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A Detailed data descriptions

A.1 Traffic accidents data

We are interested in traffic accidents on the city level. However, data on accidents are reported
at different geographic levels of aggregation in different countries. Austria, Germany, and Switzer-
land’s accident data align with city boundaries (see details below). In Finland, Norway, and
Sweden, the accident data is reported at the municipality level, which does not always align with
city boundaries. Details on countries’ traffic accident data and specific cases that were not straight-
forward are listed and discussed below.

We limited our study to cities of at least 100,000 inhabitants. A municipality in Scandinavian
countries may include multiple localities, fractions of localities, and very remote rural areas. To
harmonize the unit of observation across countries, we only consider Scandinavian municipalities
with a population over 100,000 that also include a locality of at least 100,000 inhabitants. We im-
plement this restriction based on the latest public population statistics for the respective countries.
Large urban areas (mainly Helsinki, Stockholm, and Oslo) span multiple periphery municipalities
in addition to a core municipality. Because our study is focused on e-scooter service impacts in
large cities and to avoid the double-counting of the same urban areas, we exclude “suburban”
municipalities, which differ in terms of traffic movements and infrastructure. The following mu-
nicipalities met the population-based inclusion criterion but fall into our definition of suburbs and
thus were excluded from our analyses: Norway: Baerum (a suburb of Oslo). Sweden: Huddinge
and Nacka (suburbs of Stockholm). Finland: Espoo and Vantaa (suburbs of Helsinki).

A.1.1 Austria

Aggregated data on road traffic accidents is published by Statistics Austria on a quarterly basis.
Statistics Austria provided us with the number of monthly accidents involving personal injuries,
segmented by “politische Bezirke” (political districts), which is equivalent to the respective (single)
municipality for Austrian cities above 100,000 inhabitants. In 2020, a more detailed table section
was published (Statistics Austria, 2021d). Our data is equivalently structured as Table 127 of
their publication from 2020 (Statistics Austria, 2021d). According to the definition by Statistics
Austria (Statistics Austria, 2021c), a road traffic accident involving personal injury occurs when
one or more persons are injured or killed as a result of traffic on public roads, where at least
one moving vehicle was involved. Austria collects accident data on moving vehicles (i.e., a means
of transport for use on roads, including cars, bicycles, and e-scooters) and vehicle-like means of
transport (roller-blades, and skateboards). By law, all participants or witnesses of a road-traffic
accident must report injuries or deaths to the police, who issue an electronic traffic accident report
received by Statistics Austria with a high degree of completeness. Serious injuries result “in an
inability to work or health problems for more than 24 days”. Injuries that do not meet this criterion
are classified as slightly injured. More information on definitions, comments, methods, and data
quality is available from Statistics Austria (Statistics Austria, 2021c).

A.1.2 Finland

We obtain data from Statistics Finland which publishes the official statistics on road traffic ac-
cidents involving personal injury by municipalities and month. Data is published monthly as
preliminary data and annually as final data (Statistics Finland, 2022b). An accident involving
personal injuries is defined as an event “that has taken place in an area intended for public trans-
port or generally used for transport and in which at least one of the involved parties has been a



moving vehicle” resulting in death or personal injury “which require medical care or observation in
hospital, treatment at home (sick leave) or surgical treatment, such as stitches.” Moving vehicles
include micromobility transport, like bicycles and e-scooters. Serious injuries require medical care
and “are classified as serious in accordance with the AIS Abbreviated Injury Scale”. The authors
define slight injuries as the remainder of non-serious personal injury accidents. Data is reported
by the police through the police information system to Statistics Finland, and data for each month
are updated three months after its ending. Deaths are reported with nearly 100% accuracy, while
accidents with injuries are around 30%. The worst coverage is for cyclists injured in single road
user accidents. Detailed documentation of the data is available (Statistics Finland, 2022a).

Accidents are reported at the municipality level. To make the data comparable to other coun-
tries, we further make use of the definition of urban settlements provided by Statistics Finland
(Statistics Finland, 2022¢). We only consider municipalities with at least 100,000 residents that
also include an urban settlement with more than 100,000 inhabitants. In general, an urban set-
tlement may be split between several municipalities. In our paper, we focus on the respective
municipalities that align best with e-scooter service areas. Accordingly, we exclude the municipal-
ities of Espoo and Vantaa, which are part of the urban area of Helsinki. In total, there are six
Finnish municipalities that we consider: Helsinki, Tampere, Turku, Oulu, Jyvéskyld, and Lahti.
The vast majority of the population in these municipalities lives in the largest urban settlement.
Lahti has the lowest share with 87.4% and Helsinki has the highest share with 97.7% (Statistics
Finland, 2020).

A.1.3 Germany

The road traffic accident statistics in Germany include all accidents resulting from vehicular traffic
on public roads (and squares) recorded by the police in which at least one person was personally
injured (Statistisches Bundesamt, 2017, 2022¢). Serious injury require immediate hospitalization
lasting at least 24 hours. Slight injuries are “any other person injured in a road crash”. Police
are required to compile a report for all accidents they become aware of, however, the law only
requires the reporting of accidents with death or serious injuries (Statistisches Bundesamt, 2022b)
(henceforth Fachserie 8). Accidents with only property damage or only involving pedestrians are
not included. The classification of ‘moving vehicles’ includes micromobility modes such as bicycles,
e-scooters, and skateboards. The Federal Statistical Office of Germany publishes a monthly list
of accidents in 100 cities (Fachserie 8). That list is unchanged since 2008 and contains all cities
above 100,000 inhabitants (except Giitersloh) and a non-random subset of smaller cities. There are
cases where traffic accident reports were not provided to the statistical agency (by the police) in
time, which means that these accidents are not included in the monthly accident statistics. These
accidents are, however, included in the annually published Unfallatlas (Statistisches Bundesamt,
2022a), which covers most German states. For 2020, all of Germany is covered. For 2019, the state
of Mecklenburg-Vorpommern is omitted. For 2018, several states are omitted. For our analyses, we
rely on the data from Fachserie 8 for all cities where it is available. We replace these numbers with
numbers from the Unfallatlas for 9 city-months, where—based on stark discrepancies in trend—
we deem the original data unreliable (see table 4 for the details). Accident data for Giitersloh
refers to (Statistisches Bundesamt, 2022a) and thus only covers the period from 2018 onwards.
Unfortunately, we cannot rely only on the Unfallatlas, as within-city cross-temporal comparisons
are central to our analysis and the Unfallatlas has no data for several German states in 2018.
The city of Herne was omitted in the June 2017 issue of Fachserie 8. The city of Gottingen was
omitted from the December 2016 issue. Neither are available from the Unfallatlas. In order to be
able to retain the observations from Herne and Géttingen in a balanced panel, we impute accident
numbers for the missing month by taking the average of the previous and succeeding months.



Table 4: Observations for which the data from the Unfallatlas (Statistisches Bundesamt, 2022a)
was chosen over the data from Fachserie 8 (Statistisches Bundesamt, 2022b)

. Accidents Accidents
City Year  Month (Unfallatlas) (Fachserie 8)
Halle/Saale 2017 6 93 22
Halle/Saale 2017 7 63 3
Rostock 2020 5 36 1
Rostock 2020 6 52 5
Rostock 2020 7 41 0
Rostock 2020 8 58 1
Rostock 2020 9 51 5
Rostock 2020 10 39 1
Wiesbaden 2019 7 84 14

A.1.4 Norway

Monthly accident data at the municipality level is available from Statistics Norway. The data is
limited to accidents reported to the police that “involve at least one vehicle, and that have taken
place on public or private roads, streets or places open to general traffic” (Statistics Norway, 2022).
Moving vehicles include small electric motor vehicles, such as e-scooters, and non-motorized vehi-
cles, such as bicycles. Only accidents that resulted in at least one slight injury are counted, where
the minimum threshold, slight injury, is defined as “Minor fractures, scratches, etc. Hospitalization
is not required.” Police reports are electronically submitted to Statistics Norway. Preliminary ac-
cident figures are published monthly, however, numbers are not finalized until May of the following
year.

Accidents are reported at the municipal level, which does not always correspond with city
boundaries. Data for population of urban areas, available from Statistics Norway, was used for our
exclusion criteria. An urban area is determined by the positioning of buildings and the number
of inhabitants, and is independent of administrative boundaries (Statistics Norway, 2021b). In
total, we consider four corresponding urban areas and municipalities with more than 100,000 in-
habitants: Bergen, Oslo, Stavanger, and Trondheim. The vast majority of the population (at least
97%) in these municipalities also live in the corresponding urban area. The urban area of Fredrik-
stad/Sarpsborg has slightly above 100,000 inhabitants but is not included in our data as it spans
two different municipalities with significantly less than 100,000 inhabitants each. Furthermore,
Baerum, which has over 100,000 residents, is excluded as a suburb of Oslo.

A.1.5 Sweden

Road traffic accidents with personal injury are compiled by the Swedish Transport Agency, Trans-
portstyrelsen, based on accidents reported by the police involving death or injury. The police are
obliged to report all accidents with physical injuries, and accidents with injuries must be reported
to the police by participants in a certain time-frame. Injury assessment is determined by the police,
usually on-site. “An injured person who is not seriously injured is slightly injured”. “A person
who has suffered a fracture, crushing injury, laceration, serious cut injury, concussion or internal
injury is considered seriously injured”, or if they are expected to be hospitalized. Only accidents
involving moving vehicles (such as a car, bicycle, or e-scooter) in a road traffic area are counted.
Transportstyrelsen provided the accident data at the monthly municipality level for 2018-2021, but
could not provide data for 2016 and 2017 due to staffing constraints.

