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Abstract

Recurrent cortical network dynamics plays a crucial role for sequential information
processing in the brain. While the theoretical framework of reservoir computing provides
a conceptual basis for the understanding of recurrent neural computation, it often
requires manual adjustments of global network parameters, in particular of the spectral
radius of the recurrent synaptic weight matrix. Being a mathematical and relatively
complex quantity, the spectral radius is not readily accessible to biological neural
networks, which generally adhere to the principle that information about the network
state should either be encoded in local intrinsic dynamical quantities (e.g. membrane
potentials), or transmitted via synaptic connectivity. We present two synaptic scaling
rules for echo state networks that solely rely on locally accessible variables. Both rules
work online, in the presence of a continuous stream of input signals. The first rule,
termed flow control, is based on a local comparison between the mean squared recurrent
membrane potential and the mean squared activity of the neuron itself. It is derived
from a global scaling condition on the dynamic flow of neural activities and requires the
separability of external and recurrent input currents. We gained further insight into the
adaptation dynamics of flow control by using a mean field approximation on the
variances of neural activities that allowed us to describe the interplay between network
activity and adaptation as a two-dimensional dynamical system. The second rule that
we considered, variance control, directly regulates the variance of neural activities by
locally scaling the recurrent synaptic weights. The target set point of this homeostatic
mechanism is dynamically determined as a function of the variance of the locally
measured external input. This functional relation was derived from the same mean-field
approach that was used to describe the approximate dynamics of flow control.

The effectiveness of the presented mechanisms was tested numerically using different
external input protocols. The network performance after adaptation was evaluated by
training the network to perform a time delayed XOR operation on binary sequences. As
our main result, we found that flow control can reliably regulate the spectral radius
under different input statistics, but precise tuning is negatively affected by interneural
correlations. Furthermore, flow control showed a consistent task performance over a
wide range of input strengths/variances. Variance control, on the other side, did not
yield the desired spectral radii with the same precision. Moreover, task performance was
less consistent across different input strengths.

Given the better performance and simpler mathematical form of flow control, we
concluded that a local control of the spectral radius via an implicit adaptation scheme
is a realistic alternative to approaches using classical “set point” homeostatic feedback
controls of neural firing.
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Author summary

How can a neural network control its recurrent synaptic strengths such that network
dynamics are optimal for sequential information processing? An important quantity in
this respect, the spectral radius of the recurrent synaptic weight matrix, is a non-local
quantity. Therefore, a direct calculation of the spectral radius is not feasible for
biological networks. However, we show that there exist a local and biologically plausible
adaptation mechanism, flow control, which allows to control the recurrent weight
spectral radius while the network is operating under the influence of external inputs.
Flow control is based on a theorem of random matrix theory, which is applicable if
inter-synaptic correlations are weak. We apply the new adaption rule to echo-state
networks having the task to perform a time-delayed XOR operation on random binary
input sequences. We find that flow-controlled networks can adapt to a wide range of
input strengths while retaining essentially constant task performance.

Introduction 1

Echo state networks are a class of recurrent neural networks that can be easily trained 2

on time dependent signal processing tasks. Once externally induced, the recurrent 3

activity provides a reservoir of non-linear transformations [1], both in time and space, 4

that may be utilized by a linear readout unit. Training the linear output units makes an 5

echo state network a highly effective prediction machine [1, 2]. However, achieving 6

optimal performance needs fine tuning of the network properties, in particular the 7

spectral radius R = |Λmax]. It is closely related to the so-called echo state property [3]. 8

While different equivalent formulations exist, a common definition for the echo-state 9

property posits that specific input sequences lead to uniquely determined sequences of 10

neural activity. This presumption implies that perturbations of the network’s initial 11

conditions decay over time. Theoretical approaches linking the echo-state property to 12

network parameters have led to results that can be divided into necessary and sufficient 13

conditions for obtaining the echo state property. In particular, early works on echo state 14

networks already established coarse bounds for the choice of the recurrent weight 15

matrix, namely R < 1 as a necessary condition and σmax < 1 as a sufficient condition, 16

where σmax is the largest singular value [3]. In practice, setting R ≈ 1 has proven to be 17

sufficient for achieving the echo state property and good network performance [1, 3, 4]. 18

