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In this work, the phase diagram of the 2 + 1-dimensional Gross-Neveu model is investigated with
baryon chemical potential as well as chiral chemical potential in the mean-field approximation.
We study the theory using two lattice discretizations, which are both based on naive fermions.
An inhomogeneous chiral phase is observed only for one of the two discretizations. Our results
suggest that this phase disappears in the continuum limit.
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1. Introduction

The Gross-Neveu (GN) model describes # 5 fermion flavors with a quartic interaction in the
scalar channel. It is frequently used as a toy model for spontaneous breaking of chiral symmetry
[1]. In general, four-Fermi theories are of interest in many applications in high energy physics
[2–7], condensed matter physics1 [8–18] but also of theoretical aspects of quantum field theory
(e.g., renormalizability in the 1/# expansion or in a perturbative approach) [19–21]. In the mean-
field approximation, the 1 + 1-dimensional GN model exhibits a symmetric phase, a homogeneous
symmetry-broken phase and an inhomogeneous phase, where the chiral condensate is an oscillating
function of the spatial coordinate [22–24].

Recently, two independent mean-field studies of the `-) phase diagram (` denotes the baryon
chemical potential) of the 2 + 1-dimensional GN model were published [25–27]. An important
result of these works is that the existence of an inhomogeneous phase depends on the details of
the regularization. When the regulator (lattice spacing or Pauli-Villars cutoff) is removed, the
inhomogeneous phase disappears.

In this work, we continue our previous lattice field theory investigations [25, 27] by studying
the phase diagram of the 2 + 1-dimensional GN model with an additional chiral chemical potential
`45.

2. The 2 + 1-dimensional GN model

The action of the 2 + 1-dimensional GN model with baryon chemical potential ` as well as
chiral chemical potential `45 is given by

([k̄, k] =
∫

33G

( # 5∑
==1

k̄=

(
Wama + W0` + W45W0`45

)
k= −

62

2

( # 5∑
==1

k̄=k=

)2)
, (1)

where k= is a four-component massless fermion field, # 5 is the number of flavors and 62 is the
coupling of the four-fermion interaction. A reducible representation of theClifford algebra is chosen,
where W0, W1 and W2 are block-diagonal. The upper two components ofk= can be interpreted as being
“left-handed”, the lower two components as “right-handed”. There are two linearly independent
matrices W4 and W5, which anti-commute with W0, W1 and W2 and, thus, both fulfill the necessary
properties of a suitable W5 matrix [7, 31]. Continuous symmetry transformations correspond to the
generators I4 and W45 2, while discrete chiral symmetry transformations are given by either W4 or W5
[6, 30]. Since W45 = diag(+I2, −I2), the chemical potential `45 generates a chiral imbalance. More
details can be found in Ref. [27] and will also be discussed in an upcoming publication.

By introducing an auxiliary boson field f and integrating over the fermion fields, one obtains
the effective action

(eff [f] = # 5

(
1

2_

∫
33G f2 − ln

(
det(&)

))
, / =

∫
�f 4−(eff [f ] , (2)

1Especially 2 + 1-dimensional models are often used to describe superconducting electrons in high-temperature
superconductors, which are confined to planes.

2For # 5 fermion fields one needs to consider tensor products with the generators of flavor rotations to get the full set
of symmetry transformations.
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where
& = Wama + W0` + W45W0`45 + f (3)

is the Dirac operator and _ = # 5 6
2. The effective action is real-valued, if the boson field f

is restricted to be constant in temporal direction (see appendix A of Ref. [27] for a proof). As
(eff ∝ # 5 , the limit # 5 → ∞ reduces the relevant configurations in the path integral to the global
minima of (eff, i.e., the mean-field approximation becomes exact in that limit. A Ward-Takahashi
identity causes f to be proportional to the chiral condensate 〈k̄=k=〉. Moreover, the effective action
Eq. (2) is invariant under f → −f. Thus, f is an order parameter for the discrete chiral symmetry.

