer to as
time-like plaquette double counting.

The Wilson line field in our case is obtained by compactification. This amounts to
shrinking the time dimension while preserving the boundary conditions. We generally adopt
the double counting scheme in this work. Some observables are also investigated in a single
counting scheme and are discussed for comparison.

2The considerations in this section do not depend strictly on this choice, but the equivalence to Nτ = 1
gauge theory is exact in this case. Any other choice would require similar considerations.
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6 Results without magnetic fields

In this chapter we present Monte-Carlo results of a simplified model, where the magnetic
sector is neglected:

Ai = 0 . (6.1)

This approximation fixes the link variables to unity, and yields a lattice action of the form

S = −1

2
β
∑

〈ij〉

tr
(
LiL

†
j + h.c.

)
−m2

∑

i

|tr Li|2 . (6.2)

With this constraint, the theory is essentially reduced to a spin system. Such an approxi-
mation is useful since, with a suitable choice of parameters β and m2 it allows one to obtain
a qualitative understanding of the eigenvalue structure of the deconfined phase of the 3D
effective theory introduced previously, with a drastic reduction in computing time. Note
that the model (6.2) lies in a different universality class than the theory with gauge fields,
due to the absence of a local symmetry, and thus one cannot expect a full correspondence
of the phase structure. However the model (6.2) is also interesting in its own right. Spin
models have long been considered as a simple analog of gauge theories, since their degrees of
freedom are elements of Lie groups, which makes their properties depend on the geometry
of the group. They share with gauge theories the property of asymptotic freedom in an
appropriate dimension. Numerical and analytical data for different observables in the limit
m2 = 0 of (6.2) exists in literature, with which a consistency check can be performed. Also,
the action (6.2) possesses a simple local mean-field approximation, which can be compared
to our numerical results in order to illustrate the importance of fluctuations close to the
critical point. We will drop the constraint (6.1) in later chapters.

This chapter is structured as follows: First we discuss the symmetry breaking pattern
of the kinetic energy term only. This corresponds to moving along the line of m2 = 0 in
the β-m2 plane. We then generalize to non-zero m2, discuss the mean-field approximation,
compare it to lattice results in different regions of the β-m2 plane and map the phase
diagram of the theory. To deepen our understanding of the different phases, we measure
the inverse correlation length in various regions of the phase diagram and look in particular
for divergences at the phase boundary. Next, we measure the distribution of sums and
differences of eigenvalues in different regions of the phase diagram and search for eigenvalue
repulsion in the region close above the phase transition. A detailed study of autocorrelations
in the Monte Carlo time series can be found at the end of the chapter. We choose to present
these measurements separate from the other material, since the reader who is primarily
interested in the physics may want to skip these (very relevant) technical matters.

We employ a standard single hit Metropolis algorithm with sequential updating and
periodic boundary conditions to generate lattice configurations. We start with an ordered
initial condition where all field variables are set equal to the unit matrix. All Monte Carlo
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sample sizes quoted in this chapter are statistically independent measurements of the equi-
librium distribution, where a number of Monte Carlo steps larger than the integrated auto-
correlation time was discarded between data points. The results in the m2 = 0 limit have
been confirmed by replacing the updating algorithm by a Creutz heat bath.

6.1 Chiral model of Kogut, Stone and Snow

A model consisting only of the kinetic energy term of the action (6.2) was first studied in
three dimensions1 numerically by lattice simulations and analytically by mean-field approx-
imation in Ref. [105] by Kogut, Stone and Snow. Later, Refs. [106, 107] and [108]
obtained improved results with higher precision. The action of this model

S = −1

2
β
∑

〈ij〉

tr (LiL
†
j + h.c.) , (6.3)

has a global SU(2)L × SU(2)R symmetry, which is an invariance under the transformation

Li 7→ ΩL Li Ω†
R ∀i , (6.4)

where ΩL,R are two distinct SU(2) matrices which are constant over space2. The model
is formally equivalent to a nonlinear sigma model for the chiral phase transition of QCD
[111, 112], however here it is investigated in the context of deconfinement and the degrees
of freedom are Wilson lines, rather than mesonic fields.

6.1.1 O(4)-like order parameter

The model (6.3) possesses a global order parameter of which a finite expectation value
signals the spontaneous breaking of the SU(2)L × SU(2)R symmetry. This occurs when
the coupling constant β is larger than a certain threshold value βC . To understand the
symmetry breaking pattern, note that the symmetry under (6.4) is equivalent to a global
symmetry under SU(2)V × SU(2)A, where SU(2)V denotes the vector transformations

Li 7→ ΩV Li Ω†
V ∀i , (6.5)

and SU(2)A denotes the axial transformations

Li 7→ ΩA Li ∀i . (6.6)

Equivalence to (6.4) follows if one identifies

ΩV ≡ ΩR and ΩA ≡ ΩL Ω†
R . (6.7)

For any L = ℓ01 + i ℓj σj the vector transformations SU(2)V rotate the σj amongst them-
selves, but leave ℓ0 invariant since

ℓ0 = trL 7→ tr (ΩV LiΩ
†
V ) = trL , (6.8)

1Other authors have studied similar models in two spatial dimensions. See e.g. Refs. [103, 104].
2The model therefore differs from others which deal exclusively with the trace of L, such as S ∼
−β

P

(trLi trL†
j + c.c.) [109, 110]
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and

[U, σi] 6= 0 for U 6= a01 ∈ SU(2) . (6.9)

The axial transformations SU(2)A rotate the ℓ0 and the ℓi into each other. The “length”
ℓ20 + ℓ2i is preserved for both SU(2)V and SU(2)A individually, since

ℓ20 + ℓ2i = detL = det(UL) = det(ULU †) for U ∈ SU(2) . (6.10)

Thus, since SU(2)V does not change ℓ0 it also preserves ℓ2i (where the sum convention is
implied).

The symmetry broken phase of the action (6.3) is a state where nearest neighbor matrices
are forced to align. This corresponds to the breaking of SU(2)L ×SU(2)R down to SU(2)V
as we will see further down. To obtain an expression for the order parameter in terms of the
volume averaged field L, one uses the fact that the sum over any number of SU(2) matrices
is proportional to another SU(2) matrix (see appendix A). One can thus calculate

1

N3
s

∑

i

Li = L = c Ω , (6.11)

where Ns is the spatial extent of the lattice, and extract the constant u0 = 〈|c|〉 (which is
always ≥ 0 by construction). Considering

Tr (c Ω†)(c Ω) = |c|2Tr (Ω†Ω) = 2 |c|2 , (6.12)

allows us to isolate u0:

u =

√
TrL

†
L/2 , u0 = 〈u〉 . (6.13)

This is the “length” of the average of the field L in the space of quaternions, or corre-
spondingly the length of the four dimensional vector defined by the parameters ai=0...4 of
L = a01 + aj i σj . Thus we refer to it as the O(4) order parameter.

When u0 is non-zero the system chooses a ground state at random on the four-dimensional
sphere defined by a2

0 + a2
i = u2

0. Assuming that the system has chosen L = a01 one can see
the residual SU(2)V symmetry by considering that

L = a01 7→ ΩV a01 Ω†
V = a01 . (6.14)

Note that the expectation value of L

〈L〉 =
1

N3
s

〈
∑

i

Li〉 , (6.15)

is not a good order parameter since even though the nearest neighbor matrices become
aligned for large β, there is no preferred direction for L in group space and therefore Monte-
Carlo estimates for (6.15) converge to zero for long run-times. 3

We perform lattice simulations of (6.3) on lattice sizes Ns = 12, 24, 36, 48. Fig. 6.1 shows
measurements of the order-parameter u0 in the range β = 0.0 . . . 3.0. The left-hand side

3This is an example of Elitzur’s theorem [113].
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Figure 6.1: The order-parameter (6.13) measured on Ns = 12, 24, 36, 48.
Left: Step-size ∆β = 0.1, 2500 configurations per β. Right: Step-size ∆β = 0.01, 1250
configurations per β.
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Figure 6.2: Time evolution of the volume averaged Polyakov loop below (β = 0.9) and
far above βC (β = 10), measured on Ns = 12.

shows results for a coarse resolution with step-size ∆β = 0.1, where 2500 configurations
were generated for each value of β. The system clearly undergoes a phase transition at
βC ≈ 0.9. The right-hand side shows precision measurements in the immediate vicinity of
βC , with the increased resolution of ∆β = 0.01. Due to critical slowing down, independent
configurations are much more costly in simulation time in this region. We generate 1250
configurations for each point in β = 0.7 . . . 1.0.

To demonstrate the slow rotation of L in the ordered phase, which leads to vanishing
expectation values for local order parameters, in Fig. 6.2 we show the evolution in Monte-
Carlo time of the volume averaged Polyakov loop ℓ = 1

2TrL for two values of β below
and far above βC . One observes that ℓ wildly fluctuates around 0 in the disordered phase.
Above βC , where the Wilson lines are aligned, |ℓ| is far from 0 for long time intervals.
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Figure 6.3: Left: The susceptibility χ for lattice sizes Ns = 12, 24, 36, 48. Right: The linear
1/Ns → 0 extrapolation of βC . The triangles show the consistency with the peak of the
integrated autocorrelation time (see end of chapter for discussion)

6.1.2 Susceptibility

To estimate the infinite volume limit of βC we compute the temperature susceptibility

χ(β) =
∂u0

∂β
, (6.16)

check how the position of the peak shifts as a function of 1/Ns and extrapolate to 1/Ns → 0.
An estimate for (6.16) is obtained directly from our data for u0, by taking

χ(β) =
u0(β + ∆β) − u0(β − ∆β)

2∆β
, (6.17)

and applying standard error propagation formulas. The position of the peak defines βC for
any given lattice size. A linear extrapolation to 1/Ns = 0 yields

βC = 0.942(5) , (6.18)

(see Fig. 6.3). This value is slightly larger than the estimate obtained in Ref.[105], where
smaller lattices and lower statistics were used.

6.1.3 Internal energy

Another observable which is immediately available once the updating algorithm has been
implemented is the internal energy per link.

E =
1

3N3
s

∑

〈ij〉

tr (LiL
†
j) . (6.19)

Fig. 6.4 shows results for (6.19) obtained on cubic lattices of Ns = 12, 24, 36, 48 (we used the
same data sets as for the measurements of u0) together with the corresponding susceptibility

χE(β) =
∂〈E〉
∂β

. (6.20)
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Figure 6.4: Left: The internal energy per link 〈E〉, measured on Ns = 12, 24, 36, 48. Right:
The susceptibility χE(β).

Our measurements of the internal energy reproduce those of Refs. [106, 108] for all values of
β considered, but differs slightly from Ref. [105]. Note that the peak of χE(β) is consistent
with βC = 0.942(5) within numerical precision.

6.1.4 Two-point correlation function

We expect that in the region β < βC the adjoint fields

ℓ̃a(x) =
1

2i
TrL(x)τa (6.21)

as well as the singlet field

ℓ(x) =
1

2
TrL(x) (6.22)

are massive, since long range correlations are screened by thermal fluctuations. At βC ,
the critical fluctuations that emerge at a second order phase transition should generate
correlations over large distances. For β > βC , since there is a spontaneously broken con-
tinuous global symmetry we also expect massless modes to be present, which correspond
to the slow rotations in group space discussed in section 6.1.1 (Fig. 6.2) and which induce
long-range collective behavior 4. To confirm these expectations, we measure the two-point
matrix-matrix correlation function

CL(r) =
1

3

1

N3
s

∑

r̂,r0

1

2

〈
trL†(r0)L(r0 + r)

〉
. (6.23)

which mixes excitations of (6.21) and (6.22), and extract the inverse spatial correlation
length mξ = 1

ξ , which is the effective Debye screening mass, by performing a χ2 fit to the
functional form

CL(r) ∼ 1

rmξ
e−rmξ + const. , (6.24)

4By Goldstone’s theorem, the number of massless modes is equal to the dimension of the symmetry group G

of the Lagrangian minus the dimension of H , which is the symmetry group of the vacuum. For our case
SU(2)L × SU(2)R is broken to SU(2)V , so since SU(N) has N2 − 1 generators, the number of massless
modes should be 2 ∗ (22 − 1) − (22 − 1) = 3. For a proof of the theorem see e.g. Refs. [1] or [114].
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at r ≥ 4 (see also Ref. [42]).
Fig. 6.5 shows mξ measured on Ns = 12, 24, 36, 48 for β = 0.7 . . . 1.0. Below βC we

measured CL(r) for 2500 independent configurations for each value of β on all lattice sizes.
For β ≥ βC successively larger number of configurations must be discarded for larger Ns

due to critical slowing down. At Ns = 48 we measured on the order of 250 data points for
β ≥ βC .
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Figure 6.5: The inverse spatial correlation length mξ as a function of β measured on Ns =
12, 24, 36, 48.

