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Abstract

Disordered proteins and nucleic acids play key roles in
cellular function and disease. Here, we review recent ad-
vances in the computational exploration of the conformational
dynamics of flexible biomolecules. While atomistic molecular
dynamics (MD) simulation has seen a lot of improvement in
recent years, large-scale computing resources and careful
validation are required to simulate full-length disordered bio-
polymers in solution. As a computationally efficient alterna-
tive, hierarchical chain growth (HCG) combines pre-sampled
chain fragments in a statistically reproducible manner into
ensembles of full-length atomically detailed biomolecular
structures. Experimental data can be integrated during and
after chain assembly. Applications to the neurodegeneration-
linked proteins a-synuclein, tau, and TDP-43, including as
condensate, illustrate the use of HCG. We conclude by
highlighting the emerging connections to Al-based structural
modeling including AlphaFold2.

Addresses

1 Department of Theoretical Biophysics, Max Planck Institute of
Biophysics, Max-von-Laue-Straf3e 3, 60438 Frankfurt am Main,
Germany

2 Faculty of Biology, Johannes Gutenberg University Mainz, Grese-
mundweg 2, 55128 Mainz, Germany

3 KOMET 1, Institute of Physics, Johannes Gutenberg University
Mainz, Staudingerweg 9, 55099 Mainz, Germany

4 Institute of Molecular Biology (IMB), 55128 Mainz, Germany

5 Institute for Biophysics, Goethe University, 60438 Frankfurt am Main,
Germany

Corresponding author: Hummer, Gerhard (gerhard.hummer@biophys.
mpg.de)

3 (Pietrek L.M.), 9 (Stelzl L.S.), § (Hummer G.)

@ Authors contributed equally.

Current Opinion in Structural Biology 2023, 78:102501

This review comes from a themed issue on Theory and Simulation/
Computational Methods (2023)

Edited by Turkan Haliloglu and Gregory A. Voth

For complete overview of the section, please refer the article collection -
Theory and Simulation/Computational Methods (2023)

Available online 1 December 2022
https://doi.org/10.1016/j.sbi.2022.102501

0959-440X/© 2022 The Author(s). Published by Elsevier Ltd. This is an
open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).

Introduction

A significant fraction of the proteome in higher organisms
consists of intrinsically disordered proteins (IDPs) that
do not fold into well-defined structures and of proteins
with intrinsically disordered regions (IDRs) [1]. Disor-
dered segments are also present in nucleic acids. In
particular, single-stranded RNAs (ssRNAs) such as
messenger RNA (mRNA) feature regions that do not
form double helices or other folded structures [2,3]. IDPs
and IDRs are unfolded in solution and can transiently
adopt secondary structure [4]. Binding to other bio-
molecules can induce IDRs to fold [5], though disorder
can persist also in the bound state [6]. IDPs and IDRs
have distinct functions, e.g., in the nuclear pore complex
[7], are a major component of biomolecular condensates
[8], and are closely linked to neurodegenerative diseases
[9] with their interactions (dys)regulated by mutations
and post-translational modifications [10,11].

The structural heterogeneity of IDPs is best repre-
sented by a broad structural ensemble [12]. Molecular
dynamics (MD) simulation are well suited to investigate
the underlying structural dynamics [13]. However, for
flexible proteins one faces the challenge of sampling a
vast energy landscape whose many shallow minima need
to be represented accurately by the potential energy
function. Exploring this landscape is thus both an
entropic problem not easily accelerated by enhanced
sampling and an enthalpic problem because of low-
energy traps. Non-local interactions in IDPs are neces-
sarily transient, unlike in folded proteins. As a conse-
quence, the conformation space of IDPs is inherently
hierarchical in the sense that, at any scale, the local
conformational preference will be minimally impacted
by regions distant in sequence. Building on this princi-
ple, we recently introduced hierarchical chain growth
(HCG) [14ee] to explore the structural heterogeneity
of IDPs.

Here, we briefly highlight some recent advances in MD
simulations of IDPs and then focus our review on the
concepts and applications of chain growth as an exten-
sion, alternative, and complement to atomistic MD
simulations. By preserving the local structure across
scales where possible, chain growth is appealing not only
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because of high computational speed and flexibility, but
also by the possibility to produce accurate representa-
tions of the structural ensembles even of large IDPs.
Chain growth can be used to create a broad ensemble of
structures that can, if needed, be refined by integrative
modeling using experimental data and/or
MD simulations.

