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Current deep learning methods are regarded as favorable if they empirically perform well on dedicated
test sets. This mentality is seamlessly reflected in the resurfacing area of continual learning, where con-
secutively arriving data is investigated. The core challenge is framed as protecting previously acquired
representations from being catastrophically forgotten. However, comparison of individual methods
is nevertheless performed in isolation from the real world by monitoring accumulated benchmark
test set performance. The closed world assumption remains predominant, i.e. models are evaluated
on data that is guaranteed to originate from the same distribution as used for training. This poses
a massive challenge as neural networks are well known to provide overconfident false predictions
on unknown and corrupted instances. In this work we critically survey the literature and argue that
notable lessons from open set recognition, identifying unknown examples outside of the observed
set, and the adjacent field of active learning, querying data to maximize the expected performance
gain, are frequently overlooked in the deep learning era. Hence, we propose a consolidated view to
bridge continual learning, active learning and open set recognition in deep neural networks. Finally, the
established synergies are supported empirically, showing joint improvement in alleviating catastrophic
forgetting, querying data, selecting task orders, while exhibiting robust open world application.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the ongoing maturing of practical machine learning sys-
ems, the community has found a resurfacing interest in continual
earning (Thrun, 1996a, 1996b). In contrast to the broadly prac-
iced learning in isolation, where the algorithmic training phase
of a system is constrained to a single stage based on a previ-
ously collected i.i.d. dataset, continual learning entails a learning
process that leverages data as it arrives over time. In spite of
this paradigm having found various application in many machine
learning systems, for a review see the recent book on lifelong
machine learning by Chen and Liu (2017), the advent of deep
learning seems to have steered the focus of current research
efforts towards a phenomenon known as catastrophic interference
or alternatively catastrophic forgetting (McCloskey & Cohen, 1989;
Ratcliff, 1990), as suggested by recent reviews (De Lange et al.,
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2021; Farquhar & Gal, 2018b; Lesort et al., 2020; Parisi, Kemker,
Part, Kanan, & Wermter, 2019) and empirical surveys of deep
continual learning (De Lange et al., 2021; Lesort, Caselles-Dupré,
Garcia-Ortiz, Stoian, & Filliat, 2019; Pfülb & Gepperth, 2019).
The latter is an effect particular to machine learning models
that update their parameters greedily according to the presented
data population, such as a neural network iteratively updating
its weights with stochastic gradient estimates. When continu-
ously arriving data is included that leads to any shift in the
data distribution, the set of learned representations is guided
unidirectionally towards approximating any task’s solution on
the data instances the system is presently being exposed to. The
natural consequence is overwriting former learned representa-
tions, resulting in an abrupt forgetting of previously acquired
information.

Whereas current works predominantly concentrate on allevi-
ating such forgetting in continual deep learning through
the design of specialized mechanisms, we argue that there is
a growing risk in the continual learning field becoming overly
narrow. There clearly have been commendable efforts towards
preserving neural network representations in continuous train-
ing. However, such a high focus is given on the practical re-
quirements and trade-offs of metrics that surround catastrophic
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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orgetting (Kemker, McClure, Abitino, Hayes, & Kanan, 2018),
.g. inclusion of memory footprint, computational cost, cost of
ata storage, task sequence length and amount of training iter-
tions, . . . (Díaz-Rodríguez, Lomonaco, Filliat, & Maltoni, 2018;
arquhar & Gal, 2018b), that it could almost be seen as mis-
eading when most current systems break immediately if unseen
nknown data or minor corruptions are encountered during de-
loyment (Boult et al., 2019; Hendrycks & Dietterich, 2019; Matan
t al., 1990). The assumption of a closed world seems omnipresent.
n other words, there is a common belief that the model will
lways exclusively encounter data that stems from the same
ata distribution as encountered during training. This is highly
nrealistic in the real open world, where data can vary to extents
hat are impractical to capture into training sets or users have the
bility to give almost arbitrary input to systems for prediction.
t has been a well known fact for decades that neural networks
re wrongly overconfident in such real world settings (Matan
t al., 1990). In spite of the inevitable danger of neural networks
enerating entirely meaningless predictions when encounter-
ng unseen unknown data instances, current efforts towards
enchmarking continual learning conveniently circumvent this
hallenge. Select exceptions attempt to solve the tasks of rec-
gnizing unseen and unknown examples, rejecting nonsensical
redictions or setting them aside for later use, typically summa-
ized under the umbrella of open set recognition. Nevertheless, the
ajority of existing deep continual learning systems remain black
oxes that unfortunately do not exhibit desirable robustness to
espective miss-predictions on unknown data, dataset outliers or
ommon corruptions (Hendrycks & Dietterich, 2019).
Apart from current benchmarking practices still being con-

trained to the closed world, another unfortunate trend is a
ack of understanding for the nature of created continual learn-
ng datasets. Both continual generative modeling, Achille et al.
2018), Farquhar and Gal (2018a), Nguyen, Li, Bui, and Turner
2018), Shin, Lee, Kim, and Kim (2017), Wu et al. (2018) and Zhai
t al. (2019), as well as the bulk of class incremental continuous
earning works (Kemker & Kanan, 2018; Kemker et al., 2018;
irkpatrick et al., 2017; Li & Hoiem, 2016; Lopez-Paz & Ranzato,
017; Rebuffi, Kolesnikov, Sperl, & Lampert, 2017; Xiang, Fu, Ji,
Huang, 2019) generally investigate sequentialized versions of

ime-tested visual classification benchmarks. For instance, in pop-
lar class incremental MNIST (LeCun, Bottou, Bengio, & Haffner,
998), CIFAR (Krizhevsky, 2009) or ImageNet (Russakovsky et al.,
015), individual classes are simply split into disjoint sets and
re shown in sequence. In favor of retaining comparability on a
enchmark, questions about the effect of task ordering or the im-
act of overlap between tasks are routinely overlooked. Notably,
essons learned from the adjacent field of active machine learning,
particular form of semi-supervised learning, do not seem to
e integrated into modern continual learning practice. In active
earning the objective is to learn to incrementally find the best
pproximation to a task’s solution under the challenge of letting
he system itself query what data to include next. As such, it can
e seen as an antagonist to alleviating catastrophic forgetting.
hereas current continual learning is occupied with maintaining

he information acquired in each step without endlessly accumu-
ating all data, active learning has focused on the complementary
uestion of identifying suitable data for the inclusion into an
ncrementally training system. Although early seminal works in
ctive learning have rapidly identified the challenges of robust
pplication and pitfalls faced through the use of heuristics (Li &
uo, 2013; Roy & McCallum, 2001; Settles & Craven, 2008), the
atter are nonetheless once again dominant in the era of deep
earning (Beluch, Genewein, Nürnberger, & Köhler, 2018; Gal &
hahramani, 2015; Geifman & El-Yaniv, 2019; Srivastava, Hinton,
rizhevsky, Sutskever, & Salakhutdinov, 2014) and the challenges
eem to be faced anew.
307
With the above challenges in mind, we can rapidly build our
intuition for why they are connected if we briefly take a look
at autonomous driving, as one practical example. If we aim to
learn how to drive in new environments, it is not only sufficient
to make sure that we are capable of learning from new data
while preserving existing knowledge. It is similarly important to
acknowledge that newly arriving data may be skewed in uninter-
esting or potentially harmful ways. New falsely predicted objects
could appear, particularly rare events could pose a threat, and
sensors may deteriorate or fail. Identifying what is already known
and distinguishing it with unseen novel instances is essential.
Deciding which of this new data is meaningful and which should
be discarded for future learning provides closure to the learning
cycle.

In this work we thus make a first effort towards a princi-
pled and consolidated view of deep continual learning, active
learning and learning in the open world. We start with a his-
torical perspective and by providing a review of each topic in
isolation. We then proceed to identify notable previous lessons
that appear to receive less attention in modern deep learning.
Speaking hyperbolically, they appear to have been ‘‘forgotten’’ in
many recent continual learning works. As we will see throughout
the survey, individual fields may have been studied extensively
by themselves in isolation, but their impact seems to be largely
overlooked when considered together. We will continue to argue
that these seemingly separate topics do not only benefit from the
viewpoint of the other, but should be regarded in conjunction.
In this sense, we propose to extend current continual learning
practices towards a broader view of continual learning as an
umbrella term. Our survey thus complements existing continual
learning reviews (De Lange et al., 2021; Farquhar & Gal, 2018b;
Lesort et al., 2020; Parisi et al., 2019), but instead of surveying
the mathematical foundation of every individual algorithm to
alleviate catastrophic forgetting in detail, we provide a more
critical overview. As a crucial difference, we connect thought
patterns towards continual learning that naturally encompasses
and builds upon prior insights from active learning and open set
recognition. To highlight the correspondingly developed syner-
gies and showcase their practical potential, we complement our
consolidated survey with empirical evidence supporting various
important aspects: extraction of exemplars or core sets, active
data queries, robustness to open world corruptions, and choosing
a task order curriculum. For this purpose, we adapt and extend
a recently proposed approach based on variational Bayesian in-
ference in neural networks (Mundt, Majumder, Pliushch, Hong, &
Ramesh, 2022; Mundt, Pliushch, Majumder, & Ramesh, 2019) to
illustrate one potential choice towards a comprehensive frame-
work. Importantly, we emphasize that we do not propose this
approach as a universal or unique solution, but use it to highlight
the importance of the viewpoints developed in this paper.

2. Preamble: continual machine learning

It is likely that the idea of continual machine learning dates
back to a similar period of time to the surfacing of machine
learning itself. There have been many attempts at defining con-
cepts such as continuous, lifelong or continual machine learning.
Often these terms feature negligible nuances and can generally
be taken as synonyms. However it seems difficult, and perhaps
is not constructive, to attempt to pin-point the exact onset of
when something should be referred to as continual or lifelong
learning. Instead, in this preamble, we will present definitions
and related paradigms that have come to enjoy great popularity
in the machine learning community. Note that many of these
definitions are not necessarily formal or mathematical, but are
nevertheless illustrated here for a historical perspective. Some
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aradigms are already, or if not yet, should be considered subsets
f continual learning (CL). As a standalone paradigm they vary
rimarily in their current evaluation protocols. We will briefly in-
roduce each of these paradigms and then proceed to summarize
nd identify characteristic differences with respect to the broader
erm of modern continual learning.

The first widely circulated definition of lifelong machine learn-
ing (LML) originated in the work proposed by Thrun (1996a,
1996b). This definition is as follows:

Definition 1 (Thrun 1996a, 1996b - Lifelong Machine Learning).
The system has performed N tasks. When faced with the (N+1)th
task, it uses the knowledge gained from the N tasks to help the
(N+1)th task.

Here, the unmentioned essence is that the data of the first N
tasks is generally assumed to be no longer available at the time
of learning about the (N + 1)th task. That is, the observed data
is not just endlessly accumulated and stored explicitly. Whereas
this definition captures the basic idea behind continued learn-
ing, it is also ambiguous with respect to the definition of task
and knowledge. There have been many attempts to find a more
concise definition across the literature over the years. One of the
more succinct, yet still decently generic definitions followed in
the work of Chen and Liu (2017):

Definition 2 (Chen and Liu 2017 - Lifelong Machine Learning).
Lifelong Machine Learning is a continuous learning process. At
any time point, the learner performed a sequence of N learn-
ng tasks, T1, T2, . . . , TN . These tasks can be of the same type
r different types and from the same domain or different do-
ains. When faced with the (N+1)th task TN+1 (which is called

he new or current task) with its data DN+1, the learner can
everage past knowledge in the knowledge base (KB) to help
earn TN+1. The objective of LML is usually to optimize the per-
ormance on the new task TN+1, but it can optimize any task
y treating the rest of the tasks as previous tasks. KB main-
ains the knowledge learned and accumulated from learning the
revious task. After the completion of learning TN+1, KB is up-
ated with the knowledge (e.g. intermediate as well as the final
esults) gained from learning TN+1. The updating can involve
nconsistency checking, reasoning, and meta-mining of additional
igher-level knowledge.

The authors of this latter definition argue that it can be
ummarized into three key characteristics: continuous learning;
nowledge accumulation and maintenance in the knowledge base
KB); the ability to use past knowledge to help future learning.
n contrast to the previous definition by Thrun (1996a, 1996b),
ainly the notion of a maintained knowledge base is introduced.
ere LML is now defined such that at any given point in time
erformance can be optimized for any given task by treating all
ther tasks as previously presented, irrespective of their original
rder. Whereas the original definition optimized towards bene-
iting TN+1 in only one direction, thus allowing for performance
f previous tasks to degrade over time, Chen and Liu (2017) ex-
licitly formulate the preservation of all accumulated information
s a fundamental goal of LML. In a recent second iteration of
his definition, the authors have added two additional desiderata:
he ability to discover new tasks and the ability to learn while
orking. We have visualized these five essential pillars of LML in
ig. 1.
Although acknowledged by the authors themselves, this ex-

ended definition still lacks with respect to certain aspects:

• a coherent description of domain. This is currently not
used unanimously in the literature and often applied inter-

changeably with task.

308
Fig. 1. The five main pillars of lifelong machine learning according to Chen and
Liu (2017). Note that the first three pillars were originally proposed and the last
two added recently in a second edition redefinition to emphasize new frontiers.

• a formalization of knowledge or respective representation
thereof in the KB. Typically this is practically constrained to
specific applications.

• the essential question of evaluation practice, i.e. choosing,
ordering and evaluating the sequence of tasks. This generally
requires a human in the loop and considered evaluation
scenarios can vary immensely between individual works.

There are many more encountered open questions with LML
in practice, especially with respect to modern machine learning
algorithms based on deep learning. As the latter is primarily
based on the use of neural networks (NN), they will constitute
the main focus of this paper. While the presented arguments
will often be of generic nature, this has the advantage that the
concept of a knowledge base and its maintenance collapses to
the question of managing the model’s learned representations
and optional data memory buffers containing past experiences.
This is an important distinction, and perhaps a simplification, in
comparison to the way Chen and Liu (2017) (and Fig. 1) originally
use the term knowledge. Here, the latter is adopted in the spirit
of the older ‘‘never-ending learning’’ systems for language and
images (NELL and NEIL) (Carlson et al., 2010; Chen, Shrivas-
tava, & Gupta, 2013; Mitchell et al., 2015), which take a more
‘‘traditional’’ AI approach. In addition to learned parameters and
original data instances, the respective knowledge bases leverage
various neuro-symbolic techniques, such as accounting for ex-
plicit context, extracting relations, and involving rules. Concepts
that are typically not accounted for in deep neural networks.

At the same time, the presently more collapsed notion of
knowledge in a deep neural network can make the question
of how to leverage prior information quite involved. Represen-
tations in NNs are densely entangled within layers as well as
distributed hierarchically across layers. Although we constrain
ourselves to NNs, we importantly emphasize that the terms
knowledge and knowledge base will be used beyond a narrow
interpretation of data instances or parameters in the remainder
of the manuscript, retaining a broader interpretation for future
work. Before delving into a review of contemporary works, their
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erits and current limitations, we will present various popular
aradigms that are related to the former definitions of LML. This
ill then be followed by a brief summary on evaluation practices
o highlight the nuances.

.1. Related paradigms: subsets of continual learning

Over the course of machine learning development, various dif-
erent paradigms and evaluation practices have evolved. Through-
ut this paper, we will come to the already apparent conclusion
hat CL should ideally be defined as a superset. We will make
n attempt towards a definition that is more encompassing of
he potential elements at the end of this manuscript. For now,
e start by introducing commonly considered machine learning
aradigms. As a word of caution, the following definitions should
e regarded as non-exhaustive. Even though we have made a con-
iderable effort to provide a comprehensive amount of references,
he practical use of certain terminology in particular may still
ary largely from community to community. The following shall
hus reflect the common use in modern deep learning.

We begin with transfer learning as it can intuitively be re-
arded as the most related concept. Originally, transfer learning
as been proposed as converting a weak learner, one that per-
orms marginally better than random guessing, to one that pro-
uces stronger hypotheses (Schapire, 1990). The corresponding
ormulation that is more specific to neural networks is how the
epresentations obtained by learning through backpropagation
an be ‘‘recycled’’ for new tasks (Pratt, 1993; Pratt, Mostow,
Kamm, 1991). This challenge initially was not unanimously

eferred to as transfer learning, but often was referred to as boost-
ng (Freund & Schapire, 1997). A pre-deep learning survey (Pan
Yang, 2010) has summarized efforts and formalized transfer

earning in the way used today:

efinition 3 (Transfer Learning Pan & Yang, 2010). Given a source
omain and learning task, a target domain and learning task,
ransfer learning aims to help improve the learning of the target
redictive function in the target domain using the knowledge in
he source domain and task, where the source and target domain,
r the source and target task are unequal.2

Here, Pan and Yang (2010) formalize the use of the terms do-
ain and task in the context of supervised transfer with datasets
onsisting of a finite amount of data instances. They are defined
y the following: Given a specific domain, defined as the pair of
arginal data distribution and a corresponding feature space, a task
onsists of two components: a label space and an objective predictive
unction (which maps to the label space and is not observed, but
an be learned from the training data, consisting of pairs of data
nstances and respective labels) (Pan & Yang, 2010). The concept
f a domain is therefore defined as the pair of marginal data dis-
ribution and a corresponding feature space, where it is generally
mplied that source and target feature space, or source and target
ata sets are unequal. An effortless translation of transfer learning
o unsupervised or reinforcement learning settings is possible.
ithout further extensions, this definition of transfer learning

s essentially a narrowed down version of the primitive lifelong
earning Definition 1, with the nuance that there typically only
xist two tasks. It is similarly one directional in the sense that
he source task is only used to improve learning the new target.

2 Note that mathematical symbols (such as DS or DT to denote source and
arget domain) have been omitted from the original definition for ease of
eadability. We will continue to omit these symbols in the follow-up definitions
s they do not serve a higher purpose in the current overview.
309
Since then an enormous amount of works has sprouted, ini-
tiated by works that have started the investigation of transfer-
ability of deep neural network features beyond low-level pat-
terns (Oquab, Bottou, Laptev, & Sivic, 2014; Yosinski, Clune, Ben-
gio, & Lipson, 2014), i.e. the higher abstractions and task-specific
information believed to be encoded in deeper layers of the hierar-
chy. Weiss, Khoshgoftaar, and Wang (2016) have provided a sur-
vey on recent advances. In this context of feature transferability,
a variant named multi-task learning (MTL) has emerged. Caruana
(1997) summarizes the goal of MTL succinctly: ‘‘MTL improves
generalization by leveraging the domain-specific information con-
tained in the training signals of related tasks’’. Early works some-
times referred to this as including ‘‘hints’’ (Abu-Mostafa, 1990;
Suddarth & Kergosien, 1990) to improve learning. In contrast to
transfer learning, generally multiple tasks are considered, with
the requirement of the model performing well on all of them.
However, in the MTL setting, tasks are all trained jointly and no
sequence is assumed, corresponding to typical isolated learning
practice. In modern day deep networks, MTL thus culminates in
the question of how to exactly share the abundant amount of
parameters in the architectural hierarchy, see e.g. the overview
provided by Ruder (2017) for variants of sharing architecture
portions.