The results shown in fig. 6.5 indicate that mξ is zero up to finite size effects for β ≥ βC ,
which confirms the presence of massless modes. At βC we extract a scaling exponent νξ by
performing a fit of the form

mξ(βC) ∼ N
−1/νξ
s . (6.25)

Fitting the Ns = 24, 36, 48 lattices only, we find

νξ = 0.938(5) . (6.26)

We have measured the correlation lengths also individually for the singlet field ℓ(x) and
adjoint field ℓ̃a(x) by fitting (6.24) to correlation functions of the form

Cℓ(r) ∼
∑

r̂,r0

〈ℓ(r0) · ℓ(r0 + r)〉 , (6.27)

Cℓ̃(r) ∼
∑

r̂,r0

〈
ℓ̃(r0) · ℓ̃(r0 + r)

〉
. (6.28)

We refrain from showing explicit results, since they closely resemble Fig. 6.5.

6.2 Model with Polyakov loop potential term

We now turn to the action

S = −1

2
β
∑

〈ij〉

tr
(
LiL

†
j + h.c.

)
−m2

∑

i

|tr Li|2 , (6.29)
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wherem2 is non-zero. The inclusion of the mass term breaks the SU(2)L×SU(2)R symmetry
down to global SU(2). The action (6.29) is invariant under

Li 7→ Ω Li Ω† ∀i . (6.30)

We expect that for large values of m2 there should be a phase where
〈
|12TrL|

〉
≈ 1 since for

such a configuration the mass term gives a negative contribution to the action. We therefore
investigate the expectation value of the volume averaged Polyakov loop

ℓ =
1

2
TrL (6.31)

in addition to the O(4) order-parameter defined in eq. (6.13). In particular, the mean-
field approximation in the following paragraph yields analytic predictions for 〈|ℓ|〉 above the
phase transition, which are compared to Monte-Carlo results in later sections.

6.2.1 Mean field approximation

The mean field approximation of the model (6.3) without a mass term was discussed at
length in Ref. [105]. We generalize this discussion to non-zero m2. Consider the partition
function

Z =

∫ ∏

k

[dLk] exp





1

2
β
∑

〈ij〉

tr
(
LiL

†
j + h.c.

)
+m2

∑

i

|trLi|2



 , (6.32)

where dLk denotes the invariant group measure at each site, and replace the interaction
of each Li with its 2d nearest neighbors, where d is the number of spatial dimensions, by
interactions with a fixed matrix L:

∑

j

Lj −→ 2d L . (6.33)

The partition function (6.32) then factorizes

Z −→ ZN
ss , (6.34)

and thus the problem is completely determined by considering a single lattice site. The free
energy of a single site Fss can then be obtained from the single site partition function

e−NFss(L) = ZN
ss , (6.35)

where N is the number of lattice sites and

Zss =

∫
[dL] exp

[
dβ tr

(
LL

†
+ LL†

)
+m2 |tr L|2

]
. (6.36)

We now consider the expectation value

〈(L)∗lk〉 =
1

Zss

∫
[dL] (L)∗lk exp




dβ
∑

i

∑

j

[
(L)ij(L)∗ij + (L)ij(L)∗ij

]
+m2 |trL|2






=
1

Zss

∫
[dL]

1

dβ

∂

∂(L)lk
exp (−Sss) =

1

dβ

1

Zss

∂Zss

∂(L)lk

=
1

dβ

∂

∂(L)lk
logZss(L) . (6.37)
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Note that the indices i, j, k, l here label matrix elements, not lattice sites. Mean field self
consistency requires (6.37) to be equal to

(L)∗lk =
∂

∂(L)lk
(L)∗lk(L)lk , (6.38)

where the sum convention is implied for the second index pairs on the right hand side, so

∂

∂(L)lk

[
1

dβ
logZss(L) − (L)∗lk(L)lk

]
= 0 . (6.39)

This is equivalent to demanding that the mean field free energy , defined as

Fmf(L) = Fss(L) + dβ trL
†
L , (6.40)

must be minimized, with respect to L:

∂

∂L
Fmf(L) = 0 . (6.41)

To proceed, we note that L must be proportional to a SU(2) matrix

L = ℓU . (6.42)

We exploit the invariance of the group measure [dL] to rotate U in (6.36) to the identity,
by transforming

L → LU (6.43)

The partition function (6.36) then becomes

e−Fss(ℓ) =

∫
[dL] exp

[
2dβℓ tr (L + L†) +m2 |trL|2

]
. (6.44)

This group integral can be expressed as an ordinary integral using the parameterization of
Weyl and Vandermonde [105]. The matrix L can be diagonalized by unitary transfor-
mation:

L = D





eiφ1 0 . . .
0 eiφ2 . . .
...

...
. . .

eiφN




D† . (6.45)

Since L belongs to SU(N), the sum over φ must be zero, modulo 2π, to fulfill detL = 1.
The matrices D and D† cancel each other in (6.44) due to the cyclic property of the trace.
The group measure factorizes

[dL] = dµ(φ) [dD] , (6.46)
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with

dµ(φ) =

N∏

i=1

dφi

2π
|∆(φ)|2 ·

l=+∞∑

l=−∞

2πδ

(
N∑

i=1

φi − 2πl

)
, (6.47)

∆(φ) =
1√
N !

∑

i1,...,iN

ǫi1,i2,··· ,iN e
iφ1(N−i1) eiφ2(N−i2) . . . eiφN (N−iN ) . (6.48)

The delta functions in (6.47) are needed to ensure special unitarity. ∆(φ) is called the
Vandermonde determinant. We set l = 0 and find for the group SU(2)

[dL] ∼ dφ |∆(φ)|2 = dφ sin2 φ . (6.49)

With
∫
[dD] = 1 we can write

e−Fss(ℓ) =

1∫

−1

d cosφ exp

[
4dβℓ cosφ+ 4m2 cos2 φ+

1

2
log(1 − cos2 φ)

]
. (6.50)

The quantity ℓ is simply the volume averaged Polyakov loop. The Vandermonde deter-
minant contributes a potential term. We evaluate the expression (6.50) numerically using
a standard Gaussian quadrature algorithm [115]. We write (6.40) in terms of ℓ

Fmf(ℓ) = Fss(ℓ) + 2dβ ℓ
2
, (6.51)

and extract the value of ℓ at the minimum for various combinations of β and m2. Lattice
results for ℓ are obtained in the next paragraph. We will then show comparisons of (6.51)
to lattice data.

6.2.2 Phase diagram

To map the phase diagram of (6.2) in terms of β and m2, we measure the O(4) order-
parameter u0 defined in Eq. (6.13) as well as the volume averaged Polyakov loop

ℓ =
1

2
TrL , (6.52)

with their respective susceptibilities. We have already seen that a second order phase
transition occurs along the line of m2 = 0 at βC = 0.942(5), where nearest neighbor matrices
are forced to align, but the direction of alignment remains arbitrary. We expect that a
positive value of m2 would give preference to an alignment with the (positive or negative)
unit matrix, while a negative value of m2 would prefer an alignment outside of the group
center, with L ∼ iσ3 or SU(2) rotations thereof, where the trace vanishes.

We now consider fixed positive and negative values of m2 and measure u0 and ℓ for
large ranges of β, as well as fixing β to different positive values and measuring u0, ℓ as a
function of m2. We consider Ns = 12, 24, 36, 48 lattices and generate on the order of a few
thousand independent configurations for each combination of parameters far from the phase
boundaries and on the order of a few hundreds close to the phase boundary. We refrain
from discussing each data set individually here. Our findings are summarized in the diagram
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Figure 6.6: Phase diagram of the theory defined by (6.29). The diamonds mark the phase
boundary between phases where Z(2) is broken/unbroken. The dots indicate the phase
boundary of spontaneous breaking of SU(2)L × SU(2)R ≈ O(4) down to SU(2)V ≈ SO(3),
which coincides with breaking of the Z(2) center symmetry for m2 > 0.

in Fig. 6.6. For m2 < 0, as expected, the phase transition along the β axis is driven by
the alignment of nearest neighbors, forced by the kinetic term in the action, but the sites
are aligned outside of the group center. In the upper left region u0 is non-zero while 〈|ℓ|〉
vanishes.

For β > βC there is a Z(2) breaking phase transition along the m2 axis at exactly m2 = 0,
where the direction of alignment changes to L = ±1. Fig. 6.7 illustrates this explicitly for
β = 1.0. The derivative ∂〈|ℓ|〉/∂m2 peaks at

m2
c = 0.000(2) , (6.53)

within errors on all lattice sizes considered. The transition in terms of m2 is evidently rather
sharp, but the scaling of the inverse correlation length mξ shown in the next section and the
integrated autocorrelation time τint, discussed at the end of the chapter, suggests a second
order phase transition. For positive m2 at β < βC the phase transition is driven by the
potential, rather than the kinetic term. Crossing the phase boundary here yields non-zero
u0 and 〈|ℓ|〉.

Fig. 6.8 shows the expectation value of the Polyakov loop from a Ns = 24 lattice (which
is close to the infinite volume limit except very close to the phase boundary) together with
the mean field prediction discussed in section 6.2.1 over a broad range of m2 for β = 1.0 and
β = 0.5. The mean field curves have been shifted to the right to match the data far above
the transition. Such a shift is expected by analogy to the tadpole contribution in a scalar
theory, for example. Not surprisingly, the mean field works well far from the transition to
both sides, when fluctuations are suppressed, but fails close to the phase transition due to
critical fluctuations. As we will see in the next section, effective masses for ℓ are large far
from the transition, which is consistent with these findings.
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together with the mean field prediction discussed in section 6.2.1. The mean field curves
were shifted along the m2 axis to match |ℓ| at large m2.
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Figure 6.9: The inverse matrix-matrix correlation length defined by the two-point function
(6.23), measured on Ns = 12, 24, 36, 48 lattices at β = 1.0.

6.2.3 Correlation functions

To deepen our understanding of the symmetry breaking patterns present in the β−m2 plane,
we measure matrix-matrix correlation functions (6.23) as well as correlation functions for
Polyakov loops (6.27) and adjoint fields (6.28) also for non-zero m2 and extract screening
masses by fitting to Eq. (6.24). Fig. 6.9 shows the behavior of the inverse matrix-matrix
correlation length, for fixed β = 1.0 when crossing the phase boundary at m2 = 0. The
vanishing screening mass at exactly m2 = 0.0 is expected from our prior results. Fitting

mξ ∼ N
−1/νξ
s to the Ns = 24, 36, 48 data at β = 1.0/m2 = 0.0 gives the scaling exponent

νξ = 2.28(8) . (6.54)

An interesting observation are the long range correlations that also appear to be present for
m2 < 0. Here the volume dependence of mξ is weaker than at exactly m2 = 0.0, but we have
confirmed that mξ vanishes in infinite volume here as well (e.g. with the scaling exponent
ν ′ξ = 3.5(3) at m2 = −0.2). To understand how these correlations emerge, consider Fig.
6.10, which shows inverse correlation lengths also in the singlet and the adjoint channels
on Ns = 12, 24 lattices. The adjoint channel is massless for negative m2, but unlike for the
KSS model the Polyakov loop channel is massive on both sides of the phase boundary.
This confirms that the massless excitations in this case, are the global rotations in the sub-
manifold spanned by the group generators in contrast to the KSS model, where rotations in
the full SU(2) group were possible. The matrix-matrix correlation function simply mixes
both channels, and is dominated at large distances by the lowest excitation, which in this
case is the massless mode.

Separate measurements on larger lattices where performed precisely at the transition at
β = 1.0/m2 = 0.0 on 3500 configurations. For the singlet channel on Ns = 24, 36, 48 lattices,

with mξ ∼ N
−1/νξ
s we find

νsingl
ξ = 1.3(1) . (6.55)

For the adjoint channel we find

νadj
ξ = 2.1(7) . (6.56)
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Figure 6.10: The inverse correlation length of Polyakov loops (left) and of the adjoint fields
(right) at β = 1.0, measured on Ns = 12, 24 lattices on 5000 configurations for |m2| ≥ 0.5
and 2000 configurations for |m2| ≤ 0.5.

6.2.4 Eigenvalue distribution

Finally, we determine the distribution of eigenvalues of the Wilson line. Measurements
were performed on lattice sizes Ns = 9, 12, 24, 48 with sample sizes ranging from 2000 to
5000 configurations. We find that the results discussed here are independent of Ns for
Ns ≥ 12. The figures shown in this section represent the Ns = 24 results.