The Dirac operator can be expressed in terms of irreducible representations of the Clifford
algebra [28],

& [`, `45, f] = diag
(
& (2) [` + `45, f], &̃ (2) [` − `45, f]

)
, (4)

where &2 [`, f] and &̃ (2) [`, f] are defined as

& (2) [`, f] = +g2(m0 + `) + g3m1 + g1m2 + f, (5)
&̃ (2) [`, f] = −g2(m0 + `) − g3m1 − g1m2 + f. (6)

The Dirac operators & (2) and &̃ (2) contain two inequivalent 2 × 2 representations, (W0, W1, W2) =
(g2, g3, g1) and (W0, W1, W2) = − (g2, g3, g1), with g9 denoting the Pauli matrices. They act on
the “left-handed” and “right-handed” components introduced above. For `45 = 0 their chemical
potentials are the same, but for `45 ≠ 0 they differ, ` + `45 and `− `45, indicating chiral imbalance.
The determinants of & (2) and &̃ (2) are invariant under f → −f as well as under ` → −`. A
consequence of the latter is that det& as well as effective action (2) are invariant under the exchange
of ` and `45. This property is used to check our numerical results presented in section 4.

One can show that

det& (4) [`, f] =
(
det& (2) [`, f]

)2
=

(
det &̃ (2) [`, f]

)2
(7)

with& (4) [`, f] = & [`, 0, f] (see Ref. [27] for the proof). In consequence, the same phase diagram
would be obtained if a Dirac operator

& ′[`, `45, f] = diag
(
& (4) [` + `45, f], & (4) [` − `45, f]

)
(8)

would be used in the action. Then, the spinor fields would obtain an additional degree of freedom,
independent of chirality, that one can interpret as “isospin” and `45 would serve as an isospin
chemical potential. We will explore this concept further in an upcoming publication.

3. Lattice discretizations

We use lattice discretizations of Eq. (2) similar to that discussed in section 4 of Ref. [27]. The
main difference is that we use a lattice also in temporal direction instead of a superposition of plane
waves. The cubic space-time volume is V×+ = V× !× ! and the corresponding lattice has spacing
0 and #C × #B × #B sites, i.e., V = 0#C and ! = 0#B. The boundary conditions are antiperiodic in
temporal direction and periodic in the two spatial directions.

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
3
8
1

Phase diagram of the 2 + 1-dimensional Gross-Neveu model with chiral imbalance Marc Winstel

For numerical computations it is convenient to work in momentum space. When using naive
fermions, a weight function ,̃2 with specific properties has to be included in the interaction term of
the GNmodel, to ensure the correct continuum limit (see Refs. [19, 27, 32], in particular appendix 2
of Ref. [19]). The Dirac operator is then

&(?, @) = iX?,@
2∑

a=0
Wa sin

(
?a − Xa,0 i(` + W45`45)

)
+ X?0,@0,̃2(p − q)f̃(p − q), (9)

where all quantities are expressed in units of 0, i.e., dimensionless. In this work as well as in our
previous work [27] we use and compare two weight functions corresponding to two different lattice
discretizations,

,̃ ′2(p) =
∏
a=1,2

,̃ ′1(?a) , ,̃ ′1(?a) =
cos(?a) + 1

2
(10)

and

,̃ ′′2 (p) =
∏
a=1,2

,̃ ′′1 (?a) , ,̃ ′′1 (?a) = Θ(c/2 − |?a |), (11)

where Θ(?) is the Heaviside function.

4. Numerical results

The phase diagram at `45 = 0 is known from Refs. [26, 27]. There is a symmetric phase
(f = 0) at large ` and/or ) and a homogeneous symmetry-broken phase with a spatially constant
field f = f̄ ≠ 0 at small ` and small ) . For ,2 = ,

′′
2 and finite lattice spacing there is also

an inhomogeneous phase, where f is a varying function of the spatial coordinates (f = f(x)),
at small ) between the symmetric and the homogeneous symmetry-broken phase. This phase,
however, vanishes in the continuum limit. There is no inhomogeneous phase for,2 = ,

′
2, neither

at finite lattice spacing nor in the continuum limit.
In this section we discuss numerical results for the two lattice discretizations (10) and (11) with

the aim to extend the phase diagram to `45 ≠ 0. Technical aspects like scale setting and tuning of
the coupling constant are explained in Ref. [27]. As usual, all dimensionful quantities are expressed
in units of f0 = f |`=0,`45=0,) ≈0, the vacuum expectation value of f.