This observation was supported by a theoretical result stating that for R < 1, the 19

probability for the network dynamics being contracting tends to 1 for a large number of 20

nodes [5]. If, however, R is significantly smaller than 1, information is lost too fast over 21

time, which is detrimental for tasks involving sequential memory. A spectral radius of 22

about one is hence best [6], in the sense that it provides a maximal memory capacity if 23

the network operates in a linear regime [7, 8]. Similarly, Boedecker et al. found the best 24

memory capacity to be close to the largest Lyapunov exponent being equal to zero [9], 25

which can be understood as a generalization of the aforementioned results for nonlinear 26

dynamics. 27

Aside their applications as efficient machine learning algorithms, echo state networks 28

are potentially relevant as models of information processing in the brain [10–12]. 29

An extension to layered ESN architectures was presented by Gallicchio and 30

Micheli [13], which bears greater resemblance to the hierarchical structure of cortical 31

networks than the usual shallow ESN architecture. This line of research illustrates the 32

importance to examine whether local and biological plausible principles exist that would 33

allow to tune the properties of the neural reservoir to the “edge of chaos” [14], in 34

particular when a continuous stream of inputs is present. The rule has to be 35

independent of the network topology, which is not a locally accessible information, and 36
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of the distribution of synaptic weights. 37

Generally speaking, strategies for optimizing ESN hyperparameters can be divided 38

in two categories: supervised and unsupervised methods, where the first one utilizes an 39

error signal, while the latter uses only information contained within the network 40

dynamics. Our work is concerned with unsupervised optimization, independent of the 41

actual task at hand. Several studies investigated local unsupervised intrinsic plasticity 42

rules for improving neural reservoirs [15–17], usually by defining a target output 43

distribution that each neuron attempts to reproduce by changing neural gains and 44

biases, or a target distribution for the local optimization of information 45

transmission [18, 19]. In general, however, it is difficult to formulate an explicit analytic 46

theory that quantifies the relation between intrinsic neural parameters and global 47

network dynamics, or corresponding parameters, as, for example, the spectral radius. 48

One issue with choosing a fixed target distribution for optimizing network performance 49

is that changing the external input, e.g. its mean or variance, affects the configuration 50

of gains and biases resulting from the intrinsic plasticity mechanism. It can happen that 51

the induced changes decrease performance by driving the network away from the critical 52

point, which is known to be a beneficial dynamical state for sequence learning 53

tasks [20–25]. 54

Here, we propose and compare two unsupervised homeostatic mechanisms, which we 55

termed flow control and variance control. Both are supposed to regulate the mean and 56

variance of neuronal firing such that the network works in an optimal regime with 57

regard to sequence learning tasks. The mechanisms act on two sets of node-specific 58

parameters, the biases bi and the neural gain factors ai. This approach can be 59

considered a realization of dual homeostasis, which has been investigated previously 60

with respect to a stable control of the mean and the variance of neural activity [26]. In 61

this framework, the adaptation of the bias acts an intrinsic plasticity for the control of 62

the internal excitability of a neuron [27–29], while the gain factors functionally 63

correspond to a synaptic scaling of the recurrent weights [30–32]. 64

We restricted ourselves to ‘biologically plausible’ adaption mechanisms, viz 65

mechanisms for which the dynamics of all variables is local, i.e., bound to a specific 66

neuron. Additional variables enter only when locally accessible. In a strict sense, this 67

implies that local dynamics is determined exclusively by the dynamical variables of the 68

neuron and by information about the activity of afferent neurons. Being less restrictive, 69

one could claim that it should also be possible to access aggregate or ‘mean-field’ 70

quantities that average a property of interest with respect to the population. For 71

example, nitric oxide is a diffusive neurotransmitter that can act as a measure for the 72

population average of neural firing rates [33]. 73

In this study, we used standard discrete-time dynamics, which is markovian, with 74

information about past states being stored dynamically. Following a general description 75

of the model and the network, we present the flow control: it involves a normalization 76

constraint in phase space (Sect. Autonomous spectral radius regulation). We evaluate 77

the performance of networks that were subject to adaptation in Sect. XOR-memory 78

recall, using a nonlinear recall task based on a sequential binary XOR-operation. Finally, 79

we discuss the influence of node-to-node cross-correlations within the population in 80