For any given configuration we compute the eigenvalues λ1 and λ2 of the Wilson line L

at each site. In terms of the parameters a0...3 of L, they are given by

λ1,2 = a0 ±
√
a2

0 − 1 (6.57)

(see appendix A for explicit calculation). We define two functions ρ1 and ρ2 as

ρ1(x) =
1

2
|λ1(x) − λ2(x)| =

√
a2

0 − 1 =
√
ℓ2 − 1 . (6.58)

and

ρ2(x) =
1

2
|λ1(x) + λ2(x)| = a0 = ℓ , (6.59)

and determine their normalized distribution functions P (ρ1) and P (ρ2) in the thermal en-
semble via histogramming. Note that with the definitions (6.58) and (6.59) eigenvalue
attraction corresponds to a peak of P (ρ2) around ρ2 = 1, while a flat distribution or a peak
around ρ2 = 0 indicate the presence of eigenvalue repulsion.

Considering that the partition function of a single site can be written as

Zss =

∫
d ℓ P (ℓ) =

∫
d ℓ e−V (ℓ) , (6.60)

the probability distributions P (ρ1) and P (ρ2) can be turned into effective potentials for ρ1,2

by taking the negative logarithm

Veff(ρ1) = − logP1(ρ1) , Veff(ρ2) = − log P2(ρ2) . (6.61)
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λ1,2 of the Wilson line L measured on Ns = 24 at β = 1.0,m2 = 0.0. Right: Corresponding
potentials Veff = − logP together with the contribution to Veff(ρ2) generated by the Haar
measure (dots).

Fig. 6.11 shows the distributions P (ρ1), P (ρ2) and their corresponding potentials for β = 1
at m2 = 0. The potentials show evidence for a logarithmic divergence for ρ1 → 0, ρ2 → 1
respectively. This is expected, as the SU(2) integration measure, for which in (4.30) we
found the expression in terms of a0 ≡ ℓ

dU ∼ dΩ da0 (1 − a2
0)

1
2 , (6.62)

contributes to the effective potential as

VVdm = −1

2
ln(1 − ℓ2) , (6.63)

and thus generates logarithmic repulsion of eigenvalues. Below the transition, at β = 0.5
we obtain similar curves. Note that the potential for ρ2 is entirely flat aside from the
contribution of (6.63) (which is called the Vandermonde potential). Fig. 6.11 (right)
shows a comparison of the pure Vandermonde potential to the measured Veff(ρ2), which
agree exactly within numerical precision. The flat distribution of ρ2 is consistent with the
slow global rotations of L in SU(2) space for β > βC .

Fig. 6.12 shows the distributions P (ρ1) and P (ρ2) in the confined phase at β = 2.0,
m2 = −1.0 and β = 5.0, m2 = −1.0 . These plots are exemplary for β > βC , m2 < 0
corresponding to the upper left region in the phase diagram (Fig. 6.6). For this case, ρ2

peaks around ρ ≈ 0 which corresponds to the non-trivial confined vacuum with L ∼ iσ3 or
SU(2) rotations thereof. This is in agreement with our prior results for the Z(2) and O(4)
order-parameters and the inverse correlation lengths. These results illustrate clearly that
the negative mass term leads to strong repulsion of eigenvalues5. Also they demonstrate
how fluctuations are suppressed with increasing β.

In Fig. 6.13 we show P (ρ1) and P (ρ2) at β = 1.0,m2 = 3.9, which lies deeply in the de-
confined phase, and at β = 1.0,m2 = 0.8, which exceeds the critical m2

c for deconfinement

5In other words, the distributions of the eigenvalues λ1 and λ2, which are gauge invariant, peak about ±1.
That distinct confined phases with different eigenvalue structure can also arise in 4d models of Polyakov
loops coupled to gauge fields, was shown in refs. [116, 117]
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Figure 6.13: P (ρ1) and P (ρ2) measured on Ns = 24 in the deconfined phase. Left: [β =
1.0/m2 = 0.8]. Right:[β = 1.0,m2 = 3.9].

but lies close to the phase boundary. We observe that close to phase boundary, where the
perturbative potential is partly cancelled by the “fuzzy bag” term, the eigenvalue distribu-
tions are rather broad. This result demonstrates that the “fuzzy bag” term can generate
eigenvalue repulsion in the deconfined phase at β ≈ βC , which corresponds to the mod-
erately weak coupling regime in the underlying four-dimensional gauge theory. For larger
m2 the distributions become sharper and their maxima move towards ρ1 = 0 and ρ2 = 1.
Far in the deconfined phase, the eigenvalue distributions qualitatively exhibit the behavior
appropriate for the perturbative regime.

6.3 Autocorrelations

We use the binning method described in section 4.2 to extract the integrated autocorrelation
time τint in different regions of the β − m2 plane. We consider τint for the O(4) order-
parameter u0 and the Polyakov loop ℓ separately, although for m2 > 0 they are equal.
Note that the results of this section were taken into account for the actual measurements
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Figure 6.14: Left: Integrated autocorrelation time τint of u0 at m2 = 0.0 for a range of β.
Right: τint of ℓ at β = 1.0 for a range of m2.

presented previously. In practice, short runs with low statistics were used to find the rough
location of the phase boundary, followed by a detailed investigation of autocorrelations.
Final measurements were then performed in a separate run with high precision. We discuss
two exemplary cases explicitly here.

Fig. 6.14 shows τu0
int for for the case m2 = 0.0 for a large range of β as well as τ ℓ

int

at β = 1.0 for a large range of m2. We show Ns = 12, 48 explicitly although actual
measurements were performed on Ns = 12, 24, 36, 48 with a Markov time series of 320000
successive configurations for each combination of β/m2 on each lattice. Exactly at [β =
1.0/m2 = 0.0] we performed a high precision run with 700000 configurations. The optimal
bin-size for each β/m2 is determined by looking at τint(Nb). It increases when approaching
the phase boundary. For the results presented here, the final bin-size is slightly larger than
the estimate for τint at each β/m2. We present the results without errorbar estimates.

In the vicinity of the phase transition, critical slowing down is observed. τint diverges in
the infinite volume limit for both u0 and ℓ. Away from the phase transition τ ℓ

int decreases.
However, τu0

int also increases with volume for m2 = 0.0/β > βC . It exhibits the standard
behavior for β < βC .

At m2 = 0.0/β = βC the Ns = 24, 36, 48 results for τu0
int can be fitted to the form

τint ∼ N
1/ντ
s , with the scaling exponent

νu0
τ = 0.72(4) . (6.64)

At m2 = 0.0, β = 1.0 for τ ℓ
int we find

νℓ
τ = 1.3(4) . (6.65)
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7 Results with magnetic fields

In this chapter we drop the constraint (6.1) and study the full theory with magnetic fields
included. The action of this theory is

S = β
∑

�

(1 − 1

2
ReTr U�) − 1

2
β
∑

〈ij〉

tr (LiUijL
†
jU

†
ij + h.c.) − m2

∑

i

|tr Li|2 , (7.1)

which is invariant under local SU(2) transformations:

Li → Ωi Li Ω†
i , Uij → Ωi Uij Ω†

j , Ωi ∈ SU(2) ∀ i . (7.2)

Unlike for the action (6.2) without gauge fields, there are no larger symmetry groups in any
limit of β or m2. The only order parameter of this system is the Polyakov loop, which
corresponds to the spontaneous breaking of global Z(2).

The rough structure of this chapter is similar to the previous one: To map the phase
diagram in terms of the parameters β and m2 we first study the massless limit m2 = 0 and
then generalize to non-zero m2. We compute the Polyakov loop expectation value and
correlation lengths of various operators in broad ranges of the β −m2 plane.

However, an entire new class of magnetic observables is now also available. To assess the
impact of deconfinement in the electric sector on the gauge fields, we compute the magnetic
screening mass, as well as spatial Wilson loops of different sizes, which we use to extract the
spatial string tension. Furthermore, in addition to the Polyakov loop potential at a single
site, we compute block spins, where the Polyakov loop is averaged over a small region,
and use them to extract an effective potential for the long-range field modes. A detailed
discussion of parameterizations for Polyakov loop potential follows, with all field modes
included as well as for long-range modes only. We also discuss evidence for the breakdown
of the theory as an effective model for 4D SU(2) Yang-Mills for roughly β ≥ 5.0.

All results discussed in this chapter were obtained by employing Metropolis updating
with over-relaxation for the Wilson lines L as well as the gauge fields on cubic lattices
with periodic boundary conditions. The lattice was updated sequentially. For the Wilson
lines, sweeps were performed by applying 5 random Metropolis hits and 2 over-relaxed
Metropolis hits on each site before moving to the next site. For the gauge links we
mixed 8 random Metropolis hits with 3 over-relaxed hits per step. Again, a discussion
of autocorrelations is found in a separate section. Autocorrelation times are measured in
terms of full sweeps.

For the m2 = 0 case we have cross-checked the Metropolis results by replacing the
updating algorithm for the Wilson lines by a Creutz heat bath algorithm. We have
implemented the Creutz heat-bath also for the 3D gauge sector (corresponding to L ≡ 0)
and confirmed that plaquette measurements in the 3D pure gauge theory are consistent
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with existing literature1. The quadratic powers of U in the kinetic term rule out using the
heat bath also for updating the gauge fields in the effective theory.

All results presented in the main body of this chapter were obtained via the time-plaquette
double counting scheme. The last section of this chapter shows similar results within a single
counting scheme and discusses a qualitative comparison. We confirm that both methods are
in qualitative agreement for measurements in the electric sector. Quantitative differences
arise, since there is a slight change in the exact location of the phase boundary. Measure-
ments of the string tension and Wilson action show that in the magnetic sector, there is
also a qualitative difference between the two methods.

7.1 Massless limit

In this section we study the limit where the mass term m2 has been set to zero. This yields
the lattice action

S = β
∑

�

(1 − 1

2
ReTr U�) − 1

2
β
∑

〈ij〉

tr (LiUijL
†
jU

†
ij + h.c.) . (7.3)

7.1.1 Spontaneous breaking of Z(2)

We compute the expectation value of the volume averaged Polyakov loop

ℓ =
1

2
TrL (7.4)

on lattice sizes Ns = 9, 12, 16, 24. Fig. 7.1 shows results for 〈|ℓ|〉 in the range β = 0 . . . 4 with
step-size ∆β = 0.1. The same figure shows measurements of the respective susceptibility

χ =
∂〈|ℓ|〉
∂β

(7.5)

in the range β = 0.95 . . . 1.05, which is the immediate phase transition region, with a finer
resolution of ∆β = 0.01. We display only the results Ns = 12, 24. For the coarse resolution
as well as the fine resolution 5000 independent configurations were generated for each value
of β. Spontaneous breaking of Z(2) is evident for large β. Extrapolating the peak of the
susceptibility for Ns ≥ 12 to infinite volume yields

βC = 1.00(1) . (7.6)

1We do not discuss measurements in the 3D pure gauge theory in detail here. For our purpose, it is
used mainly as a sub-component of the effective theory. An investigation of the 3D gauge theory in its
own right was performed by Ref. [118]. In Appendix B we show that our code reproduces plaquette
expectation values presented in this reference.



7.1 Massless limit 59

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4

〈 |
 tr

 L —
  | 
〉 /

 2
 

β

m2=0.0 ; Ns=12
m2=0.0 ; Ns=24

 0

 4

 8

 12

 16

 0.96  0.98  1  1.02  1.04

χ 

β

Ns=12
Ns=24

Figure 7.1: Left: Volume averaged Polyakov loop |ℓ|, measured on Ns = 12, 24 for m2 = 0.

Right: Susceptibility χ = ∂〈|ℓ|〉
∂β measured on Ns = 12, 24 in vicinity of βC = 1.00(1).

7.1.2 Two-point functions

The presence of spatial gauge fields invalidates the expression

CL(r) =
1

3

1

N3
s

∑

r̂,r0

1

2

〈
trL†(r0)L(r0 + r)

〉
, (7.7)

which we used previously in section 6.1.4 and following, for the two-point matrix-matrix
correlation function. To obtain sensible results we may consider only forms which are
strictly gauge invariant. A gauge invariant expression analogous to (7.7) is obtained by
parallel transporting the field L(r0 + r) to the point r0 by using the operator Ur0,r0+r:

L(r0 + r) → Ur0,r0+rL(r0 + r)U†
r0,r0+r . (7.8)

Ur0,r0+r is the product of link variables Uij along the shortest path connecting the points
r0 and r0 + r and corresponds to the parallel transporter introduced in section 5.1. It
transforms under the local SU(2) transformation Ω(r′) as

Ur0,r0+r → Ω(r0)Ur0,r0+rΩ
†(r0 + r) , (7.9)

U
†
r0,r0+r → Ω(r0 + r)U†

r0,r0+rΩ
†(r0) .