More recently, a very specific form of transfer or multi-task
learning has evolved. Few-shot Learning (Fei-Fei, Fergus, & Perona,
2006) developed due to the inability of deep learning techniques
to cope with small datasets and empirical risk optimization being
unreliable in small sample regimes. Wang, Yao, Kwok, and Ni
(2020) summarized few-shot learning as a type of machine learn-
ing problem, where the dataset only contains a limited number of
examples with supervised information for the target domain (and
generally no constraints on the source domain). This implies that
few-shot learning also tackles the issue of rare cases, apart from
computational cost and the issue of data collection and labeling.
When there is only one example with a label, it is commonly
referred to as one-shot learning (Fei-Fei et al., 2006; Fink, 2005).
Respectively, if no supervised example is provided, the scenario is
referred to as zero-shot learning (Lampert, Nickisch, & Harmeling,
2009). These scenarios are typically regarded under the hood of
transfer learning with additional constraints on data availability.

Apart from concerns about reasonably sized datasets, a differ-
ent concern is as old as the search for stochastic approximations
itself, namely when to conduct updates. Already in the work
of Hebb (1949), online learning, i.e. incorporating information im-
mediately as data arrives as opposed to collecting batches before
updating a model, was a natural requirement. This question has
been elemental in later formalization of frameworks for empirical
risk optimization (Tsypkin, 1971; Vapnik, 1982). Several works
have elaborated on challenges in: online learning in NNs (Heskes
& Kappen, 1993), more generally online learning and stochastic
approximations (Bottou, 1999; Saad, 1999), or specifically online
gradient descent (Zinkevich, 2003), the workhorse of modern
optimization. Given the instance based update nature, online
learning in neural networks is inherently tied to the question of
how to avoid catastrophic interference. It is thus not surprising
that with the advent of DL immediate attempts have been made
to consider online learning in DNNs (Zhou, Sohn, & Lee, 2012), see
a recent survey by Sahoo, Pham, Lu, and Hoi (2018). Nevertheless,
research towards online learning still revolves around the interac-
tion between online desiderata and stochastic approximations, or
the stochastic gradient descent with backpropagation procedure
in particular.

Ultimately, each paradigm arose for a reason and comes with
its own value, namely that of providing better distinction to other
works in concrete evaluation scenarios. However, it is important

to remember that the emerging taxonomy is full of nuances that
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Fig. 2. A widely used approach to evaluation of lifelong machine learning
algorithms in the literature (Chen & Liu, 2017).

are at times indistinguishable in a more general framework. In
consequence, evaluation protocols are central to any discussion.
We therefore proceed with details of common evaluation meth-
ods in deep continual learning and then summarize the main
differences to the paradigms introduced in this section for a
compact overview.

2.2. Continual learning evaluation

In contrast to isolated machine learning, where the evaluation
cenario can often be defined in a straightforward manner by em-
loying performance or satisfying task metrics, continual learning
oes not directly allow for such an approach. Given that the in-
erest lies in accumulation of information, there are many factors
o consider in evaluation of corresponding algorithms. In general
t is important to monitor the currently introduced task, yet also
nvestigate semantic drift on previous tasks. One should consider
he gain and the ability to leverage representations from task to
ask in progressive experimentation, yet take note of the task
equence that is crucial to the specific solution obtained. When
ntroducing more tasks, the transfer behavior should be carefully
xamined, yet cautiously interpreted, as not all introduced tasks
ield immediate benefits and thus a larger amount of tasks needs
o be brought in to the system.

Before continuing with the discussion of evaluation difficulties
nd metrics, let us take a brief look at some currently em-
loyed evaluation methodology (Chen & Liu, 2017), summarized
isually in Fig. 2. It seems that such an evaluation protocol is
till largely inspired by the isolated machine learning practices.
hereas the notion of information transfer and the sequence of

asks is considered and benchmarked against isolated learning
lgorithms, such an approach to evaluating the value of con-
inual learning algorithms disregards the relevance of the task
equence (or permutation thereof), choice of tasks or choice of
ata. Accordingly, recently developed experimental protocols in
eep continual learning (De Lange et al., 2021; Farquhar & Gal,
018b; Kemker et al., 2018; Lesort et al., 2019, 2020; Parisi
t al., 2019; Pfülb & Gepperth, 2019) seem to mainly occupy
hemselves with evaluation procedures that are heavily inspired
y decades of benchmarking learning algorithms in isolation. As
reminder to the reader, we refer to isolated learning as the
310
Fig. 3. A typical continual learning scenario dividing common benchmark
datasets into a sequence of sub-tasks. Here, the digits one through six from the
MNIST dataset (LeCun et al., 1998) and the Wordnet ids ‘‘n01443537’’: gold-
fish, ‘‘n01641577’’: bullfrog, ‘‘n01644900’’: tailed frog, ‘‘n01910747’’: jellyfish,
‘‘n09246464’’: cliff, ‘‘n02814860’’: beacon from the ImageNet dataset (Rus-
sakovsky et al., 2015). Common evaluation either follows the filled dark arrows
to incrementally learn one dataset or alternatively also switches dataset, as
denoted by the hollow light arrows.

practice of end-to-end training on a static dataset and evaluation
on its predefined test set, without changes over time. As such,
the majority of current empirical examination equates continual
learning benchmarks with the monitoring of catastrophic for-
getting in scenarios that are simple sequentialized versions of
popular datasets, similarly to the steps shown in Fig. 2. With few
exceptions, this means that existing datasets are simply split into
t = 1, . . . , T sets, where each of these sets is referred to as one
task. These task- or time-stamped sets are then presented one by
one to a deep learning system. Typically, each step is assumed
to consist of a disjoint set of classes or entire datasets, usually
independently of whether the probed task is of supervised, unsu-
pervised or semi-supervised nature, see Fig. 3 for an illustration.
Respectively analyzed metrics (Kemker et al., 2018) are based
on this dataset sequentialization and routinely monitor e.g. the
degradation of a first task’s classification accuracy, the ability to
encode new task increments, the overall development of a chosen
metric as tasks accumulate or various similar measures to gain an
intuition for generative models. It is obvious how this is inspired
by isolated learning as these metrics can simply be extracted from
a conventional confusion matrix. For this reason, multiple efforts
have been made to emphasize the need for more diverse evalua-
tion (Díaz-Rodríguez et al., 2018; Farquhar & Gal, 2018b). Alas, the
persisting focus on catastrophic forgetting remains visible from
the formulated criteria and questions that are deemed necessary
to compare methods (Díaz-Rodríguez et al., 2018; Farquhar & Gal,
2018b):

• Memory consumption: amount of required memory.
• Amount of stored data: how much past data does the

method need to retain explicitly?
• Task boundaries: does the method require clear task divi-

sions?
• Prediction oracle: does the method require knowing the

task label for prediction?
• Amount of forgetting: how much information is retained

as measured through proxy metrics.
• Forward transfer: do older tasks accelerate learning of new

concepts?
• Backward transfer: do new tasks benefit old tasks?

At this stage the reader might already notice that some of
these listed items are rather particular to specific practices. For

example, the idea that a prediction oracle would be required
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n the first place in order to give task labels is an artifact of
everal works that consider so called multi-head scenarios. Such
a multi-head setting makes use of separate disjoint classifiers
per task to circumvent explicitly dealing with task prediction
interdependence. In other words, each task is provided a separate
label, which is commonly assumed to be additionally provided
during inference to decide which of the classifiers should be
selected. There exist recent reviews (De Lange et al., 2021) that
base their entire evaluation on such a scenario. Empirical sur-
veys in the context of robotics (Lesort et al., 2019), generative
models (Lesort et al., 2020) follow similar trends and conduct
a ‘‘comprehensive application-oriented study of catastrophic for-
getting’’ (Pfülb & Gepperth, 2019). With catastrophic forgetting
being the sole focus, these works at best cover the first three of
the five earlier formulated continual learning pillars 1, if and only
if they also conduct an analysis on how specific tasks benefit each
other. The recent critiques that formulated above questions (Díaz-
Rodríguez et al., 2018; Farquhar & Gal, 2018b) therefore present
valid attempts to rid current evaluation from such practices that
can be seen as inherently violating real continual learning sce-
narios. Nevertheless, we argue that there are even larger factors
at play that transcend these arguments. Although transfer and
the sequential nature is considered and benchmarked against
isolated learning, crucial aspects such as the relevance of the task
order (or permutation thereof), choice of tasks, choice of data and
articularly any form of robustness in an open world are frequently
verlooked or may even be disregarded altogether. Open research
reas such as curriculum learning (Bengio, Louradour, Collobert,
Weston, 2009), i.e. benefiting from a data ordering of increas-

ng complexity, open world learning (Bendale & Boult, 2016),
.e. equipping the model with awareness of unseen unknown
ata, and active learning, i.e. self-selecting data to query for the
ext step, try to address these crucial elements. We argue that
t is imperative to take these perspectives into account in the
valuation of continual learning algorithms. Before proceeding to
ategorize individual works and consequently making an attempt
t connecting the paradigms, we give a brief summary of the
resent evaluation differences. Here, we capture the essence of
ach paradigm, point out the main difference to continual learn-
ng if the paradigm is viewed in isolation, and emphasize what role
s contributed when considered in context of continual learning.

• Transfer Learning: Leverage a source task’s representations
to accelerate learning or improve a current target task.
Difference to CL when viewed in isolation: unidirectional kno-
wledge transfer between two tasks.
Role in CL: enables forward transfer to benefit future tasks
through feature re-use.

• Multi-task Learning: Exploit tasks relatedness by forming a
joint hypothesis space.
Difference to CL when viewed in isolation: isolated learning
with multiple tasks.
Role in CL: training of multiple tasks simultaneously before
advancing to multiple new tasks continually.

• Online Learning: Retaining and improving a task where
data arrives sequentially and real-time constraints require
online adaptation.
Difference to CL when viewed in isolation: typically contin-
uous learning of one task over time, however generally
applicable to any of the other paradigms.
Role in CL: rapid learning without task boundaries, limited
revisits of memory buffers, and encoding of new knowledge
as data instances arrive in a stream.

• Few-shot Learning: Transfer or multi-task learning in a
small data regime.
Difference to CL when viewed in isolation: unidirectional

transfer or isolation similar to transfer learning.

311
Role in CL: fast adaptation in continual learning with very
few data instances per task.

• Curriculum Learning: Finding a suitable curriculum that
accelerates or improves training by means of introducing
schedules of increasing data instance difficulty or data in-
stance task specificity.
Difference to CL when viewed in isolation: isolated learning
that prioritizes certain data instances.
Role in CL: scoring the difficulty of data instances and adapt-
ing the pacing of the learning to accelerate or improve
training.

• Open World Learning: At any particular point in time the
model needs to be able to identify and reject unseen data
belonging to unknown tasks. These could be set aside and
learned at a later stage.
Difference to CL when viewed in isolation: Current CL is typi-
cally evaluated in a closed world scenario.
Role in CL: robust learning and inference that discards task
irrelevant data and identifies novel tasks.

• Active Learning: An iterative form of supervised learning,
where the learner can query a user to provide labels for a
subset of unlabeled examples that are deemed to yield the
largest knowledge gain.
Difference to CL when viewed in isolation: data and sampling
efficiency is rarely taken into account in CL on predefined
benchmarks.
Role in CL: filtering data instances that are expected to yield
large benefit to limit computational resource consumption
or labeling costs in continual learning.

3. Critically surveying and bridging three perspectives

We provide a critical review of the plethora of practices and
historically grown methods in the context of deep continual
learning, active learning and open set recognition. For this pur-
pose, we start by surveying the three perspectives individually
and categorize their respective trends. To give a visual guideline
to the reader, we show an overall taxonomy in Fig. 4, where
each of the three main nodes will now be discussed in detail in
Sections 3.1, 3.2, and 3.3. We then follow up on these individ-
ual perspectives by delving into details of potential pitfalls and
shortcoming, in order to subsequently highlight synergies and the
necessity for a consolidated view in Section 3.4. That is, we will
highlight the illustrated interconnections between the three per-
spectives of the taxonomy diagram. This consolidated view, based
on the primary conjecture that open set recognition provides the
natural interface between active and continual learning, is finally
presented towards the end of this section. What may at first seem
like a tour de force review for the reader, is thus intended to
initially gain an overview of the vast landscape and the deluge
of methodology options, in order to ground our understanding
of the interconnections between the presented elements. As the
latter is the primary focus of this work, we re-emphasize that we
limit our survey part to concise critical summaries and will forgo
lengthy elaborations on algorithmic nuances and mathematical
details that are not essential to a generic understanding. For this
reason we strongly encourage the reader to go through the ensu-
ing three Sections (3.1, 3.2, and 3.3) in favor of a comprehensive
and critical picture. However, we acknowledge that a very well-
versed reader in all three paradigms may want to directly continue
with Section 3.4 and consecutive content on bridging perspective.
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Fig. 4. Visual taxonomy of neural network based methods for continual learning, active learning and open set recognition.
.1. Continual learning

As indicated in the introductory section, continual learning
hould ideally encompass a variety of research questions. Our
ater sections will continue to argue that currently considered
cenarios are too reductive, resulting in potential difficulty to
hose among existing algorithmic options. For now, we will start
ith a typical categorization of existing deep continual works into
he three categories of regularization, rehearsal and architectural
pproaches, in consistency with recent reviews (De Lange et al.,
021; Lesort et al., 2020; Parisi et al., 2019). We note that a strict
rganization into these groups is not always possible and hence
lso provide a forth category for works that combine multiple
ethods. In later sections we will argue that this is not only
dvantageous, but conceivably a necessity.

.1.1. Regularization
Continual learning approaches based on regularization aim to

trike a balance between protecting already learned representa-
ions, while granting sufficient flexibility for new information to
e encoded. Intuitively, a meaningful balance should be attainable
or tasks with sufficient overlap in their high dimensional embed-
ings, i.e. if a considerable amount of the learned representations
re shareable. Existing approaches can be further subdivided into
wo subgroups of regularization. One of these explicitly protects
arameters by constraining changes on every level of a model
rchitecture, which we refer to as structural. The other preserves
model’s output for seen tasks while ensuring full adaptability
ith respect to each individual model stage that leads to the
rediction, which we refer to as functional.
312
Structural: Structural regularization approaches draw inspira-
tion from the neuroscientific stability–plasticity dilemma (Hebb,
1949). That is, successful use of regularization of deep learning
models for continual learning requires carefully balancing the
trade-off between overwriting acquired representations in favor
of sensitivity to new information and preservation of already ex-
isting formed patterns. Elastic Weight Consolidation (EWC) (Kirk-
patrick et al., 2017) aims to achieve this balance by estimating
each parameter’s importance through the use of Fisher informa-
tion and respectively discouraging updates for parameters with
greatest task specificity. Synaptic Intelligence (SI) (Zenke, Poole,
& Ganguli, 2017) and Memory Aware Synapses (MAS) (Aljundi,
Babiloni, Elhoseiny, Rohrbach, & Tuytelaars, 2018), where the
biologically inspired term synapse is used synonymously with
parameter, follow a similar approach by explicitly equipping
each parameter with additional importance measures that keep
track of past improvements to the objective. Asymmetric Loss
Approximation with Single-Side Overestimation (ALASSO) (Park,
Hong, Han, & Lee, 2019) can be seen as a direct extension to SI
and aims to mitigate its limitations by introducing an asymmetric
loss approximation that is motivated from empirical observa-
tions. Riemannian Walk (RWalk) (Chaudhry, Dokania, Ajanthan,
& Torr, 2018) has generalized EWC and SI by taking into ac-
count both the Fisher information based importance. The latter
is based on a perspective of computing distances in the in-
duced Riemann manifold, and the optimization trajectory based
importance score. Incremental Moment Matching (IMM) (Lee,
Kim, Jun, Ha, & Zhang, 2017) approaches structural regularization
from a perspective of Bayesian approximations and matching
the moments of tasks’ posterior distributions. Uncertainty based
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ontinual Learning (UCL) (Ahn, Cha, Lee, & Moon, 2019) makes
se of Bayesian uncertainty estimates to adaptively regularize
eights online. Similarly, Uncertainty-guided Continual Bayesian
eural Networks (UCB) (Ebrahimi, Elhoseiny, Darrell, & Rohrbach,
020) adapts the learning rate in dependence on the uncertainty
efined in the probability distribution of the weights.

unctional: Functional regularization approaches are generally
nspired by knowledge distillation (Hinton, Vinyals, & Dean, 2014),
n approach originally proposed for model compression. A distil-
ation loss is introduced by storing the prediction of a data sample
or future use as a so called soft target. In learning without for-
etting (LWF) (Li & Hoiem, 2016) for class incremental continual
earning, the soft targets for existing classes are calculated using
ewly arriving data. The hope lies in regularizing towards pre-
erving the output for old tasks, even if these predictions might
e nonsensical as the freshly added classes do not get correctly
redicted yet. Encoder based lifelong learning (EBLL) (Rannen,
ljundi, Blaschko, & Tuytelaars, 2017) applies this concept to
he unsupervised learning scenario by applying distillation to
utoencoder reconstructions. Knowledge distillation rarely seems
o be employed in isolation, but as will be apparent from the
ist of upcoming combined approaches is a popular technique in
onjunction with other mechanisms.