We use population data on localities from Statistics Sweden (2021a) for our exclusion criteria.



They define an urban area/locality as a concentration of buildings not separated by more than
200 meters and with at least 200 inhabitants (Statistics Sweden, 2022b). In total, there are
eleven municipalities with at least 100,000 residents that have localities with more than 100,000
inhabitants. We exclude the municipalities of Huddinge and Nacka that contains part of the locality
of Stockholm, which is already included through the homonymous Stockholm municipality where
the majority of the locality reside. Traffic accident data for the remaining nine municipalities are
included. Again, the vast majority of these municipalities’ population reside in the largest locality
with shares ranging from 70% for Linkoping to 96% for Stockholm.

A.1.6 Switzerland

Road traffic accident data for Switzerland is published annually by the Bundesamt fiir Strassen
(ASTRA) via the federal geoportal (“Geoportal des Bundes”). We use data from the traffic acci-
dent map, which shows all recorded accidents involving personal injury since 2011 geographically
according to specific topics, including date and severity of injuries (Bundesamt fiir Strassen AS-
TRA, 2022). We use the municipality code, provided for each accident, to aggregate the number of
accidents. The municipality code uniquely identifies a respective city, and the municipal boundaries
correspond closely to city boundaries for cities with over 100,000 people.

According to the official definition, a road traffic accident is defined as an unforeseen event in
a public traffic area that results in property damage and/or personal injury and involves at least
one vehicle or vehicle-like device, such as a skateboard or scooter. Participants are required to
call emergency services if there is an injury. A slightly injured person is defined as “anyone with
a minor injury, such as superficial skin injury without significant blood loss or a slight restriction
of movement”, that can leave the crash site unaided. A serious injury is a National Advisory
Committee for Aeronautics code 3 or higher, equating to at least an “impairment that prevents
normal activities (e.g. unconsciousness and open bone fractures)”. For better comparability with
other countries, we only consider accidents involving personal injuries. Data is collected by the
police in accordance with an accident recording protocol and stored and maintained centrally in
the accident recording system of the Federal Roads Office (Bundesamt fiir Strassen ASTRA, 2018).

A.2 E-scooters service rollout dates

Figure 3 provides an overview of the recorded launch dates for different cities in our sample until
December 2021 that also serve as a basis for figure 1, the map of launches, in the main text. Bars
indicate the introduction of the first shared e-scooter service in the respective city, while black
dots indicate the timing of additional scooter firms’ rollouts. Darker shaded areas illustrate the
first year after the rollout of the first shared e-scooter service. Numbers in the black dots show
the total number of scooter firms that have launched in a city at each point in time. The vertical
black line illustrates the end of our traffic accidents data observation period. The launch dates
are hand-collected and verified from official press releases, the firms’ social media channels, and
websites of e-scooter providers, local newspapers, or municipalities. A file with launch dates for
considered providers by city and corresponding sources can be found in the online appendix.

Tier and Voi provided us with launch dates for different cities directly. Cities, where the
operator Voi stopped operations by 2022, were not included in their list. Furthermore, the dates in
provided lists were referring to the latest relaunch dates for cities where services were paused for
some time. We included the initial launch date for those cities based on our hand-collected data,
after carefully double-checking our sources. The cities are: Linz (Austria), Ingolstadt (Germany),
Erfurt (Germany), and Potsdam (Germany). In addition, there are some cases of cities for which
the lists provided by Voi and Tier included earlier start dates. These dates seem to refer to the
dates when Voi finalized the decision or initiated the launch—mnot when the first scooters were



Figure 3: Launch dates of first scooter service by city until 12/2021
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Notes: Bars indicate periods after the introduction of the first scooter service. Black dots indicate the timing
of market entry of additional scooter firms until June 2021 (the end of the accident data time frame). Numbers
in the black dots indicate the total number of scooter firms that have launched in a city at each point in time.
Darker shaded areas indicate the first 12 months after the introduction of the first scooter service.



brought to a city. As we are interested in the timing of the actual rollouts, we carefully cross-
checked and looked for additional sources if there were discrepancies. Launch dates may deviate
from the provided lists if reliable public sources convincingly confirmed a different effective rollout
of e-scooter services in a respective city (links to public source can be found in the data file, which
is in the online appendix). Deviations from the lists provided by Voi and Tier do not affect our
main results, as Tier and Voi were not the first providers in the relevant cities.

Rostock was late to adopt e-scooters. There are, however, some reports of Voi being active in
Rostock already in 2019, but according to an event advertised on the provider’s and municipality’s
social media channels, this was just a weekend trial (Voi Technology, 2019b). We thus use the
effective rollout dates according to local newspapers and press releases by the providers (Bird and
Moin were the first two providers, with Lime and Tier joining only after the end of our panel of
traffic accident observations).

A.3 City-level variables data
A.3.1 Share of bike lanes

The ratio of separated bicycle infrastructure to road network length for cars is compiled with data
from OpenStreetMap obtained in March 2022 (Gilardi and Lovelace, 2021). To determine road
network length, distance is calculated from the geometries of OpenStreetMap objects where the
highway key is tagged residential, primary, secondary, tertiary (including respective link
categories) or motorway, trunk (link excluded). Similarly, separated bicycle infrastructure in-
cludes objects from the road network set where bicycles are separated or have priority, specifically
objects with additional tags cycleway=lane, cycleway=share_busway, bicycle=designated and
cyclestreet. In addition, all objects where highway is tagged cycleway or livingstreet are
included. Objects with highway tagged footway, path, or track are included if bicycles are ex-
plicitly allowed with the additional tags bicycle=designated or bicycle=yes. We restrict and
crop opensreetmap.org spatial objects (Pebesma, 2018) with high-resolution political boundaries
based on the unit of analysis of the traffic accident data, i.e., cities for Germany, municipalities
for Finland, Sweden, Switzerland, and Norway, and districts for Austria (Federal Agency for Car-
tography and Geodesy, 2022; Federal Office of Topography swisstopo, 2022; GEONORGE, 2022;
National Land Survey of Finland, 2022; Statistics Austria, 2022; Statistics Sweden, 2022a).

A.3.2 Registered cars per capita

The variable refers to the number of registered cars by city per 1,000 inhabitants in 2018. Data on
all cities, with the exception of Austria and Giitersloh (Germany), is available from EUROSTAT.
Details on the data can be found on the EUROSTAT website (Eurostat, 2022). For Giitersloh, we
use administrative data from the federal state of North-Rhine Westphalia that reports the same
measure in their 2018 mobility report (Ministerium fir Verkehr des Landes Nordrhein-Westfalen,
2019, p. 68). Data on Austrian cities for 2018 is obtained from Statistic Austria (Statistics Austria,
2021a).

A.3.3 Cycling modal share

The cycling modal share is defined by the share of journeys to work by bicycle. Data is obtained
from EUROSTAT where available. Most German and all Swiss cities are included in the EURO-
STAT data set. We consider cycling modal shares for the year 2018. Details on the data can be
found on the EUROSTAT website (Eurostat, 2022).

Data on Austrian cities are obtained from official municipality websites and refer to the latest
traffic reports of the respective city. A list with the respective sources and year of data collection
can be found in a spreadsheet online data appendix.



For Norwegian cities, we use the cycling modal shares from a study (Tenngy et al., 2022)
examining “Urban structure and sustainable modes’ competitiveness in small and medium-sized
Norwegian cities”. They provide modal shares for the largest Norwegian cities using data from the
Norwegian National Travel Survey collected in 2013/14 and 2017/18. For Swedish cities, we use
data from a study (Kenworthy and Svensson, 2022) reporting the “percentage of total daily trips by
cycling” for ten Swedish cities. For Finland, the data are obtained from the regional publications
of the Finnish National Travel Survey (FNTS). Detailed information on the FNTS is published
by the Finnish Transport and Communications Agency (Finnish Transport and Communications
Agency, 2020). Cycling modal share data for the city of Jyviskyld is obtained from the official
region travel survey in 2019 (City of Jyviskyld, 2020) because detailed data for Jyviskyld was not
published as part of the FNTS.

A.3.4 Income data by city

To get a proxy for the average income by city, we use data on the gross domestic product (GDP) at
current market prices in 2018 converted to purchasing power standard per inhabitant.! The data is
provided by Eurostat (2023) at the NUTS 3 region level (for more information on NUTS3-regions
see: http://ec.europa.eu/eurostat/web/nuts/overview). Accordingly, the values for each
city refer to the corresponding NUTS-3 region. There are two cases in our sample where two cities
lie in the same NUTS-3 region (Ziirich/Winterthur in CH040 and Malmé/Helsingborg in SE224).