The gauge invariant matrix-matrix correlation function therefore is

CL(r) =
1

3

1

N3
s

∑

r̂,r0

1

2

〈
trL†(r0)Ur0,r0+rL(r0 + r)U†

r0,r0+r

〉
. (7.10)

The correlation function in the singlet sector

C′
ℓ(r) =

1

3

1

N3
s

∑

r̂,r0

1

2

〈
trL†(r0)trL(r0 + r)

〉
. (7.11)

is gauge invariant without further modification, since the local gauge transformation is
cancelled under the trace.
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Figure 7.2: Left: Inverse correlation length mξ for matrix-matrix correlation function, mea-
sured on Ns = 12, 24 at m2 = 0.0 for a range of β close to βC ≈ 1.0. Right: Inverse
correlation length at m2 = 0.0 for Polyakov loop two-point function.

We measure the matrix-matrix correlation function (7.10) and the singlet correlation func-
tion (7.11) on Ns = 9, 12, 16, 24 in the vicinity of the phase transition for β = 0.95 . . . 1.05
with ∆β = 0.01 on 5000 independent configurations for each value of β. Fig. 7.2 shows the
inverse correlation length mξ obtained from a χ2 fit to

C(r) ∼ 1

rmξ
e−rmξ + const. , (7.12)

for both cases. For visibility, we again only display Ns = 12, 24. Note, that mξ has a
minimum at β = 0.99 on Ns = 24 in the singlet channel as well as the matrix-matrix
channel, which differs slightly from the value of βC obtained above, but is consistent within

the errorbar. We investigate the finite size scaling of mξ at β = 0.99 by fitting mξ ∼ N
−1/νξ
s

to Ns ≥ 12 . We find

νξ = 5.1(6) , (7.13)

for the matrix-matrix correlation length and

νsingl
ξ = 1.10(6) , (7.14)

for the singlet channel. The diverging correlation lengths for Ns → ∞ at β ≈ βC confirm the
second order phase transition. A point to note here, is that unlike for the model without
gauge fields there are no massless Goldstone modes in the deconfined phase. This is
expected, since the global Z(2) symmetry which is broken here is discrete, rather than
continuous as for the SU(2)L × SU(2)R model.

7.1.3 Magnetic sector

The simplest gauge invariant observable in the magnetic sector is the trace of the elementary
plaquette, or correspondingly the volume averaged expectation value of the Wilson action
(we divide by a factor of β).

1

β
〈S�〉 =

1

V

〈
∑

�

(1 − 1

2
ReTr U�)

〉
. (7.15)
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Figure 7.3: Left: β dependence of Wilson action 〈S�〉/β, measured on Ns = 12, 24 at
m2 = 0.0 The phase transition at β ≈ 1.0 is not visible. Right: Spatial string tension σS

measured on Ns = 12, 24.

Since it is part of the updating routine it is immediately available. Eq. (7.15) is an order-
parameter in the 4D gauge theory in the sense that it exhibits singularities of the bulk
thermodynamics, although it never vanishes exactly except at zero temperature. We inves-
tigate whether the transition in the 3D theory can be seen as a jump or singularity in (7.15)
as a function of the coupling β. Note that the 4D version of (7.15) mixes time-like and
space-like plaquettes, while here we consider only plaquettes in spatial planes. We extract
(7.15) from the same data set as the Polyakov loop measurements in section 7.1.1. Fig.
7.3 (left) shows the β dependence of 〈S�〉/β on Ns = 12, 24 lattices for m2 = 0. The fall off
is nearly exponential with β (note the logarithmic y-axis) and there are no discontinuities
seen for any value of β. Also, there is no visible finite size scaling when going from Ns = 12
to Ns = 24.

Another gauge invariant order parameter in the 4D theory is the trace of the product of
links around a closed loop of arbitrary size, which is called the Wilson loop

W (C) =

〈

Tr
∏

i,j∈C

Uij

〉

. (7.16)

The plaquette considered previously is a special case of this. It is simply the smallest non
trivial Wilson loop. In the 4D theory, the static quark-antiquark potential in the confined
phase can be calculated from rectangular Wilson loops in the space-time planes [2]. If the
loop is of size T by R (which denote the space and time-like extent of the loop respectively),
for large loops of long rectangular shape, W (R,T ) is dominated in the confined phase by
an exponential fall off with the area of the loop

W (R,T ) ∼ exp(−KRT ) . (7.17)

The coefficient of this area law is the coefficient of the linear potential and vanishes in the
deconfined phase. Measuring in lattice units, what one actually obtains is the dimensionless
combination

σ = a2 K , (7.18)
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which is called the string tension. In general, in addition to the area dependence there is
also a contribution from the perimeter of the contour, in both the confined and deconfined
phases (in the deconfined phase the perimeter dependence is dominant). In the 4D theory
one therefore considers Creutz ratios

χ(I, J) = − ln

(
W (I, J) W (I − 1, J − 1)

W (I, J − 1) W (I − 1, J)

)
, (7.19)

which contain loops of different area but same perimeter. The perimeter dependence cancels
out and χ(I, J) directly measures the string tension when W (I, J) is dominated by an area
law.

In the 3D theory we extract the spatial string tension σS, by considering loops in the
three spatial planes and looking for an area law dependence

W (X,Y ) ∼ exp(−KXY ) . (7.20)

in analogy to (7.17). While not directly related to any physical potential, this quantity has
been considered as a useful observable for comparisons between 4D Yang-Mills theory
and 3D effective theories (see e.g. [119], [120] and [121]). We find, that obtaining σS by
a fit to (7.20) or by using the Creutz ratio χ(I, J) yield similar results within numerical
precision, although with (7.20) the errors are smaller.

Fig. 7.3 (right) shows the β dependence of σS , obtained from Ns = 12, 24 lattices at
m2 = 0 with 5000 configurations for each value of β. Again, there is no sign of any
discontinuities at βC . σS falls off smoothly with rising β and appears to be independent of
volume for Ns ≥ 12. These results indicate that spatial string tension and Wilson action
are not affected by symmetry breaking in the electric sector at m2 = 0.
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Figure 7.4: Inverse plaquette-plaquette correlation length measured on Ns = 12, 24 for
m2 = 0. Below β ≈ 1 the signal for the two point function diminishes.

Last, we attempt to extract the screening mass of excitations of the spatial gauge fields.
We compute the two-point correlation function of plaquettes P�

Cmag(r) =
1

3

1

N3
s

∑

r̂,r0

1

2
〈trP�(r0)trP�(r0 + r)〉 , (7.21)
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where the plaquettes at the points r0 and r0 + r have the same orientation and face each
other. We find that in the confined phase correlations are screened over distances on the
order of a single lattice site, which leads to a diminishing signal for the inverse correlation
length when approaching βC from above. For β > βC using (7.12) one can extract a mass
which is constant within numerical precision for the range β = 1 . . . 3 considered. Fig. 7.4
shows the numerical results for mmag

ξ on Ns = 12, 24 lattices.



64 7 Results with magnetic fields

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3  4

〈 |
 tr

 L —
  | 
〉 /

 2
 

m2

β=1.0 ; Ns=12
β=1.0 ; Ns=24

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3  4

〈 |
 tr

 L —
  | 
〉 /

 2
 

m2

β=2.0 ; Ns=12
β=2.0 ; Ns=24

Figure 7.5: Expectation value of volume averaged Polyakov loop 〈|ℓ|〉 at β = 1.0 (left)
and β = 2.0 (right) measured on Ns = 12, 24.

7.2 Full theory

We now consider non-zero values for β and m2 and study the full theory defined by the
action

S = β
∑

�

(1 − 1

2
ReTr U�) − 1

2
β
∑

〈ij〉

tr (LiUijL
†
jU

†
ij + h.c.) − m2

∑

i

|trLi|2 . (7.22)

7.2.1 Phase diagram

To map the phase diagram we measure the expectation value of the volume averaged
Polyakov loop 〈|ℓ|〉 for several fixed values of β for broad ranges of m2, as well as for
fixed positive and negative values of m2 as a function of β. Fig. 7.5 shows exemplary re-
sults, from Ns = 12, 24 lattices for β = 1.0/2.0. The phase boundary is obtained by finding
the peak of the susceptibility for each data set. Fig. 7.6 summarizes our findings. Note
that, unlike for the spin model with Ai = 0, there is a single phase boundary and 〈|ℓ|〉 is
non-zero for m2 < 0 at large β. The phase transition along the m2-axis becomes sharper
with rising β. With the resolution used in Fig. 7.5 for β = 2.0 there appears to be a gap,
which would indicate a first order phase transition. However, the effective potential which
we discuss in the following sections confirm that this is a very sharp phase transition of
second order, but that the transition becomes first order at β ≈ 5.0

Fig. 7.7 shows the inverse correlation lengths, obtained from the matrix-matrix and the
singlet correlation functions defined by (7.10) and (7.11) for β = 2.0. The phase transition
is visible as non-analytic behavior at m2 ≈ −1.1, however with the given resolution finite
size scaling is only barely visible (and only in the singlet channel). What these results
clearly show, however, is the absence of any Goldstone modes on both sides of the phase
boundary.

In Figs. 7.8, 7.9 and 7.10 we show the Wilson action 〈S�〉/β together with the spatial
string tension σS for fixed β = 0.5/1.0/2.0 for wide ranges of m2, obtained from NS = 12, 24
lattices. These values of β correspond to β < βC , β = βC and β > βC at m2 = 0.
Both observables exhibit a similar behavior. The most immediate observation is that the
m2 dependence of 〈S�〉/β and σS is very weak for all of these cases. The observed m2
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Figure 7.6: Phase diagram of the theory defined by (7.1). Z(2) symmetry is broken in the
upper right region. In the Z(2) symmetric phase, the Wilson loop L moves randomly over
the group manifold β yielding 〈|ℓ|〉 = 0 when m2 ≈ 0. For large negative m2 preference is
given to configurations where the Polyakov loop ℓ vanishes locally for each configuration.
Unlike for the case Ai = 0 in chapter 6 there is no sharp boundary separating these two
types of confined vacua.

dependences range from ∼ 0.1% effects at β = 0.5 to ∼ 1% effects at β = 2.0 which renders
them nearly invisible at the y-scaling used in Fig. 7.3 where the β dependence at m2 = 0 is
shown. 〈S�〉/β and σS depend more strongly on m2 as β increases.

A striking observation is that 〈S�〉/β and σS depend analytically (within errors) on m2

for β = 0.5, even when crossing the phase boundary at m2 = 2.7(1). Then, at β = βC the
phase transition is visible as a non-analytic, but continuous behavior at m2 = 0 for both
cases. For β = 2.0, both 〈S�〉/β and σS change discontinuously at at m2

C = −1.1(1). These
results suggest that for any β > βC the phase transition in the electric sector produces
discontinuous behavior in the magnetic sector. Note, however, that this does not imply
that the Z(2) breaking transition of 〈ℓ〉 is of first order.

Last, we attempt to obtain the magnetic screening mass from the plaquette-plaquette cor-
relation function (7.21). Consistent with section 7.1.3 we find that correlations are strongly
screened for β ≤ βC over ranges smaller than one lattice site at any value of m2 so that
no signal for mmag

ξ can be obtained. At β > βC , mmag
ξ appears to be independent of m2

within numerical precision. In Fig. 7.11 we show mmag
ξ (m2) for β = 2.0 on NS = 12, 24

lattices. Note that the NS = 12 lattice is somewhat noisy at this scale but in agreement
with NS = 24 within errors. The value mmag

ξ (m2) ≈ 3.0 is consistent with Fig. 7.4. The

phase transition at m2 = −1.1(1) is not visible.
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Figure 7.7: Inverse correlation length for matrix-matrix two-point function (left) and singlet
channel (right) measured on Ns = 12, 24 at β = 2.0.
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Figure 7.8: Wilson action 〈S�〉/β (left) and spatial string tension σS (right), measured on
NS = 12, 24 lattices at β = 0.5 (which is ≤ βC). A weak m2 dependence is observed. The
phase transition is not visible.
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7.2 Full theory 67

 0.545

 0.55

 0.555

 0.56

 0.565

-3 -2 -1  0  1  2  3  4

<
1.

-(
1/

2)
Pl

.>
 

m2

Ns=12 ; β=2.0
Ns=24 ; β=2.0  0.78

 0.8

 0.82

-2 -1  0  1  2  3  4

σ S

m2

Ns=12 ; β=2.0
Ns=24 ; β=2.0

Figure 7.10: Wilson action 〈S�〉/β and spatial string tension σS, measured on NS = 12, 24
lattices at β = 2.0. The m2 dependence of 〈S�〉/β and σS is much stronger than for β = 0.5
(Fig. 7.8). Both observables change discontinuously at the phase transition at m2 ≈ −1.1.