Sect. Input induced correlations. 81

Model 82

A full description of the network model and parameters can be found in the methods 83

section. We briefly introduce the network dynamics as 84

xi(t) = ai

N∑
j=1

Wijyj(t− 1) + Ii(t), yi(t) = tanh (xi(t)− bi) . (1)
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Each neuron’s membrane potential xi consists of a recurrent contribution 85

ai
∑N
j=1Wijyj(t− 1) and some external input Ii(t). The biases bi were subject to the 86

following homeostatic adaptation: 87

bi(t) = bi(t− 1) + εb [yi(t)− µt] . (2)

Here, µt defines a target for the average activity. 88

For ai, we considered two different forms of update rules. The first, flow control, is 89

given by 90

ai(t) = ai(t− 1)
[
1 + εa∆Ri(t)

]
, ∆Ri(t) = R2

t |yi(t− 1)|2 − |xr,i(t)|2 . (3)

The parameter Rt defines the desired target spectral radius. We also considered an 91

alternative global update rule where ∆Ri(t) was given by 92

∆Ri(t) =
1

N

[
R2

t ||y(t− 1)||2 − ||xr(t)||2
]
. (4)

However, since this is a non-local rule, it only served as a comparative model to Eq. (3) 93

when we investigated the effectiveness of the adaptation mechanism. 94

The second rule, variance control, has the form

ai(t) = ai(t− 1) + εa

[
σ2
t,i(t)− (yi(t)− µy

i (t))
2
]

(5)

σ2
t,i(t) = 1−

√
1 + 2R2

tyi(t)
2 + 2σ2

ext,i(t) (6)

µy
i (t) = µy

i (t− 1) + εµ [yi(t)− µy
i (t− 1)] (7)

σ2
ext,i(t) = σ2

ext,i(t− 1) + εσ

[
(Ii(t)− µext,i(t))

2 − σ2
ext,i(t− 1)

]
(8)

µext,i(t) = µext,i(t− 1) + εµ [Ii(t)− µext,i(t− 1)] . (9)

Eq. (5) drives the average variance of each neuron towards a desired target variance. 95

While Eq. (7)–(9) are simply local trailing averages of the mean activity and the mean 96

and variance of the external input, Eq. (6) is an analytic expression that was derived 97

from a mean field approximation which is explained in S2 Appendix. Similar to flow 98

control, we also considered a non-local version for comparative reasons where (6) was 99

replaced with 100

σ2
t,i(t) = 1−

√
1 + 2R2

t ||y(t)||2/N + 2σ2
ext,i(t) . (10)

Before proceeding to the results, we explain the mathematical background of the 101

proposed adaptation rules in more detail. 102

Autonomous spectral radius regulation 103

We would like to explain the theoretical framework that led us to propose Eq. (3) 104

and (6) as a regulatory mechanism for the spectral radius of the recurrent weight matrix. 105

The circular law of random matrix theory states that the eigenvalues λj are 106

distributed uniformly on the complex unit circle if the elements of a real N ×N matrix 107

are drawn from distributions having zero mean and standard deviation 1/
√
N [34]. 108

Noting that the internal weight matrix Wij has prN non-zero elements per row, the 109

circular law implies that the spectral radius of aiWij , the maximum of |λj |, is unity 110

when the synaptic scaling factors ai are set uniformly to 1/σw. Our goal is to investigate 111

adaption rules for the synaptic rescaling factors that are based on dynamic quantities, 112

which includes the membrane potential xi, the neural activity yi and the input Ii. 113