A.3.5 Population data

For city population numbers, we use the most recently available public population data from each
country’s respective statistical agency as of 2021. Population data for Austrian political districts
at the start of 2021 is provided by Statistics Austria (2021b). Finnish municipality population data
for the end of 2021 is provided by Statistics Finland (2021). German city population data for the
end of 2019 is provided by the Statistisches Bundesamt (2020). Norwegian municipality population
data for 2020 is provided by Statistics Norway (2021a). Swedish municipality population data for
2020 is provided by Statistics Sweden (2021b). Lastly, Swiss district population data from 2021 is
provided by the Swiss Federal Statistical Office (2021).

B Addressing endogeneity concerns and robustness checks

B.1 Alternative estimators in a monthly panel
B.1.1 Standard two-way fixed-effects

Our main specifications account for biases that may arise due to heterogeneous treatment timing
and heterogeneous treatment effects that were studied extensively in the recent econometric liter-
ature on two-way fixed effects (TWFE) difference-in-differences (DD) estimators (Borusyak et al.,
2023; Callaway and Sant’Anna, 2021; Goodman-Bacon, 2021; Sun and Abraham, 2021).

For comparison, OLS estimates of standard TWFE DD regressions, which do not account for
this heterogeneity, can be found in figure 4. If we start the observation period in January 2016 as in
our main specification, the coefficients are smaller (figure 4b), with an estimated ATE of 4.7 + 2.0
that is statistically significant (table 5). Marginally changing the length of the panel (starting two
years before the first launch, i.e., April 2016) changes the point estimate substantially upward as

1«“The conversion to purchasing power standards (PPS) is based on national purchasing power parities (PPP)
which are also regularly calculated and released by Eurostat. Regional PPP are not available. All regional accounts
data published by Eurostat are based on PPP for the EU Member States” (https://ec.europa.eu/eurostat/cach
e/metadata/en/reg_ecolO_esms.htm).



shown in figure 4a and discussed in section 5.1. Given these differences and the biases discussed
above, the TWFE results should be interpreted cautiously.

Figure 4: Monthly treatment effects and pre-trends based on the TWFE estimator
(a) Panel starting 2 years before first launch (b) Panel starting 2.25 years before first launch
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Notes: The figures show average treatment effects relative to treatment introduction. In the line plot, filled dots
indicate treatment effect estimates for the first 18 months relative to the last month before the introduction of
e-scooter services. Circles indicate estimates for pre-treatment months, also relative to the last month before the
introduction of e-scooter services. Shaded areas/bars indicate the 95%-confidence interval around the estimates,
based on standard errors that allow for the clustering of the model error at the city level. All estimates account
for city fixed effects and month fixed effects

OLS estimates of the average treatment effect and a Poisson regression estimate of the same
model (that we will discuss in appendix B.1.2) can be found in columns 3, 4, 7, and 8 of table 5.

Including more granular fixed effects (i.e., country-year) in a TWFE DD framework may par-
tially reduce concerns about biases arising from heterogeneous treatment timing and effects (e.g.,
country-year fixed effects would avoid comparing later treated German cities against earlier treated
Swedish or Austrian cities). Indeed, table 5 illustrates that including such fixed effects renders es-
timates from TWFE DD, based on the log-linearized model or a Poisson model, consistently more
precisely estimated.

However, using country-year fixed effects is not a satisfactory remedy, as the described prob-
lem still exists for the implied comparisons within countries. More importantly, the inclusion of
country-year fixed effects removes all variation stemming from countries and years where all cities
are treated (i.e., Austria 2020-2021 and Norway in 2021). The estimand is thus only the average
treatment effect in the remaining years and countries—especially if treatment effects grow dynam-
ically, this restriction implies losing relevant years of possibly significant effects. The imputation
estimator that we use addresses the issue of constructing a counterfactual that is not affected by
dynamic treatment effects at its root by estimating the fixed effects from control observations only,
which avoids any implicit comparisons of newly treated observations to earlier treated observations.

B.1.2 Poisson versus logarithmized dependent variables

We estimate the effect of introducing shared e-scooter services in our main model as a semi-elasticity
by applying the natural logarithm to the dependent variable in a linear model that we estimate with
OLS, which can be problematic when the dependent variable contains many zeros. In principle,
semi-elasticities could also be estimated through a Poisson regression without transforming the
dependent variable. We rely on the log transformation for two reasons. First, observations with
zero accidents are extremely rare in our data (only a single month-city in our sample has recorded
zero accidents, as pointed out in section 3). Second, to our knowledge, methods for Poisson



Table 5: Two-way fixed effects regressions, country-time fixed effect regressions, instrumental
variable regressions, and Poisson regression.

Event-study estimate Two-way fixed effects
(Borusyak et al. 2023) (TWFE)
o)) 2 ®3) @ G (© (7) (8)
. . Poisson Poisson
Imputation Imputation OLS OLS v v (PPML) (PPML)
Effect of introduction (%) 8.2%H* 4.6%* 4.7 4.6%**  11.0  11.5%* 2.7% 4.1FF*
(2.9) (2.4) (200 (L7)  (7.0) (5.4) (1.6) (1.3)
Country-year FEs v v v v
Kleibergen-Paap Wald rk F-stat 8.3 8.8
Cities 93 93 93 93 93 93 93
Observations 5880 5784 5880 5880 5880 5880 5880 5880

Notes: * p<0.1, ** p<0.05, *** p<0.01. Robust standard errors in parentheses allow for clustering of the model
error at the city level. Raw estimates are transformed to semi-elasticities: 100 - (exp(7) — 1)%. Estimates for
treatment effects are based on different specifications and estimators, as indicated in the table header. Even columns
additionally account for year-country fixed effects. Column 1 repeats the ATE estimate from our main specification
(figure 2, column 3) for convenience. The estimate in column 2 accounts for country-year fixed effects and excludes
observations for Austria 2020-21 and Norway 2021 because, for those countries, there exist no “later-treated” cities
to identify the country-year fixed effects from, as all cities that meet the sample criteria were treated. Columns 3—4
show TWFE-OLS estimates. Columns 5-6 show instrumental variable estimates as discussed in appendix B.2. The
Kleibergen-Paap Wald F'-statistics tests for the exclusion of the instruments in the first stage of the instrumental
variable. Columns 7-8 show estimates from a TWFE Poisson regression.

regression that account for treatment effect heterogeneity in staggered rollout settings have not
been developed.

To investigate whether using a log transformation of the dependent variable, as opposed to
modeling a Poisson distribution, significantly changes conclusions in our setting, we estimate a
Poisson variant of the two-way fixed effect regression

Elaccidents;t] = exp(a; + Bt + 7d;t)

where d;; is an indicator for treatment in city ¢ and month ¢. As can be seen in table 5, the
estimates from the log-linear DD specifications (e.g., column 4) and the estimates obtained from
the Poisson model (e.g., column. 8) support qualitatively comparable conclusions, especially when
country-year fixed effects are included. This similarity reassures us that our main results are not
a consequence of relying on a log-transformed dependent variable, as opposed to a Poisson model.

However, within the Poisson regression model, it is not possible to account for the treatment
effect heterogeneity that can bias estimates in the staggered rollout settings. We, therefore, treat
these results only as ancillary results and refrain from discussing the coefficient magnitude further.

B.1.3 Intensive margin

Our estimates up to this point have focused on the extensive margin (the effect of whether a city is
treated at all). Using TWFE, we can additionally calculate the effect by intensity of treatment or
dose, i.e., the number of e-scooter companies that have launched in a city. However, these estimates
should be viewed skeptically, as estimating the average effect of a dosed treatment variable requires
a much stricter identifying assumption. Namely, the parallel trends assumption needs to hold over
not only untreated potential outcomes but also over all the levels of the treatment dose (Callaway
et al., 2021). This would be violated if there was selection into different treatment intensities in
a way correlated with potential outcomes, i.e., e-scooter companies launching in cities with fewer
e-scooter accidents.



We estimate the intensive margin (table 6), the increase in the percentage of accidents for each
additional launch, where we treat company launch as terminal to capture an intent-to-treat effect
and because we do not have data on firm withdrawals from markets. Accidents involving personal
injuries increased on average by 1.0 £+ 0.5% for each additional company that launched in a city.
Looking again at the median sample city in terms of accidents, Potsdam reports 54 accidents in
the average pre-treatment month and has four e-scooter companies by May 2021. An increase of
4% thus implies an additional 2.2 monthly accidents. On the other hand, Stockholm (which had
the most e-scooter company launches in our sample, 14) would have an estimated 14% increase in
accidents. Relative to Stockholm’s pre-treatment average number of accidents, 91, the estimated
increase is 12.7 accidents per month.

Table 6: Specifications to study intensive margin effects.

1 @

OLS OLS
Effect of one additional company (%) 1.0%* 1.0**

(0.5) (0.4)
Country-year FEs v
Cities 93 93
Observations 5880 5880

Notes: * p<0.1, ** p<0.05, *** p<0.01. Columns 1-2 follow the same order as columns 3—4 of table 5, but use the
count of scooter firms, as opposed to the launch indicator for the first scooter firm, as the main independent variable.
Robust standard errors in parentheses allow for clustering of the model error at the city level. Raw estimates are
transformed to semi-elasticities: 100 - (exp(7) — 1)%. Column 2 additionally accounts for year-country fixed effects.