 0

 1

 2

 3

 4

 5

 6

 7

-3 -2 -1  0  1  2

m
ξm

ag

m2

β=2.0 ; Ns=12
β=2.0 ; Ns=24

Figure 7.11: Inverse plaquette-plaquette correlation length measured on Ns = 12, 24 for
β = 2.0. No m2 dependence or lattice size scaling is visible. The phase transition at
m2 ≈ −1.1 is also not seen.

7.2.2 Effective Polyakov loop potential

We are again interested in the distribution of eigenvalues of the Wilson line L. However,
in contrast to the previous chapter we focus entirely on the distribution of the average of
λ1 and λ2, which we define as

ρ(x) =
1

2
|λ1(x) + λ2(x)| =

√
ℓ2 . (7.23)

Moreover, we will for the most part directly discuss the potential

Veff(ρ) = − log P (ρ) , (7.24)

rather than discussing the probability distribution P (ρ) at length. Our goal is to find an
effective parameterization of Veff(ρ) in terms of β and m2 and to see whether the dynamics
generate any additional terms that are not present in the “bare” potential. We will show
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Figure 7.12: Effective potential for Veff(ρ) at m2 = 0, fitted with (7.26).
Left: For β < βC the potential is well described by VVdm. Right: For β > βC spontaneous
breaking of the Z(2) symmetry is observed. A non-analytic term ∼

√
ℓ2 contributes to the

potential.

that in the deconfined region a non-analytic contribution ∼
√
ℓ2 arises, which is distinct

from the Vandermonde potential

VVdm = −1

2
log(1 − ℓ2) = −1

2
log(1 − ρ2) , (7.25)

generated by the SU(2) integration measure and the mass term ∼ −m2ℓ2 which is present
in the action (7.1).

All measurements presented here were performed on a Ns = 24 cubic lattice. This ap-
pears to be close to the infinite volume limit. We have checked that the coefficients of the
model functions discussed below do not change much with volume for Ns ≥ 12. For each
combination of β and m2 5000 independent configurations were generated.

We find that for a broad range of β and m2 the effective potential is well described by
the form

Vfit(ρ) = −1

2
log(1 − ρ2) + a− bρ+ cρ2 . (7.26)

Note that the linear term proportional to ρ =
√
ℓ2 is not to be confused with a Z(2)

background field ∼ −hℓ. It is non-analytic and does not break the Z(2) symmetry explicitly.
Fig. 7.12 shows results for Veff(ρ) for the case m2 = 0 for various values of β above and

below the phase transition which occurs at βC = 1.00(1), with the corresponding fit curves.
Below βC we find that a = b = c = 0 in the potential defined by (7.26), hence the effective
potential coincides with the Vandermonde potential VVdm. This is in agreement with our
prior findings for zero gauge fields.

For β > βC both coefficients a and b are non-zero. Fig. (7.13) shows the β dependence of
a and b at m2 = 0.0. The figure clearly illustrates how deviations from the Vandermonde
potential set in at βC and grow with rising β. The quadratic coefficient c does not appear.
As one would expect, and as we will confirm in the following, c is roughly proportional to
the mass term in the bare potential. We find, that the non-analytic coefficient b can be
parameterized at m2 = 0 by the ansatz

b(β) = b0(β − βC)rθ(β − βC) , (7.27)
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which is motivated by the observation of an approximately linear rising of b above βC (seen
in Fig. 7.13). The solid line in Fig. 7.13 was obtained by fixing βC = 0.9 and performing a
χ2 fit for b0 and r, that yields

b0 = 7.1(1) , r = 0.82(4) . (7.28)
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Figure 7.13: β dependence of fit coefficients of the ansatz (7.26) for Veff(ρ) at m2 = 0. The
solid line corresponds to a parameterization of b(β) by eq. (7.27).

The ansatz (7.26) also works for non-zero m2, when β is smaller than β ≈ 5.0. We have
confirmed this for a broad range in the β − m2 plane. We show explicit results for fixed
β = 1.0 in Fig. 7.14 and for β = 2.0 in Fig. 7.15. The phase transition is clearly visible,
when going from large negative to large positive values of m2 as a shift of the minimum
of Veff from ρ ≈ 0 to ρ ≈ 1. Moreover, the results confirm that the phase transition is of
second order at β = 2.0, 1.0, since for the entire range of m2 there is a single potential
minimum. The m2 dependence of the coefficients a, b, c is shown explicitly for β = 1.0 and
β = 2.0 in Fig. 7.16. The quadratic coefficient c appears to depend linearly on m2 except
for a discontinuous gap at the phase transition. The linear coefficient b was set to zero by
hand in the confined phase. It yields improvements of the χ2 per degree of freedom only in
the deconfined phase.

At non-zero m2, a parameterization of the non-analytic coefficient b is more complicated
than the simple expression (7.27). An ansatz that works, as indicated by the solid line in
Fig. 7.16 (which shows the m2 dependence of the coefficients for different values of β), is

b(β,m2) = b̃(β) θ(m2 + m̃2(β)) ×
{

1 −
[
sinh

(
2
[
g(β)

(
m2 + m̃2(β)

)
+ β̃C

])]−5
}
.(7.29)

with the constant

β̃C = log(1 +
√

2) . (7.30)

This is similar to the magnetization in the 2D Ising model [122]

M(β) = θ(β − β̃C)
(
1 − [sinh(2βJ)]−4

) 1
8 . (7.31)
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Figure 7.14: Effective potential Veff(ρ) for β = 1.0 for different m2 in the confined (left) and
deconfined (right) phases, together with the corresponding χ2 fit to eq. (7.26).
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Figure 7.15: Effective potential Veff(ρ) for β = 2.0 for different m2 in the confined (left) and
deconfined (right) phases, together with the corresponding χ2 fit to eq. (7.26).



7.2 Full theory 71

-9

-6

-3

 0

 3

 6

-3 -2 -1  0  1  2  3  4

m2

a
b
c
fit b

-10

-5

 0

 5

 10

-3 -2 -1  0  1  2  3  4

m2

a
b
c
fit b

Figure 7.16: m2 dependence of fit parameters of the ansatz (7.26) for Veff(ρ) at β = 1.0
(left) and β = 2.0 (right). The solid lines represent a modelling of b(β,m2) with the ansatz
(7.29).

Note that this is a purely heuristic analogy, motivated only by the m2 dependencies shown
in fig. 7.16 and does not imply and deeper connection from universality arguments (the
exponents in Eqs. (7.29) and (7.31) also differ). Once the β dependencies of the parameters
m̃2, g and b̃ in (7.29) have been obtained, it also describes b(β,m2 = 0.0), however less
accurately than (7.27), since separate data sets (with fixed β and variable m2) consisting
mainly of measurements far from m2 = 0 are used to obtain m̃2(β), g(β) and b̃(β). Fitting
(7.29) directly to b(β,m2 = 0) is not feasible, due to the large number of additional param-
eters that arise with the β dependencies of m̃2, g and b̃. There is also no straight-forward
way to obtain (7.27) analytically from (7.29).

The constant β̃C , which is the critical point of the Ising model, has been included into our
ansatz (7.29) because choosing a form analogous to (7.31) implicitly assigns that particular
value of the coupling strength a special meaning, which should be “filtered out” since our
model deconfines at a completely different point. We find that isolating β̃C in such a way
simplifies the β dependence of the other fit-parameters in (7.29) greatly.

The additional β dependent coefficients introduced in (7.29) act as follows: g(β) modifies
the coupling strength, m̃2(β) generates a shift along the horizontal axis and b̃(β) changes
the scale. They can be parameterized as power laws

m̃2(β) = m2
0 +m′ 2

0 β
w , (7.32)

b̃(β) = b′0 + b′′0β
v ,

g(β) = g0 + g′0β
u ,

with constants which are obtained by χ2 fit and are summarized in the following table:

m2
0 = 2.2(1) m′ 2

0 = −2.1(1) w = −1.2(1)

b′0 = −2.5(4) b′′0 = 6.0(4) v = 0.90(4)

g0 = 0.038(1) g′0 = 0.017(1) u = 2.8(1)

The β dependence of m̃2(β), b̃(β) and g(β) is shown in Fig. 7.17, together with their
corresponding fit curves.
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Figure 7.17: β dependence of the coefficients m̃2, b̃ and g defined by eq. (7.29), with
respective parameterizations by eq. (7.32). g is scaled up by a factor of 30.

7.2.3 Effective potential for block spins

To obtain a potential for the long wavelength modes we average the Polyakov loops over
small blocks before computing the histogram of the thermal distribution. This averages
out the hard spatial field modes and thus corresponds to a “cooling” of the system. We
calculate cubic block spin averages defined as

ℓ̄
(k)
i =

1

k3

∑

n

1

2
TrL(i + n) , n = (0, 0, 0) . . . (k, k, k) ,

where k is the side-length in terms of lattice sites. We investigate the cases k = 2, 3, 4. For
each combination of β,m2, block-spins are measured on 2500 independent lattice configu-
rations.

The effect that an increase of the size k of the block spin has on the shape of the potential
is illustrated in Fig. 7.18 for two exemplary points in the confined (β = 0.5,m2 = 0.0) and
deconfined phases (β = 1.5,m2 = 0.0) for the range k = 1 . . . 3. One observes, that with
rising k the potential become narrower, more symmetric and more strongly peaked around
the expectation value of the Polyakov loop |ℓ|. This is expected as a consequence of the
central limit theorem2.

We take the potential for k = 3 as a good approximation for the long distance sector.
This is motivated as follows: We consider the block spin potential for different values of
k and find the position ρmin of the potential minimum. The deviation of ρmin from the
actual expectation value 〈|ℓ|〉 of the Polyakov loop is taken as a measure for the validity
of the approximation. For a valid approximation ∆ρ = ρmin − 〈|ℓ|〉 should be small. This
can be understood in analogy to a mean field self consistency criterium. Fig. 7.19 shows
the β dependence of ∆ρ for m2 = 0.0 and the m2 dependence for β = 2.0. At k = 3 the
minimum of the effective potential differs at most by ≃ 0.03 from the numerical value of 〈|ℓ|〉.
This maximal deviation occurs precisely at the phase transition. At this point, within our
numerical precision, k = 4 does not do significantly better. Away from the phase transition

2The theorem states that the distribution P ′(x) of the average of N random numbers, which are drawn
from a distribution P (x) for which a reduced second moment exists, approaches a Gaussian distribution
for N → ∞. For proof see Ref. [92].
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∆ρ is less than ≃ 0.01 for k = 3. k = 4 does slightly better here, but reduces our statistics
significantly. We have also checked that the results discussed below are stable when going
from k = 3 to k = 4 and will discuss an explicit example. We refrain from discussing the
k = 2 case in detail. It appears to lie in an intermediate regime where contributions from
the short range modes are not completely suppressed.

The ansatz (7.26), which was used for the Polyakov loop potential at a single site, is not
applicable for the long wavelength modes. The block spin averaging procedure appears to
suppress the non-analytic term in most regions of the phase diagram (a possible exception
is discussed below). It appears that for large ranges of β,m2 the potential is well described
by

V (ρ) = −d0
1

2
log(1 − ρ2) + d1 + d2ρ

2 + d4ρ
4 , (7.33)

which is similar to a Landau-Ginzburg mean field theory for the Polyakov loop. The
averaging appears to generate a quartic self-interaction term, which was not present in the
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Figure 7.20: Effective potential for k = 3 block-spins at β = 1.0 for exemplary values of m2

in the confined (left) and deconfined (right) phases, with the corresponding χ2 fits defined
by eq. (7.33).
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Figure 7.21: Effective potential for k = 3 block-spins at β = 2.0 for exemplary values of m2

in the confined (left) and deconfined (right) phases, with the corresponding χ2 fits defined
by eq. (7.33).

“bare” action. However, in contrast to a standard mean field model the Vandermonde
potential must also be multiplied by a coefficient d0, which depends on the location in the
β −m2 plane.

Explicit results for the numerical potential and the χ2 fit defined by Eq. (7.33) are shown
for β = 1.0 in Fig. 7.20 and for β = 2.0 in Fig. 7.21 for different values of m2 in the confined
and deconfined phases. Below the transition the results are consistent with d0 = d4 = 0.
This is not surprising, since in the confined phase, the potential is essentially parabolic
around ℓ = 0 and there is little sensitivity to higher powers of ℓ.