A N ×N matrix with i.i.d. entries with zero mean and 1/N variance will have a 114

spectral radius of one as N →∞. Rajan and Abbott [35] investigated the case where 115
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the statistics of the columns of the matrix differ in their means and variances: given 116

row-wise E-I balance for the recurrent weights, the square of the spectral radius of a 117

random N ×N matrix whose columns have variances σ2
i is N

〈
σ2
i

〉
i

for N →∞. Since 118

the eigenvalues are invariant under transposition, this result can also be applied to our 119

case, where node-specific gain factors ai were applied to each row of the recurrent 120

weights. Thus, the spectral radius Ra of random matrices aiWij is approximately given 121

by 122

R2
a u

1

N

∑
i

R2
a,i, R2

a,i := a2i
∑
j

(Wij)
2

(11)

for large N , assuming that the distribution underlying Ŵ has zero mean. Note that R2
a 123

can also be expressed in terms of the Frobenius norm
∥∥∥Ŵa

∥∥∥
F

via 124

R2
a u

∥∥∥Ŵa

∥∥∥2
F
/N . (12)

Note that, before proceeding to further investigations, we numerically tested this 125

approximation for N = 500 and heterogeneous random sets of ai drawn from a uniform 126

[0, 1]-distribution and found a very close match to the actual spectral radii (1-2% 127

relative error). 128

Considering the Ra,i as per site estimates for the spectral radius, one can use the 129

generalized circular law (11) to regulate Ra on the basis of local adaption rules, one for 130

every ai. 131

In the particular case of flow control, this was done using a comparison between the 132

variance of neural activity that is present in the network and the resulting recurrent 133

contribution to the membrane potential. A more detailed explanation is given in 134

Sect. Spectral radius, singular values and global Lyapunov exponents and S1 Appendix. 135

In short, we propose that, 136〈
||xr(t)||2

〉
t
u R2

a

〈
||y(t− 1)||2

〉
t
, (13)

where xr,i is the recurrent contribution to the membrane potential xi. This stationarity 137

condition led to the adaptation rule given in Eq. (3). 138

Instead of directly imposing Eq. (13) via an appropriate adaptation mechanism, we 139

also considered the possibility of transferring this condition into a set point for the 140

variance of neural activities as a function the external driving. To do so, we used a 141

mean-field approach to describe the effect of the recurrent input onto the resulting 142

neural activity variance. A detailed description is given in S2 Appendix. This led to the 143

update rule given by Eq. (5)–(9). 144

Results 145

Flow control 146

Flow control, see Eq. (3), robustly led to the desired spectral radius Rt when 147

correlations were weak. It is of particular interest that an internal network parameter, 148

the spectral radius, can be regulated in the continuing present of external inputs I(t). 149

For correlated input streams, as listed in Sect. Input protocols, substantial inter-neuron 150

correlation may be induced. In this case a stationary state was still attained, but with a 151

spectral radius deviating to a certain extent from the parameter Rt entering (3). 152

In Fig. 1, we present a simulation for a network with N = 500 sites, a connection 153

probability pr = 0.1 and an adaption rate εa = 10−3. The standard deviation of the 154

external driving is σext = 0.5. Numerically, we found that the time needed to converge 155

to the stationary states depends substantially on Rt, slowing down when the spectral 156
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Fig 1. Online spectral radius regulation using flow control. The spectral
radius Ra and the respective local estimates Ra,i as defined by (11). For the input
protocols see Sect. Input protocols, for the local and global adaption rules (3) and (4).
A: Dynamics of R2

a,i and R2
a, in the presence of heterogeneous independent Gaussian

inputs. Local adaptation. B: Heterogeneous identical binary input, local adaptation. C:
Heterogeneous identical binary input, global adaptation. D: Distribution of eigenvalues
of the corresponding affective synaptic matrices Ŵa. Circles denote the respective
spectral radii. Local adaption converges to a spectral radius that is too large (the target
is unity), when the driving input is strongly correlated.

radius becomes small. It is then advantageous, as we have done, to scale the adaption 157

rate εa inversely with the trailing average x̄2r of ||xr||2, viz as εa → εa/x̄
2
r . 158

For all input protocols and adaption rules, the spectral radius was found to converge 159

to a finite value. The desired value, in this case Rt = 1, was however not attained when 160

a strongly correlated input interferes with local adaption, see Eq. (3). The local 161

estimates Ra,i for the spectral radius show a substantial heterogeneity, which was 162

reduced when adaption is global, using (16). 163

Variance control 164

In comparison, variance control, shown in Fig. 2, resulted in a spectral radius that 165

was consistently off by a factor of approx. 20%. Note that we had to introduce a lower 166

bound of 0 for ai, since some gain factors would otherwise have become negative. 167