.1.2. Rehearsal
As the name implies, rehearsal techniques for continual learn-

ng aim to preserve encoded information by replaying data from
lready seen tasks. Trivially, continual learning could be solved
y simply storing and replaying all seen data, albeit at usually
ntolerable memory expense and growing computation time. Ac-
ordingly, a core aspect of rehearsal methods is to find a suitable
ubset of data that best approximates the entire observed data
istribution. This is commonly referred to as selection of exem-
lars or construction of a core set. Alternatively, a generative
odeling approach can be used to generate instances from a

earned latent representation, as an encoding of the observed
ata distribution. Most replay techniques indicate their inspira-
ion to be drawn from the complex biological interplay between
ippocampus and neocortex (often referred to as complemen-
ary learning systems), wake + sleep cycles and dreaming in
he brain (Kumaran, Hassabis, & McClelland, 2016; McClelland,
cNaughton, & O’Reilly, 1995).

xemplar rehearsal: GeppNet (Gepperth & Karaoguz, 2016) ex-
lores the use of a dual-memory system that implements vari-
us short and long-term memory storages. These serve the pur-
ose of storing newly arriving information or providing dedi-
ated replay cycles of previously stored data. Selective Experience
eplay (SER) (Isele & Cosgun, 2018) concentrates on exemplar
election techniques and investigates trade-offs between prefer-
ing surprising experiences over rewarding ones, or maximizing
istribution coverage. Gradient Episodic Memory (GEM) (Lopez-
az & Ranzato, 2017) extends the use of a memory that gets
eplayed episodically with constraints on the gradients to be
on-conflicting with updates for previous tasks. A respective
xtension called Averaged Gradient Episodic Memory (A-GEM)
Chaudhry, Ranzato, Rohrbach, & Elhoseiny, 2019) has introduced
ignificant improvements on computational and memory cost
or optimization under these constraints. CLEAR (Rolnick, Ahuja,
chwarz, Lillicrap, & Wayne, 2018) uses experience replay to-
ether with off-policy learning to preserve old information and
n-policy learning to learn new experiences in deep reinforce-
ent learning. Bias Correction (BiC) (Wu et al., 2019) rehearses
xemplars and additionally corrects for biases in the classification
ayer.
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Generative: Generative replay is a specific version of rehearsal
where the data to be rehearsed consists entirely of instances
sampled from a generative model. Rather than making use of
an episodic memory of previously seen data, generated samples
of former tasks are typically interleaved with the current task’s
real data during training. The most elementary version of this
procedure was coined pseudo-rehearsal (Robins, 1995), where
the generative model is of simple nature. Here, binary patterns
are sampled at random, their target value or label computed
given the current state of the classifier, and the classifier then
needs to maintain the discrimination on these patterns and learn
new classes. Such pseudo-rehearsal has then successfully been
leveraged in brain-inspired dual-memory architectures that use
two distinct networks for acquisition and storage of informa-
tion with generative rehearsal to consolidate the memory. Two
early examples include pseudo recurrent networks (French, 1997)
and coupling two reverberating neural networks (Ans & Rousset,
1997). Deep Generative Replay (DGR) (Shin et al., 2017) have
introduced a deep learning variant of this practice, where the
generative model is taken to be a separate generative adversarial
network (Goodfellow et al., 2014) that gets trained in alternation
with a classification model. Replay through Feedback (RfF) (van
de Ven & Tolias, 2018) proposed generative replay using a single
model that handles both classification and generation through the
aid of feedback connections. Incremental learning using condi-
tional adversarial networks (ILCAN) (Xiang et al., 2019) follows a
similar approach of using a single model, but additionally changes
the generative replay component to rehearse feature embeddings
instead of aiming at reconstructing original input data. Open
Variational Auto-Encoder (OpenVAE) (Mundt et al., 2022) fur-
ther introduces the first approach to naturally integrate open set
recognition with deep generative replay in a single architecture.
This work will be used as an example in the empirical portion
of our paper. We will demonstrate how suggested ideas can be
extended to form one potential basis as means to broaden current
continual learning practices.

3.1.3. Architectural
Architectural approaches attempt to alleviate catastrophic for-

getting through modification of the underlying architecture. It
might at this point be baffling to the reader why such modifica-
tions are listed distinctly from the works presented in previous
subsections. They are almost by definition complementary to
any method presented so far, and in fact most methods pre-
sented in this paper. For historical reasons, we will however stay
consistent with former categorization of deep continual learn-
ing algorithms (Parisi et al., 2019). We further sub-categorize
architectural approaches into implicit and explicit architecture
modification, i.e. methods that use a fixed amount of representa-
tional capacity and methods which dynamically increase capacity
in the process of continued training.

Fixed maximum representational capacity: Approaches that use
a static architecture rely on task specific information routing
through the architecture. An early example is a technique coined
activation sharpening towards semi-distributed representations
(French, 1992). Here, the essence is to tune and limit the amount
of high neural network activations to a maximum of k nodes, such
that there is less activation overlap for different representations.
Consequently, there is less potential for interference of new ex-
amples. While fixed architecture methods differ in the specifically
employed technique to disambiguate the learned dense represen-
tations, the common denominator is the assumption of an over-
parametrized architecture. The latter is needed in order to war-
rant enough initial redundancy to permit overriding parameters
without incurring catastrophic interference. PathNet (Fernando
et al., 2017) adopted this notion to deep neural networks and
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sed a genetic algorithm to determine and freeze pathways that
re deemed particularly useful for a specific task. Instead of using
separate algorithmic layer to determine task specific subsets,
iggyback (Mallya, Davis, & Lazebnik, 2018) and hard attention to
he task (HAT) (Serra, Suris, Mirón, & Karatzoglou, 2018) directly
earn binary masks and use them to gate information propagation
hrough the network. The UCB-P variant of the earlier introduced
egularization approach Uncertainty-guided Continual Bayesian
eural Networks (UCB) (Ebrahimi et al., 2020) confronts this
hallenge from a Bayesian perspective. They use uncertainty to
rune the model and identify binary masks per task to index into
he weights’ Gaussian mixture distributions.

ynamic growth: Dynamic growth approaches administer rep-
esentational capacity much more explicitly. The trivial solution
ould be to simply have one model per task and devise a mech-
nism to select the appropriate path for an input. Alas, such
n arrangement does not fully leverage information from one
ask to positively transfer to another or newly arriving infor-
ation to aid already acquired tasks respectively. First works in
eep learning however nearly follow this naive, but also intu-
tive, approach to simply train on a task and consequently freeze
ll learned representations, such as demonstrated in Progressive
eural Networks (PNN) (Rusu et al., 2016). The amount of weights
s then increased for a new task, with the twist that formerly
earned representations laterally transmit their output to the new
asks’ representations but not vice versa. Expert Gate (Aljundi,
hakravarty, & Tuytelaars, 2017) is comparable and differs mainly
n the introduction of a gating mechanism that automates the
hoice of a suitable expert in an ensemble. Recent, perhaps more
ractical, approaches can be viewed as once again drawing their
nspiration from decades of biological findings and discussion on
eurogenesis. The latter refers to the process of creation and
ncorporation of new neurons into the existing system, see the
eviews by Aimone et al. (2014) and Vadodaria and Jessberger
2014). For the last two decades it has now been acknowledged
hat this process persist beyond early stage human development
nd continues its function in adults (Gross, 2000). The seminal
ork of dynamic node creation in neural networks (Ash, 1989),
here additional units are added whenever the loss plateaus, has
hus found a renaissance in modern deep learning. Neurogenesis
eep learning to accommodate new classes (NDL) (Draelos et al.,
017) and lifelong learning with Dynamically Expandable Net-
orks (DEN) (Yoon, Yang, Lee, & Hwang, 2018) have adapted this
euristic approach for use in continual deep learning. The former
y adding units whenever the reconstruction error of an autoen-
oder surpasses a predetermined threshold in the spirit of Zhou
t al. (2012), the latter based on an empirically found value of
he classification loss in supervised learning. Reinforced Continual
earning (RCL) (Xu & Zhu, 2018) or Learn-to-Grow (Li, Zhou, Wu,
ocher, & Xiong, 2019) further attempt to overcome the challenge
f finding suitable loss cut-offs and cast dynamic unit addition
nto a meta-learning framework in order to separate the learning
f the network structure and estimation of its parameters.

.1.4. Combined approaches
A number of works have primarily advanced the state of

he art on a set of benchmark datasets by blending techniques
rom the previous categories. We list some popular works in this
ategory that have attempted such a blend for the first time, but
lso note that the amount of newly emerging combinations grows
ery rapidly. One of the most popularly cited works is iCarl (Re-
uffi et al., 2017), which couples a knowledge distillation based
egularization approach with rehearsal of exemplars, assembled
hrough a greedy herding procedure (Welling, 2009). Variational

ontinual Learning (VCL) (Nguyen et al., 2018) similarly fuses use
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of an episodic memory of exemplars with parameter regulariza-
tion, but from a perspective of approximate Bayesian inference.
FearNet (Kemker & Kanan, 2018) has later criticized iCarl as a
viable technique due to its heavy dependency on quantity of
data. They have therefore additionally incorporated generative
rehearsal to compensate the need to store large subsets of the
original dataset. Variational Generative Replay (VGR) (Farquhar
& Gal, 2018a) can be seen as concurrent to VCL, where instead
of exemplar rehearsal generative replay is made use of. Memory
replay GAN (MRGAN) and Lifelong GAN (LLGAN) (Zhai et al., 2019)
are more recent complements to these works and deviate in
that they are based on GANs instead of variational inference in
autoencoders. Whereas MRGAN uses a functional regularization
approach to align the generator’s output, LLGAN further applies
such distillation loss based regularization across multiple places
in the architecture to regularize encoders and discriminators.
On the architectural front, Variational Autoencoder with Shared
Embeddings (VASE) (Achille et al., 2018) adopts dynamic ar-
chitecture growth in conjunction with generative replay. Their
proposal is to allocate additional representational capacity for
new concepts, determined through larger reconstruction loss in
a variational autoencoder, however, is limited to expanding the
latent space and leaving the rest of the architecture static. Life-
long Learning for Recurrent Neural Networks (LLRNN) (Sodhani,
Chandar, & Bengio, 2019) combines training of long short-term
memory (LSTM) (Hochreiter & Schmidhuber, 1997) with gradient
episodic memory based exemplar rehearsal and a capacity ex-
pansion approach named Net2Net (Chen, Goodfellow, & Shlens,
2016). The approach provides the means to transfer learned rep-
resentations from an architecture to a larger untrained one before
continuing to train the latter. While some of these works clearly
exploit natural synergies, a generally desirable practice, we note
that this can sometimes come at the expense of detailed analysis
and comprehensive understanding of individual key ingredients.
Therefore, we agree that all approaches in this subsection pur-
sue commendable directions, but also wish to point out that
considerable future analysis is still required.

3.2. Active learning

Rather than focusing on the question of how to preserve
representations in incremental continual learning, the topic of
active learning asks the reverse question of how to pick data
increments for future inclusion. Generally, this is cast into the
framework of semi-supervised learning. Here, it is assumed that
the model is trained on labeled data X L = {x1L , . . . , x

n
L }, and a

larger pool of unlabeled data XU exists. This is motivated from
data acquisition being relatively cheap in the modern world, as
opposed to human intensive data labeling that often requires
highly skilled experts. The task of an active learner is thus to
extract a set of M data instances {x1U , . . . , xmU } from the pool of
unlabeled data, such that a maximum gain in performance on the
inspected task is expected if a human in the loop provides the
additional labels {y1, . . . , ym} for further training. The underlying
mechanism on which the query is based is referred to as the
acquisition function and forms the main pillar of active learning
research. We have visualized this active learning cycle in Fig. 5.

There are multiple conceivable evaluation variants to gauge
the usefulness of active learning acquisition function choices.
They either explicitly assume the entirety of the unlabeled data
to be accessible and usable upfront, or contrarily the query being
informed solely by the available labeled data. Independently of
the latter, the practical assessment of active learning strategies is
generally conducted in a closed world scenario. That is, the entire
pool of unlabeled data is expected to stem from the same data

distribution as the initially labeled set. The oracle is respectively
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Fig. 5. Active learning cycle that repeatedly expands a labeled dataset by
uerying and then annotating data instances from a larger unlabeled pool. The
ashed arrow from the latter to the training process indicates the common
losed world active learning scenario, where the presence of all data at all times
s assumed. Respective works typically include the entire unlabeled dataset into
he training procedure by employing methods from semi-supervised learning.
haded parts of the diagram correspond to processes, whereas light components
epresent objects.

ssumed to be infallible. In a crucial distinction to continual learn-
ng, evaluation of active learning however accumulates data and
rows the labeled set, focusing primarily on the cost reduction of
abor intensive annotation. In consequence, an active learner is
eemed successful if each data query provides significant benefit
ver simply picking and labeling data at random.
‘‘A probability analysis of the value of unlabeled data for

lassification problems’’ (Zhang & Oles, 2000) provides an early
nalysis of the requirements for benefiting from semi-supervised
r active learning approaches. The authors consider two types
f models: parametric p(x, y|W ) = p(x|W )p(y|x,W ) and semi-
arametric: p(x, y|W ) = p(x)p(y|x,W ). In the latter, the data
robability p(x) is decoupled and can have an unknown (or non-
arametric) form independent of the weights W , as is com-
on in most discriminative models such as logistic regression or
ost neural networks. They argue that these models are particu-

arly suited for active learning, as opposed to parametric models
uch as Gaussian mixtures being particularly suitable for semi-
upervised learning. This is because they do not need to rely on
otentially inaccurate estimates of the entire data distribution
hen only a fraction of the data is observable. However, we will
ee in the subsequent review that both of these model types
ave been used to form different perspectives to address active
earning and come with their respective advantages.

As with the majority of techniques, early active learning meth-
ds have rapidly cross-pollinated into applications with deep
eural networks. However, due to the black-box nature of deep
on-linear neural networks, many of these approaches are based
n simple heuristics or approximations to uncertainty quantities
hat no longer have tractable closed-form solutions. We will
tart with these heuristic approaches, as they are often trivial
o transfer to deep learning. We then continue to summarize
ore principled approaches, which can turn out to be genuinely

hallenging in the context of deep learning with neural networks.
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.2.1. Uncertainty heuristics
One theoretically sound approach to querying useful data is

ased on entropy (Shannon, 1948) sampling and other infor-
ation theoretic acquisition functions (MacKay, 1992). An early
pproach based on training two neural networks to estimate
uery areas in binary classification problems (Atlas et al., 1990)
emarks that this is difficult for neural networks as they are often
verly confident in their outputs. This overconfidence is going
o be one of the main subjects of our next major section on
earning in an open world. Interestingly, while carefully studied
n early literature in isolation, this aspect seems to often be
verlooked in the era of deep learning, particularly when placed
n the context of continual and active learning. Here, Simply
sing neural network prediction confidence, predictive entropy or
ther derived heuristics (Lewis & Gale, 1994) are still practically
mployed in comparisons today (Geifman & El-Yaniv, 2019). This
s because many approaches have been shown to empirically
ork well in specific contexts, although there is no guarantee for
hem to succeed. Early works have shown uncertainty sampling
ased active learning for logistic regression (Lewis & Gale, 1994)
nd neural networks (McCallum & Nigam, 1998; Seung, Opper,
Sompolinsky, 1992) based on ‘‘query by committee’’, an ap-

roach to estimate uncertainty by using an ensemble of neural
etworks. This idea has later found a one-to-one translation to
eep ensembles for active learning (Beluch et al., 2018). Naturally,
ost black-box deep neural networks are not equipped with
echanisms to gauge uncertainty properly outside of using mul-

iple parallel models. Bayesian active learning by disagreement
BALD) therefore provides an attempt at avoiding the neces-
ity of ensembles and instead uses Monte Carlo Dropout (Gal &
hahramani, 2015; Srivastava et al., 2014) to calculate points of
igh variance in the output (Gal, Islam, & Ghahramani, 2017).
his has empirically been demonstrated to be effective and has
een extended in Bayesian Generative Active Learning (BGAL).
ere, BALD is used to query samples and then the labeled set
s further augmented with generated examples (Tran, Do, Reid, &
arneiro, 2019). Deep incremental learning with Neural Architec-
ure Search (iNAS) (Geifman & El-Yaniv, 2019) does not propose
new query mechanism and instead provides an evaluation of
bove acquisition functions in the context of architecture selec-
ion. They include the option of progressive architecture growth
fter each query, to illustrate that small models generally fare
etter in a small data regime, whereas large models are required
hen a certain degree of task complexity is reached.

.2.2. Version space and expected error reduction:
A theoretically more substantiated approach to basing the

cquisition function on heuristics is to query data that provably
educes the expected error. Clearly, such proof is beyond the
urrent understanding of deep neural networks, but has been
hown to be feasible in the context of parametric models such as
aussian mixture models (Cohn, Ghahramani, & Jordan, 1996) or
aive Bayes (Roy & McCallum, 2001). These works use the formal
oncept of a version space (Mitchell, 1982). At the example of
lassification, its respective definition is the set of all hypotheses
hat are consistent with the observed data in achieving a possible
eparation in the induced feature space. An appropriate active
earning strategy is to sequentially and monotonically reduce the
ize of this version space, i.e. shrink the amount of conceivable
ypotheses. In models such as SVMs for binary classification this
an intuitively be explained based on the margins (Tong & Koller,
001). Here, new points are chosen according to hyperplanes
hat maximize the restriction with respect to the set of pos-
ible hyperplanes for correct classification. The latter was later
xtended to a multi-class SVM based approach (Joshi, Porikli, &
apanikolopoulos, 2009), however still based on multiple binary
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lassifiers. Above efforts allowed for theoretical guarantees on
ample complexity and necessary amount of queries to be ana-
yzed with respect to these binary classification problems with
inear decision boundary in the context of greedy active learning
trategies (Dasgupta, 2005). Whereas ‘‘learning active learning
rom data’’ (Konyushkova, Raphael, & Fua, 2017) provides a recent
ffort to train a meta-learning based regressor to predict expected
rror reduction for binary classification using random forests,
he idea is yet to be broadly adapted to deep neural networks.
irst efforts at scale based on approximations to expected model
utput changes are presented in Käding, Freytag, Rodner, Perino,
nd Denzler (2016) and Käding, Rodner, Freytag, and Denzler
2016).