B.1.4 Alternative estimators accounting for potential biases with staggered rollout

As an alternative, we use the estimator proposed by Callaway and Sant’Anna (2021), which is
also intended to account for the biases that arise with staggered rollout and dynamic treatment
effects in a DD framework. See section 5.1.2 for a comparison of the differences between the
two estimators and their appropriateness for our setting. Figure 5 shows treatment effects with
estimands to be interpreted relative to one period before treatment. Pre-trend coefficients are
interpreted relative to one period before the period under consideration. See section 5.1.2 for a
discussion of the estimates in the figure relative to our preferred specification.
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Figure 5: Monthly treatment effects and pre-trends based on CS estimator
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Notes: The figure shows average treatment effects relative to treatment introduction. In the line plot, filled dots
indicate treatment effect estimates for the first 18 months relative to the month before the introduction of e-
scooter services. Circles indicate estimates for pre-treatment months relative to the respective preceding month.
Effects after month 18 are combined into a single coefficient because month-level estimates for long-term effects
are estimated on small subsamples (few cities had e-scooters early enough for long-term effects to materialize).
So, monthly estimates for later months cannot be estimated with comparable precision as for earlier months.
Shaded areas/bars indicate the 95%-confidence interval around the estimates, based on standard errors that
allow for the clustering of the model error at the city level. All estimates account for city fixed effects and
month fixed effects
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B.1.5 Synthetic difference-in-differences (Arkhangelsky et al., 2021)

Our main specification relies on an assumption of parallel trends for causal identification and we
presented several tests as evidence for parallel trends. As an additional robustness check, we
show in table 7 that results are similar when using the synthetic difference-in-differences (SDD)
estimator for multiple treatment start periods as described in the appendix of Arkhangelsky et
al. (2021). The SDD relaxes the parallel trends assumption, which states that in absence of the
treatment the group of treated and the group of untreated observations would exhibit the same
absolute change over time. The SDD instead makes a weaker assumption: that there exists a
weighted average of control units that exhibits the same absolute change over time as the treated
units would in absence of treatment. That weighted average is constructed such that the average
outcome for the treated units is approximately parallel to the weighted average for control units
before the treatment. In other words, the synthetic control fits the pre-treatment period outcomes
of the treated observations as closely as possible while allowing for a constant difference. The
assumption is that the synthetic control would continue to closely approximate the counterfactual
trend of the treatment group. The coefficient estimates in table 7 are similar to our main results,
though not as large, which can be explained by the fact that the SDD estimates have to rely on a
slightly different sample, as discussed below. The event-study and SDD estimates are more similar
when the former are restricted to the same time period, ending in December 2020 (see column 4
of table 7).

Aside from imposing a slightly less restrictive version of the parallel trends assumption, the
SDD for staggered rollout designs, as discussed in the appendix of Arkhangelsky et al. (2021),
has more demanding data requirements. It requires a balanced panel (which excludes Sweden
for panels including 2016 and 2017) and that control units must be entirely untreated within the
panel’s time frame. Recall that in our main analysis, all yet-to-be-treated units are used to impute
the month- and city-fixed-effects. To maintain a sufficiently large but comparable set of control
cities in the SDD analysis, we restrict the analysis to end in December 2020. This implies that
all cities that launched scooters in 2021 (see figure 3) can be used to construct the synthetic
control. It also implies, however, that we have fewer cities and fewer periods left to compute the
treatment effect. This required early cutoff is one reason we do not use the SDD as the main
specification. By extending the time frame to include more post-treatment periods, cities that
become treated fall out of the donor pool of control cities. Losing the yet-to-be-treated control
cities reduces the goodness of fit of the synthetic control (measured in the pre-treatment average
monthly mean squared prediction error, MSPE). Also, having a smaller donor pool jeopardizes
inference by reducing the units that can be used as placebo-treated units for the placebo variance
estimation. Similarly, extending the pre-treatment time period forces cities with missing data for
earlier time periods to be excluded due to the balanced panel requirement.

Column 1 of table 7 shows the SDD estimate, approximately 4%, for the monthly average
treatment effect of shared e-scooter services on accidents in treated cities until December 2020.
This estimate loosely corresponds to column 1 of table 10, with the difference that the estimand
excludes the treatment effects in 2021 and the treatment effect on Swedish cities. Synthetic controls
are fitted on pre-treatment data from January 2016 to the date of introduction, which is a minimum
of 27 months. Choosing December 2020 as the sample horizon allows for the estimand to include
the effect from the summers of 2019 and 2020 when the majority of our study’s cities introduced
scooters. The donor pool of cities from which the synthetic control is constructed included 31 cities,
including 13 yet-to-be-treated cities. The results do not substantively change when choosing an
earlier cut-off (e.g., July 2020 has 45 potential controls but the MSPE does not improve and the
estimate is similar). However, choosing a later cut-off quickly excludes the yet-to-be-treated control
cities. The synthetic control’s goodness of fit worsens (i.e. the MSPE doubles) and the treatment
effect cannot be reliably estimated.

Column 1 excludes all Swedish cities and Giitersloh in Germany because of missing data.
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Table 7: Synthetic difference-in-differences estimate (Arkhangelsky et al., 2021)

Estimate: synthetic difference-in-differences event-study

(1) (2) (3) (4)
2018-2020 2016-2020 2016-2020, incl.
2016-2020 incl. Sweden excl. winter Sweden & Giitersloh

Treatment effect 4.2%% 5.5HoH* 4.7k 5.TH*H
(1.8) (1.8) (1.6) (2.2)

Monthly MSPE 0.0168 0.0184 0.0114

Treated cities 71 79 67 80

Total cities 102 111 102 93

Months in sample 60 36 40 60

Post-treatment observations 1022 1187 680 1202

Full year Yes Yes No Yes

Notes: * p<0.1, ** p<0.05, *** p<0.01. Standard errors in parentheses. Columns 1-3 are estimated using the
SDD method from Arkhangelsky et al. (2021). For the SDD columns, standard errors are computed using the
placebo variance estimation method from Arkhangelsky et al. (2021) with 250 replications using Arkhangelsky
(2022). Raw estimates are transformed to semi-elasticities: 100 - (exp(7) — 1)%. Standard errors are transformed
accordingly using the delta method. Monthly MSPE is the mean squared prediction error of the synthetic control
for pre-treatment outcomes, normalized by the number of pre-treatment months. MSPE values are not transformed
from the log-linear regression. MSPE is included here as a measure of fit of the synthetic control. Column 4 uses
the event-study estimator described in Borusyak et al. (2023), and has standard errors that allow for clustering of
the model error at the city level, computed using the recommended leave-out procedure where cohorts are defines
as the quarter in which scooters were launched.

Column 2 shrinks the time frame of the panel to start in January 2018 in order to include the
Swedish cities. This, unfortunately, reduces the pre-treatment observations for Zurich to 3 months,
and Basel, Wien, Stockholm, Goéteborg, Malmé, and Uppsala all have less than 12 pre-treatment
periods.

The last reason we do not use the SDD as the main specification is its susceptibility to bias
when there is greater seasonal movement in the outcome variable in treated cities than in any
of the control cities (i.e., outside the convex hull of the controls). We found that the weighted
average of the synthetic controls constructed for both columns 1 and 2 under-predicted accidents
in the summer (April-September), and over-predicted in the winter (October-March) by the same
magnitude, 3%. In other words, the average pre-treatment difference between the synthetic control
and the treatment group is very close to zero, but the difference is consistently more in winter and
less in summer. This volatility could bias the results if the number of summer and winter months
with available data varies across cities in the sample. Balancing the seasons in our panel is the final
reason we choose December 2020 as a cutoff. For column 1, summer months (April to September)
compromise 50.1% of the pre-treatment months and 49.6% of the post-treatment months. Column
2 is 50.2% pre-treatment and 49.7% post-treatment summer months.

There is a risk of relying on an estimator with a synthetic control displaying seasonal bias.
That is why our preferred specification for the SDD is column 3 of table 7, which removes over-
compensating seasonality in the synthetic control by dropping the months of November to February
from the analysis, where accidents numbers dip low. The goodness of fit increases by a third, and
the synthetic control no longer has a detectable seasonal bias. The drawback is that the estimand is
no longer an average of all post-treatment months, but just post-treatment months between March
and October. This specification corresponds to the non-winter specification shown in column 4 of
figure 2. The estimate is correspondingly larger, likely due to the fact the restricted set of better
weather months in the estimand see more e-scooter trips and resulting accidents.
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Column 4 of table 7 restricts our main specification (using the Borusyak et al. (2023) estimator)
to also end in December 2020. In terms of sample composition, column 4 is closest to column 2, and
their estimates are similar. The only two differences in the samples between columns 2 and 4 are
that column 4 includes the city of Giitersloh and that it uses 2016-2017 to estimate the city-fixed
effects. Both differences are owed to the fact that the SDD estimator requires a balanced panel.
With the SDD estimator, we also replicated results for (i) winter months, (ii) excluding COVID,
and (iii) heterogeneity by bike lanes and found they match our main analysis closely (results not
shown). But even though synthetic controls have desirable properties, like a relaxed parallel trends
assumption, we leave it as a robustness check due to the limitations regarding time coverage and
the workarounds needed to overcome potential seasonality bias.