MD simulations of disordered proteins

As reviewed by Wang [13], atomistic MD simulations of
disordered proteins have advanced significantly over the
challenging beginnings with inadequate sampling and
often overly collapsed configurations as a result of inad-
equate force fields. A steady increase in the computing
power now makes it possible to sample the vast confor-
mation space of IDPs with unbiased atomistic MD
simulations [15]. Thanks to concomitant improvements
in the quality of the force fields describing the molecular
interactions, MD simulations are becoming a powerful
complement to experiments on disordered proteins [16].
Atomistic MD simulations have revealed important in-
termediates in protein aggregation in neurodegenerative
disease [17,18]. The power of MD with atomically
detailed representations becomes particularly apparent
as IDRs move into the focus as direct drug targets [19].
Despite these advances, the high computational cost
associated with sampling the myriad of states of long
IDRs warrants the development of approaches to com-
plement MD simulations [16].

Chain growth

Modeling of the global structure of polymers has long
been approached by chain growth algorithms. For a
biomolecule with internal structure, we imagine
dividing its sequence into fragments (Figure 1). For each
of these fragments, we generate a pool of structures, as
illustrated schematically with the four urns in Figure 1.
This pool may be filled with local structures taken from
databases of experimental structures or from molecular
dynamics simulations of chain fragments. The task is
then to assemble these fragments by a chain-growth
algorithm. Naively one might consider that one simply
needs to grow polymer chains sequentially (Figure 1a).
However, so not to introduce a bias, one would have to
stop the growth of a chain as soon as a clash is encoun-
tered and start to grow an entirely new chain instead of
simply redrawing a new fragment (Figure 1b). Other-
wise, the outcome will depend on arbitrary choices such
as the direction of chain growth, N-to-C versus C-to-N.
Rosenbluth and Rosenbluth recognized this problem of
detailed balance in chain growth early in the history of
computer simulations, and addressed it by a careful
reweighting of self-avoiding random walks (SAWs) on a
lattice [20].

In combination with importance sampling, chain growth
has become a powerful tool to create large ensembles for

polymers, including biopolymers [21,22]. To grow a chain,
one assembles short fragments that can be sampled very
efficiently at high quality. For IDPs, the flexible-meccano
model by Bernad6 et al. [12] is widely used, also for pro-
teins under physiological conditions [23]. It builds on the
observation that the local structure in IDPs is captured
well by coil models [24—29]. In flexible-meccano, chains
are grown based on the backbone-dihedral statistics in the
Protein Data Bank (PDB).

Hierarchical chain growth

In disordered proteins, local structure is determined
primarily by the local amino acid sequence, lacking the
cooperative interactions of folded proteins between re-
gions distant in sequence. HCG [14ee] exploits this hi-
erarchical nature. A protein chain is divided into
overlapping sequence fragments. Fragment structures are
sampled with replica-exchange molecular dynamics
(REMD) simulations. From the resulting pools, the
fragments are then chosen at random. Adjacent frag-
ments are combined with a rigid body superimposition of
the heavy atoms of their overlapping regions. If the
corresponding root-mean-square distance (RMSD) is
below a given cut-off and if there are no steric clashes,
the fragment pair is entered into the respective pool at
the next assembly level. This assembly process is
continued hierarchically all the way up to the level of full-
length chains (Figure 1c). At each level of the assembly
process, the size of the chain fragments effectively dou-
bles. The hierarchical assembly manifestly preserves
detailed balance, which guarantees that arbitrary choices
such as the order of the assembly do not affect the final
ensemble. Hence, HCG grows ensembles of chains with
a well-defined distribution. By construction, the mem-
bers of the HCG ensemble are statistically independent.
As a result, HCG produces broad ensembles of IDPs with
highly diverse conformations in a computationally effi-
cient manner, sampling a significantly broader confor-
mational space than, say, one 2 pis-long MD simulation in
case of a-synuclein (aS) [14ee]. A web application of
HCG is available at https://bio-phys.pages.mpcdf.de/hcg-
from-library/.