The β/m2 dependence of the fit parameters from Eq. (7.33) is shown for m2 = 0 as a
function of β in Fig. 7.22 and for fixed β = 1.0/2.0 as a function of m2 in Fig. 7.23. For
m2 = 0 there appears to be a region close above the phase transition where the potential is
well described by a sum of quadratic and quartic terms, while the Vandermonde contri-
bution vanishes. The figure shows d0 to fluctuate somewhat around zero, however we have
confirmed that setting d0 = 0 by hand yields a decent χ fit. A similar region is visible above
the phase transition for β = 1.0. A comparison to the β = 2.0 case suggests that this region
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becomes narrower when going to larger β (which corresponds to weaker coupling in the 4D
theory).

The figures indicate that with rising β or m2 respectively, d0 rises gradually from zero
above the phase transition and saturates at d0 ≈ 80 deep in the deconfined phase, while the
quartic coefficient drops from a positive value close above the phase transition to negative
values for large β or m2.

To confirm that the observed suppression of d0 above the phase transition at intermediate
values of β is a real dynamical effect and not just an artifact generated by the lack of
sensitivity to the Vandermonde potential for 〈|ℓ|〉 ≪ 1 we have checked that fixing d0 to
its asymptotic value (d0 ≈ 80) gives a less accurate fit and increases χ2 per degree of freedom
roughly by a factor of two in the region close above the deconfining phase transition.

To further investigate the origin of the suppression of d0, we attempt to model the po-
tential in the region above the phase transition with a different function, assuming a fixed
Vandermonde potential term equal to the asymptotic value, but also including additional
terms. We find that, within our numerical accuracy, it is possible to replace the suppression
of the Vandermonde by another non-analytic term ∼

√
ℓ like for the case k = 1. We find

that the ansatz

V (ρ) = −d0
1

2
log(1 − ρ2) + d1 + d′0ρ+ d2ρ

2 + d4ρ
4, with d0 ≡ 80 , (7.34)

fits the effective potential around ρ ≈ 0 even slightly better than (7.33), which shows
small deviations around this point. The coefficient d′0 is negative in the region above the
phase transition. However, the improvement of the χ2 per degree of freedom is below the
percent level and the ansatz (7.34) fails entirely at large β or large m2 (away from the phase
transition) by generating a potential that is not bounded from below.

The result (7.34) suggests that the suppression of the Vandermonde term may be an
artifact due to incomplete cooling of short-range fluctuations at k = 3. We thus investigate
the cases [β = 1.0/variable m2] and [m2 = 0/variable β] also for k = 4. The extracted
coefficients for this case are shown in Fig. 7.24. We observe, that sensitivity to the quartic
coefficient diminishes at large β, which is expected since the potential becomes narrower
and thus closer to parabolic. Nevertheless, the results are consistent with the case k = 3 up
to an overall scaling factor and a slight suppression of the quartic term close to the phase
transition. The Vandermonde term must be modified by a parameter also at k = 4.

7.2.4 Large β limit

At very large β we find evidence that the order of the phase transition changes from second
order to first order.

As seen in Fig. 7.25, the Polyakov loop expectation value changes very sharply from
the confined to the deconfined phase for β ≥ 2.0. While the transition is very abrupt
already at β = 2.0, we have discussed in section 7.2.2 that for this particular value of β the
effective potential for the Polyakov loop shows a single minimum for the entire range of
m2 considered (above, below and exactly at the phase transition). This confirms the phase
transition to be of second order.

The second plot in Fig. 7.25 shows however, that for β = 5.0 there are clearly two
distinct minima of the effective potential close to the phase transition. This indicates that
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two meta-stable states coexist close to the transition, which is characteristic for a first order
transition.

7.3 Autocorrelations

The binning method was used to estimate the integrated autocorrelation time of our updat-
ing algorithm, which consists of sweeps with [5 random/2 over-relaxed] Metropolis hits
for each site and [8 random/3 over-relaxed] hits for each link. We measured τint for the vol-
ume averaged Polyakov loop 〈|ℓ|〉 as well as for the Wilson action 〈S�〉, for [m2 = 0.0/β
variable] and [β = 2.0/m2 variable]. For Ns = 12, 16 lattices 400000 sweeps were performed
for each combination of β/m2. For Ns = 24 we performed 100000 sweeps. We find that for
the entire parameter range considered, the autocorrelation time for 〈S�〉 is . 5 sweeps on
Ns = 24 and displays only a mild increase on the order of ∼ 1 when approaching the phase
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transition. We refrain from showing the explicit figures. For 〈|ℓ|〉 we display the results of
the Ns = 16, 24 lattices in Fig. 7.26. We do not obtain errorbars for τint and take the mea-
sured results as rough estimates. The final bin-size is slightly larger than the τint estimate
for each case. While autocorrelations are modest (on the order of . 25) far from the transi-
tion we find massive critical slowing down when approaching the phase transition. We find
that several hundreds of configurations need to be discarded between measurements, close
to the phase boundary. We choose to discard 500 configurations at the phase boundary for
the Ns = 24 lattice and 300 for the Ns = 12, 16 lattices.
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7.4 Single counting scheme

In the final section of this chapter we now discuss quantitative and qualitative differences
that arise when going from a time-plaquette double counting scheme to a single counting
scheme. Since in our code the spatial and the time-like contributions to the action (7.1) are
well separated this is technically straight-forward. Our main focus here is to show which
aspects of the model are qualitatively different, so we will not discuss every observable in
detail here and will restrict ourselves to exemplary results. We discuss the effective potential
for the Polyakov loop at a single site, a full investigation of the block spin averaged field,
however, has not been performed. Also, we focus this discussion on the immediate physical
results, and refrain from quoting sample sizes and autocorrelation times.

We measure the Polyakov loop expectation value 〈|ℓ|〉 in wide ranges of β and m2 to
obtain the phase diagram. The result is shown in Fig. 7.27 (left). The phase boundary
at m2 > 0 is very similar to the double counting scheme (Fig. 7.6). However, at m2 < 0
the phase boundary runs at a somewhat different angle. In Fig. 7.27 (right) we show the

susceptibility ∂〈|ℓ|〉
∂β at m2 = 0.0. The peak is consistent with

βC = 0.8730(2) , (7.35)

which was obtained by Ref. [123] for Nτ = 1 SU(2) gauge theory (although this reference
does not discuss explicitly how boundary conditions were treated). It differs only slightly
from the double counting scheme for which we found βC = 1.00(1). The matrix-matrix
correlation length also seems to diverge at βC ≈ 0.87 (see Fig. 7.30, left). We find that the
general qualitative behavior of the electric screening masses is the same as in the double
counting scheme: They vanish only exactly at the phase boundary in infinite volume. No
massless excitations exist, deep in the confined or deconfined phase.

The phase boundary has the same qualitative structure as in the previous discussions: The
phase transition is of second order for small β and then turns to first order when β becomes
large. We illustrate this in Fig. 7.28 where the effective potential of the Polyakov loop
at a single site is shown, when crossing the phase boundary at β = 2.0 (left) and β = 5.0
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line represents a χ2 fit using eq. (7.29) to the non-analytic coefficient b(β,m2). Right: The
β dependence of the parameters of eq. (7.29).

(right). Two distinct minima can be seen at β = 5.0 close to the phase transition. Veff(ρ)
can be parameterized analogous to (7.26) with linear and quadratic terms in ρ. Eqs. (7.29)
and (7.32) can be used to model the non-analytic coefficient b, the parameters of (7.32)
being summarized in the following table:

m2
0 = 6.2(9) m′ 2

0 = −5.8(9) w = −0.5(2)

b′0 = −3.7(9) b′′0 = 7.5(9) v = 0.71(7)

g0 = 0.037(3) g′0 = 0.004(2) u = 3.8(6)

Fig. 7.29 shows the resulting parameterization of g(β), m̃2(β) and b̃(β), as well as an explicit
example (β = 2.0) of the m2 dependence of the parameters a, b, c of eq. (7.26).

The magnetic sector shows a qualitatively somewhat different behavior than in the double
counting scheme. Although the magnetic screening mass (Fig. 7.30 right) behaves similar to
our previous discussions (vanishing signal for the two-point function below βC , a constant
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mass above βC and no dependence on m2) there are differences in the behavior of the
spatial string tension and the Wilson action. In Figs. 7.31 and 7.32 we show σS obtained
on NS = 12, 24 lattices in various regions of the phase diagram. Fig. 7.31 (left) shows the
case [m2 = 0.0 / variable β]. Here we find consistency with our prior results: The string
tension shrinks continuously with rising β and does not display any special behavior at βC .
However, when measuring at fixed β and variable m2, we find that there is no dependency
of σS on m2 at all at β < βC . For β > βC we find that at exactly the phase transition
there is (consistent with the double counting results) a sharp increase of σS on the order
of ∼ 1%, which becomes stronger with rising β. However, away from the transition, even
at β > βC , σS appears to be completely independent of m2. The behavior of the Wilson
action 〈S�〉/β is analogous (we refrain from showing explicit figures). This differs from the
double counting scheme, in which a weak m2 dependence of both σS and 〈S�〉/β is seen,
even for values of m2 far from the transition.
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8 Results in four dimensions

In this chapter we summarize our efforts towards the goal of matching the three dimensional
effective theory of Wilson lines to the full gauge theory in four dimensions. The ultimate
aim of such an effort is to obtain the temperature dependencies of the coupling constants
β and m2 defined in the previous chapters. We state clearly however, that this aim is far
beyond the scope of this work. The results presented in this chapter represent only a first
attempt of obtaining a qualitative comparison of the phase structures of both theories. We
approach the problem by simulating a 4D pure gauge theory with a fixed time-like extent
Nτ and measuring bare values for similar observables as in the 3D case. We obtain the
Wilson line L(x) as an effective three dimensional field by multiplying the link variables
along a straight closed path in the time direction.

This chapter is structured as follows: We begin by reproducing well-known results for
observables in 4D Yang-Mills theory, to establish numerical consistency. The first result
is the critical value of the coupling constant β. A second order phase transition is known
to occur, where the Polyakov loop becomes non-zero for large β. Next we calculate the
Wilson action and Creutz ratios and compare them to literature.

We then proceed to calculate two point function of the Wilson line. We show that the
behavior of the inverse correlation length is in agreement with the 3D theory. Next, we
compute the effective potential for the Polyakov loop, for single sites as well as for block
spins, and show that a parameterization similar to the 3D case is possible. The central result
of this chapter is the observation that the effective potential for block spins has a similar
qualitative structure as in the 3D effective theory, with a Vandermonde contribution which
vanishes in a small region close above the phase transition.

All results presented in this chapter were obtained with a modified version of the MILC
collaboration’s public lattice gauge theory code1, which uses the Kennedy-Pendleton
heat bath algorithm to update the link variables.

8.1 Phase transition

Ref. [124] calculated the expectation value of SU(2) Polyakov loops for different time-like
lattice sizes Nτ and extracted the critical point βc. The following table contains shows the
findings of this reference for Nτ = 2, 4, 6 :

Nτ βC

2 1.8800(30)

4 2.2986(6)

6 2.4265(30)

1See http://physics.indiana.edu/˜sg/milc.html
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Figure 8.1: Expectation value of volume averaged Polyakov loop 〈|ℓ|〉 (left) and suscepti-

bility χ = ∂〈|ℓ|〉
β (right), measured on Ns = 16.

We measure the volume averaged Polyakov loop on a Ns = 16 and Nτ = 2, 4, 6 lattices for
a large range of β. Fig. 8.1 shows our findings, together with the respective susceptibilities

χ = ∂〈|ℓ|〉
β . The peaks of the susceptibilities for the different Nτ are in agreement with the

table shown above, within numerical precision.

8.2 Wilson action

The expectation value of the 4D Wilson action over β

1

β
〈S�〉 =

1

V

〈
∑

�

(1 − 1

2
ReTr U�)

〉
. (8.1)

was calculated by Creutz. In Ref. [2] the results for Ns = Nt = 10 are presented for a
large range of β. We reproduce these results, and present them in Fig. 8.2.
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Figure 8.2: The Wilson action over β, measured on Ns = Nt = 10. Reproduces Ref. [2].
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8.3 Creutz ratios

Refs. [125] and [126] calculated Creutz ratios

χ(I, J) = − ln

(
W (I, J) W (I − 1, J − 1)

W (I, J − 1) W (I − 1, J)

)
, (8.2)

for the special case I ≡ J in the 4D gauge theory. Ref. [125] calculated χ(1, 1) on Ns =
Nt = 6, while Ref. [126] calculated the cases I = 1 . . . 4 on Ns = Nt = 10 for a range of β.
We recalculate both cases and find that our results are in agreement with both references.
Our measurements are presented in Fig. 8.3.