B.2 E-scooter rollout endogeneity concerns

B.2.1 Factors that predict treatment timing and why they are unlikely to confound
our results

The rollout of e-scooter services is not random. There are a number of factors that are predictive
of city-level market entry. These factors can be relatively time-invariant, such as population size
or infrastructure, or they can be time-varying, such as season and regulatory constraints. In this
section, we identify such factors and argue why they are either sufficiently accounted for in our
analyses through the included fixed effects, or how they can be assumed to be unrelated to accident
numbers.

Two factors that can be considered time-invariant over our period of study clearly predict the
timing of rollouts. First, firms initially target larger cities. As shown in figure 3, each country’s
largest cities were among the first to be treated. Second, firms prioritize cities that are more bicycle-
friendly, where e-scooters are arguably more likely to be successfully adopted. Table 8 regresses four
time-invariant (relative to our short study period) city characteristics on the month of e-scooter
introduction while controlling for country fixed effects, in order to see what city characteristics
predict earlier launches. The results show that larger cities and cities with an extensive separated
cycling road network received e-scooters significantly earlier. Cities with 100,000 more inhabitants
received e-scooters on average 0.3-0.6 months earlier. Cities with a one standard deviation larger
share of bike lanes received e-scooters on average 3-4 months earlier. Similarly, cities with a
one standard deviation larger number of cars per capita received e-scooters 3-4 months later. In
addition, e-scooter services tend to be launched earlier in richer cities. However, if we control for
the other city characteristics the coefficient is statistically insignificant.

The coefficient of determination in the full specification is close to 39%, in spite of only account-
ing for five city characteristics and country fixed effects. We interpret this as supportive evidence
that the timing of launches is, to a good extent, driven by time-invariant characteristics of cities.
In our estimation of the treatment effect of e-scooters, all time-invariant characteristics of cities
are controlled for through city-level fixed effects.

Three time-varying factors that predict rollout timing can also be identified. First, within a
year the start of operations is often in summer when the service is attractive to customers. Roughly
half of the launch dates are either in June, July, or August (see figure 3). Second, firms target
cities close to recently added areas of operation, likely to exploit economies of scale. For instance,
providers usually roll out their services country by country. When they decide to expand to a
country, they usually quickly roll out their services in all key cities within the respective country
(see for example the press statement by Voi on its expansion in Germany, Voi Technology, 2019a).
Also within countries, this spatial correlation can be empirically observed in the data. Between
January 2018 and June 2021, in the average sample city, the probability that a new firm launched in
a given month was 6.6%. In the first two [one] months within a new firm launching in the nearest
neighboring city (conditional on new launches anywhere else in the country) this probability is
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Table 8: Predictors of early launches

(1) (2) 3) (4) ()

Month of Month of Month of Month of Month of
introduction introduction introduction introduction introduction
Population (in 100k) -0.608*** -0.278 -0.637** -0.574%%* -0.301*
(0.169) (0.192) (0.231) (0.180) (0.152)
Share of bike lanes -3.925%%* -3.379%%*
(0.979) (1.136)
Cars per capita 3.545%* 2.712*
(1.393) (1.429)
Cycling modal share -0.699 1.065
(0.831) (0.875)
log(GDP per capita) -2.213%* -1.034
(0.901) (0.945)
Cities 93 93 93 93 93
R? 0.33 0.31 0.24 0.28 0.39

Notes: * p<0.1, ** p<0.05, *** p<0.01. The table shows the coefficients of an OLS regression, regressing the month

of introduction on different city characteristics. All independent variables, except for population are normalized
to have mean 0 and variance 1. Positive [negative] coefficients imply later [earlier] introductions. All regressions
control for country fixed effects. Robust standard errors in parentheses.

higher by around 5.14 1.5 [7.4 £ 2.4] percentage points than in other months (see table 9, columns
1 and 2). This pattern is likely driven by firm-level expansion waves, but it also translates into a
spatial correlation of the overall e-scooter rollout (see table 9, columns 3 and 4). Third, e-scooter
launches are subject to regulation, which poses a binding constraint to the timing and is unlikely
to independently affect changes in accidents. For example, in Germany, the timing of launches for
almost half of the cities coincided with federal regulation in June 2019 that initially allowed the
use of e-scooters on public roads (Gebhardt et al., 2021). Scooter providers were ready to start
operations right after the regulation allowed them to.

These three time-varying factors are unlikely to co-determine accidents (e.g., the number of
e-scooter firms in a neighboring city can be assumed not to affect accident numbers, nor does
national [de-Jregulation of e-scooter usage), or are controlled for through the use of month fixed
effects (e.g., summer months generally show higher accident numbers).

In sum, there are a number of factors determining e-scooter rollout. But the city-specific
timing of scooter launches is unlikely to be endogenous to city-idiosyncratic trends in the number
of accidents in our empirical model.
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Table 9: Launches in neighboring cities predict launches of e-scooter firms.

Dependent variable: =1 if new firm launches =1 if first firm launches
(1) (2) 3) (4)
Launches in neighbor city (2 months) 5.1 1.5%
(1.5) (0.8)
Launches in neighbor city (same month) 74Kk 2.0
(2.4) (1.4)
Launches in country (2 months) (. 7k 0.4k
(0.1) (0.1)
Launches in country (same month) 1.4 0.7+**
(0.3) (0.1)
Mean dep. var. 6.6% 6.6% 2.3% 2.3%
Cities 93 93 93 93
Observations 3826 3839 3826 3839

Notes: * p<0.1, ** p<0.05, *** p<0.01. The table shows coefficients (scaled to be interpretable as percentage
points) of a regression of indicators for firm launch between 2018 and June 2021 on firm-launch indicators for
neighboring cities. All regressions control for city and month fixed effects. Clustered standard errors in parentheses
allow for city-level clustering. ‘Neighboring city’ is the geographically closest sample city where e-scooters were ever
launched.
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B.2.2 Never-treated control cities

As an additional robustness check, we extend our analysis by including never-treated cities where
e-scooter services were not launched before 2022. Figure 6 shows the corresponding monthly
estimates. Including never-treated cities in our control group slightly decreases the magnitude of
our estimates. The estimated average treatment effect is an increase in total accidents of 4.7+£2.3%
(column 2 table 10), which is still statistically significant. While including never-treated cities
provides a larger sample and potentially more precise estimates, the concerns about comparability
and potential violation of the parallel trends assumption (see the paragraph “Additional pre-trend
tests” below) make the specification without never-treated control cities our preferred specification.

Figure 6: Monthly treatment effects, pre-trends, and aggregate treatment effects, based on figure 2,
but additionally using never-treated cities as control group.
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Notes: The figure shows average treatment effects relative to treatment introduction. Winter months are November—

February, and non-winter the remainder. In the line plot, filled dots indicate treatment effect estimates for the first
18 months relative to the introduction of e-scooter services. Circles indicate estimates for pre-treatment months.
Effects after month 18 are combined into a single coefficient because month-level estimates for long-term effects
are estimated on small subsamples (few cities had e-scooters early enough for long-term effects to materialize).
So, monthly estimates for later months cannot be estimated with comparable precision as for earlier months. In
column 3, the average treatment effect estimate and corresponding 95%-confidence interval across all available post-
treatment city-months is shown (table 10, column 2). Columns 4 and 5 show separate estimates on accidents in
winter months and non-winter months. Winter months are November—February, and non-winter the remainder.
Shaded areas/bars indicate the 95%-confidence interval around the estimates, based on standard errors that allow
for the clustering of the model error at the city level, computed via the leave-out procedure (see section 3), using
half-year (columns 1-2) or quarter (columns 3-5) of scooter launch as cohorts. All estimates account for city fixed
effects and month fixed effects.

Additional pre-trend tests Table 11 shows results for regressions testing for differences in
pre-trends, for different cohorts. To investigate pre-trends for different (potential) types of control
groups, we restrict the sample to the years 2017-2018 and regress the natural logarithm of accidents
on city and month fixed effects, while allowing for different time trends for different cohorts (never-
treated, treated during 2020, and treated during 2021). The cohort of cities that become treated

17



Table 10: Estimated treatment effects on police-reported accidents involving personal injury

Monthly event-study estimate

(1 2) 3) (4) (5) (6)

e Incl. never- First 12 . e Excluding
Main sample treated cities months Non-winter Winter COVID
%-increase in accidents 8.2%H% 4.7%% 5.3%* 11.5%%* 1.9 5. 7HH*
(2.9) (2.3) (2.1) (3.5) (3.3) (2.1)
Mean pre-treatment accidents 93.2 93.2 93.2 100.6 78.5 95.8
Treated observations 1704 1704 956 1140 564 948
Total observations 5880 7134 5880 5880 5880 5880
Cities 93 112 93 93 93 93

Notes: * p<0.1, ** p<0.05, *** p<0.01. The table shows estimated treatment effects from log-linear specifications
(see section 3). Raw estimates are transformed to semi-elasticities: 100 - (exp(7) — 1)%. Standard errors are
transformed correspondingly. Columns 1 and 3—6 rely on yet-to-be-treated observations as controls. Column 2
additionally uses never-treated cities. Standard errors are in parentheses. Standard errors allow for clustering of
the model error at the city level and are computed using the leave-out procedure recommended in Borusyak et al.
(2023), defining cohorts as the quarter in which scooters were launched.

in 2019 is the omitted category. Table 11 shows estimates based on the regression model
log(accidents;;) = «; + ¢ + Stcohort; + 44,

where cohort; indicates the cohorts. Each estimation sample is restricted to the sample of groups
treated in 2019 and the respective group for which the model allows a differential trend. The results
in Table 11 indicate that the two groups that get treated in 2020 and 2021 exhibit no significantly
different trend in 2017-2018, compared to those treated in 2019. However, the never-treated group
does have a relatively lower trend in these years (p = 0.07) that is marginally significant. This is
suggestive evidence that never-treated cities may be experiencing a differential trend in accidents.
We thus consider the specifications that do not rely on never-treated control cities preferable.