.2.3. Representation based approaches:
Although version space reduction can come with provable

uarantees, respective application to deep neural networks is
nconceivable before a mature theory of how their hypotheses
re formed has evolved. At the same time, Roy and McCallum
2001) have pointed out that the earlier summarized uncertainty
ampling, or estimates thereof through ensembles, are generally
nsufficient. They argue that they are prone to querying out-
iers, as a result of sampled instances being viewed in isolation
nd without regarding the underlying density of the full data
istribution. Similar conclusions were empirically observed in
he large scale empirical evaluation of active learning for text
pplications (Settles & Craven, 2008). As a solution, the authors
uggest a representation based information density measure. Al-
hough heavy to compute, it implicitly takes into account the
nderlying data distribution. This can be seen as an approach
hat is orthogonal to minimizing the version space. Typically
he distribution coverage on the entire dataset according to the
odel representations is now maximized instead of reducing

he number of possible hypotheses. The often necessary core
ssumption is thus the presence of the entire unlabeled pool of
ata and its auxiliary use in optimization of the labeled set. We
ave attributed our third category to approaches that follow this
bjective.
Active learning using pre-clustering (Nguyen & Smeulders,

004) uses a k-medoids algorithm in conjunction with a SVM
r logistic regression to select data from the pre-clustered em-
edding of the unlabeled pool. Similarly, SVM based core vector
achines (Tsang, Kwok, & Cheung, 2005) use a set of minimum
nclosing balls to create a core set that best approximates the
ntire distribution. Li et al. estimate information density by us-
ng the unlabeled data in a Gaussian process (Li & Guo, 2013).
he idea in these works have since been abstracted to deep
eural networks. Sener and Savarese (2018) base their active
earning procedure on construction of core sets based on a k-
edians algorithm. Shui, Zhou, Gagné, and Wang (2020) achieve
istribution coverage by matching distributions through mini-
ization of the Wasserstein distance in Autoencoders (WAAL).
ariational adversarial active learning (VAAL) (Sinha, Ebrahimi,
Darrell, 2019) approximates the data distribution by learning

he latent space in a variational autoencoder (Kingma & Ba, 2015)
nd simultaneously trains a latent based adversarial network to
iscriminate between unlabeled and labeled data.
In complement to these works, various query-synthesizing

ethods have been proposed (Mahapatra, Bozorgtabar, Thiran, &
eyes, 2018; Mayer & Timofte, 2020; Zhu & Bento, 2017). Here,
he challenge of active learning is tackled by using a deep gener-
tive model to generate informative queries. Instead of querying
rom an unlabeled pool directly, generative adversarial active
earning (GAAL) (Zhu & Bento, 2017) and ‘‘efficient active learning
sing conditional generative adversarial network’’ (Efficient cGAN
L) (Mahapatra et al., 2018) both train GANs to synthesize and
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label queries. The core assumption is the ability to adequately
capture the data distribution to generate meaningful instances.
The usefulness of the generated samples with respect to a clas-
sifier can then either be assessed through uncertainty heuristics
or by matching the synthesized data with samples from the pool
and retrieving the most similar instance, as demonstrated in Ad-
versarial Sampling for Active Learning (ASAL) (Mayer & Timofte,
2020).

In our upcoming discussion, we will argue that the assumption
of upfront presence of all data should, and in fact can be lifted
when a natural bridge to the other paradigms is constructed.
Before that, we first proceed to conclude our last leg of the
review by delving into what will later constitute the ‘‘glue’’ in
our wholistic perspective: learning in an open world and open
set recognition.

3.3. Open set recognition

The term open set recognition was formally coined only re-
cently (Bendale & Boult, 2015; Scheirer, Rocha, Sapkota, & Boult,
2013). However, its foundation and associated challenge in neural
networks dates back to at least several decades before, when
discriminative neural networks were found to yield overconfident
mispredictions on unseen unknown data (Matan et al., 1990). To
get an intuitive understanding, let us briefly consider the types of
data we can expect our model to encounter. As soon as we move
beyond the closed world benchmark scenario, we can no longer
expect our trained models to be tested exclusively on some held-
out data from the same distribution as observed during training.
In the earlier introduced transfer learning parlance, for prediction,
data can thus generally not be presumed to originate from the
same domain. We can now distinguish three types of possible
inputs to our model (Scheirer et al., 2013):

1. Knowns: examples belonging to the distribution from
which the training set was drawn. The model’s prediction
is accurate and confident.

2. Known unknowns: unknown instances that a model can-
not predict confidently. Examples can optionally be labeled
as not being affiliated with the set of known concepts for
explicit training of negatives. Prediction uncertainty can
indicate a model’s awareness of its own limitation.

3. Unknown unknowns: unseen instances belonging to un-
explored, unknown distributions or classes for which the
prediction is generally overconfident and false.

The broader inspiration for this categorization is commonly at-
tributed to a notorious, machine learning unrelated, quote by
Rumsfeld (Naylor, 2010; Scheirer et al., 2013): ‘‘We know that
there are known knowns; these are things we think we know. We
also know there are known unknowns; that is to say we know there
are some things that we do not know. But there are also unknown
unknowns; these are the ones we do not know, we do not know!’’.
In the context of neural networks, known unknowns can be iden-
tified through gauging model uncertainty or relying on derived
related heuristics, in correspondence to many of the methods
employed in the active learning setting. However, as detailed in a
recent survey (Boult et al., 2019), separating the known data from
the essentially indistinguishable high-confidence mispredictions
for unknown unknowns is far from trivial.

As any machine learning model is trained on a finite dataset,
and the imaginable set of unknown unknowns is infinite, we refer
to the challenge of recognizing the latter as open set recognition
in analogy to prior works (Bendale & Boult, 2015, 2016; Boult
et al., 2019; Scheirer, Jain, & Boult, 2014; Scheirer et al., 2013).
Formally, these works define the closed space as a union of balls
S that enclose the entire training set X , whereas the open space
K K
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O
 constitutes the remainder of the input or feature space: O ⊂=

X −SK . Correspondingly, works that provide attempts at address-
ing open set recognition aim to find the respective boundaries
between known and unknown spaces (Bendale & Boult, 2015;
Lee, Lee, Lee, & Shin, 2018b; Mundt et al., 2022, 2019; Scheirer
et al., 2014, 2013; Yoshihashi et al., 2019). We will review these
works last in favor of historically preceding approaches based
on explicit inclusion of negative classes and rejection through
anomalies in prediction patterns, even though the latter have
been argued to be insufficient for open set recognition (Boult
et al., 2019; Matan et al., 1990; Scheirer et al., 2013).

The above widespread categorization can technically be ex-
tended to encompass a fourth category, by splitting the knowns
into known knowns and the set of unknown knowns (Munro,
2020). We do not consider this further distinction as the existence
of unknown knowns can be condensed to one of two options:
A willfully ignorant false prediction, because we in fact know
the concept but choose to nevertheless treat it as unknown. The
more charitable alternative in which our chosen machine learning
model has an inherent inability to represent the investigated
concept and its structure altogether. We also note that there
are other related concepts, such as novelty detection (Bishop,
1994) or equipping classifiers with rejection options. These are
different in such that they are typically still evaluated in the
closed world and data is generally still expected to reside in a
similar domain. The aim is to recognize outliers of the distribution
that are uninformative or represent a particularly interesting rare
event. Although these works can have considerable merit in their
respective closed world application context, we do not review
them in favor of the more generic open set recognition, where
considered inputs are allowed to be of almost arbitrary nature.
We further note that we naturally cannot provide every example
that has ever attempted open set recognition through simple
heuristics like using the output values to distinguish examples.

3.3.1. Prior knowledge
A conceivably simple effort to address unknown unknowns

is by assuming that the human modeler has enough awareness
about what forms of unknown inputs to expect during deploy-
ment to directly incorporate this prior knowledge into the model.
As inclusion of prior knowledge into neural networks and other
types of deep models turns out to be remarkably complex, the
natural analogue is to steer efforts towards dataset design. ‘‘In-
ference with the universum’’ (Weston, Collobert, Sinz, Bottou, &
Vapnik, 2006) has accordingly proposed to embrace prior knowl-
edge by representing it through a collection of ‘‘non-examples’’.
Hence, the optimization algorithm decides how to include the
presented information into the model. Unfortunately, this does
not provide a general solution for open set recognition as upfront
knowledge can only ever truly cover the family of known un-
knowns. At best, a mere work-around for major failure cases is
therefore supplied, although without any associated guarantees
for remaining unknown unknowns. This lack of guarantees is
further enforced by the necessity to rely on machine learning al-
gorithms extracting the information and composing abstractions
from the supplied ‘‘non-example’’ data population.

Since then, the idea to include a ‘‘background’’ concept has
been adopted so widely across applications, that singling out
and thus giving preference to select works is difficult. Take as
an example large-scale datasets surrounding the task of material
classification and semantic segmentation. Because there is an
abundance of material types, it has become the de-facto standard
to collapse any available imagery that is connected to less impor-
tant materials or where meager amounts of data are available into
a single ‘‘other’’ material (Bell, Upchurch, Snavely, & Bala, 2015;
Cimpoi, Maji, & Vedaldi, 2015). Not only is it impractical to gather
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data for every material variation, but also unknown unknowns
can feature other significant statistical deviations. These could
be due to e.g. previously unencountered illumination, acquisition
and sensor differences, superposition of dirt and surface mark-
ings, or any type of perturbation and previously unencountered
noise. Imaginably, in real applications beyond a closed world,
inclusion of an endless universe is by definition infeasible. Nev-
ertheless, multiple recent works follow this route. They propose
mechanism to calibrate output confidences in deep models (Lee,
Lee, Lee, & Shin, 2018a), formulate a discrepancy loss between
knowns and known unknowns (Yu & Aizawa, 2019) or modify
the embedding to explicitly separate them. Examples include
semantic categorical and contrastive mapping (SCM) (Feng, Kang,
Fan, & Yang, 2019) or the Objectosphere loss (Dhamija, Günther,
& Boult, 2018). Although these approaches are not tantamount to
a comprehensive solution, we note that they can still in principle
be sufficient for tasks in partially constrained environments that
naturally limit the world’s openness.

3.3.2. Predictive anomalies
From an unsuspecting angle, a model will consistently yield

accurate predictions only for observed data and produce highly
uncertain output otherwise. Yet, it still generalizes correctly to
data that is from the same domain but has not been included in
training. In this view, determining a prediction threshold and ob-
taining an uncertainty estimate is sufficient to recognize any form
of unknowns. This can work surprisingly well in models with
thorough understanding of the decision boundary and its neigh-
borhood, such as the Transduction Confidence Machine-k Nearest
Neighbors (TCM-kNN) (Li & Wechsler, 2005). Even though it is
well known that the entangled dense representations of neural
networks result in overconfident predictions on any data (Boult
et al., 2019; Matan et al., 1990), a variety of practical approaches
nevertheless proposed to simply rely on a hinge loss to reject
during classification (Bartlett & Wegkamp, 2008) or even to take
the straightforward route and directly trust the softmax confi-
dence (Hendrycks & Gimpel, 2017). As the quantitative outcome
leaves room for improvement, multiple works have argued that
uncertainty estimation is required to corroborate the decision to
gain awareness of the unknown. In deep networks this could be
achieved by assessing the variations of stochastic forward passes
through a neural network with dropout (Kendall, Badrinarayanan,
& Cipolla, 2017; Miller, Nicholson, Dayoub, & Sunderhauf, 2018;
Srivastava et al., 2014), as a variational Bayesian approximation to
a distribution on the weights (Gal & Ghahramani, 2015). Alterna-
tively, one could empirically estimate the output’s variability with
respect to introduced perturbations, such as done in ODIN (outlier
detection in neural networks) (Liang, Li, & Srikant, 2018), and
calibrate the prediction accordingly (Lee et al., 2018a). In similar
spirit, an often employed argument is that generative modeling
is required to obtain meaningful prediction values that allow to
recognize out of distribution samples. For this purpose, Lis, Nakka,
Fua, and Salzmann (2019) use image resynthesis and equate
detection of unknown concepts with identification of discrepan-
cies in poorly reconstructed image regions. Likewise, one-class
novelty GAN (OCGAN) (Perera, Nallapati, & Xiang, 2019) generates
examples from sparsely populated latent space regions in order
to use them in explicit training of a binary out-of-distribution
classifier. Although predictions and uncertainty from generative
models have been shown to improve outlier and adversarial
attack detection in contrast to purely discriminative models (Li,
Bradshaw, & Sharma, 2019; Mundt et al., 2022, 2019), there is
strong empirical evidence that this is still insufficient to provide a
generic solution (Mundt et al., 2022, 2019; Nalisnick, Matsukawa,
Teh, Gorur, & Lakshminarayanan, 2019; Ovadia et al., 2019). It
is clear that former reported cases of success can be attributed
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Fig. 6. Top panel: Qualitative illustration of the challenge of open set recognition. A neural network that has been trained to discriminate fashion items misclassifies
the unknown concept of an owl and assigns it to the t-shirt class with very high confidence. Bottom panel: A quantitative example of a deep wide residual neural
network trained on the FashionMNIST dataset, asked to classify unrelated unencountered digits and objects from the MNIST and CIFAR10 datasets. Even though
uncertainty is estimated using 50 Monte Carlo Dropout passes, misclassified unseen data still overlaps significantly with the known dataset in prediction confidence
or entropy. Knowns and unknowns are largely indistinguishable. The shown quantitative results are a reproduced subset of our previous work investigating the limits
of deep neural network uncertainty for open set recognition (Mundt et al., 2019).
to the specific constrained empirical studies. We illustrate some
simple failure cases of prediction confidence and entropy in Fig. 6,
even when uncertainty is assessed with Monte Carlo Dropout.
This is to provide an intuitive picture of the challenge of open set
recognition with neural networks and to summarize and repeat
the findings of the much more detailed experiments presented in
numerous prior works (Mundt et al., 2022, 2019; Nalisnick et al.,
2019; Ovadia et al., 2019).

3.3.3. Meta-recognition
Rather than assuming that predictions are somehow calibrated

or any data, a more rigorous approach is to prevent overcon-
ident misclassification by confining the model to the known
losed space and averting any prediction from little-known open
reas in the first place. Whereas it is evident how to achieve
his when explicitly modeling the distribution, such as done in
robabilistic mixture models, a straightforward approach is not
ypically applicable in the often complex feature hierarchies of
odern discriminative machine learning approaches. A common

echnique is thus to resort to meta-recognition. In this context,
he term meta is to denote a recognition procedure on top of
he empirically emerged features obtained through the original
lack-box optimization procedures. Scheirer et al. (2014) give
n intuitive example based on support vector machines. Here,
he menace of erratic predictions for unknown unknowns re-
ults from examples being projected close to the linear decision
oundary, while at the same time being mapped arbitrarily far
way from the training data along a different dimension. The
uthors therefore define a compact abating probability (CAP)
odel, where the key idea is to make use of insights from ex-

reme value theory (EVT). The essential notion is to take into
ccount inherently present extreme statistical differences in the
ong tail of an extreme value distribution, here the Weibull dis-
ribution. Subsequently, a data point’s probability of belonging
o the observed closed set is monotonously decreased with in-
reasing distance from the observed data population. In other
ords, a prediction is discarded in sparsely populated areas,

ndependently of a sample’s proximity to the decision bound-
ry. Bendale and Boult (2016) have extended this approach to
318
discriminative deep neural networks, where the above idea is
transferred to the network’s penultimate layer. They propose the
OpenMax algorithm that lowers softmax prediction probabilities
with increasing distance from the average penultimate layer’s
activation values. A strongly related approach has been proposed
by Lee et al. (2018b), where the affinity of a data point to the
known set is measured based on a Mahalanobis distance in the
feature space of the penultimate layer. More recent works have
come to the conclusion that although the latter approaches have
a strong theoretical foundation for open set recognition, they are
still limited by activation values in discriminative neural net-
works being optimized exclusively towards predicting a correct
class (Mundt et al., 2022, 2019; Yoshihashi et al., 2019). In par-
ticular, the penultimate layer activation values do not generally
encode all the information about the data that might be required
for open set recognition. ‘‘Classification Reconstruction learning
for Open-Set Recognition’’ (CROSR) (Yoshihashi et al., 2019) has
thus suggested to additionally append a generative model’s latent
variable to the OpenMax classification procedure. Concurrently,
open variational autoencoders (OpenVAE) (Mundt et al., 2022,
2019) translate the EVT based meta-recognition to a variational
Bayesian setting. Here, the open set recognition is based directly
on the approximate posterior in a deep generative model, which
enables a natural interpretation based directly on the underlying
generative factors of the data distribution, instead of activation
value heuristics.

3.4. Bridging perspectives: notable past insights and their synergies

Although our survey parts up to now have contained a critical
perspective, we have largely kept up the tradition to treat con-
tinual machine learning, active learning and open set recognition
as three distinct challenges. While well studied in isolation, dis-
tinctly categorized approaches are rarely coupled and synergies
exploited only in select works, such as the combined continual
learning approaches. More importantly, the intersection between
the three machine learning paradigms remains largely unex-
plored, as has also been made evident from our visual summary in
the taxonomy of Fig. 4. Highlighting the necessity for unification
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f the latter into a single viewpoint is the primary purpose of
his work. The remainder of the section, and the overall paper as
hole, will now serve the purpose of revealing the natural inter-

ace. In fact, by identifying former lessons, stressing shortcomings
f prevailing evaluation practices and bridging seemingly for-
otten connections, we develop a wholistic view that simplifies
he deluge of ongoing research questions into a single intuitive
ramework. To better understand why this is imperative for future
rogress, let us briefly recall the earlier mentioned predominant
valuation routines and link insights from prior works to their
urrent limitations.
If we look back at Fig. 2 and the corresponding section’s dis-

ussion, we recall that deep continual learning typically collapses
ts practical evaluation to measuring catastrophic forgetting be-
ween task increments. These task increments belong to simple
equentialized versions of existing benchmark datasets. A con-
inual learning technique is deemed successful if the model that
s trained over time approaches the expected performance when
rained in isolation. In almost complete analogy, active learning
valuation revolves around accuracy gains between query steps.
n the majority of the aforementioned related works, the focus is
xclusively on whether a specific query mechanism surpasses an-
ther in terms of quickly approaching the overall error achieved
n a complete dataset. For empirical benchmarking purposes, the
odel is simply trained in isolation on multiple selected sub-
ets of known data, where the difference between these subsets
orresponds to the inclusion of one active query.
Before we continue with the limitations of such evaluation

rotocols, we emphasize that our intention at no point in this
aper is to discredit and devalue the bulk of previously pro-
osed methods. However, we would argue that made advances
f individual methods can be significantly improved beyond their
resent constrained benchmark evaluation towards progress on
larger machine learning scale. We believe a major contributing

actor in this next step is to revisit key insights from past, often
eural network unrelated, literature, that have surprisingly gone
nnoticed or have been written off in the era of deep learning. To
ttach a slightly provocative connotation, we have termed these
verlooked insights forgotten lessons. Although the term ‘‘forgot-
en’’ certainly is an exaggeration with regard to the ML field as a
hole, the absence of derived practical implications is strongly
anifested in deep continual learning evaluation schemes.

.4.1. Forgotten lessons from past literature

orgotten lesson 1: Machine learning models are by definition
rained in a closed world, but real-world deployment is not sim-
larly confined. Discriminative neural networks yield overconfident
redictions on any sample.
Independently of whether additional metrics such as training

peed-ups through representation transfer, computational cost
r memory consumption are taken into account, currently con-
idered experimentation features closed world train and test
ets. This is occasionally amplified by continual learning works
ssuming the presence of a task oracle for testing or respectively
he assumption of an infallible oracle to yield flawless data when
abeling active learning queries. As such, open issues concerning
ontinual training of a model or active learning queries in an
pen world are generally neglected. However, real-world deploy-
ent almost always inhabits an open world. In the extreme case,

he model has to handle data from completely unknown type
n previously unfamiliar conditions, think outdoor environments
r uncontrolled arbitrary user inputs in web-based applications.
nstead of the common overconfident misprediction that falsely
ttributes this data to any known concept, any machine learning
odel should at least be equipped with the ability to identify
nencountered scenarios and warn the practitioner. As a much
319
milder, but heavily realistic form of an open world, even com-
monly occurring corruptions are frequently disregarded, think
blur or camera noise in images. The menace of the latter has
recently been demonstrated in deep learning by Hendrycks and
Dietterich (2019). The authors empirically demonstrate that cur-
rent deep neural networks not only exhibit severe instability with
respect to various simple perturbations, but advances in neural
network architectures are reflected in only diminutive changes in
robustness. Whereas certainly this hazard is universal to all ma-
chine learning research that is deployed in practice, continual and
active learning are particularly prone to the threat of corrupted
and unknown data as their goal is to accumulate knowledge from
previously unseen sources already in the training process.