8.4 Two-point functions

We measure the two point matrix-matrix correlation function of the Wilson line defined
by

CL(r) =
1

3

1

N3
s

∑

r̂,r0

1

2

〈
trL†(r0)Ur0,r0+rL(r0 + r)U†

r0,r0+r

〉
, (8.3)

on Ns = 16, 32 / Nt = 4 lattices, where the parallel transporter Ur0,r0+r is included to
ensure gauge invariance. We extract the inverse correlation length m. Our results for a
range of β are shown in Fig. 8.4 (left), together with Polyakov measurements on the
same lattices (right). We find that the mass is non-zero both above and below the phase
transition point, but drops at βc. The absence of Goldstone modes is evident, and agrees
with the 3D effective theory.

8.5 Single site loop potential

We determine the effective potential of the Polyakov loop at a single site

Veff(|ℓ|) = − log P (|ℓ|) , (8.4)
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Figure 8.4: Inverse correlation length (mass) measured on Ns = 16, 32 / Nt = 4 close to
phase transition point (left) with respective Polyakov loop measurement (right).
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Figure 8.5: Single site Polyakov loop potential measured on Ns = 16/Nτ = 2 with fit
curves defined by (8.5) for various values of β above and below βc (left) with corresponding
β dependence of fit-parameters (right).

for Ns = 16 from the probability distribution P (|ℓ|), which is obtained via histogramming.
We find that similar to the 3D effective theory, a parameterization of the potential according
to

Vfit(|ℓ|) = −1

2
log(1 − |ℓ|2) + a− b|ℓ| + c|ℓ|2 (8.5)

is possible. Figs. 8.5 and 8.6 show the resulting β dependence of the parameters a, b, c for
Nτ = 2 and Nτ = 4 respectively.

We confirm that a non-analytic contribution ∼
√
ℓ2 exists also in the 4D theory. However,

the quadratic coefficient which was proportional to the mass term in the effective theory
appears to be very small compared to the other contributions.
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Figure 8.6: Single site Polyakov loop potential measured on Ns = 16/Nτ = 4 with fit
curves defined by (8.5) for various values of β above and below βc (left) with corresponding
β dependence of fit-parameters (right).

8.6 Block spin potential

We compute the effective potential for Polyakov loop block spins

ℓ̄
(k)
i =

1

k3

∑

n

1

2
TrL(i + n) , n = (0, 0, 0) . . . (k, k, k) ,

with k = 3 on a Ns = 16/Nτ = 4 lattice for several values of β. We find that analogous to
the 3D theory, a modelling with the ansatz

V (ρ) = −d0
1

2
log(1 − ρ2) + d1 + d2ρ

2 + d4ρ
4 , (8.6)

is possible. Moreover, we find that the qualitative behavior of the fit-parameters d0...4 is in
agreement with the findings discussed in section 7.2.3. Above βc there is a region where
the parameter d0 can be set to zero. At large β it saturates at an asymptotic value. We
show the potentials, together with the fit curves and the β dependence of the parameters
in Fig. 8.7. We show the potential explicitly only in the deconfined phase, since below βc

it is simply parabolic around ℓ = 0. Note the similarity to Fig. 7.23.
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9 Summary and conclusions

We have performed Monte-Carlo simulations of an effective theory of SU(2) Wilson lines
in three dimensions. First results were obtained without gauge fields, Aa

i = 0. The main
purpose of the investigation of this limiting case was a study of eigenvalue repulsion in the
deconfined phase of a SU(2) matrix model. The kinetic term exhibits a global SUL(2) ×
SUR(2) symmetry which is broken explicitly to SU(2) by the loop potential1.

The phase diagram is sketched in Fig. 6.6. In the absence of a potential, at m2 = 0, the
theory is essentially a standard spin-model. At small β the effective mass of the Wilson
lines is large and they fluctuate independently from site to site. Confinement is realized
in a trivial way since L → 0 for each configuration. This remains true for small |m2|. To
deconfine, a large upside-down potential (m2 > 0) is required to align the Wilson lines
to the unit matrix. Hence, for small β the phase transition arises due to the effective loop
potential, in a regime where SUL(2) × SUR(2) is broken strongly.

There is a second-order phase transition at βc ≃ 0.942 (and m2 = 0) where the masses
(inverse correlation lengths) of the Polyakov loop ℓ = TrL/2 and of the adjoint fields
ℓ̃a = −iTrLτ

a/2 vanish. This is associated with spontaneous breaking of SUL(2)×SUR(2)
to SU(2), where three Goldstone modes appear. We have confirmed that the “length”

u2 = TrL
†
L/2 of L acquires a non-zero expectation value for β > βc. Hence, we expect

that a weak background field −h trL, h→ 0, shifts the phase boundary to m2 < 0.

Very large lattice coupling β ≫ 1 corresponds to the extreme weak-coupling limit of
the original four-dimensional theory; the effective theory can nevertheless confine because it
incorporates the global Z(N) symmetry for the Polyakov loop. At large β fluctuations are
suppressed and the Wilson lines are again forced to align, this time by the nearest-neighbor
interaction (kinetic term). The direction of alignment is determined by the loop potential.
A standard potential with positive curvature (m2 < 0) is minimized by Wilson lines with
no singlet component, hence eigenvalues repel and the theory confines. On the other hand,
an upside-down potential (m2 > 0) leads to L(x) ∼ 1 and so to eigenvalue attraction and
deconfinement. For β ≫ 1 even a weak potential suffices to trigger the locking into (or
out of) the center of the group. This leads to a sharp transition directly to a perturbative
deconfined phase without eigenvalue repulsion.

We have measured the distributions of the eigenvalues of the Wilson line in the non-
perturbative deconfined phase above, but close to, βc. They show clearly the emergence
of eigenvalue repulsion even for “temperatures” (i.e. m2) not extremely close to the phase
boundary. It is only relatively deep in the deconfined phase (m2 >∼ 1) that the distribution
of eigenvalues peaks near 1, which corresponds to the perturbative vacuum. These results
confirm the suggestion of ref. [51] that eigenvalue repulsion in the deconfined phase does
arise at intermediate values of the nearest-neighbor coupling β, due to fluctuations of the
Wilson lines, provided that the non-perturbative “fuzzy-bag” term approximately cancels

1Note that a L → ΩLLΩR transformation changes the eigenvalues of L, while L → Ω
†
LΩ does not.
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the perturbative loop potential. Such a “fuzzy bag” contribution in the effective theory
makes it possible to reach the region of small m2 in the phase diagram.

In the confined phase at β > βc the volume-averaged Wilson line L approaches the
center-symmetric vacuum [51, 81, 127, 128]

Lc = diag (1, z, z2, · · · , zN−1) , (z ≡ e2πi/N ) , (9.1)

which for two colors corresponds to Lc = i σ3 (up to an overall SU(2) rotation). This is due
to the fact that the Wilson lines align at large β, and m2 < 0 favors a direction orthogonal
to unity. We repeat that this is not the case when β is small, where instead L → 0 for
m2 ≃ 0.

We proceeded to perform simulations of the effective theory of Wilson lines coupled to
gauge fields. After mapping the phase diagram (Fig. 7.6), we have investigated the effective
potential for the average of the eigenvalues of the SU(2) Wilson line, which is equal to
the absolute value of the Polyakov loop. We found that a form containing non-analytic
contributions can describe the extracted potential. This non-analytic term was not present
in the action, and therefore must arise from the dynamics.

We extracted a similar effective potential also for the long wavelength modes of the
Polyakov loop and found that this can be described by a mean-field type potential with
quadratic and quartic terms plus an effective Vandermonde potential which depends on
the couplings. Just above the phase boundary, in the deconfined phase, the effective Van-
dermonde potential contributes little. Deeper into the deconfined phase its coefficient
increases and eventually appears to approach a constant.

A non-trivial vacuum where confinement is driven by repulsion of eigenvalues of the Wil-
son line exists also when gauge fields are included. However, unlike for the case Aa

i = 0
there is no exact phase boundary to a phase where the Wilson line averages over the entire
group manifold with elements of the group center included. Moreover there exists no global
alignment in the confined phase. Measurements of two-point functions confirm the expec-
tation that no Goldstone modes exist in any region of the phase diagram. We found also
that the effect of a deconfining phase transition of the Wilson line on the gauge sector is
extremely weak.

Our simulations may provide useful insight into the structure of mean-field type models
for the deconfining phase transition. For example, so-called “Polyakov-NJL” models have
recently been studied extensively. Such models attempt to describe QCD thermodynamics
over a range of quark masses, from the pure-gauge limit to physical QCD; they require an
ansatz for the effective potential for the Polyakov loop. For example, in early works on this
subject [129] a quadratic potential for ℓ has been used, plus a Vandermonde contribution
(per lattice site) which is constant and temperature independent. Our results appear to
indicate, however, that if a standard potential with terms ∼ ℓ2 and ∼ ℓ4 (plus cubic Z(3)
invariants for the case of three colors) is used, that a temperature dependent Vandermonde
contribution should also be allowed for.

Outlook

There is much potential for future work in this field. Specifically, a precise non-perturbative
matching of the coupling constants of the effective theory to the underlying four-dimensional
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theory remains an open project. It would be interesting to see whether the structure of Z(2)
domain walls of the 3D theory can be matched to 4D SU(2) Yang-Mills theory.

One should investigate how the results change when including higher order terms of the
perturbative potential of the Wilson line. One could also extend the simulations to SU(3)
gauge group where a first-order phase transition occurs. The ansatz Veff for the effective
potential of the Polyakov loop is not directly generalizable to other SU(N) groups. It
would be interesting to see whether a generalizable definition of Veff in terms of the group
characters of L can be obtained.

A detailed study of the critical behavior of the theory via Binder cumulants would be
interesting. One could extract critical exponents and compare them to the three dimensional
Ising universality class along the critical line.

Also, once could investigate to what extent quantitative comparisons to complimentary
3D effective theories are possible, for instance by performing analytic weak and strong
coupling expansions.
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Appendices
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A Group theory

In this appendix we summarize the group theoretical concepts which are of immediate
relevance to our work. For a general introductory text about this broad subject and its
applications to particle physics, see Ref. [130].

Definition of a group

A group G is a set with a binary operation, which assigns every ordered pair of elements a
third element and which fulfills the conditions:

• Closure property:
If f, g ∈ G then h = fg ∈ G . (A.1)

• Associativity:
For f, g, h ∈ G , f(gh) = (fg)h ∈ G . (A.2)

• Identity element:

There exists an element e so that ef = fe = f, for all f ∈ G . (A.3)

• Inverse element:

For all f ∈ G , there exists an f−1 ∈ G , so that f−1f = ff−1 = e . (A.4)

A group is called Abelian if it is commutative, i.e.

fg = gf for all f, g ∈ G . (A.5)

A group is called finite if it has a finite number of elements. If a subset H of elements of
G also fulfills the above axioms it is called a subgroup of G.

Representations

A representation of a group G is a mapping of the elements onto a set of linear operators
D (or n× n matrices correspondingly) with the properties

• D(e) = 1, i.e. the identity element is mapped onto the identity operator (or the unit
matrix).

• D(f)D(g) = D(fg), i.e. the multiplication law is preserved.

The dimension of the linear space on which a representation acts is called the dimen-

sion of the representation. A given group can have many representations of different
dimensionality.
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Cyclic groups

A cyclic group is a group which has an element g such that every element of the group
(including g) can be obtained as a multiplicative power of g, i.e.

For all f ∈ G there exists an integer n so that f = g n . (A.6)

The cyclic group with N elements is called Z(N). The group Z(N) can be represented by
the N -th complex roots of unity :

D(gj) = e2πi j
N , j = 1 . . . N . (A.7)

Here D(e) = D(gN ) ≡ D(g0). The dimension of this representation is one. Z(N) is Abelian
for all N . The most important cyclic group for this work is Z(2), which has two elements
that can be represented by D(e) = 1, D(g) = −1.

Lie groups

A group, of which the elements g ∈ G depend smoothly on a set of continuous parameters,
i.e.

g ≡ g(α) , (A.8)

is called a Lie group. Here we understand smoothness as the notion that neighboring
points in the parameter space map to neighboring points in group space. Lie groups are
smooth manifolds and therefore can be studied by differential calculus.