B.2.3 Controlling for city-specific time-trends and potential confounders

Table 12 shows variants of our main treatment effect estimates, controlling for city-specific linear
time trends in the natural logarithm of accidents. One possible concern is that population (density)
growth may affect accidents. If population growth was correlated with the rollout of e-scooters,
this could potentially constitute a source for omitted variable bias in our estimation framework.
To address this concern, we conducted analyses allowing for city-specific time trends in accident
numbers. Population growth is likely relatively continuous within a time frame of four years, and
thus, effects of population numbers on accident rates should be captured by linear city-specific
time trends (note that city- and month-specific fixed effects are also still accounted for).

In addition, table 13 shows the average treatment effects controlling for year-specific relation-
ships between accidents and time-fixed controls, including share of bike lanes, cars per capita,
cycling modal share and the logarithm of city’s population. Figure 7 shows the monthly treatment
effects for the specification that controls for all four interaction terms. This specification corre-
sponds to the estimation of the average treatment effects in column 5 of table 13. Including these
additional control variables does not considerably change the size and significance of our estimated
treatment effects.

B.2.4 Placebo tests on launch dates

Figure 8 shows the same analysis as figure 2 but restricts the estimand to summer-month treatment
effects. As a result, the apparent dips in treatment effects around half a year after treatment
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Table 11: Significantly different pre-trends in log(accidents) for never-treated cities.

(1) (2) (3) (4)

treated 2020 x month -0.14 -0.14
(0.15) (0.15)
treated 2021 xmonth -0.17 -0.17
(0.24) (0.24)
never-treated x month -0.31%* -0.32%*
(0.17) (0.17)
Mean dep. var. 4.2% 4.2% 4.2% 4.0%
Cities 73 61 66 104
Observations 1692 1404 1536 2424
Sample:
—year 2017-2018 2017-2018  2017-2018 2017-2018
—<city treated in .. 2019/2020 2019/2021 2019/never 2019-2021/never

Notes: * p<0.1, ** p<0.05, *** p<0.01. The table shows estimated treatment effects from log-linear TWFE
specifications allowing for linear time trends. Raw estimates are transformed to semi-elasticities: 100-(exp(7) —1)%.

Standard errors are transformed correspondingly. Standard errors allow for clustering of the model error at the city
level.

Table 12: Replication of main results, while allowing for city-specific time trends.

(1) (2) (3)

Mai | Incl. never- First 12
aih sample treated cities months
%-increase in accidents 9.3%* 8.5%* 4.7%%
(4.0) (3.5) (2.4)
Mean pre-treatment accidents 93.2 83.0 93.2
Treated observations 1704 1704 956
Total observations 5880 7134 5880
Cities 93 112 93

Notes: * p<0.1, ** p<0.05, *** p<0.01. This table shows estimated treatment effects from specifications similar
to the log-linear specification described in materials and methods, section 3. The estimation sample specifications

correspond to table 10, columns 1-3. In addition to city and year-fixed effects, these regressions allow for city-specific
linear time trends.
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Figure 7: Monthly treatment effects and pre-trends, allowing for year-specific relationships between
time-fixed controls and accidents.
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Notes: The figure shows average treatment effects relative to treatment introduction. In the line plot, filled
dots indicate treatment effect estimates for the first 18 months relative to the introduction of e-scooter services.
Circles indicate estimates for pre-treatment months. Effects after month 18 are combined into a single coefficient
because month-level estimates for long-term effects are estimated on small subsamples (few cities had e-scooters
early enough for long-term effects to be observable). So, monthly estimates for later months cannot be estimated
with comparable precision as for earlier months. In the right part, the average treatment effect estimate and
corresponding 95%-confidence interval, across all available post-treatment city-months is shown. Shaded areas/bars
indicate the 95%-confidence interval around the estimates, based on leave-out standard errors defining half-year
(for monthly estimates) or quarter (for the average treatment effect) of scooter launch as cohorts, as described
in materials and methods, subsection 3. All estimates account for city fixed effects and month fixed effects and
additionally allow for year-specific relationships between time-fixed controls and accidents.
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Table 13: Allowing for year-specific relationships between time-fixed controls and accidents.

(1) (2) (3) (4) (5)
%-increase in accidents Q.5%F* g RFKK g grkx 5.8%% 7.3¥K*
(2.9) (3.6) (2.8) (2.7) (2.7)

%-increase in accidents during the first 12 months ~ 4.9%* 5.3%* 6.0%** 3.8% 4.1F*
(2.0) (2.2) (21)  (20)  (2.0)

%-increase in accidents during summer months 11.5%*F%  13.0%FF  12.2%** 9. 0***  10.6%**
(32) (45 (34 (32 (3.0
share of bike lanes x year FX v v
cars per capita x year FX v v
cycling modal share x year FX v v
log(population) x year FX v v
Observations 5880 5880 5880 5880 5880

Notes: * p<0.1, ** p<0.05, ¥*** p<0.01. This table shows estimated treatment effects from specifications similar
to the log-linear specification described in materials and methods, section 3. The estimation sample specifications
correspond to table 10, columns 1-3. In addition to city and year-fixed effects, these regressions allow for year-
specific relationships between time-fixed controls and accidents.

observed in figure 2 are less pronounced. We take this as evidence for our conjecture that these
dips are driven by winter months.

Figure 9 shows the same analysis as figure 2 but instead of using the actual month of e-
scooter introduction, it uses placebo introduction dates that are shifted into the past by 12 or 24
months. Unlike in the real specification, we observe no significant treatment effects in this placebo
specification.
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Figure 8: Monthly treatment effects and pre-trends for non-winter months

30

20

104

AV,

V

-104

A2 -6

Months relative to e-scooter introduction

© Pre-trend coefficients

Notes: The figure shows average treatment effects relative to the treatment timing. City-months that fall into
Nov.—Feb. receive a weight of zero. Raw estimates are transformed to semi-elasticities: 100 - (exp(7) — 1)%. In
the line plot, filled dots indicate treatment effect estimates for the first 18 months relative to the introduction of
e-scooter services. Circles indicate estimates for pre-treatment months. Effects after month 15 are combined into a
single coefficient because month-level estimates for long-term effects are estimated on small subsamples (only few
cities had e-scooters early enough for long-term effects to materialize). Monthly estimates for later months could
thus not be estimated with comparable precision as for earlier months. In the right part, the average treatment
effect estimate and corresponding 95%-confidence interval, across all available post-treatment city-months is shown
(table 10, column 3). Shaded areas/bars indicate the 95%-confidence interval around the estimates, based on leave-
out standard errors defining half-year (for monthly estimates) or quarter (for the average treatment effect) of scooter
launch as cohorts, as described in materials and methods, subsection 3. All estimates account for city and month

fixed effects.
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Figure 9: Placebo tests using treatment dates shifted by 12 or 24 months.
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Notes: In each left panel, filled dots indicate treatment effect estimates by month since the placebo-introduction
of e-scooter services. Circles indicate estimates for pre-placebo-introduction differences. Shaded areas indicate
the 95%-confidence interval around the placobo-estimates, based on leave-out standard errors defining half-year of
treatment launch as cohorts, as described in section 3. In the right panels, the average placebo-treatment effect
estimates across all cities and the first 12 available post months are indicated (analogous to table 10, column 2).
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B.2.5 An instrumental variable approach

As additional corroboration, we use an instrumental variable (IV) approach to address possible
endogeneity concerns. Instruments need to vary over time and space. To construct instruments, we
use cities’ population and our heterogeneity variables, which vary cross-sectionally, and the number
of active e-scooter firms in other cities of the same country, which varies over time. The interactions
of the former with the latter are used to instrument for treatment in a two-way fixed effects model,
accounting for time and unit fixed effects. In particular, for the cross-sectional variation, we use
the three pre-treatment variables from the heterogeneity analysis in table 2 (demeaned at the
country level). For the temporal variation, we instrument the binary treatment indicator by using
a dummy variable for whether in other cities in the same country e-scooters were launched (table 5,
columns 5 and 6).

For the interaction terms to be valid instruments, they need to fulfill two conditions. First, they
need to predict e-scooter rollout, which they do (see appendix B.2.1). However, weak identification
concerns may be valid and the results should be considered estimated with significant uncertainty.
The first-stage F-statistics are reported in the table footer of table 5 in columns 5 and 6.

Second, the interaction terms between scooter firms and city-characteristics should affect ac-
cidents only through the supply of shared e-scooter services. Since the global development of the
scooter market and city characteristics are already controlled for through the use of city and month
fixed effects, this assumption may be justified.