Forgotten lesson 2: Uncertainty is not predictive of the open set. Ac-
tive learning resides in an open world and common heuristics based
query mechanism are susceptible to meaningless or uninformative
outliers.

Although early works have rapidly identified the fallacy that
uncertainty sampling is a meaningful strategy to query (Roy &
McCallum, 2001; Settles & Craven, 2008) in active learning or
respectively detect unknown unknowns (Atlas et al., 1990; Matan
et al., 1990), the belief that uncertainty provides a generic solu-
tion seems to have resurged with the advances of deep learning.
This is apparent from the many approaches in our previous lit-
erature review basing querying strategies or detection of unseen
examples on heuristics that rely on output variability or similar
entropic quantities, see the branches labeled with uncertainty
and predictive anomalies in our literature review diagram 4.
Indeed, the challenge of accurate uncertainty quantification in
deep learning is already genuinely difficult and does provide
advantages in contrast to less principled empirical threshold-
ing. However, paying homage to the detailed argumentation of
the recent review by Boult et al. (2019), any machine learning
model is still trained in a closed world scenario, independently of
whether e.g. a Bayesian formalism is employed to obtain uncer-
tainties. Predictions are known to be overconfident, uncertainty
is not calibrated for points outside of the training distribution
and the posterior is often unusable, regardless of how well it is
approximated.

In other words, given any parametrized model and its latent
variables, we do not know if evaluating the posterior (approx-
imation) will produce something meaningful for an unknown
unseen data input. This issue is by no means exclusive to de-
tecting unknown unknown examples, but comes with the same
implications for realistic active learning scenarios. Take for ex-
ample a more realistic set-up beyond a crafted benchmark where
data is scarce and the investigated domain is demanding even
for experts. The earlier reviewed VAAL has considered such a
scenario with medical imaging, where correct oracle labeling and
a noiseless image cannot always be expected. Sample selection
based on uncertainty does not protect the query from such noise
and there is a large chance that meaningless outliers are included
into the system.

Forgotten lesson 3: Confidence or uncertainty calibration, as well
as explicit optimization of negative examples can never be sufficient
to recognize the limitless amount of unknown unknowns.

At a first look, one might believe that impressive successes
where demonstrated with approaches that extend the basic idea
of ‘‘inference with the universum’’ (Weston et al., 2006). Explicitly
using prior knowledge in terms of expectations on what form of
inputs can be anticipated, or respective inclusion of negative data
that is believed to play a role in deployment, are popularly exhib-
ited by works that have identified and attempt to address the first
two lessons. The common presumption across all these works is
the upfront presence of a larger, possibly unlabeled, dataset that
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an explicitly be included into the optimization process. Just as
upposed out-of-distribution examples are made use of to modify
oss functions and calibrate the output for detection of unknown
nknowns (Bell et al., 2015; Dhamija et al., 2018; Feng et al.,
019; Lee et al., 2018b; Yu & Aizawa, 2019), active learning tech-
iques often resort to conditioning their procedure on the entire
ata pool (Li & Guo, 2013; Nguyen & Smeulders, 2004; Sener &
avarese, 2018; Shui et al., 2020; Sinha et al., 2019), e.g. through
lustering (Nguyen & Smeulders, 2004; Sener & Savarese, 2018)
r fitting a generative model to the unseen data (Li & Guo, 2013;
hui et al., 2020). Unfortunately, this impedes evaluation beyond
constrained closed set benchmark and more realistic continual
nd active learning scenarios where data becomes available at
ifferent times cannot be considered. In a sense the problem
eems to be addressed from a reverse perspective. Instead of
cquiring explicit knowledge about the nature of the trained
ata distribution, the challenge is sidestepped by reformulating
t as an optimization problem that attempts to find the boundary
etween known and an existing set of unseen data, which by
efinition then does not consist of unknown unknowns. Thus, we
eceive no guarantees, as the pool of unlabeled data at any point
n time is limited and can never truly approximate the unknown
pace.
The obvious argument is now that it is impossible to include

ll forms of variations and exceptions upfront, else we could
ave just modeled and hand-crafted the entire system from the
tart instead of falling back on purely data driven approaches.
s a second additional argument, previous works have also as-
erted that the particular form of representations of discrimi-
ative deep neural networks can further confound predictions.
he early work of French (1992) has already pointed out that
major complication of continually training neural networks is

heir distributed representations. It has subsequently investigated
echanism to obtain semi-distributed representations with sharp
ctivations that are concept specific. We argue that with the
nset of deep learning the challenge of distributed representa-
ions is further magnified due to distribution across the layer
ierarchy. First, consider as an example a neural network that is
rained to discriminate cars from aeroplanes. Such a scenario is
ften assumed when incrementally training the popular CIFAR10
ataset (Krizhevsky, 2009). As the neural network is not explicitly
ncouraged to encode information about the data distribution,
he obstacle of predicting overconfidently on unseen data is fur-
her magnified by the ubiquitous option for any classifier to
ifferentiate a concept based on a combination of noise pat-
erns, the absence of a specific pattern, or background patterns
ltogether (Xiao, Engstrom, Ilyas, & Madry, 2020). In the car
ersus aeroplane scenario, depending on how well and diverse
he dataset is constructed, this could be as trivial as distinguishing
he two classes by identifying the presence of some feature that
escribes the sky. As neural networks have been demonstrated
o rely heavily on texture rather than object boundaries (Geirhos
t al., 2019), this is not far fetched. In fact, a prominent recent
ork on ‘‘Unmasking Clever Hans’’ predictors (Lapuschkin et al.,
019) has shown that the decision making of a discriminative
eep neural network can be based on entirely trivial features,
uch as a certain object always occurring at a specific location
n every image or almost imperceivable photography tags. ‘‘Ad-
ersarial examples are not bugs they are features’’ (Ilyas et al.,
019) takes this one step further and empirically showcases how
lasses can be distinguishable solely based on noise patterns. In a
rivial case of our above car versus aeroplane example, presenting
he trained model with images of ships that feature the similarly
lue background of the sea is then not surprisingly resulting in
verconfident misclassification. Using ships as a background class

ould initially solve this problem of attributing blue to aeroplanes.
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However, if a significant portion of our learned features were
indeed to be composed of noise, background and adversarial
patterns, then we would argue that overconfident mispredictions
are impossible to overcome, as the extent of data on which these
features activate is inconceivable to any human modeler. This
makes the approach to handle outlying and unknown unknown
data through prior knowledge even less feasible.

Forgotten lesson 4: Data and task ordering are essential. Although
this forms the quintessence of active learning it is yet untended to in
continual learning.

It is well known that each dataset instance does not contribute
equally to the overall objective. This forms the foundation and
rationale behind active learning. In general, when conducting
active learning queries, there is a trade-off between exploring
the unknown space and exploiting more of the already known
to avoid misclassification (Joshi et al., 2009). Alas, the implica-
tions of the latter statement are more nuanced and go beyond
the simple question of whether a certain subset spans the en-
tire data distribution. As an example, Joshi et al. (2009) found
certain active learning strategies to benefit primarily from cre-
ating a class imbalance, as more difficult classes might require a
denser sampling than others. Bengio et al. (2009) have similarly
found that sorting data in a curriculum that introduces classes
into the training process according to their difficulty improves
the obtained accuracy. Recently, Hacohen, Choshen, and Wein-
shall (2020) have empirically observed that deep neural networks
seem to build such a curriculum inherently during the training
process. Consistently across multiple architectures, they always
learn the same examples first when given access to the entire
dataset, even though the mini-batch stochastic gradient descent
shuffles the data differently every time. Pliushch, Mundt, Lupp,
and Ramesh (2022) have subsequently observed that this phe-
nomenon can be correlated to increase/decrease in various image
measures and statistics. This notion of learning according to some
measure of complexity seems intuitive, as describing some inputs
necessitates less nuanced patterns than others.

Even though there is significant empirical evidence that data
selection and task order plays a vital role for any learned al-
gorithm, modern deep continual learning seems to pay little
attention to a careful experimental design. Out of the numerous
works of the previous review, less than a handful of works con-
sider the question of task order at all. The rest remains in the
comfort of benchmark datasets, where the classes are split and in-
troduced in sequence for continual learning according to a class id
that often just reflects an alphabetic ordering. However, there is
no rigorous investigation of the effect of task order. Two out of the
four works that examine task order (Isele & Cosgun, 2018; Serra
et al., 2018) only randomize the order across multiple experimen-
tal repetitions to obtain an average performance estimate. The
other two (De Lange et al., 2021; Javed & Shafait, 2018) follow
this practice, but go even further and make the statement that
task ordering has minimal influence towards continual learning
methods. We will later demonstrate that this is obviously not the
case, and can simply be attributed to the experimentation being
a narrow trial of five randomly obtained orderings without any
attached semantics. When selecting tasks from the overall pool
of available data according to their similarity or dissimilarity with
the already observed data distribution, we will observe a major
divergence of obtained results.

Whether or not having access to all future tasks in order to
select an ideal order is unrealistic in real-world continual learning
scenarios, we believe task ordering to be an imperative factor
that should be considered when designing our benchmarks to
further our understanding. In particular, we note that a very
common practice to reduce the computational cost of incremen-

tally learning large scale datasets such as ImageNet (Russakovsky
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t al., 2015) is to extract subsets (De Lange et al., 2021; Park
t al., 2019; Rebuffi et al., 2017; Wu et al., 2019). The main
roblem here is that selecting e.g. 50 or a 100 from a larger
ool of 1000 classes heavily influences the achievable result and
sing random selection mechanisms can essentially render works
nreproducible.

.4.2. Open set recognition forms the natural interface between con-
inual and active learning

As indicated in the previous sections, contemporary continual
nd active learning are prone to an large amount of threats due
o their development and evaluation inhabiting a closed world.
n this section we argue that awareness of an open world is not
nly required to overcome the threat of designing a non-robust
ystem, but provide the natural means to merge techniques into
common perspective.

ifferent sides to the same question: First recall that a ma-
ority of continual learning techniques alleviates the challenge
f catastrophic inference by regularizing parameters for known
asks, rehearsing a subset of data from known tasks or respec-
ively generating it with a generative model. Independent of the
pecific algorithm, a key concern is thus to identify exemplars,
earn the generative factors of our known tasks or determine the
arameters that are responsible for the majority of previously
een data. At the core, we need to thus find a good approximation
f the known data distribution.
In active learning, also recall from our survey how the task

s very much alike, although the underlying question seems to
e of reversed nature. Instead of protecting or sampling from
he known data distribution, a query is conducted with respect
o yet unobserved distributions. In a similar distinction to the
ontinual learning mechanisms, query-acquiring active learning
ethods pick samples that are estimated to yield the best model

mprovement, whereas query-synthesizing methods attempt to
ackle this challenge through generative modeling by generating
hese most informative examples.

Interestingly, in open set recognition, the task is to precisely
auge the boundary between the seen known data distribution and
et unseen unknown data. The original motivation stems from
perspective of outlier detection and thus model robustness

n practical application in the presence of unknown unknowns.
owever, knowing this boundary also gives us the means to
estrict a continual learning technique to protect the already seen
nowns or respectively query active learning examples that are
ufficiently statistically different without the fear of selecting
ninformative noise. We thus propose that open set recognition
orms a natural general interface between active and continual
earning.

unified framework based on meta-recognition through EVT:
ut of the previously reviewed works, we posit that works that
mploy EVT based meta-recognition to identify unknown un-
nowns are one particularly suitable example to build a unified
ramework for our wholistic view. We schematically illustrate
his proposed framework in Fig. 7. We will delve into conceivable
athematical details and a potential realization in deep neural
etworks in the next section, where we also further corroborate
ur view with empirical findings. For now, consider a generic
mbedding as a result of some deep neural network encoding.
n the figure’s leftmost panel, we have visualized an example
mbedding for three classes, with their mean indicated by a
tar and a potential decision boundary by dashed lines. In order
o confine predictions to the known space, EVT based meta-
ecognition makes use of data instances with extreme distance
alues to the average embedding of a class. Typically, a Weibull
istribution is used to model the distance distribution for the
321
entire dataset and capture samples that feature stronger devia-
tion in a heavy tail. In the original works that have proposed this
model for open set recognition (Bendale & Boult, 2015; Scheirer
et al., 2014, 2013), the cumulative distribution function is then
used to estimate whether a new unseen example should be
regarded as an unknown unknown, outlying data point. In our
own previous work (Mundt et al., 2022), we have identified this
technique to also be fundamental in judging whether a randomly
sampled latent vector is proximate enough to the observed data
such that it results in a clear output of a generated model.

We now close the circle and tie this method to retention of
a core set for continual learning, as well as a query mechanism
for active learning, while retaining the method’s innate ability to
reject and set aside unknown unknowns.

1. First, we postulate that the Weibull distribution for each
data point’s distance to the mean embedding equips us
with a tool to approximate the known distribution with a
subset. Specifically, we can employ inverse sampling from
the Weibull probability density function to create a set of
distance values with an arbitrary prior on how much of
the distribution’s tail should be disregarded, i.e. how many
outliers are already assumed to be inherently present in
the original dataset. Practically, we can then approximate
the data distribution with a subset by selecting data in-
stances whose embedded value lies closest to the drawn
sample. Alternatively, as indicated in the diagram, we could
discretize the distribution and sample a certain number of
examples from each bin.

2. Conversely, for active learning, we are less interested in
sampling from the known distribution, but much more in
the heavy tail. To our advantage, the long tail models data
that is statistically deviating, but can still be attributed to
the distribution of interest. We can thus balance exploita-
tion with exploration. First and foremost, data instances
for which the outlier probability is unity are avoided alto-
gether in order to prevent sampling of uninformative noise
or other corrupted data. Recall, that this is the primary
pitfall of uncertainty sampling. At the same time, we want
to avoid samples that have a minute probability of being
an outlier, as these samples are too similar to previously
observed data and are therefore also uninformative due
to redundancy. As such, we can constrain our query to
the center area of the cumulative distribution function
(CDF), illustrated by the shaded area under the CDF in the
diagram. The rationale for this approach can intuitively be
understood by looking back at the theoretically grounded
works on version spaces. We can implicitly reduce the
space of possible hypotheses, even in complex models such
as neural networks, as we incrementally expand the radius
of the ball that encloses the closed space by sampling care-
fully along its boundary with each active learning query.
This way, we avoid the vast open space and the redundant
highly dense areas of known data, while making sure that
previously unseen information is acquired.

3. Lastly, as already hinted at in the previous second point,
we obtain a robust model, where data instances for which
the outlier probability is very high, i.e. close to unity, can
not only be discarded to favor a trade-off in exploration
versus exploitation in active learning, but also simply to
flag instances where predictions should not be trusted if
the model is outside of a training phase.

In the next section, we will further contextualize this wholistic
view on the basis of a unified framework realization in neural
networks at the hand of empirical examples. Before we proceed,
we note that there are two works that have previously initiated
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Fig. 7. Conceptual diagram to illustrate how extreme value theory based meta-recognition in neural networks can serve as a common denominator to protect
knowledge in continual learning, conduct principled queries in active data selection, while having the capability to reject or set aside unknown unknown data at
any point in time. The leftmost figure of an embedding showcases the threat of the open space, where any examples that are very far away from known clusters
always get falsely assigned to a known class and can be arbitrarily close to the decision boundary. The mid panel shows how a Weibull distribution, which models
the extreme distance values to the mean of the correctly predicted trained data in a heavy tail, can enclose the known space (suggested by the red circles in the
embedding). The corresponding cumulative distribution function in the right panel can be used to reject or set aside outliers and balance active learning queries to
sample diverse, yet meaningful data (shaded red area). Alternatively either curves can be sampled inversely to select a subset of inlying data to approximate the
entire known distribution in continual learning rehearsal (shaded blue area).
a bridge between active learning and open set recognition, alas
have not fully built it yet. The recently introduced open world
learning (Bendale & Boult, 2016) and the concurrently named
cumulative learning (Fei, Wang, & Liu, 2016) advance the pure
open set identification step by proposing to set aside the un-
known unknowns and including them into a later active learning
cycle. Whereas these works made first steps towards formulating
learning in an open world, they however assume the presence of
labels for the entire dataset and the addition of classes itself is
in the form of a fixed sequence that is injected by the human.
The system is limited as it does not self-select which classes or
instances should be learned next, nor does it protect its knowl-
edge for continual learning, where the assumption of availability
of all data at all times is lifted. As a result, the empirical evaluation
is simply an investigation of the performance on the entire test
set at each state of the growing known training set. Finally, the
suggested open world learning (Bendale & Boult, 2016) is based
on nearest mean classifiers based on simple SIFT features and
is yet to be extended to the context of modern deep neural
networks.

4. Highlighting natural synergies with empirical evidence

In order to support our critical survey and make its derived
roposition for a unified view practically tangible, we now high-
ight the emerged natural synergies with empirical evidence. For
his purpose, we conduct four sets of quantitative experiments,
hich follow our previous narrative and relate to the formu-

ated forgotten lessons. Each experiment will be summarized and
iscussed in a respective subsection in detail. Crucially, we em-
hasize that they all share the common denominator of making
se of the same unified neural network framework. Although
ndividual improvements over some related works will be shown,
he key novelty thus lies in making use of the same mechanisms
cross all applications, which is untypical in respective related
orks and previous reviews. More specifically, we showcase:

1. Continual exemplar selection: we start with a quantitative
comparison of exemplar selection mechanisms to prevent
catastrophic forgetting in continual learning. Here, we will
first show that the proposed common EVT based foun-
dation surpasses several conventionally employed tech-
niques.
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2. Active queries: in similar spirit, we show the complemen-
tary perspective by investigating querying strategies in
active learning. Again, we will show that the proposed
common EVT based foundation surpasses typical approac-
hes.

3. Corruption robustness: we then proceed to further highlight
the method’s superiority in the open world. In contrast
to most methods that are developed with a unidirectional
focus on improving a specific active learning or continual
learning benchmark, our framework has the critical advan-
tage of not breaking down in the presence of corruptions
that commonly occur in practical application in the wild.