There is a certain freedom in parameterizing the linear operators of a given representation
of a Lie group. One can choose a parameterization such that in some neighborhood of the
identity the group elements can be described by a function of N real parameters αa with
a = 1 . . . N , and such that {αa = 0 ∀ a} corresponds to the identity operator

D(α)|α=0 = 1 . (A.9)

D(α) can then be Taylor expanded around α = 0

D(dα) = 1 + idαaXa + . . . . (A.10)

The operators

Xa = −i ∂

∂αa
D(α)|α=0 , (A.11)

are called generators of the group representation and form a vector space. They are of
major importance, because the entire multiplication law of the group is contained in their
commutation relation

[Xa,Xb] = ifabcXc. (A.12)

The commutator (A.12) is called Lie algebra and fabc are the structure constants. They
are totally anti-symmetric, i.e.

fabc = −fbac = fbca , (A.13)

and are the same for all representations of a group. Moreover, generators that fulfill the
same Lie algebra, generate representations of the same group.
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For the group representation defined by (A.9) and (A.10) and (A.12), the exponential

parameterization is a straight forward generalization to non-infinitesimal α. It is obtained
by raising D(dα) to infinite power:

D(α) = lim
k→∞

(1 + idαaXa/k)
k = eiαaXa . (A.14)

Group center

The center of a group G, denoted here as Z(G), is the set of all group elements that commute
with all elements of G, i.e.

Z(G) = {z ∈ G | zg = gz for all g ∈ G} . (A.15)

Z(G) is an Abelian subgroup of G. Every group has a center, but the center can be trivial,
consisting only of the identity element. The statement that a group G is Abelian is equal
to the statement Z(G) = G.

Special unitary groups

An important class of Lie groups are the special unitary groups SU(N). They are the
groups which are defined by N ×N matrices U which satisfy

U−1 = U † ; detU = 1 , (A.16)

when the binary group operation is the matrix product. The special unitary group SU(N)
is a subgroup of the unitary group U(N), which is the larger group in which the condition
detU = 1 does not hold.

Special unitary groups are non-Abelian groups which are compact. Intuitively speaking,
compactness means that an infinite number of random steps on the group manifold will bring
one arbitrarily close to any group element. They are also simply connected, which means
that there exists a path between any two points on the group manifold, and this path can be
continuously deformed without leaving the manifold, into any other path connecting these
endpoints. Each group of SU(N) possesses a non-trivial center, which can be mapped one
to one onto the cyclic group Z(N).

The generators Xa of SU(N) are traceless, hermitian matrices1. In the defining or fun-

damental representation they are N × N matrices. One can immediately see from the
exponential parameterization that the conditions Xa = X†

a and Tr Xa = 0 guarantee (A.16):

• Consider the matrix product U U † = eiαaXa e−iαbX†
b . With Xa = X†

a we find that
[iαaXa,−iαbX

†
b ] = [iαaXa,−iαbXb] = −iαa iαb ifabcXc = 0 due to anti-symmetry of

the fabc. Thus one can simply add the exponents and finds U U † = 1.

• We have shown above that for A = iαaXa it holds that AA† = A†A, thus A is
diagonalizable: A = Y −1DY . Using the properties of matrix exponentials it follows
that U = eA = eY

−1DY = Y −1 eD Y . Now note that from det(V W ) = detV detW

1This is a matter of convention. An equivalent definition of SU(N) can be obtained using anti-hermitian
generators
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and det(V −1) = (detV )−1 it follows that det(X−1AX) = detA. Thus detU =
det(eA) = det(eD). The exponential of a diagonal matrix is simply the matrix where
the diagonal elements are exponentiated. Thus detU is simply the product of diagonal
elements: detU = det(ed0 · · · edN ) = eTr D. Since TrD = Tr (Y AY −1) = TrA = 0, we
find detU = 1.

States and operators of SU(N)

For a given representation of a Lie group, a group element g can be thought of as a trans-
formation of the basis of the linear space upon which the representation acts. Thus, any
column vector x of this space is transformed as

x 7→ x′ = D(g)x . (A.17)

The transformation law for the corresponding row vector is obtained by taking the adjoint

x† 7→ x†′ = x†D(g)† , (A.18)

where for SU(N) we have D(g)† = D(g)−1. Since D(g) is a linear transformation, the
transformed vector D(g)x must transform the same as (A.17) under action of another
group element f :

D(g)x 7→ D(f)D(g)x = D(f)D(g)D(f)†D(f)x . (A.19)

Here we have inserted the unit operator 1 = D(f)†D(f). This implies that operators D(g)
transform as

D(g) = D(f)D(g)D(f)† , (A.20)

and expressions of the form x†D(g)x are invariant.

Quaternionic parameterization

All dynamical variables of the theories studied in this work are operators in the fundamental
representation of SU(2), which is generated by the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.21)

A specific way to parameterize complex 2 × 2 matrices in general and SU(2) matrices
in particular exists, which is sometimes called the quaternionic parameterization. This
parameterization is particularly convenient for numerical simulations because it allows one
to express arithmetic operations involving SU(2) matrices in terms of a small set of real
numbers. We use this parameterization exclusively throughout this work. It is constructed
by exploiting the fact that the Pauli matrices, together with the unit matrix, form a
complete basis of the vector space of complex 2 × 2 matrices. Consider A to be such a
general matrix. It can be written as the linear combination

A = a01 + iaj σj =

(
a0 + i a3 a2 + i a1

−a2 + i a1 a0 − i a3

)
, (A.22)
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where the ai are complex numbers which completely characterize the matrix A. The trace
and the determinant of A are then simply

TrA = 2a0 , (A.23)

detA = a2
0 + a2

1 + a2
2 + a2

3 . (A.24)

If the numbers ai are real and define a point on the four dimensional unit sphere, i.e.

a2 = 1 , (A.25)

(here we introduce the notation a2 = a2
0 + a · a = a2

0 + a2
1 + a2

2 + a2
3) then the matrix A is

an element of SU(2). To see this, consider a second matrix B = b01 + ibj σj with complex
coefficients bi. The product AB† can be written as

(AB†)11 = (a0b
∗
0 + a1b

∗
1 + a2b

∗
2 + a3b

∗
3) + i (a3b

∗
0 − a0b

∗
3 + a1b

∗
2 − a2b

∗
1)

(AB†)12 = (a2b
∗
0 − a0b

∗
2 + a3b

∗
1 − a1b

∗
3) + i (a1b

∗
0 − a0b

∗
1 + a2b

∗
3 − a3b

∗
2)

(AB†)21 = −(a2b
∗
0 − a0b

∗
2 + a3b

∗
1 − a1b

∗
3) + i (a1b

∗
0 − a0b

∗
1 + a2b

∗
3 − a3b

∗
2)

(AB†)22 = (a0b
∗
0 + a1b

∗
1 + a2b

∗
2 + a3b

∗
3) − i (a3b

∗
0 − a0b

∗
3 + a1b

∗
2 − a2b

∗
1) .

If B ≡ A and ai = bi ∈ R then the off-diagonal elements, as well as the imaginary parts of
the diagonal elements are zero and

Tr (AA†) = 2detA = 2a2 . (A.26)

If a2 = 1 then AA† = 1 and thus A ∈ SU(2). Note that this is a complete parameterization:
All elements of SU(2) can be written in terms of ai ∈ R. One also sees immediately that

TrA = TrA† ∈ R for A ∈ SU(2) . (A.27)

With this parameterization it can be shown that the sum of two SU(2) matrices is pro-
portional to another SU(2) matrix. Note that from (A.22) and (A.24) it follows that

A+B = (a0 + b0)1 + i(aj + bj) σj , (A.28)

and

det(A+B) = (a0 + b0)
2 + (a1 + b1)

2 + (a2 + b2)
2 + (a3 + b3)

2 . (A.29)

Thus, if ai, bi ∈ R then det(A+B) ∈ R and det(A+B) ≥ 0. The case A+B = 0 is trivially
proportional to a SU(2) matrix. For A+B 6= 0, if one defines a matrix X such that

X ·
√

det(A+B) = A+B , (A.30)

one finds that

detX = det

[
A+B√

det(A+B)

]
=

det(A+B)

det(A+B)
= 1 , (A.31)



100 A Group theory

and therefore X ∈ SU(2) by the above argument. The statement generalizes immediately
to sums of an arbitrary number of SU(2) matrices. If M is a sum over any number of SU(2)
matrices, then one finds

M = c U with c ∈ R , U ∈ SU(2) and c = |detM |1/2 =

√
TrMM †

2
. (A.32)

Another straight forward observation is that for any matrices A,B with real coefficients
ai, bi one finds

Tr (AB†) = Tr (A†B) = 2 (a0b0 + a1b1 + a2b2 + a3b3) , (A.33)

Tr (AB) = Tr (A†B†) = 2 (a0b0 − a1b1 − a2b2 − a3b3) . (A.34)

These formulae are useful, since expressions containing such traces of products occur fre-
quently.

Note that in the quaternionic representation, the Z(2) center of SU(2) is given by the
unit matrix together with its negative counterpart. It is trivial to show that ±1 form a
representation of Z(2) and commute with all A = a01 + iaj σj.

Last we obtain the eigenvalues of a matrix A in terms of ai. The characteristic polynomial
is

det(A− λ1) = a2
0 + a2

1 + a2
2 + a2

3 − 2λa0 + λ2 = detA− 2λa0 + λ2 ≡ 0 . (A.35)

Thus, for A ∈ SU(2) one finds

λ1,2 = a0 ±
√
a2

0 − 1 . (A.36)

Group integration

Assume one wishes to express an integral over a compact Lie group G of a function f(g)
of group elements as an ordinary integral over a set of parameters αi. Thus, one wishes to
find a weight function J(α) so that

∫
dg f(g) =

∫
dα1 . . . dαnJ(α)f(g(α)) . (A.37)

A group integral is well-defined, if under arbitrary changes of the parameterization, the
weight function transforms like

∫
dβJ(β)f(g(β)) =

∫
dα

∥∥∥∥
∂α

∂β

∥∥∥∥
−1

J(β)f(g(α)) , (A.38)

where
∥∥∥∂α

∂β

∥∥∥ is the Jacobian determinant for the change of variables2. A unique expression

for a function J(α) that satisfies (A.38) can be found, if one assumes that the group measure
dg (also known as Haar measure) is invariant under shift of the integration variable, i.e.

∫
dg f(g) =

∫
dg f(g′ g) =

∫
dg f(g g′) for any g′ ∈ G. (A.39)

2For a general treatment of the topic with detailed proofs, see Ref. [2].
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For the quaternionic parameterization of SU(2) discussed above, the group integral assumes
the particularly simple form

∫
dg f(g) = π−2

∫
d4a δ(a2 − 1) f(g) . (A.40)

We make use of this expression at various points throughout this work.
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B Summary of consistency checks

In this appendix we summarize the cross-checks in which our numerics have shown to
reproduce existing literature.

KSS model

For the chiral model defined by

S = −1

2
β
∑

〈ij〉

tr (LiL
†
j + h.c.) , (B.1)

we reproduce the results of Refs. [106, 108] for the internal energy per link

E =
1

3N3
s

∑

〈ij〉

tr (LiL
†
j) . (B.2)

See section 6.1.3.

Three dimensional pure gauge theory

We simulate pure SU(2) Yang-Mills theory

S = β
∑

�

(1 − 1

2
ReTr U�) , (B.3)

on a Ns = 483 lattice and measure

1

β
〈S�〉 =

〈(
1 − 1

2
ReTr U�

)〉
(B.4)

for β = 6, 7, 9 on 700 independent configurations. The following table shows our results
together with the values obtained by Ref. [118]:

β 〈S�〉/β Ref. [118]

6 0.17527(9) 0.1752161(16)

7 0.14899(8) 0.1488698(13)

9 0.11475(7) 0.1145493(10)

We find consistency within statistical errors.
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3D effective theory with magnetic fields in limit m2 = 0

For the theory

S = β
∑

�

(1 − 1

2
ReTr U�) − 1

2
β
∑

〈ij〉

tr (LiUijL
†
jU

†
ij + h.c.) . (B.5)

with a time-plaquette single counting scheme, we find that the peak of the susceptibility

χ =
∂〈|ℓ|〉
∂β

(B.6)

is consistent within errors with the value βC = 0.8730(2), which was obtained by Ref. [123]
for Nτ = 1 SU(2) gauge theory. See section 7.4.

4D gauge theory

For the pure SU(2) gauge theory in four dimension we reproduce the following:

• In section 8.1 we reproduce the results of Ref. [124] for the critical coupling strength
βc, where the Polyakov loop becomes non-zero, on Ns = 16 and Nτ = 2, 4, 6 lattices.

• In section 8.2 we reproduce the Wilson action measurements of Ref. [2] on Ns =
Nt = 10 lattices for a range of β.

• In section 8.3 we reproduce the Creutz ratios χ(1, 1) on Ns = Nt = 6 of Ref. [125]
and χ(I, I) I = 1 . . . 4 on Ns = Nt = 10 of Ref. [126].
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