Overall, in comparison to flow control, variance control did not exhibit the same level of 168

precision in tuning the system towards a desired spectral spectral radius. 169
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Fig 2. Online spectral radius regulation using variance control. The spectral
radius Ra and the respective local estimates Ra,i as defined by (11). For the input
protocols see Sect. Input protocols, for the local and global adaption rules (5) and (10).
A: Dynamics of R2

a,i and R2
a, in the presence of heterogeneous independent Gaussian

inputs. Local adaptation. B: Heterogeneous identical binary input, local adaptation. C:
Heterogeneous identical binary input, global adaptation. D: Distribution of eigenvalues
of the corresponding affective synaptic matrices Ŵa. Circles denote the respective
spectral radii. Local adaption converges to a spectral radius that is too large (the target
is Rt = 1) under all input protocols.

Spectral radius, singular values and global Lyapunov exponents 170

Apart from the spectral radius Ra of the matrix Ŵa, one may consider the relation 171

between the adaptation dynamics and the respective singular values σi of Ŵa. We recall 172

that the spectrum of Ûa = Ŵ †a Ŵa is given by the squared singular values, σ2
i , and that 173

the relation ||xr||2 = y†Ŵ †a Ŵay holds. Now, assume that the time-averaged projection 174

of neural activity y = y(t) onto all eigenvectors of U(t) is approximately the same, that 175

is, there is no preferred direction of neural activity in phase space. From this idealized 176

case, it follows that the time average of the recurrent contribution to the membrane 177

potential can be expressed with 178

〈
||xr||2

〉
t
≈
〈
||y||2

〉
t

N

∑
i

σ2
i =

〈
||y||2,

〉
t

N

∑
i,j

(
aiWij

)2
(14)

as the rescaled average of the σ2
i . For the second equation, we used the fact that the 179∑

i σ
2
i equals the sum of all matrix elements squared [36,37]. With (11), one finds that 180

(14) is equivalent to
〈
||xr||

2
,
〉
t

= R2
a

〈
||y||2,

〉
t

and hence to the flow condition (13). 181

This result can be generalized, as done in S1 Appendix, to the case that the neural 182
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activities have inhomogeneous variances, while still being uncorrelated with zero mean. 183

We then show that the stationarity condition leads to a spectral radius of 184

(approximately) unity. 185

It is worthwhile to note that the singular values of Ûa = Ŵ †a Ŵa do exceed unity 186

when Ra = 1. More precisely, for a random matrix with i.i.d. entries, one finds in the 187

limit of large N that the largest singular value is given by σmax = 2Ra, in accordance 188

with the Marchenko-Pastur law for large random matrices [38]. Consequently, directions 189

in phase space exist, in which the norm of the phase space vector is elongated by factors 190

greater than one. Still, this does not contradict the fact that a unit spectral radius 191

coincides with a transition to chaos for the non-driven case. The reason is that the 192

global Lyapunov exponents are given by 193

lim
n→∞

1

2n
ln

((
Ŵn

a

)†
Ŵn

a

)
(15)

which eventually converge to ln‖λi‖, see S1 Fig and [39], where λi is the ith eigenvalue 194

of Ŵa. The largest singular value of the nth power of a random matrix with a spectral 195

radius Ra scales like Rna in the limit of large powers n. The global Lyapunov exponent 196

goes to zero as a consequence when Ra → 1. 197

Spectral radius adaption dynamics 198

For an understanding of the spectral radius adaption dynamics of flow control, it is of 199

interest to examine the effect of using the global adaption constraint 200

∆Ri(t) =
1

N

[
R2

t ||y(t− 1)||2 − ||xr(t)||2
]