4. Task ordering & learning curricula: to conclude the experi-
ments, we investigate the role of task order and the effect
of a curriculum for evaluation. We show that a task cur-
riculum constructed through our framework consistently
results in considerable improvements.

The corresponding detailed set-up and quantitative evaluation
is provided in Section 4.2. Before diving into this discussion in
detail, Section 4.1 first introduces one conceivable proposition
for a unified framework on the basis of deep generative models
and variational inference. Although this specific framework surely
contains parts that are novel to a certain degree, we wish to
emphasize that our aim is not to promote this particular neural
network realization or advocate it as a unique solution to the
developed view. In contrast, the mathematical tools and neural
network variant shall serve as a teaching example, valued primar-
ily for its interpretability in illustrating the potential of embracing
a wholistic view grounded in a common mechanism. For this
purpose, some approximations will be made and pointed out,
to draw attention to relevant factors and promote the reader’s
comprehension. As such, illustrated performances are one im-
portant factor to take into consideration, but the primary goal
of the experimental section is not to develop a novel state-of-
the-art technique. Instead, the focus is on developing practical
intuition and providing empirical evidence to encourage adoption
of a wholistic view beyond prior constrained evaluation in future
research.

4.1. One way to unite perspectives with deep generative neural
networks

How can we realize our proposed unified framework in a
meaningful way in deep neural networks? As emphasized by
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Fig. 8. Architecture diagram for our particular VAE based practical neural network framework realization. Here, the solid outlined boxes represent a traditional
AE model, whereas the dashed boxes and lines correspond to the auxiliary EVT based components. The color coding of the diagram is picked to resemble our
revious Fig. 7, which focuses on the details behind the intuition of the dashed components. Similar to this earlier figure, we can again see how EVT serves as a
ommon denominator to protect knowledge in continual learning, conduct principled queries in active data selection, while having the capability to reject or set
side unknown unknown data at any point in time. Respectively, the blue color denotes meaningful choice of exemplars, the green color represents outlier free
enerative replay (not shown in Fig. 7), whereas the red and gray colors represent the choice to query or altogether reject data.
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rior work (Mundt et al., 2019; Yoshihashi et al., 2019), identi-
ication and correlation of unseen data with average activation
atterns of known data is not necessarily sufficient in discrimina-
ive models. This holds even when extreme values are modeled
o obtain closed space boundaries, see prior works (Mundt et al.,
022, 2019) for empirical verification. It is because a neural
etwork based classifier is generally not encouraged to aggregate
he whole information describing the data, merely the features
hat allow for class distinction. These features themselves, come
ith a variety of further pitfalls, as summarized in the forgotten

essons. In our own previous work (Mundt et al., 2022, 2019), we
ave overcome this limitation by formulating the problem from
perspective of deep generative models trained with variational
ayesian inference, i.e. variational autoencoders (VAE) (Kingma &
elling, 2013). We will lean on this viewpoint, follow the nota-

ion of prior works and extend it towards one potential solution
o consolidate continual and active learning through open set
ecognition. To provide the visual intuition behind our practical
ramework realization, in addition to the earlier generic Fig. 7, we
rovide an architecture sketch in Fig. 8.
The rationale to build upon VAEs is rather straightforward:

he Bayesian formulation lets us learn about the distribution of
een data p(x) by capturing it through latent variables z. However,
s p(x) =

∫
p(x, z)dz is intractable, we do this by optimizing a

ower-bound to the marginal distribution p(x), since the densities
f the marginal and joint distribution are related through Bayes
ule p(z|x) =

p(x,z)
p(x) . As we do not know our real posterior p(z|x),

e typically resort to variational inference and introduce a varia-
ional approximation q(z|x) to the posterior. In a neural network,
his approximation q(z|x) is learned through the parameters of a
robabilistic (blackbox) encoder, whereas a probabilistic decoder
s trained for the joint distribution p(x, z) = p(x|z)p(z) and
hus forms the generative component. This generative model can
ffortlessly be augmented to additionally discriminate classes by
ncluding their label into the latent variable, e.g. by enforcing a
inear class separation on z . The corresponding factorization and
enerative process is then p(x, y, z) = p(x|z)p(y|z)p(z) (Mundt
t al., 2022, 2019). Such formulation of a classifying variational
utoencoder comes with the main advantage that using latent
ariables z allows us to base our decision regarding unknown
nknowns on the underlying generative factors of variation. We
an determine whether an example is close to the high density
egions of our approximated data distribution.
323
4.1.1. The boundary between known and unknown
The first step towards open world aware active and continual

learning is to train the above mentioned classifying variational
autoencoder, followed by determining the boundary between the
open and closed spaces for the observed distribution with the
help of EVT. For ease of readability, we repeat the training and
fitting procedure described in our previous work (Mundt et al.,
2022, 2019). The model’s probabilistic encoder and decoder are
trained jointly by minimizing the divergence between the vari-
ational approximation qθ(z|x) and a chosen prior p(z), typically

∼ (0, I), and the conjunction of reconstruction loss and
he linear classification objective, parametrized through φ and ξ
espectively. For a dataset consisting of n = 1, . . . ,N elements,
he following lower bound to the joint distribution p(x, y) is thus
ptimized:(
x(n), y(n)

; θ, φ, ξ
)

= −βKL(qθ(z|x(n)) ∥ p(z))
+ Eqθ (z|x(n))

[
log pφ(x(n)|z) + log pξ(y(n)|z)

] (1)

Here, Eqθ (z|x) is generally estimated via Monte-Carlo sampling.
t any point in time of training this model, there is a natural
iscrepancy between the prior and the approximate posterior.
he added β factor in above equation serves the purpose of
ontrolling this gap, with a β > 0 typically determined through
ross-validation. Whereas one could believe this distributional
ismatch to be an undesired property, we recall the arguments
onjectured in multiple previous works (Burgess et al., 2017;
offman & Johnson, 2016; Mathieu, Rainforth, Siddharth, & Teh,
019). In essence, they state that the overlap of the encoding
eeds to be reduced in order to avoid indistinguishability, but
t the same time prevent latent variables to consist of individual
ncorrelated data points that resemble a pure look-up table. In
he intuitive picture of diagram 7, think of the former as multiple
lasses collapsing and thus being inseparable. Think of the latter
s the dense clusters being scattered to allow differentiation of
ach and every single data point without a strong encoding of
orrelations. Therefore, the actually captured encoding of the
ata distribution should not simply be assumed to correspond to
he prior, but rather corresponds to an empirically determinable
istribution referred to as the aggregate posterior:

θ(z) = Ep(x) [qθ(z|x)] ≈
1
N

N∑
qθ(z|x(n)) (2)
n=1
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sing EVT to find the boundaries of this distribution now cor-
esponds to identification of our model’s closed space. For em-
hasis, we repeat that this is necessary because VAEs generally
ssign non-zero density to any point in the latent space, the
nalogue of overconfident classifier predictions (Nalisnick et al.,
019; Ovadia et al., 2019). The boundary is not analogous to the
xtent of the prior because low density areas exist inside the
rior as well. Practically, an EVT based fit can be obtained by
mpirically accumulating the mean latent variable for each class
for all correctly predicted known data points m = 1, . . . ,M:

z̄c =
1

|Mc |

∑
m∈M

Eqθ (z|x(m)) [z] (3)

and defining a respective set of latent distances as:

∆c ≡

{
fd

(
z̄c,Eqθ (z|x

(m)
t ) [z]

)}
m∈Mc

(4)

Here, fd represents a chosen distance function, which prior works
have typically chosen to be either euclidean or cosine distance
(Bendale & Boult, 2015; Mundt et al., 2022; Scheirer et al., 2014,
2013). As this set represents the distances to the class conditional
aggregate posterior, we can fit a Weibull distribution with param-
eters ρc = (τc, κc, λc) on ∆c to model the trustworthy regions of
high density that represent the observed data distribution, where
the heavy-tail indicates a decaying reliability:

ωρ(z) =
κ

λ

(
|fd (z̄, z) − τ|

λ

)κ−1

exp
(

−
|fd (z̄, z) − τ|

λ

)κ

(5)

Here, τ defines the location, λ the scale and κ the shape of the
distribution. We can nowmake use of this distribution to pinpoint
the observed data distribution, as a surrogate to the otherwise
highly complex aggregate posterior. We proceed to highlight its
various use cases in the following sections, which will in turn be
used in the respective four experiments.

4.1.2. Approximate posterior based open set recognition
As described in previous works (Mundt et al., 2022, 2019), the

most direct use of the aggregate posterior based Weibull parame-
ters ρ is the identification, rejection or storage of unknown data.
Using the corresponding cumulative distribution function (CDF)
to the probability density function of Eq. (5), we can now estimate
any data instance’s statistical outlier probability for every known
class:

Ωρc (z) = 1 − exp
(

−
|fd (z̄c, z) − τc |

λc

)κc

(6)

hen we have observed multiple classes, we will typically take
he minimum min (Ωρ) of this equation across all known classes
and the respective mode’s parameters ρc . This expresses the
asic condition that a data point should be considered as a sta-
istical anomaly only if its outlier probability is large for each
nown class. A respective decision should thus be based on the
lass where the smallest deviation to known data is observed.
he more dissimilar a sample is with respect to the observed
ata distribution as approximated by the aggregate posterior, the
ore the outlier probability will approach unity. Irrespective of
hether a machine learning algorithm is developed for active

earning, continual learning or in fact any other paradigm, this
obustness towards unknown unknown data is essential for any
ractically deployed system that operates outside of extremely
arrow conditions.
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4.1.3. Outlier and redundancy aware active queries
Eq. (6) gives us the direct means to estimate a sample’s sim-

ilarity with the already known data. For active learning this
almost directly translates to the informativeness of a query. Small
CDF values signify large similarity or overlap with already exist-
ing representations, larger values indicate previously unobserved
data. Naively, one would follow the earlier strategies developed in
uncertainty based active learning and simply query batches that
consist of the most outlying data points. However, this would
neither grant protection from exploring noisy, perturbed and
uninformative data, nor balance it with exploitation to foster
partially known concepts. Our proposition is thus to query a
variety of data that is well distributed across the center part of
the CDF. For instance, we could chose data that surpasses an
outlier probability of e.g. 0.5 and at the same time is limited on
the upper end by e.g. a value of 0.95 (Note that these values
present an assumption that is not fixed and simply present a
teaching example). As explained in the earlier introduction of the
framework, this is tantamount to sampling on the outer edge of
the sphere that encloses the currently known closed space.

4.1.4. Core set selection for continual learning rehearsal
In contrast to active queries that need to select meaningful

unknown data, in the currently formulated continual learning
paradigm the main goal is to protect the known knowledge while
learning a predetermined new task. We will investigate the role
of the order prearrangement in the next subsection. Here, we
focus on open world aware techniques to preserve previously
acquired representations. Depending on available memory, the
most successful approaches either store and rehearse a small
subset of exemplars or alternatively generate data for former
tasks with a generative model. In our previous work (Mundt et al.,
2022) we have shown how we can use Eq. (6) to reject samples
from the prior z ∼ p(z) that do not fall into the obtained bounds
of the aggregate posterior for generative rehearsal. The choice
for this sampling with rejection originated from the decision to
employ the cosine distance, which collapses the distance to a
scalar. A different distance function, such as a euclidean distance
per dimension would allow to directly inversely sample a highly
multi-modal Weibull distribution, i.e. with one mode per dimen-
sion per class. We will stick to the easier cosine distance case,
both in order to remain at a level of intuitive understanding
and because it seems to suffice empirically. Independently of the
selected distance metric, we can leverage inverse sampling for
the construction of a small data subset. Specifically, drawing at
uniform from the inverse of the CDF in Eq. (6) yields samples that
approximate the aggregate posterior:

fd(z̄, z) = Ω−1(p|τ, λ, κ) = λ
(
− log (1 − p)

1
κ

)
− τ (7)

The core set can now simply be obtained by picking the data
points that are closest to the obtained distance values, if the cho-
sen distance metric collapses the distance to a scalar, or directly
to the latent vector, if the chosen distance metric preserves the
dimensionality. Note that we have chosen to inversely sample the
CDF of Eq. (6) in favor of a more compact equation. It should how-
ever be clear that Eq. (5) can alternately be sampled equivalently.
The advantage of such a core set selection procedure is that we
always attempt to approximate the underlying distribution. The
quality is defined by the desired amount of exemplars, while ex-
cluding statistical anomalies by limiting outlier probability values
to e.g. p < 0.95. As anticipated, the latter plays the additional
crucial role of robust application when the system has finished
learning and is deployed.
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.1.5. Class incremental curricula and task order
Continual learning methods are mostly evaluated in the con-

ext of class incremental learning. The classes of a benchmark
ataset are typically split into disjoint sets and introduced to
he learner in alphabetical or class index sequence. Due to the
arge computational effort of training neural networks to conver-
ence on long task sequences, several works choose to evaluate
n subsets of classes (De Lange et al., 2021; Park et al., 2019;
ebuffi et al., 2017; Wu et al., 2019). An important remaining
uestion is thus how such evaluation affects comparability and
eproducibility, or more generally the role of task order and
urricula. As mentioned earlier, selecting a meaningful ordering
s in most cases non-trivial. Large-scale dataset such as ImageNet
re often composed by scraping data from the internet, social
edia or through uncontrolled acquisition that prioritizes as large
s possible datasets. We as humans thus lack the knowledge
o build an intuitive learning curriculum when paired with our
ack of understanding of deep neural network representations.
onsequently, scarcely any works have attempted to address
his challenge beyond a simple randomization of the class order.
ortunately, we can provide at least a partial remedy to the seem-
ngly arbitrary class incremental evaluation setting. Although we
o not have access to explicit data distributions for any task,
q. (6) allows us to assess the similarity of new tasks with the
ggregate posterior for known tasks. In the spirit of our earlier
ormulated active learning query, we can start with any task t and
roceed to select future tasks t ∈ T that feature the least overlap

with already encountered tasks (or most overlap, depending on
what is desired):

tnext = argmax
t∈T

{
Ept (x)Ωρ

(
Eqθ (z|x) [z]

)}
(8)

To provide an example, if our objective was to incrementally
expand a system to recognize individual animal species, one as-
sumption could be to accelerate training by always including the
species that is most similar to what has already been learned, as
this could be hypothesized to require only small representational
updates. An alternative objective could be to design a system that
expands its knowledge in an attempt to cover and generalize to
an as large as possible variety of concepts. In this scenario, one
could choose to always include the next task with the smallest
amount of overlap with existing tasks to maximize diversity in
learning.

Note that these scenarios present two extremes, that are again
chosen because they will provide a good teaching foundation
in the context of this paper’s message. In principle, one could
opt to create more complex task ordering measures beyond the
max or min overlap around Eq. (8). We could now also delve
into a philosophical debate on when it is reasonable to assume
access to future tasks in continual learning to undergo above
selection, and when the task sequence is unavoidably dictated
by other external factors. We deliberately keep such a discussion
short and only emphasize the following aspects. There exist both
scenarios in which curricula and task order can realistically be
chosen in continual learning settings. An intuitive example of
this would perhaps be school like learning environments, where
we can flexibly decide what to learn next while retaining prior
knowledge. An alternative example could be a robot exploring
and learning about an unknown environment, think of a different
planet. On the reverse side, some settings will impose the order in
which data arrives onto us, such as typically encountered in many
real world data streams. Independently of these differences in the
ability to alter data curricula and task order, we wish to highlight
the large effect on performance when task curricula are chosen
by above mechanism in the following empirical investigation.

At best, such analysis is relevant for two important elements of
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learning: 1. the option to decide to set a task aside and learn it at a
later point in time, if the curriculum is permitted to be controlled.
2. The effect of task and curriculum choice when considering
pre-trained models. At the very least, we hope that our efforts
will invoke a more careful and consistent evaluation on existing
benchmarks, instead of picking arbitrary data subsets, selecting
different random class orders and nevertheless attempting to
compare results across methods.

4.2. Empirical evidence

We base our experiments on the MNIST (LeCun et al., 1998),
CIFAR10 and CIFAR100 datasets (Krizhevsky, 2009). Although
these datasets could be regarded as fairly simple, they are ad-
vocated as the predominant benchmarks in all of the presented
continual learning works and still present a significant challenge
in this context. They are further sufficient to point out major
differences between methods, particularly with respect to robust-
ness, showcasing a disconnect with real application and realistic
evaluation. For this very reason, we employ them as ‘‘teaching
examples’’ (similar to our aforementioned framework), despite
being the subject of our own initial critique earlier. We take this
conscious decision in favor of the reader being able to directly
relate to our experiments and understand the importance of
the developed synergies in the different set-ups. A discussion
on very recent developments concerning efforts towards dataset
creation for continual learning can be found at the end of our
paper. We use a 14 layer wide residual network (WRN) (He,
Zhang, Ren, & Sun, 2016; Zagoruyko & Komodakis, 2016) encoder
and decoder with a widening factor of 10, rectified linear unit
activations, weight initialization according to He, Zhang, Ren,
and Sun (2015) and batch normalization (Ioffe & Szegedy, 2015)
with ϵ = 10−5 at every layer, to reflect popular state-of-the-
art practice. To avoid finding elaborate learning rate schedules or
resorting to other excessive hyper-parameter tuning, we use the
Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.001
and a sufficiently high-dimensional latent space of size 60 for all
training. We use this common setting to corroborate our wholistic
view and describe further details for specific experiments in the
consecutive subsections on: exemplars, active queries, corruption
robustness, and task ordering.

4.2.1. Exemplar selection and core set extraction
Before we dive into a quantitative comparison of methods

that aim to alleviate catastrophic forgetting through the selection
and maintenance of a core set, we need to address a potential
evaluation obstacle with respect to the nuances of how a core set
is used for continual training.

Interleaving a core set in training: In continual learning works,
the typical evaluation relies on monitoring the decay of a metric
over time when training is conducted on new tasks and old tasks
are retained by continued training on a few select exemplars.
However, there seemingly is no common protocol of how these
exemplars are interleaved. Apart from obvious factors such as the
amount of chosen exemplars, works such as variational continual
learning (Nguyen et al., 2018) use the exemplars only at the
end of each task’s training cycle to fine-tune and recover old
tasks. Most other works (Isele & Cosgun, 2018; Rebuffi et al.,
2017; Wu et al., 2019) simply concatenate exemplars with newly
arriving data. Ultimately, the different works make use of dif-
ferent methods for exemplar selection and attempt to compare
their effectiveness through the final metric, even though they are
generally not trivially comparable due to their distinct choices of

the training procedure.
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Fig. 9. Influence of mini-batch sampling in continual learning with core sets on
MNIST and CIFAR10. The green squared line represents unbalanced sampling, the
naive practice of sampling mini-batches uniformly from the concatenated pool
of the new task’s data and the retained core set. The purple dotted line weights
the sampling to oversample the much smaller core set to balance the mini-batch
equally. The latter is further corrected with respect to classes in the pink starred
line, where the sampling is adjusted to draw mini-batches that are comprised of
the same amount of instances per class independently of their origin. We have
repeated the experiments five times, illustrated by the shaded regions ranging
from the minimum to the maximum obtained values. We can observe that such
training details result in very significant performance differences beyond the
statistical deviations of a specific core set selection strategy. This imposes an
additional challenge in the evaluation of core sets for continual learning. Core
sets have been selected with the proposed EVT based method and consist of
240 and 300 exemplars per class for MNIST and CIFAR10 respectively.