If needed, HCG can be complemented by MD simula-
tions of solvated full-length chains. As shown for aS in
Figure 2, the radius of gyration R calculated for an
HCG ensemble with 20,000 chains [14ee] is already in
good agreement with the measured value from SEC-
SAXS [30]. For three different combinations of protein
force field and water models, we found that aS tended to
collapse below the size seen in the SEC-SAXS mea-
surements [30]. These findings highlight, first, that care
must be taken to assess the collapse tendency. Second,
as shown in Figure 2, even for the loosely packed aS with
140 amino acids, it takes many hundreds of nanoseconds
of MD just to relax the chain size, consistent with
measured chain reconfiguration times in the 100-ns
regime [6]. Third, without any further simulations,
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Schematic of naive, iterative, and hierarchical chain growth. The structures of a linear biopolymer are assembled from four fragments (colored

chains) picked from their respective pools (ovals). (a) Growing chains by a naive algorithm. On encountering a clash, the current chain is rejected and a
fresh attempt is launched. While correct, this algorithm is extremely inefficient for long chains. (b) Iterative algorithm. Instead of re-growing the entire chain
when a clash is detected, some chain-growth approaches simply repeat the step until a conformation without clash is obtained. Such algorithms do not
produce defined ensembles unless the bias resulting from repeated drawings is properly accounted for, as in Rosenbluth sampling. (c) Hierarchical chain
growth (HCG) is a correct and efficient algorithm. Different fragments are recursively combined until the full-length chain is obtained. Absent steric

clashes, monomer fragments are combined to dimers, dimers to tetramers and so on. For chains with N = 2M-fragments, the algorithm has only M= logo,N

assembly levels.

HCG appears to be at least on par with the three MD
simulation models. HCG thus provides an excellent
starting point for further inquiry.

Applications of HCG extend beyond the sampling of
IDP ensembles. For instance, HCG has shed light on the
role of the disordered Atg9 termini in controlling
membrane access for Atg8 lipidation during the early
stages of autophagy [34]. Interestingly, some of the
principles used in chain growth also find their applica-
tion in other approaches to model important biological
systems such as glycoproteins. For instance, Glyco-
SHIELD [35] attaches glycan conformers onto proteins
of interest. In another variant, Turonova et al. [36]
resampled the hip and knee joints of SARS-CoV-2 spike
stalk to probe the full extent of its mobility.

Interactions between distant parts of the chain other
than steric exclusion can be taken into account [22]
[37e], including electrostatics, at least at the level of
implicit solvent descriptions. Including electrostatic
forces in HCG may be important for growing structures of
highly charged biomolecules [6]. A pragmatic way for-
ward can be to use larger chain fragments for HCG
sampled in MD simulations using explicit ionic solutions.

Integration of experimental data

An ensemble representation establishes a sound foun-
dation for the interpretation of experimental data in case
of structural disorder in a molecular system [3,38—41].

As a first line of attack to improve the consistency be-
tween measured and calculated observables, one can
reweight the members of the unbiased ensemble ob-
tained from MD simulation, chain growth, or other
sampling methods, rather than adjust their structure
[42—45]. In a Bayesian view, the initial ensemble can be
considered a sample of the prior distribution. By
imposing restraints derived from experiment already in
the creation of the ensemble [44,46,47], this sample can
be enriched. Combinations with enhanced sampling
techniques such as metadynamics [48] or replica ex-
change [44] further improve the sampling efficiency.
Uncertainties in measurements and their modeling are
readily taken care of in a Bayesian framework [44].
However, the integration of data is no panacea: for
comparably poor force fields, the overlap with the “true”
ensemble may not be sufficient for reweighting to
establish meaningful ensembles [49]. In other words,
the quality of the Bayesian prior matters, which may not
surprise considering the vast conformational space to
be sampled.