The IV results, shown in table 5 columns 5 and 6, indicate large positive and statistically sig-
nificant treatment effects that are, however, estimated with relatively large standard errors. While
the TWFE-IV results reaffirm our main findings, we consider these results only of secondary impor-
tance because of possible weak instrument concerns and the inability of the TWFE-IV framework
to allow for heterogeneous treatment effects. Most importantly, we do not consider endogeneity
concerns a strong concern in our main specification.

B.3 Additional analyses
B.3.1 Accident severity

We investigate whether there is evidence that the average police-reported accident in a city after
the introduction of e-scooters is significantly more or less severe. If this was the case, this would
raise the question if the increase in accident numbers provides an indication for an increase harm.
We find no evidence supporting a decrease in severity of reported accidents. Figure 10 and table 14
show estimates of the treatment effects on the percentage of accidents with personal injuries that
involve only ‘slight injury’ These estimates provide suggestive evidence that, while the total
number of accidents changed with the introduction of e-scooters, the composition of the accidents
in terms of severity did not change.

The estimate in column 1 of table 14 has a corresponding 95% confidence interval from —1.8 to
+0.8%-points), based on which we can reject even moderate decreases in severity, thus we see no
grounds to assume that the increase in accidents involving e-scooters goes along with a decrease
in accident severity. Note also that all our specifications include city-fixed effects that capture
potential time-constant differences arising from estimating accident numbers from injury numbers.

To obtain these treatment effect estimates, a month-city level estimate of the percentage acci-
dents involving slight injury versus severe injury or death is required. To construct estimates for
this, we rely on the classifications by the local statistical agencies, as detailed in appendix A.l.
While all countries report aggregated accident numbers, as used in the main analysis, countries
differ in whether the numbers disaggregated by severity of injuries refer to the number of injured
people or the number accidents. Austria, Germany, and Norway report the numbers of victims
by severity of injury. Germany additionally reports the number of accidents, for the years cov-
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ered in the Unfallatlas (Statistisches Bundesamt, 2022a) (see Appendix A). Finland, Sweden and
Switzerland only report disaggregated numbers of accidents, i.e., for some countries the data allow
us to compute the percentage of accidents with slight injury, while for others we can compute the
percentage of victims with slight injury. For the 80 German cities we observe both. In these 80
cities, the two measures have similar means (85.3% of accidents involve severe injuries vs 87.1% of
victims are severely injured) and a correlation coefficient of 90%. We combine the estimates across
all six countries. We use linear regression, estimated on the sample of German observations where
we observe the percentage of accidents as the percentage of victims with slight injury to project
both into the same scale.

Figure 10: Monthly treatment effects and pre-trends on the percentage of police-reported accidents
involving personal injury involving only ‘slight injury’.
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Notes: The figure shows average treatment effects relative to treatment introduction, on the percentage of accidents

with only slight injury. Estimates have to be interpreted as percentage point changes. In the line plot, filled dots
indicate treatment effect estimates for the first 18 months relative to the introduction of e-scooter services. Circles
indicate estimates for pre-treatment months. Effects after month 18 are combined into a single coefficient because
month-level estimates for long-term effects are estimated on small subsamples (few cities had e-scooters early enough
for long-term effects to materialize). So, monthly estimates for later months cannot be estimated with comparable
precision as for earlier months. In the right part, the average treatment effect estimate and corresponding 95%-
confidence interval, across all available post-treatment city-months is shown (table 14, col. 1). Shaded areas/bars
indicate the 95%-confidence interval around the estimates, based on leave-out standard errors defining half-year of
scooter launch as cohorts, as described in materials and methods, subsection 3. All estimates account for city fixed
effects and month fixed effects.
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Table 14: Estimated treatment effects on the percentage of police-reported accidents involving
personal injury involving only ‘slight injury’.

(1) (2) 3)

Mai 1 Incl. never- First 12
am sampre treated cities months
%-point change -0.5 0.4 -0.3
(0.7) (0.5) (0.5)
[1.8, 0.8] [-0.5, 1.3] [-1.2, 0.6]
Pre-treat. mean 85.4% 84.9% 85.4%
Treated observations 1704 1704 956
Total observations 5879 7133 5879
Cities 93 112 93

Notes: * p<0.1, ** p<0.05, *** p<0.01. This table shows estimated treatment effects from a specification similar
to the one described in materials and methods, section 3, but using a percentage as the dependent variable. The
estimation sample restrictions and weights correspond to table 10, columns 1-3. Standard errors are computed using
the leave-out procedure recommended in Borusyak et al. (2023), defining cohorts based on the quarter in which
scooters were launched. 95%-confidence interval in brackets.

B.3.2 Additional tables and figures

This section contains a number of tables and figures to support arguments in the main text.

Figure 11 plots city-level 3-months moving averages for the natural logarithm of accident num-
bers of all sample cities. The moving average is used to smooth out noise. The resulting figure
illustrates that the logarithmized accident numbers follow a pattern, which can be well described
through city- and month-level fixed effects.

Table 15 computes various aggregations of the monthly treatment effects to investigate differ-
ences between short-term and long-term effects and between effects on early adopters and on late
adopters. This is suggestive evidence that effect sizes might be growing over time.

Table 15: Contrasting effect estimates for cities with early or late launches, and for the first or
second year

(1) (2) 3) (4)
Months 0-11 Months 12-23 Early adopters Late adopters
%-increase in accidents 5.3%* 10.8%** 4.6%* 6.3%*
(2.1) (4.1) (2.3) (3.2)
Cities 93 93 93 93
Total observations 5880 5880 5880 5880

Notes: * p<0.1, ** p<0.05, *** p<0.01. The table illustrates the average treatment effect estimates for the first
12 post-treatment months (col 1.), and for the second 12-month period (months 12-13) after the introduction of
e-scooters (col. 2). Columns 3 and 4 show the average treatment effect estimates for “Early” and “Late adopters”,
considering the first 12 post-treatment months. “Early adopters” are cities in which e-scooters were launched on or
before August 2018. “Late adopters” are cities that launched e-scooters after that. Standard errors in parentheses
are computed using the leave-out procedure recommended in Borusyak et al. (2023) and defining cohorts based on
the quarter in which scooters were launched. All estimations allow for month fixed effects and city fixed effects.

Table 16 repeats the heterogeneity analysis from table 2 in the annual DD framework. Quali-
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Figure 11: After applying the natural logarithm, the seasonality in accident numbers runs parallel.
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Notes: Each line represents the 3-month moving average of the natural logarithm of accident numbers for one
city. Measures in the lower ranges are noisier due to the smaller absolute numbers. Dashed lines indicate accident
numbers after the first launch of e-scooter services.

tatively the results are similar to the results from the monthly framework, estimating the largest
effects for cities with a low share of bike lanes and for cities with the largest number of cars per
capita.
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Table 16: Heterogeneity of treatment
framework

effects, estimated in the annual

difference-in-differences

Share of Cars per Cycling
bike lanes capita modal share
(1) (2) (3)
Below-median:
%-increase in accidents 11.7%* 2.7 9.0%**
(4.8) (4.0) (2.9)
Above-median:
%-increase in accidents 5.3 15.2%** 9.7%*
(3.8) (4.7) (5.0)
p-value H,: coefficients identical 0.29 0.05 0.91
Cities 75 75 75
Observations 150 150 150

Notes: * p<0.1, ¥* p<0.05, *** p<0.01. The table illustrates the average treatment effect estimates according to the
annual DD framework for different subsamples that were split subject to the median of different city characteristics.
Median splits are based on the country-level medians of each variable among sample cities. Standard errors in
parentheses account for clustering at the city level.

28



Appendix references

References

Arkhangelsky, D. (2022). synthdid: Synthetic difference-in-difference estimation. R package version
0.0.9. URL: https://github.com/synth-inference/synthdid.

Arkhangelsky, D., Athey, S., Hirshberg, D. A., Imbens, G. W., and Wager, S. (2021). “Synthetic
difference-in-differences”. American Economic Review 111 (12), pp. 4088—4118.

Borusyak, K., Jaravel, X., and Spiess, J. (2023). “Revisiting event study designs: Robust and
efficient estimation”. arXiv preprint arXiv:2108.12419.

Bundesamt fiir Strassen ASTRA (2018). “Fachapplikation Verkehrsunfélle (VU) - Instruktionen
zum Unfallaufnahmeprotokoll 2018.” Accessed: Mar 10, 2022. {https://www.astra.admin.c
h/dam/astra/de/dokumente/unfalldaten/publikationen/InstruktionenzumAusfillende
sUnfallaufnahmeprotokolls (UAP) .pdf.download.pdf/Instruktionen_Unfallaufnahmepr
otokoll_UAP2018.pdf}.

— (2022). “Unfallkarte.” Accessed: Apr 1, 2022. https://www.astra.admin.ch/astra/de/home
/dokumentation/daten-informationsprodukte/unfalldaten/geografische-auswertunge
n/interaktive-karte.html.

Callaway, B., Goodman-Bacon, A., and Sant’Anna, P. H. (2021). “Difference-in-differences with a
continuous treatment”. arXiv preprint arXiv:2107.02637.

Callaway, B. and Sant’Anna, P. H. (2021). “Difference-in-differences with multiple time periods”.
Journal of Econometrics 225 (2), pp. 200-230.

City of Jyvéaskyla (2020). “Jyviskyldn seudun henkiloliikennetutkimus 2019.” Accessed: Apr 17,
2022. https://www. jyvaskyla.fi/jyvaskyla/tilastotietoa/liikennetilastot.