To highlight this argument we have trained the typical split
MNIST and CIFAR10 scenarios, where classes are introduced se-
quentially in pairs of two and only the new task’s data is available
to an incrementally growing (single head) classifier. The old task
is approximated through a core set of size 2400 and 3000 re-
spectively. That is, we pick 240 and 300 exemplars per class that
correspond to retention of 4% and 6% of the original data. We
train the model for 150 epochs per task to assure convergence
and interleave exemplars selected by our proposed EVT approach
in three different manners:

• We conduct the predominant naive concatenation of the
core set with the new task’s data and continue training with
mini-batch gradient descent that samples data uniformly
(unbalanced mini-batch sampling).

• We recognize that the former combination and sampling
leads to a heavy imbalance as the core set size is generally
much smaller than the new task’s available data. We naively
correct this through weighted sampling that samples a mini-
batch such that it consists in equal portions of former tasks’
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exemplars and new task’s data. This generally oversamples
the exemplars (balanced mini-batch sampling).

• We identify that the latter weighted balanced sampling al-
ways results in an equal amount of exemplars and new data
in a mini-batch. This is independent of the number of classes
that the core set or the new task increment are comprised of.
To correct for the number of classes, we further investigate
class balanced sampling. Here, each mini-batch is sampled
such that each class is equally represented. To give an exam-
ple, if we have seen two tasks of two classes and proceed to
learn the next task, the core set with its four classes will be
oversampled to constitute two thirds of a mini-batch. The
remaining third is made up of the two classes of the third
task.

We show the obtained empirical continual learning accuracies
in Fig. 9. With gaps of over 5% it is evident that balancing mini-
batches is essential. More so, it is clear that a comparison of
different core set works, just because they have used a similar
core set size, can result in an apples to oranges comparison if
other aspects such as the detailed training procedure are not
taken into account.

Comparison of core set selection strategies: Based on the in-
sights of the last paragraph and our main focus on analysis of
core set selection strategies, we proceed to compare different
strategies in isolation from the precise continual learning training
scenario. In analogy to Bachem, Lucic, and Krause (2015) and the
‘‘reverse accuracy’’ evaluated in LLGAN (Zhai et al., 2019), we first
train the model on the entire dataset, then select core sets of dif-
ferent sizes, and finally retrain the model exclusively on the core
set to assess the approximation quality of our strategy. We repeat
this entire procedure five times to gauge statistical consistency
and estimate deviations. Without a doubt, methods that select a
core set that yields a better approximation of the overall popu-
lation and results in larger accuracies when trained in isolation,
also provide better means to alleviate catastrophic forgetting in
continual learning. We compare six different methods:

1. Random: select exemplars uniformly at random.
2. Greedy k-center: greedy k-center approximation (Gonza-

lez, 1985) for core set selection as used in Variational
Continual Learning (Nguyen et al., 2018). In essence, ex-
emplars get picked one by one to obtain a cover of the
distribution by maximizing their distance in latent space
to all existing data points in the core set.

3. Input k-means: k-means clustering with k being equal to
the number of exemplars. Raw data points get selected that
are closest to each obtained mean. Suggested as an alter-
native to greedy k-center in variational continual learn-
ing (Nguyen et al., 2018).

4. Latent k-means: analogous to above input based k-means,
but with the difference that the clustering is conducted on
the lower dimensional latent embedding.

5. Latent herding: an adaptation of the herding procedure,
used by Rebuffi et al. (2017) and Wu et al. (2019), to oper-
ate on the latent space instead of an arbitrary neural net-
work feature space. Herding greedily selects exemplars one
by one such that each exemplar addition best approximates
the overall data’s mean embedding.

6. Latent EVT: our proposed EVT based inverse Weibull sam-
pling in our common wholistic view.

We show the obtained accuracies by training on differently
sized core sets selected by the above mechanisms in Fig. 10. As
expected, random sampling features large variations, with the

best attempts rivaling the other methods and in the worst case
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ielding substantially worse results. The k-means methods both
erform similarly, with the latent space version operating on
lower-dimensional embedding showing minor improvements
ver the clustering obtained on the original image data. The
maller the core set size, the worse these methods seem to per-
orm. This is not surprising and Bachem et al. (2015) have already
rgued that k-means with well separated clusters with suffi-
iently different amount of data points per cluster can be prone
o inaccurately estimating multiple cluster centers in highly pop-
lated areas versus none in more sparsely populated clusters.
his is further amplified by k-means generally necessitating a
ub-sampled initialization to operate in high dimensions and at
arge scale. As such, we also observe larger variations for these
ethods. Latent herding is subject to much less overall variation
nd seems to initially do very well. However, in contrast to the
roposed latent based EVT procedure, we notice an increasing gap
n accuracy with larger core set sizes. Intuitively, we attribute
his to herding picking increasingly redundant samples due to
he objective relying exclusively on the best mean approximation,
hich does not simultaneously tend to diversity. Our latent based
VT approach that aims to approximate the underlying distribu-
ion features the least deviation and consistently outperforms all
ther methods.
Intuition behind the strategies: To provide a better intuition,

e have re-trained the model with a two-dimensional latent
pace to visualize the aggregate posterior and compare it with the
elected core sets. Fig. 11 shows the CIFAR10 latent embedding
or the first four classes (to promote visual clarity). The colored
oints correspond to the embedding of the entire set of data
oints and the respective curves correspond to kernel density
stimates of the aggregate posterior. The black crosses indicate
he points selected for a small core set of size 200, i.e. 50 per
lass. The left panel illustrates the greedy k-center approach,
hereas the right panel shows the EVT aggregate posterior based
pproximation. Evidently, the approximation of the distribution
s adequate for our proposed approach, with the greedy alter-
ative leaving much to be desired. We argue that this is due to
he greedy k-center procedure optimizing for a cover based on
aximal distances. Such a procedure does not explicitly replicate

he density or take into account inherently present outliers and
nrepresentative examples. While this quality of fit might not be
uch of an issue for the highly redundant clean MNIST dataset,

he arbitrarily collected real world data of the CIFAR10 dataset
ntails complete failure for the greedy k-center approach. In fact,
y introducing a few naturally occurring image corruptions, we
ill show that such lack of robustness can be observed for all
ut our proposed method in a later experiment. Although an
mproved distribution fit may thus not be the main goal itself,
t seems to be instrumental in improving long-term learning.

.2.2. Active queries
In addition to the previous experiments showing the advan-

ages in construction of core sets, we empirically demonstrate the
enefits when conducting EVT based queries for active learning.
ecall that active learning is challenging because we generally
esire to query batches of informative data at a time instead of
uerying, re-training and re-evaluating one by one. This is par-
icularly imperative for computationally expensive deep learning
nd adds a further constraint of not only querying meaningful
amples, but also making sure to query diversely without too
uch redundancy between the queried examples. We consider

his typical deep active learning scenario for MNIST and CIFAR10,
here we start with a random subset of 50 and 100 data points
espectively, train for 100 epochs to assure convergence and
hen make a query to include 100 further data points. We then
roceed to train the network with the additional instances before
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Fig. 10. Training accuracy on core sets constructed by different popular strate-
gies. Results for different core set sizes, characterized through their size k
and the respective percentage of the dataset, are illustrated in a box plot to
show the median, first and third quartile and minimum and maximum values
obtained from five experimental repetitions. If viewed without color, methods
are displayed from left to right in order of the legend from top to bottom.

repeatedly querying and training again. In a crucial distinction
to the majority of active learning works that only investigate
the quality of the query by re-training the entire model from
scratch, we do not reset our weights in continued incremental
training. This implicitly introduces a stronger impact of ordering
and further acknowledges that not only labeling, but also training
itself is expensive. Each experiment is repeated five times, always
with the same initial random subset to preserve comparability
between individual repetitions and across methods.

Comparison of active query strategies: We investigate popular
metrics and mechanisms on which current deep active learning
is based. The majority of these are techniques that attempt to
take optimal action without explicitly approximating the entire
set of unknown data. To estimate and account for uncertainty
we make use of Monte Carlo Dropout (MCD) (Gal & Ghahra-
mani, 2015) where appropriate. Although we believe that there
is an inherent limitation in earlier introduced approaches that
explicitly use the entire unlabeled pool for optimization, we also
investigate the proposed technique to query based on a k-means
core set extracted from the unknown data (Nguyen & Smeulders,
2004; Sener & Savarese, 2018). Whereas we certainly regard such
methods as valuable in a closed world context, we note that
these methods are infeasible without prior knowledge outside of
a constrained pool or for sequentially arriving data subsets. As
we will see in the next section, they feature little robustness to
nonsensical data that might be present in the pool, as the entire
unlabeled pool is included and assumed to be useful. The metrics
and methods that we investigate are:
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Fig. 11. Visualization of the aggregate posterior for a model with two-dimensional latent space trained on the first four classes of the CIFAR10 dataset and 200
selected core set exemplars. The left panel shows the greedy k-center approach, whereas the right panel shows our proposed EVT based core set construction.
Classes are color coded points and the core set elements are illustrated through black crosses. A kernel density estimate of the per class aggregate posterior (in
color) and the corresponding distributional approximation of the selected core set elements (dashed black) are added on each dimension. In contrast to the greedy
k-center approach that features large discrepancies, insignificant differences are observable for our proposed method, painting an intuitive picture for our methods
quantitative success of Fig. 10. Note that in this case the shown ‘‘improved fit’’ is not the main goal itself, but rather instrumental to improving long-term learning
through core set selection.
1. Random: sampling uniformly at random from the unla-
beled pool.

2. Reconstruction loss: in our particular scenario, because
our proposed framework includes a generative model, we
can query examples based on largest reconstruction loss.
This is typically unavailable in a purely discriminative neu-
ral network classifier.

3. K-means core set: use the entire unlabeled pool to base
the query on an extracted core set that is equivalent in
size to the query amount. Nguyen et al. had suggested such
pre-clustering (Nguyen & Smeulders, 2004) and it was later
used in deep active learning with k-means as the core set
algorithm (Sener & Savarese, 2018).

4. MCD - classification confidence: query based on low-
est softmax confidence (Lewis & Gale, 1994). As neural
network classifiers are known to be overconfident, we ad-
ditionally gauge uncertainty with MCD as a suggested rem-
edy by Gal et al. (2017).

5. MCD - classification entropy: query based on largest pre-
dictive entropy (MacKay, 1992). Similar to lowest con-
fidence, we use uncertainty from MCD to obtain better
entropy estimates (Gal et al., 2017).

6. Latent EVT: our proposed EVT based approach that bal-
ances exploration with exploitation by querying instances
that distribute across outlier probabilities, but limited by
an upper rejection prior to avoid uninformative outliers.

We first note that we have included classification confidence
and entropy with MCD because omitting uncertainty estimates
resulted in no improvement of the active learning query upon
simple random selection. This has previously been argued and
corresponds to the empirical observations made by Sinha et al.
(2019). For our proposed EVT approach we empirically distribute
the query uniformly across examples that fall into the range of
0.5 to 0.95 outlier probability, as estimated by Eq. (6). Although it
never occurred in practice, we note that it would likely be prefer-
ential to extend this range to the lower end if not enough samples

in the pool were available in the mentioned range, rather than
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Fig. 12. Active learning accuracy for different methods on the MNIST and
CIFAR10 datasets. All experiments start with the same randomly sampled 50
and 100 dataset examples. In each step, an additional 100 data instances are
queried from the remaining unlabeled pool and included for further continued
training. Results show the average over five experiments, with the shaded areas
ranging from the minimum to the maximum obtained values.
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ncluding complete outliers. We will provide empirical evidence
or this in the next section.

Fig. 12 shows the quantitative results of our active learning ex-
eriments. On both datasets, the k-means based core set is either
imilar or slightly worse than simply sampling at random. This re-
lects our previous observations in the core set continual learning
ection. On the contrary, the uncertainty based methods surpass
andom sampling. Using largest reconstruction loss similar results
an be accomplished, although at the additional computational
xpense of calculating the decoding. However, all methods are
ignificantly outperformed by our proposed latent EVT method
t all times. The respective rationale behind this improvement
s quite intuitive. In contrast to the considered baselines, which
ave a sole focus on novelty, our strategy balances completely
ovel examples with less novel examples that are still required
o strengthen the existing learned features. More importantly, it
ejects uninformative outliers that are inherently present in the
ool, a threat that uncertainty based methods can be particularly
rone to. This threat is magnified with even less knowledge
bout the acquired dataset and even more unconstrained data
cquisition.

.2.3. Robustness to open world corruptions
The past two experimental subsections have focused on show-

ng our method’s advantage in the typical continual and active
earning benchmark perspective in the closed world scenario,
evoid of any analysis with respect to robustness. In our prior
ork (Mundt et al., 2022, 2019), we have empirically demon-
trated that the proposed EVT based approach can successfully
istinguish between known and unknown sets of classes (recall
he earlier Fig. 6), which is otherwise difficult due to overcon-
ident misprediction (Bendale & Boult, 2015, 2016; Boult et al.,
019; Scheirer et al., 2014, 2013). We will now investigate a per-
aps equivalently large threat: data that is statistically deviating
or other reasons, such as corruption and perturbation. Again, we
llustrate common limitations and the advantages of our wholistic
iew. However, we also note that robustness to corrupted data is
erely a necessity, not sufficient, for robustness to truly any out-
f-sample data. Again, we have picked the example of corrupted
ata as it provides a solid teaching foundation to highlight and
upport our previously made arguments.

hoice of corruptions and perturbations: In a recent effort to
enchmark the performance against 15 types of various corrup-
ions, Hendrycks and Dietterich (2019) have shown that none
f the developed neural network models feature any intrinsic
obustness, even if they converge to more accurate solutions
n the initial benchmark. This was concluded from experiments
here neural networks are trained on the uncorrupted bench-
ark dataset and evaluated on the corrupted data. We extend

his evaluation by investigating the presence of a minor portion
f corrupted data in the training process, as can realistically be
ssumed for active or continual learning. We examine whether
ommon query strategies in active learning and core set con-
truction in continual learning are robust, or whether querying
nd including this unrepresentative corrupted data into core sets
eads to performance degradation in comparison with the clean
enchmark. We believe that this is critical for two reasons: (1.)
he necessity to carefully curate every single example in the
nknown data pool can outweigh the active learning human
abeling effort and thus renders active learning ineffective in the
irst place. (2.) Data cleaning itself is extremely challenging and
t is often not immediately clear whether the inclusion of a data
nstance is beneficial or is accompanied by side effects.

We make use of corruptions across four categories: noise,
lur, weather and digital corruptions, as introduced by Hendrycks
nd Dietterich (2019). These can further be distinguished into
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15 types: low-lighting Gaussian noise, electronic shot noise, bit
error impulse noise, speckle noise, Gaussian blur, defocus blur,
glass blur, zoom blur, motion blur, snow, fog, brightness, contrast,
saturation and elastic deformations. Each corruption is algorith-
mically generated with five discretized levels of severity, of which
the first two are at times barely discernible from a typical image
by a human. We accordingly corrupt 7.5% of the data across
these 75 corruptions. We add the additional constraint that each
image can only be corrupted once. Note that in principle some
corruptions, such as noise resulting from low lighting conditions
and out of focus blurring, could occur simultaneously. We have
deliberately chosen this amount of corruption to, on the one hand
be small enough to not affect overall performance if trained on
the entire dataset, on the other hand be larger than the core set
size or active learning query amounts used in previous sections.
Hypothetically, in the absolute worst case this could result in only
corrupted images being selected and the entire chosen set being
much less representative of the complete dataset than a selection
of clean examples would be. We repeat the previous CIFAR10
experiments under these conditions.

Comparison of core set selection and active query strategies
in presence of corrupted data: We show the originally obtained
results in direct comparison with the results obtained under
inclusion of the corrupted data in Tables 1 and 2. For better
visualization and quantification we do not show plots, but have
instead picked three evenly spaced points of Figs. 10 and 12. From
these quantitative results it is evident that only two techniques
are robust in active learning: random sampling and our proposed
EVT based approach. The logical explanation is that random sam-
pling on average will pick roughly 7.5% corrupted data, of which
another 40% feature only minor low severities. The small amount
thus only has minor effect on the optimization. The EVT based
algorithm is similarly unaffected as it does not query statisti-
cal outliers in the first place. If it includes corrupted examples
then only those with minor severity that are statistically still
largely similar to the uncorrupted data. All other methods are
prone to the corrupted outliers in one way or another. Classifier
uncertainty and reconstruction loss tend to pick very corrupted
examples by definition. The k-means approach will have shifted
centers or falsely query from new clusters that are centered
around corruptions of the unknown pool. Looking at the quan-
titative accuracy values, we can in fact even conclude that all
these methods perform worse than a simple random query. The
continual learning core set construction picture is quite similar.
Here, we can observe corruption robustness for random sampling,
latent herding and our proposed approach. Latent herding is
robust to outliers because it picks samples greedily one by one
to best approximate the mean, which intuitively involves picking
the next best example that is close to the class mean and does
not involve outliers. However, the issue of including redundant
samples into the core set remains unaddressed, and our EVT
based method nevertheless outperforms all other approaches.

The qualitative intuition: Interestingly, the greedy k-center ap-
proach also seems to be robust to the corruptions, although it
performs equally miserably to the uncorrupted scenario. Recall
that this algorithm greedily chooses the next data point for in-
clusion in a farthest-first traversal, by maximizing the distance to
all presently existing core set elements. In other words, outliers
are always queried as they are farthest away by definition. Only
after a sufficiently large cover is obtained will representative data
be queried. Because such unrepresentative outliers are already
present in the uncorrupted data, the performance is consequently
always low for small core set sizes. To visually illustrate this
statement we show a uniform sub-sample of the acquired core set
for the first four classes with and without corruption in Fig. 13.
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Table 1
Active learning with and without partial dataset corruption. Uncorrupted values correspond to those visualized in
Fig. 12.