In chain growth, experimental data can be integrated
already during the ensemble generation in a form of
integrative modeling [28]. The flexible-meccano
approach and its extension ASTEROIDS have been
successfully used to account for different types of NMR
data and single-molecule FRET and SAXS data [50e].
Biased fragment choice, with fragment weights derived
from a Bayesian formulation, has been shown to be
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Figure 2
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HCG of a-synuclein extended by atomistic MD simulations with different force fields. (a—c) The box-and-whiskers plots show the distribution of the radius
of gyration Rg calculated over windows of 50 ns across 20 independent runs initiated from 20 randomly chosen structures of the HCG ensemble (mean:
black; median: red; box: interquartile range; bars: extrema). Results are for (a) the amber99StarlLDN-q force field and TIP4P-d water model [31], (b) the
a99SBdisp force field and TIP4P-d water model [32], and (c) the a033ws force field and TIP4P/2005 water model [33]. The dashed green line indicates
the average Rg (RMS) for an HCG ensemble of 20,000 aS chains. The solid gray line is the Rg value measured via SEC-SAXS by Araki et al. [30] with the
standard error indicated by shading. (d—g) Snapshots of aS grown with HCG before MD (d), and after 500 ns MD (e—g) with the force fields of panels a—c.

powerful in early applications of chain growth [51] or in
the refinement of MD ensembles of flexible proteins by
fragment replacement [52].

Reweighted hierarchical chain growth (RHCG) is an
extension of HCG to integrate experimental data by
assigning weights to the fragment conformations [37e].
RHCG is designed to counteract the problem of sys-
tematic biases in the fragment pool. Consider, for
instance, a systematic force-field error in the energetic
balance between locally extended and helical peptide
conformers. As the size of the molecules increases, it
becomes less likely that all parts of a chain are drawn from
the relevant subspace. Consequently, after global
reweighting only a few chains may end up dominating the
final ensemble. RHCG counteracts this tendency by
using suitable fragment weights, which can be assigned,
for instance, by Bayesian inference [39,44,45]. In a global

reweighting of the ensemble after chain assembly, the
fragment weights are fully accounted for [37e]. In this
way, RHCG generates a well-defined and diverse output
ensemble that has high overlap with the true ensemble.

Applied to tau K18 in solution, RHCG accounted for
local and global structure as probed by NMR, single-
molecule FRET, and small-angle X-ray scattering ex-
periments [37e]. The disease-associated mutations
P301L, P301T, and P301S were found to shift the
balance away from the turn-like conformations associ-
ated with functional microtubule binding to the
extended conformations seen in tau fibrils associated
with neurodegeneration (Figure 3).

Teixeira et al. [53e] recently published a software suite
that samples IDP ensembles following the principles of
data-driven coil models and contains tools for further
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Figure 3
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Chain growth captures shifts from functional to aggregation-prone structures in tau K18. (a) Local structures overlaid at residues V300-G304, with
P301 shown as licorice. This segment is indicated in gray in full-length K18. (b) Changes in the conformational preference of the V300-G304 region
contribute to a shift from functional binding to microtubuli (left) dominant in WT (blue) to fibril formation amplified by the P301L mutation (red). Data and
figures adapted from Ref. [37¢], which was published under Creative Commons BY 4.0 license.

analysis and ensemble refinement. Interestingly, their
approach also captured shifts in local structure pro-
pensities in response to the neurodegeneration-linked
P301L. mutations in accordance with the RHCG
ensemble [37e].

Modeling disordered proteins in dense
molecular systems

IDPs are often associated with the formation of protein
condensates. An exciting perspective is to build molec-
ularly detailed models of such crowded solutions of
largely disordered biomolecules. The combination of
high-resolution experiments, theory, and atomistic as
well as coarse-grained modeling has already started to
yield vital insights into the drivers of liquid—liquid phase
separation [54,55], as recently reviewed by Fawzi et al.
[56]. Coarse-grained simulation models parameterized
using large sets of high-resolution experimental data can
capture trends in the global arrangements of disordered
proteins as well as their propensities to phase separate
[57ee]. Another interesting direction is the simulation of
dense solutions of disordered proteins or their fragments
at sub-critical concentrations [58ee]. Such simulations
[58—60] can provide critical insights into molecular
driving forces for condensation.