(16)

in (3). The spectral radius condition (13) is then enforced directly, with the 201

consequence that (16) is stable and precise even in the presence of correlated neural 202

activities (see Fig. 1C). This rule, while not biologically plausible, provides an 203

opportunity to examine the dynamical flow, besides the resulting state. There are two 204

dynamical variables, a ≡ ai = aj , which, for the sake of simplicity, are assumed to be 205

homogeneous, and the activity variance σ2
y = ||y||2/N . The evolution of (a, σ2

y) 206

resulting from the global rule (4) is shown in Fig. 3. 207

For the flow, ∆a = a(t+ 1)− a(t) and ∆σ2
y = σ2

y(t)− σ2
y(t− 1), the approximation

∆a = εaa
(
1− a2

)
σ2
y (17)

∆σ2
y = 1− σ2

y −
1√

1 + 2a2σ2
y + 2σext

(18)

is obtained when using Rt = 1 in (16), and σw = 1 for the normalized variance of the 208

synaptic weights, as defined by (26). We used the mean-field approximation for neural 209

variances that is derived in in S2 Appendix. The analytic flow compares well with 210

numerics, as shown in Fig. 3. For a subcritical rescaling factor a and σext = 0, the 211

system flows towards a line of fixpoints defined by a vanishing σ2
y and a finite a ∈ [0, 1]. 212

When starting with a > 0, the fixpoint is instead (a, σ2
y) = (1, 0). The situation changes 213

qualitatively for finite external inputs, viz when σext > 0. The nullcline ∆σ2
y = 0 is now 214

continuous and the system flows, as shown in Fig. 3 to a = 1, with the value of σ2
y being 215

determined by the intersection of the two nullclines. 216

This analysis shows that external input is necessary for a robust flow towards the 217

desired spectral weight, the reason being that the dynamics dies out before the spectral 218

weight can be adapted when the isolated systems starts in the subcritical regime. 219
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Fig 3. Spectral radius adaption dynamics. The dynamics of the synaptic
rescaling factor a and the squared activity σ2

y (orange), as given by (4), for Rt = 1. Also
shown is the analytic approximation to the flow (blue), see (17) and (18), and the
respective nullclines ∆a = 0 (green) and ∆σ2

y = 0 (red). For the input, the
heterogeneous binary protocol is used, with σext = 0.25 and εa = 0.1.

XOR-memory recall 220

To this point, we only presented results regarding the effectiveness of the introduced 221

adaption rules. However, we did not account for their effects onto a given learning task. 222

Therefore, we tested the performance of locally adapted networks under the delayed 223

XOR task, which evaluates the memory capacity of the echo state network in 224

combination with a non-linear operation. For the task, the XOR operation is to be 225

taken with respect to a delayed pair of two consecutive binary inputs signals, u(t−τ) 226

and u(t−τ−1), where τ is a fixed time delay. The readout layer is given by a single 227

unit, which has the task to reproduce 228

fτ (t) = XOR [u(t−τ), u(t−τ−1)] , t, τ = 1, 2, . . . , (19)

where XOR[u, u′] is 0/1 if u and u′ are identical/not identical. 229

The readout vector wout is trained with respect to the mean squared output error, 230

||Ŷwout − fτ ||
2

+ α||wout||2 , (20)

using ridge regression on a sample batch of Tbatch = 10N time steps, here for N = 500, 231

and a regularization factor of α = 0.01. The batch matrix Ŷ , of size Tbatch × (N + 1), 232

holds the neural activities as well as one node with constant activity serving as a 233

potential bias. The readout (column) vector wout is similarly of size (N + 1). The 234

Tbatch entries of fτ are the fτ (t), viz the target values of the XOR problem. Minimizing 235

(20) leads to 236

wout =
(
Ŷ †Ŷ + α2

)−1
Ŷ † fτ . (21)

The learning procedure is repeated independently for each time delay τ . We quantified
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Fig 4. XOR performance for flow control. Color-coded performance sweeps for
the XOR-performance (22) after adaptation using flow control. Averaged over five trials.
The input has variance σ2

ext and the target for the spectral radius Rt. A/B panels are
for heterogeneous binary/Gaussian input protocols. Optimal performance (yellow solid
line) is in general close to criticality, Ra = 1, as measured (white dashed lines).