Eurostat (2022). “Transport - cities and greater cities (urb_ctran).” Luzembourg. Accessed: Feb
17, 2022. https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=urb\_ctran.

— (2023). “Gross domestic product (GDP) at current market prices by NUTS 3 regions.” Luz-
embourg. Accessed: Mar 10, 2023. https://ec . europa. eu/eurostat/databrowser/view
/NAMA_10R_3GDP__custom_2790272/bookmark/table?lang=en&bookmarkId=50e0b1b7-0a2d
-4058-b7ce-3b30eal991£5.

Federal Agency for Cartography and Geodesy (2022). “Administrative areas 1:250,000 (levels), as
of 01.01. (VG250 01.01.).” Data licence Germany — attribution — Version 2.0.

Federal Office of Topography swisstopo (2022). “swissBOUNDARIES3D.” https://wuw.swissto
po.admin.ch/en/geodata/landscape/boundaries3d.html.

Finnish Transport and Communications Agency (2020). “Finnish national travel survey.” Accessed:
Apr 15, 2022. https://www.traficom.fi/en/news/publications/finnish-national-trav
el-survey.

Gebhardt, L., Wolf, C., and Seiffert, R. (2021). “T’'ll take the e-scooter instead of my car”-The
potential of e-scooters as a substitute for car trips in Germany”. Sustainability 13 (13), p. 7361.

GEONORGE (2022). “Administrative units municipalities.” https://kartkatalog.geonorge.n
o/metadata/administrative-enheter-kommuner/041f1le6e-bdbc-4091-b48f-8a5990f3cc
5b.

Gilardi, A. and Lovelace, R. (2021). osmextract: Download and import Open Street Map data
extracts. R package version 0.4.0. URL: https://CRAN.R-project.org/package=osmextract.

Goodman-Bacon, A. (2021). “Difference-in-differences with variation in treatment timing”. Journal
of Econometrics 225 (2), pp. 254-277.

Kenworthy, J. R. and Svensson, H. (2022). “Exploring the energy saving potential in private, public
and non-motorized transport for ten Swedish cities”. Sustainability 14 (2), p. 954.

Ministerium fiir Verkehr des Landes Nordrhein-Westfalen (2019). “Mobilitdt in Nordrhein-Westfalen—
Daten und Fakten 2018/2019.” Accessed: Apr 15, 2022. https://broschuerenservice.nrw.d

29



e/files/download/pdf/mobilitaet-in-nrw-daten-und-fakten-2018-2019-pdf_von_mob
ilitaet-in-nordrhein-westfalen-daten-und-fakten-2018-2019_vom_vm_3160.pdf.

National Land Survey of Finland (2022). “Division into administrative areas based on municipali-
ties (1:250k).” Creative Commons Attribution License 4.0.

Pebesma, E. (2018). “Simple Features for R: Standardized Support for Spatial Vector Data”. The
R Journal 10 (1), pp. 439-446.

Statistics Austria (2021a). “Kraftfahrzeuge - Bestand.” Accessed: Apr 10, 2022. https://www.st
atistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/verkehr/str
asse/kraftfahrzeuge_-_bestand/index.html.

— (2021b). “Population at the beginning of the year since 2002, for 2021”. Accessed: Nov 23,
2021. https://statcube.at/.

— (2021c). “Standard-Dokumentation Metainformationen zur Statistik der Strafenverkehrsun-
falle.” Accessed: Feb 25, 2022. https://www.statistik.at/wem/idc/idcplg?IdcService
=GET_PDF_FILE&RevisionSelectionMethod=LatestReleased&dDocName=003162.

— (2021d). “Stralenverkehrsunfille 2020 - Tabellenteil.” Accessed: Feb 25, 2022. https://wuw.s
tatistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/verkehr/st
rasse/unfaelle_mit_personenschaden/index.html.

— (2022). “Municipalities https://www.data.gv.at/katalog/dataset/stat_gliederung-ost
erreichs-in-gemeinden14£53”. Creative Commons Attribution License 3.0.

Statistics Finland (2020). “Population in urban settlements and sparsely populated areas by age,
sex and municipality.” Accessed: Apr 15, 2022. https://pxnet2.stat.fi/PXWeb/pxweb/en/St
atFin/StatFin__vrm__vaerak/statfin_vaerak_pxt_11s7.px/table/tableViewLayoutl/.

— (2021). “139f — Population projection 2021: population according to age and sex by area, 2021-
2040, for 2021”. Accessed: Nov 26, 2021. https://pxdata.stat.fi/PxWeb/pxweb/en/StatFi
n/StatFin__vaenn/statfin_vaenn_pxt_139f.px/.

— (2022a). “Documentation of statistics on road traffic accidents.” Accessed: Apr 15, 2022. http
s://www.stat.fi/en/statistics/documentation/ton\#Sourcedataanddatacollections.

— (2022b). “Personal injury accidents by area, road class and involved monthly, 2015M01-2022M03.

Accessed: Apr 15, 2022. https://pxweb2.stat.fi/PXWeb/pxweb/en/StatFin/StatFin__ton
/statfin_ton_pxt_111g.px.

— (2022c). “Statistical grouping of municipalities 2022.” Accessed: Apr 15, 2022. https://www.s
tat.fi/en/luokitukset/kuntaryhmitys/kuntaryhmitys_1_20220101/0/.

Statistics Norway (2021a). “04861: Area and population of urban settlements (M) 2000 - 2021”.
Accessed: Nov 26, 2021. https://www.ssb.no/en/statbank/table/04861/.

— (2021b). “Population and land area in urban settlements.” Accessed: Apr 15, 2022. https://w
ww.ssb.no/en/befolkning/folketall/statistikk/tettsteders-befolkning-og-areal.

— (2022). “Road traflic accidents involving personal injury.” Accessed: Apr 15, 2022. https://w
ww.ssb.no/en/transport-og-reiseliv/landtransport/statistikk/trafikkulykker-med
-personskade.

Statistics Sweden (2021a). “Localities 2020; population and land area by locality and municipality.”
Accessed: Dec 1, 2021. www.scb.se/MI0810.

— (2021b). “Population in Sweden 31 December 2020, municipal comparative figures”. Accessed:
Jan 2, 2022. https://wuw.scb.se/en/finding-statistics/statistics-by-subject-area
/population/population-composition/population-statistics/.

— (2022a). “Digital boundaries: Kommun Sweref99 TM.” https://www.scb.se/hitta-statist
ik/regional-statistik-och-kartor/regionala-indelningar/digitala-granser/.

— (2022b). “Localities and urban areas.” Accessed: Apr 15, 2022. https://www.scb.se/en/fin
ding-statistics/statistics-by-subject-area/environment/land-use/localities-an
d-urban-areas/.

30



Statistisches Bundesamt (2017). “Statistik der StraBenverkehrsunfille.” Accessed: Apr 15, 2022.
https://www.destatis.de/DE/Methoden/Qualitaet/Qualitaetsberichte/Verkehrsunfae
lle/strassenverkehrsunfaelle.pdf?__blob=publicationFile.

— (2020). “Stadte (Alle Gemeinden mit Stadtrecht) nach Fliche, Bevolkerung und Bevolkerungs-
dichte am 31.12.2019”. Accessed: Oct 22, 2021. https://www.destatis.de/DE/Themen/Laen
der-Regionen/Regionales/Gemeindeverzeichnis/Administrativ/05-staedte.html.

— (2022a). “Unfallatlas.” Accessed: Apr 14, 2022. https://unfallatlas.statistikportal.de/.

— (2022b). “Verkehrsunfille”. Fachserie 8 Fachserie 8-Reihe 7.

— (2022c¢). “Verkehrsunfille-Grundbegriffe der Verkehrsunfallstatistik.” Accessed: Apr 15, 2022.
https://www.destatis.de/DE/Themen/Gesellschaft-Unwelt/Verkehrsunfaelle/Methode
n/verkehrsunfaelle-grundbegriffe.pdf?__blob=publicationFile.

Sun, L. and Abraham, S. (2021). “Estimating dynamic treatment effects in event studies with
heterogeneous treatment effects”. Journal of Econometrics 225 (2), pp. 175-199.

Swiss Federal Statistical Office (2021). “Demographic balance of the permanent resident population
by district and commune, 1991-2021”. Accessed: Oct 21, 2021. https://www.bfs.admin.ch/b
fs/en/home/statistics/population/effectif-change/regional-distribution.html.

Tenngy, A., Gundersen, F., and @Oksenholt, K. V. (2022). “Urban structure and sustainable modes’
competitiveness in small and medium-sized Norwegian cities”. Transportation Research Part
D: Transport and Environment 105, p. 103225.

Voi Technology (2019a). “E-scooter sharing company Voi reveals plans to expand across 150 cities
with new generation e-scooter and bike range.” Accessed: Apr 19, 2022. http://meltwater.p
ressify.io/publication/5c£525cd43a56200043a968c/5cc2e92ebc666£1000014954.

— (2019b). “Voi goes Rostock (facebook-event).” Accessed: Apr 15, 2022. https://www.faceboo
k.com/events/rostock-altstadt/voi-goes-rostock-e-scooter-pop-up-powered-by-vo
1/2488803011186548/.

31