4.1 The homogeneous phase diagram

When only allowing a homogeneous condensate, i.e., f̃(p) = f̄Xp,0, the lattice discretizations
with, ′2 and,

′′
2 are identical (cf. Eq. (10) and Eq. (11) for p = 0). The effective action at given `,

`45 and ) is a function of just one variable and can be minimized numerically in a straightforward
way to determine the physically preferred value of f̄.

Fig. 1 shows the phase diagram in 3-dimensional `-`45-) space at finite lattice spacing and
space-time volume. We note that these results reflect the previously discussed ` ↔ `45 symmetry
of the effective action. The observed phase boundary for `45 = 0 is close to the continuum
result from Ref. [33], where small deviations are due to discretization errors and finite volume

4
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Figure 1: Phase diagram of the chirally imbalanced 2 + 1-dimensional GN model with restriction to a
homogeneous condensate in 3-dimensional `-`45-) space for 0f0 = 0.2327 and !f0 = 27.92.
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Figure 2: “Phase diagram” of the chirally imbalanced 2 + 1-dimensional GN model obtained via stability
analyses in 3-dimensional `-`45-) space for 0f0 = 0.2327 and !f0 = 23.27 and the discretization with
,2 = ,

′′
2 . The two plots show the same data from different angles.

corrections. There are also slight differences to our lattice results from Ref. [27], because of
different discretizations in temporal direction.

For large temperature, )/f0 & 0.4, the phase boundary exhibits an approximate rotational
symmetry in the `-`45 plane, i.e., the phase boundary is crudely described by `2 + `2

45 = const.
The behavior is completely different at low temperatures, )/f0 . 0.1, where the phase boundary
resembles a square in the `-`45 plane.
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4.2 Instabilities with respect to spatially inhomogeneous perturbations

To study possibly existing inhomogeneous phases, one has to allow for arbitrary modulations,
i.e., non-vanishing f(p), and to find the global minima of the effective action. In principle, such
a minimization is possible within our lattice field theory approach, but it is a computationally
extremely challenging task. For 1-dimensional modulations and `45 = 0 we were successfully
using a local minimization algorithm with several randomly chosen initial field configurations [27].
In the near future we plan to use similar techniques to search for 2-dimensional modulations that
are global minima, both at `45 = 0 and `45 ≠ 0.

In this work, a simpler strategy is applied and the existence of inhomogeneous phases is studied
via stability analyses. For given `, `45 and ) we check the stability of the homogeneous condensate
f̄, as determined in the previous subsection, with respect to spatially inhomogeneous perturbations
Xf̃(p) (for details we refer to Ref. [27]). If there is a perturbation Xf̃(p), which lowers the effective
action compared to the homogeneous condensate, an inhomogeneous phase is indicated. In this way
regions in the phase diagram can be mapped, which correspond to or are part of an inhomogeneous
phase.

Since there is no inhomogeneous phase in the continuum limit for chirally balanced matter
[26, 27], we now explore, whether `45 ≠ 0 might favor the existence of such a phase. We start
with the discretization with,2 = ,

′′
2 and show in Fig. 2 the boundaries of the instability region in

3-dimensional `-`45-) space at finite lattice spacing and space-time volume. The instability region
resembles a tetrahedron and is adjacent to the homogeneously broken phase depicted in Fig. 1.
Increasing |`45 | seems to disfavor an inhomogeneous phase, because the instability region shrinks.

Computations at several values of the lattice spacing suggest that the instability region vanishes
in the continuum limit also at `45 ≠ 0. This is supported by computations with the discretization
with,2 = ,

′
2, where no instability region is observed, neither at `45 = 0 (as discussed in Ref. [27])

nor at `45 ≠ 0. These results will be shown and discussed inmore detail in an upcoming publication.
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