Accuracy [%]: mean+difference to maximum
−difference to minimum

CIFAR10 queries, dataset size 8, 900 18, 1900 28, 2900
Dataset Regular Corrupted Regular Corrupted Regular Corrupted

Random 38.80+0.69
−1.75 38.97+1.03

−1.87 47.81+2.02
−3.93 47.91+2.13

−3.58 53.36+1.17
−2.34 53.53+1.13

−2.42

Reconstruction loss 41.14+2.06
−3.89 38.26+0.64

−1.89 50.70+0.69
−1.50 46.49+0.82

−2.13 55.22+1.37
−1.92 50.85+1.03

−1.57

K-means 38.34+1.46
−2.63 36.05+1.65

−2.53 45.08+1.50
−3.23 42.93+1.59

−3.65 50.52+0.94
−3.15 47.58+1.93

−3.39

MCD Entropy 40.05+1.15
−2.99 38.83+0.68

−1.03 47.96+2.91
−5.28 44.73+0.61

−1.02 53.72+2.35
−4.76 50.06+0.37

−0.75

MCD Confidence 40.67+0.87
−1.89 37.93+0.35

−0.81 49.40+2.86
−4.44 47.16+1.29

−3.22 54.51+1.15
−3.13 51.91+1.78

−2.67

Latent EVT 44.67+0.32
−0.63 43.79+0.74

−1.72 51.66+1.05
−1.69 51.12+0.38

−0.91 57.43+0.51
−1.09 56.83+0.41

−0.78
Table 2
Core set selection and subsequent training with and without dataset corruption. Uncorrupted values correspond to
those visualized in Fig. 10.

Accuracy [%]: mean+difference to maximum
−difference to minimum

CIFAR10 core set size 300 600 1500
Dataset Regular Corrupted Regular Corrupted Regular Corrupted

Random 31.23+3.94
−9.14 30.35+1.88

−5.92 39.52+3.61
−7.95 39.05+1.99

−5.89 51.43+3.33
−6.12 51.01+2.30

−4.49

Greedy k-center 22.82+3.05
−1.65 22.19+1.76

−3.37 29.33+1.50
−3.23 29.48+1.91

−5.11 42.41+1.97
−4.13 42.37+1.49

−2.44

Latent k-means 32.76+2.29
−3.35 29.00+2.12

−4.05 39.49+1.71
−4.17 35.71+1.69

−4.08 50.01+1.80
−3.28 48.52+2.59

−3.86

Image k-means 32.85+2.57
−3.76 30.74+1.43

−3.16 37.86+1.66
−3.98 36.38+0.90

−2.75 49.62+2.83
−8.09 48.23+1.78

−2.50

Latent herding 33.92+0.61
−1.45 33.81+0.82

−1.39 41.13+1.18
−2.29 40.77+1.34

−1.57 51.87+1.12
−1.85 51.06+2.43

−2.30

Latent EVT 34.16+1.10
−2.27 34.18+1.07

−2.55 41.78+1.34
−2.57 41.67+1.37

−2.53 53.35+1.48
−2.53 53.28+1.06

−2.17
Fig. 13. Typically selected dataset examples in the core set construction using
a greedy k-center algorithm. Qualitative illustration is intended to provide
intuition for a method’s failure. The left panel shows how picked exemplars
from an uncorrupted dataset are unrepresentative of the average image, with
unusual backgrounds, occlusion and scaling issues. The right panel shows how
the core set is comprised of many corrupted examples if a small portion of the
dataset is corrupted, a lack of robustness that many methods in Tables 1 and 2
suffer from.

In the left panel we can observe the core set being comprised
of atypical aeroplanes with deep green or black background, a
captured overexposed sunset. There are partially occluded cars
and birds close to bushes and fences or images where the animal
is almost not discernible and comprises only a fraction of the
image. Arguably these do not represent good exemplars. In the
right panel, we can see that in the presence of corruption, the core
set is comprised of noisy, blurry and otherwise distorted images.
Ultimately neither of these core sets are particularly good dataset
approximations, intuitively explaining the poor performance of
this technique.

4.2.4. The effect of task order and curricula
In a final set of experiments, we investigate the importance of

orderings and whether the construction of a curriculum beyond
alphabetical class order provides substantial learning benefits.
We briefly re-emphasize that we primarily conduct this study
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to investigate the effects of order on continual learning (or pre-
training), and not as a suggested primary mechanism to alleviate
catastrophic forgetting. As previously noted, we leave the practi-
cal discussion of which continual learning scenarios allow for the
control of a curriculum for different works.

Comparison of order selection strategies: We consider four
conceivable scenarios:

1. Class sequential ordering: learn the classes in order of
their integer class label. For many datasets this is in alpha-
betical order.

2. Random order: randomized class order.
3. Most outlying, dissimilar tasks first: determine the next

class to add by evaluating Eq. (8), i.e. pick the next class
that is most outlying and dissimilar with respect to the
already seen classes.

4. Most inlying, similar tasks first: determine the next class
to add by evaluating Eq. (8), but with a minimum over task
outlier probabilities to include the most similar task in each
increment.

Note that for all strategies we always start with the same first
task for comparability. To make sure that obtained results and
found curricula are not just a result of sheer luck, we repeat
each experiment five times. We then report the average and
the minimum and maximum obtained accuracies at each step to
gauge deviations. We conduct experiments on two datasets: the
CIFAR100 and the AudioMNIST (Becker, Ackermann, Lapuschkin,
Müller, & Samek, 2018) dataset. We follow the typical continual
incremental learning procedure of adding classes in pairs of two.
We chose the first dataset because it allows for the construction
of a long task sequence. We chose the latter because it represents
a non-image dataset. Previous work has observed that some
classes can provide strong retrospective improvement (Mundt
et al., 2022), an early indicator that the class ordering should
be investigated further. In order to highlight the effect ordering
can have on our system, we provide a two-fold analysis. We
analyze ordering both, when independently evaluated from, or
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oupled to specific techniques that alleviate continual learning
atastrophic forgetting. As such, we evaluate CIFAR100 in what
s typically referred to as a continual learning upper-bound. The
atter describes the maximum obtainable accuracy given a spe-
ific model choice and training procedure in which the data of
ach task is simply accumulated with each subsequent task. For
he AudioMNIST we use generative replay to prevent catastrophic
orgetting, where old tasks’ data is rehearsed based on the trained
enerative model. We do not make use of any data augmentation.

mpirically observed effects of order: The achieved accuracies
t each task increment are shown in Fig. 14. We can observe that
or the CIFAR100 dataset, random sampling seems to yield a very
imilar accuracy trajectory in comparison to sequentially learning
he classes in order of their alphabetical class id, resembling
arlier observations (De Lange et al., 2021; Javed & Shafait, 2018).
owever, our observations based on our proposed framework’s
election scheme seem to be in contrast to their conclusion that
he order in which tasks are introduced is negligible . Here, select-
ng the most dissimilar task for inclusion consistently improves
he accuracy by several percent, even at the end of training.
onversely, including tasks that are very proximate to existing
oncepts results in an all-time performance decrease. We hypoth-
size that this is due to the classifier experiencing immediate
onfusion. Our initial classes consist of ‘‘apples’’ and ‘‘aquarium
ish’’ and the query consensus across repeated experiments is
o continue with selecting the classes ‘‘pears’’ and ‘‘whale’’ or
‘shark’’. The opposite strategy that prioritizes dissimilarity in
he curriculum instead includes unrelated classes such as ‘‘lawn-
ower’’, ‘‘mountain’’ or ‘‘oak’’. We believe that this allows the
odel to more rapidly acquire a diverse set of representations.
We can draw almost analogous conclusions for continually

earning the AudioMNIST dataset with generative replay. Here,
e additionally see that the conventional order of learning the
ounds from ‘‘zero’’ to ‘‘nine’’ is accompanied by a pattern of
epeated retrospective improvement. The first task increment re-
ults in a larger accuracy drop, that is rectified through backwards
mprovement of the next task increment. This pattern repeats
or the next two classes and its consistent strong emergence is
nly visible when learning sequentially in order of class id. The
ccuracy at any time is again best for our proposed measure of
issimilarity and worst when selecting according to task proxim-
ty. For the latter, in analogy to the earlier hypothesized confusion
f the classifier, the generative model is faced with difficulty to
isambiguate the resembling classes and produce unambiguous
utput.
Our results indicate that using active learning techniques

nd taking into account the learning order can play a critical
mpact on the achieved performance of our continual learning
et-ups. More so, the results provide an important signal for
eproducibility and significance of various conjured continual
earning benchmarks. In a world of benchmarking methods and
egularly claiming advances when a method surpasses another by
%–2%, the observed absolute discrepancy between the different
ask orders for CIFAR100 is as large as 10%. This is a substantial
ap. Whereas we obviously believe that there lies value in analyz-
ng and contrasting different techniques to alleviate catastrophic
orgetting on a common dataset, it is clear that there is still
uch we need to learn about neural network training, the role
f curricula, the importance of what has already been trained in
ontinual learning, and evaluation in general. A more in-depth
nderstanding is likely to develop by adopting more wholistic
pproaches to our systems, but will also need to be supported
y moving away from our current rigid benchmarks.
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Fig. 14. Continual learning accuracy of learning classes in increments of two
in dependence on the choice of task order. Top panel shows the incremental
upper-bound, i.e. a simple accumulation of the real data, for the CIFAR100
dataset. The bottom panel shows obtained performance on the AudioMNIST
dataset with alleviated catastrophic forgetting through generative replay. For
each of the order selection mechanisms the experiment has been repeated five
times. The corresponding average together with the maximum and minimum
deviation are reported respectively.

5. Discussion: towards wholistic deep continual learning

We have empirically corroborated our wholistic view in the
previous experimental section, highlighted on a set of teaching
examples and one conceivable practical realization of a unified
framework. To conclude our paper, we now circle back to the
preamble of the paper. Building on our wholistic view’s insights,
we revisit the ‘‘definitions’’ for continual machine learning and its
role in presenting a guideline for evaluation protocols. We then
discuss the entailed prospects of adopting our wholistic view and
present some remaining limitations.

5.1. A revisited continual machine learning definition as a guideline

Taking into account the insights we have obtained through our
wholistic view, we can now ask ourselves the natural question
whether the initial ‘‘definitions’’ for continual machine learning
1 and 2 require to be adapted. On the one hand, one could now
argue that there is nothing technically wrong with the latter ex-
isting definition. After all, despite perhaps having a larger amount
of ambiguity, observed flaws and limited evaluation are an issue
with practically employed protocols. In a sense, the definition
is likely intentionally abstract and not mathematically rigorous.
A too intricate definition could come with the danger of being
overly specific, resulting in conceivable exclusion of relevant fac-
tors and unnecessarily constrained scenarios. On the other hand,
it may be precisely this lingering ambiguity that can result in
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isinterpretation or oversight of potentially important elements.
ltimately, every definition, be it mathematically rigorous or not,
lso plays a role in guiding research. If major factors are left to be
ssumed, they may easily be missed.
As a balance between these two points, we propose to extend

he existing definition of Chen and Liu (2017), yet keep a similar
evel of abstraction. In this way, we can add several important
actors for continual learning, as a guideline to researchers that
hese aspects are relevant, and at the same time avoid an exces-
ive amount of introduced constraints. Our proposition for such
revised description ensues:

efinition 4. Continual Machine Learning - this work: The
earner performs a sequence of N continual learning tasks, T1, T2,
. . . , TN , that are distinct from each other in terms of shifts in
the underlying data distribution. The latter can imply a change
in objective, transitions between different domains or inclusion
of new modalities. At any point in time, the learner must be able
to robustly identify unseen unknown data instances. Depending
on what is permissible in application contexts, the learner can
either reject such instances in a non-controllable data stream
or set them aside for later learning. In the latter scenario, the
learner should be able to rank order unknowns according to
similarity with existing tasks, in order to actively build a mean-
ingful learning curriculum itself. If the system is desired to be
supervised, a human in the loop may group and label the set of
identified unseen unknowns to explicitly guide future learning.
When faced with a selected (N+1)th task TN+1 (which is called
the new or current task) with its data DN+1, the learner should
leverage its dictionary of representations to accelerate learning
of TN+1 (forward transfer), extend the dictionary with unique
representations obtained from the new task’s data (this can be
completely new types of dictionary elements), while simultane-
ously maintaining and improving the existing representational
dictionary with respect to former tasks (backward transfer).

In direct comparison with former continual learning defini-
tions, introduced in the preamble of this paper, the description
is now extended to include active data queries, captures the
importance of data choice and curricula (if controllable by the
learner), in coherence with awareness of the open world. In
particular, note that the definition now explicitly includes the
idea of an open world and required robustness. Following our
previous exposition, we deem this to be a general requirement for
any machine learner, with particularly manifesting importance
in continual learning. In contrast, the notion of setting aside
data instances for prospective learning to build up a self-selected
learning curriculum is included to emphasize its importance and
impact, yet left optional depending on considered level of data
stream control. In this way, the potential elements of continual
learning are captured without strictly dictating specific set-ups,
following the same spirit as the original definition.

5.2. Prospects

We anticipate that our work leads to increased awareness
of the dangers of our current closed world practices and the
necessity of expanding our views towards more realistic real-
world relevant evaluation. In doing so, we believe that further
synergies between presently separately treated machine learning
paradigms will be exposed and can be exploited. This should
ultimately lead to improved, more robust and simpler machine
learning systems.

We imagine some immediate follow-ups to either make us of
our VAE based framework directly or develop different practi-
cal alternatives to apply our wholistic continual learning vision
to various applications. To name some examples that directly
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come to mind, one could consider medical imaging, where new
disease variants arrive and need to be included, but different
devices also feature distinct perturbations and data acquisition
fluctuates heavily. Similarly, a robot needing to navigate and
learn about the world may directly benefit from our view, where
old knowledge needs to be retained, but new knowledge needs
to be carefully acquired (e.g. in order to prevent getting stuck
in noisy environments or prioritize meaningless novelty that is
unrelated to an overarching task). To name a third of count-
less examples, autonomous driving could provide an interesting
platform. Here unexpected events can occur, sensor failure and
deviations can arise, but generally need to be distinguished from
learning important changes in the environment or previously
unseen objects/obstacles.

The above paragraph already indicates that development to-
wards such applications will benefit from respective datasets
that enable required detailed investigations with more exhaustive
evaluation protocols. Intuitively, we could now list the fact that
we have only considered pseudo-continual datasets ourselves,
even though they have been subject of our own critique earlier.
For reasons of clarity, we repeat that we have deliberately chosen
these datasets, such as CIFAR10/100, to have teaching examples
that are very familiar to the majority of readers and easy to
relate to. We thus list the investigation of concurrently developed
very recent datasets, that are more befitting of continual learning,
as a prospect to build up even more insights. Specifically, the
newly established NeurIPS Dataset and Benchmarks Track has
spawned several datasets with continual learning in mind. The
individual datasets have different, yet complementary priorities.
For instance, CLEAR (Lin, Pathak, & Ramanan, 2021) and Wild-
Time (Yao, Choi, Lee, Koh, & Finn, 2022) focus on different tasks,
but share the idea of real-world data that naturally develops
over time (e.g. think of a laptop or vehicle changing massively
over the years and decades). CLiMB (Srinivasan et al., 2022)
establishes a benchmark that focuses on cross-modality and will
thus be interesting to investigate in going beyond our computer
vision examples in this paper. Zhuang et al. (2022) propose two
benchmark variants to empirically analyze how continual ma-
chine learners compare to human learners on short and long
time scales. Finally, Hess, Mundt, Pliushch, and Ramesh (2021)
has shared a parametrized graphics simulator in an autonomous
driving context. A detailed generative model allows for the cre-
ation of sequences with various distribution shifts in order to
systematically investigate the impact on continual learning. As
detailed, we believe that each of these five datasets has their
respective prospects and their investigation will contribute to fur-
ther broaden our obtained insights to both real-world scenarios
and controlled environments.

5.3. Limitations

At this point, we re-emphasize that we do not wish to claim
that our particular neural network method provides the generally
best solution to our previously conducted experiments. Although
our specific neural network framework realization clearly shows
quantitative promise, our main goal was to highlight the impor-
tance of the introduced consolidated viewpoint. Even though our
approach has its limitations, it is therefore hard to already grasp
them in tangible ways, given that we will first need to explore
sets of alternative practical frameworks with the same scope.

To nevertheless give the reader an impression for where our
particular VAE approach can be improved, we briefly summarize
the main caveats. Primarily, many of these revolve around the
choice of VAE. The respective limitations have been discussed
in greater detail in our prior work (Mundt et al., 2022), upon
which we have built our practical framework in the experimental
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ection of this paper. To keep it concise, the limitations can be
ttributed to two groups:

ssumptions of the EVT approach: The EVT approach makes an
ssumption of the existence of uni-modal clusters per class in the
AE’s latent space. Whereas this is encouraged by the linear clas-
ification objective to achieve separation between classes under
he constraint of following the prior, there is no strict theoretical
uarantee. It is conceivable, particularly in higher dimensions,
hat there exist scenarios in which multiple sub-clusters manifest
n one side of a decision boundary. Note that this has not yet
een observed empirically in our empirical teaching examples
nd negative impacts on performance remain to be seen.

imitations of the generative architecture: It is well known that a
onventional VAE may be outperformed by other methods when
t comes to ‘‘scale’’. In other words, generation quality is often
urpassed on very large datasets. Even though they are not the
irect subject of this paper, these generated instances could be
sed for e.g. a generative rehearsal strategy, as an alternative to
he presented real data core sets. Despite not being necessary yet
or the teaching examples in this work, our previous work (Mundt
t al., 2022) has shown that several newer generative modeling
dvances for VAEs (e.g. autoregression, adversarial training, or
ntrospection) can be used on top to largely overcome this chal-
enge. For clarity, we emphasize that such additional advances
re required in order to scale our framework to larger real world
ata. We note that such approaches often come with additional
omputational expense. However, we are unaware of any alter-
atives that presently meet the required criteria to represent our
holistic view, as alternatives are subject to future development.

. Conclusion

We have presented a common viewpoint to naturally unite
obust continual and active learning in the presence of the un-
nown. For each aspect, we have conducted an experimental
nvestigation to provide empirical evidence in support of our
iewpoint’s benefits. Needless to say, each of our individually
resented experiments can be extended with multiple facets
nd several nuanced applications can be derived and thoroughly
nvestigated. Consequently, we encourage future works to adopt
ur framework or take a similarly wholistic approach with dif-
erent practical instantiations. At the very minimum, we would
xpect future works to rethink current practices and question
hether current benchmarks are a realistic reflection of our
esiderata for continual machine learning systems. As illustrated
hroughout the paper, this necessitates stepping out of present
losed world benchmark routines.
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