Fragment assembly can also be used to model dense
systems such as condensates. Individual conformations
are drawn from an ensemble of single chains grown with
HCG and assembled in a simulation box as starting point
for MD simulations. For the low-complexity domain
(LCD) of the neurodegeneration-linked RNA-binding
protein TDP-43, we generated models of condensates
with atomic detail (Figure 4) using a variant of HCG and

then ran MD simulations from this initial system [61e].
In the simulations, phosphomimicking mutations led to
a loss of protein—protein interactions and an increase in
protein solvent interactions in the C-terminus of the
TDP-43 LCD that destabilized the condensates,
complementing coarse-grained simulations of the phase
behavior of phosphomimicking mutants and phosphor-
ylated TDP-43. Thus the simulations provided a mo-
lecular basis for the anti-aggregation effect of
phosphorylation observed in experiments by Dormann
and colleagues [61e]. Disease-linked phosphorylation of
TDP-43 may not be a driver of the progression of
neurodegenerative disease and could rather be a
bystander or even a cell-protective mechanism.

Outlook

On the methods side, the emerging connections of chain
growth to machine learning and artificial intelligence
(AI) deserve special attention. Historically, coil models
have been an attempt to collect and represent statistical
information about protein structure. As such, coil
models and HCG have a natural connection to machine
learning and Al.

AlphaFold2 [62] showcases the power of Al to predict
three dimensional protein structure. The resulting ac-
celeration in structural studies of complex assemblies
[63] raises the intriguing question as to what can be
learned about disordered regions from AlphaFold pre-
dictions. Currently AlphaFold2 does not capture disor-
dered regions as a properly weighted ensemble. Hence,
an exciting prospect is the combination of AlphaFold2
models of the folded protein and conformations from
IDP/IDR ensembles using, e.g., HCG, molecular
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Figure 4
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Snapshot of a TDP-43 LCD condensate. The all-atom system was built for MD simulations by combining TDP-43 LCD chains preassembled by HCG
[61e]. The surface of the chains is shown in color and atoms from a single TDP-43 LCD chain are shown with atomistic detail. Solvent molecules are
omitted for clarity except for a small region, where water is shown as sticks and ions as spheres (sodium in cyan, chloride in blue). Blue lines indicated the

periodic simulation box.

dynamics or knowledge-based approaches. Interestingly,
segments in IDRs often appear structured in Alpha-
Fold2 predictions, possibly in reflection of their binding
to distinct partner proteins [64ee], which had been used
effectively to map and model the interactions of short
linear motifs (SLiMs) with structured nucleoporins in
the scaffold of the nuclear pore complex [63]. One po-
tential problem is that AlphakFold2 may capture, in the
same model, structures an IDR may adopt in different
complexes, as has been shown for conditionally folded
proteins by comparison to experimental structures
[64ee]. Thus, a critical assessment of the thousands of
local structures predicted for IDPs/IDRs is advisable
even for proteins where AlphaFold2 produces high-
quality models of the folded domains.

Al methods have also been used to characterize structural
ensembles of IDPs [17]. Gupta and colleagues recently
developed an Al based approach that learns IDP
conformational space from short MD simulations to then
generate broad IDP ensembles [65]. It is interesting to
speculate to what extent this approach can be combined
with ensembles sampled with HCG. Zhang et al. [66e]
are developing a neural network that learns structural
ensembles of disordered proteins from experimental in-
formation. In fact, the neural network generates and
learns torsion-angle probability distributions for interde-
pendent neighboring residues, while also biasing the
probability distribution towards experimental data, using
a Bayesian formalism. Even more ambitiously, a recent
preprint shows how a coarse-grained representation of an

Current Opinion in Structural Biology 2023, 78:102501
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atomistic ensemble can be learned by a neural network,
which reproduces the equilibrium densities of the input
ensemble [67e]. HCG ensembles usually extend beyond
the conformations sampled by direct MD simulations, at
least for long chains, and should thus provide a valuable
reference in these endeavors.

In recent years, we have witnessed a lot of progress in
sampling structural ensembles of flexible (bio)polymers.
However, efficient sampling of the vast conformational
diversity still remains challenging. Approaches that model
conformational ensembles based on local structure sta-
tistics, i.e., coil models, have been shown to be promising.
The hierarchical chain growth (HCG) builds on the basic
ideas of coil models. Using HCG one can sample en-
sembles with highly diverse conformations in a compu-
tationally efficient manner. In the cases studied, the
ensemble properties agreed well with available experi-
mental data. The quality of the generated ensemble
could be further improved by integrating experimental
information, producing richly detailed structural ensem-
bles consistent with experiments across scales.
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