the performance by the total memory capacity, MCXOR, as

MCXOR =
∞∑
k=1

MCXOR,k (22)

MCXOR,k =
Cov2 [fk(t), yout(t)]t

Var [fk(t)]t Var [yout(t)]t
. (23)

The activity yout =
∑N+1
i=1 wout,i yi of the readout unit is compared in (23) with the 237

XOR prediction task, with the additional neuron, yN+1 = 1, corresponding to the bias 238

of the readout unit. The variance and covariance are calculated with respect to the 239

batch size Tbatch. 240

The results for flow control presented in Fig. 4 correspond to two input protocols, 241

heterogeneous Gaussian and binary inputs. Shown are sweeps over a range of σext and 242

Rt. The update rule (3) was applied to the network for each pair of parameters until 243

the ai values converged to a stable configuration. We then measured the task 244

performance as described above. Note that in the case of Gaussian input, this protocol 245

was only used during the adaptation phases. Due to the nature of the XOR task, we 246

chose to use binary inputs with the corresponding variances during the performance 247

testing. See S2 Fig in the appendix for a performance sweep using the homogeneous 248

binary and Gaussian input protocol. Optimal performance is generally attained around 249

the Ra ≈ 1 line. A spectral radius Ra slightly smaller than unity was optimal when 250

using Gaussian input, but not for binary input signals. In this case the measured 251

spectral radius Ra deviates linearly from the target Rt, with increasing strength of the 252

input, as parameterized by the standard deviation σext. Optimal performance is, 253

however, essentially independent of the input strength, apart from σext → 0, with the 254

peak located roughly at Rt ≈ 0.55. 255

Comparing these results to variance control, as shown in Fig. 5, we found that 256

variance control resulted in an overall lower performance. To our surprise, for external 257

input with a large variance, Gaussian input caused stronger deviations from the desired 258

spectral radius as compared to binary input. Therefore, in a sense, it appeared to 259

behave opposite to what we found for flow control. However, similar to flow control, the 260
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Fig 5. XOR performance for variance control. Color-coded performance sweeps
for the XOR-performance (22) after adaptation using variance control. Averaged over
five trials. The input has variance σ2

ext and the target for the spectral radius Rt. A/B
panels are for heterogeneous binary/Gaussian input protocols. Optimal performance
(yellow solid line) is in general close to criticality, Ra = 1, as measured (white dashed
lines).

value of Rt giving optimal performance under a given σext remained relatively stable 261

over the range of external input strength measured. On the other hand, using 262

homogeneous input, see S3 Fig, did cause substantial deviations from the target spectral 263

radius when using binary input. 264

The two input protocols used for the data shown in Fig. 4 and 5 relate to two 265

different (biological) scenarios: First, an idealized case where a local recurrent neural 266

ensemble only receives input from one particular source that has very specific statistics, 267

such as, in our model case, a binary input sequence. In this scenario, it is plausible to 268

assume that the input statistics under which long term adaptation is taking place 269

coincide with the type of input patterns that are considered for the evaluation of the 270

actual task performance. A second, presumably more plausible situation is the case 271

where different input streams are integrated in the neural ensemble. Each neuron 272

receives a weighted superposition of those input signals. Unless those inputs were 273

strongly correlated, this would mean that random Gaussian input—as used in Fig. 4 B 274

and 5 B—is a reasonable approximation to this scenario. 275

Input induced correlations 276

The theory for the echo-state layer, Eq. (49), which was used in Eq. (18) and (6),
assumes that the variance σ2

bare of the bare recurrent contribution to the membrane
potential, xbare =

∑
jWijyj , is given by σ2

wσ
2
y. In Fig. 6, a comparison is presented for

the four input protocols introduced in Sect. Input protocols. For the Gaussian protocols,
for which neurons receive statistically uncorrelated external signals, one observes that
σ2
bare → σ2

wσ
2
y in the thermodynamic limit N →∞ via a power law, which is to be

expected when the presynaptic neural activities are decorrelated. On the other side,
binary 0/1 inputs act synchronous on all sites, either with site-dependent or
site-independent strengths (heterogeneous/homogeneous). Corresponding activity
correlations are induced and a finite and only weakly size-dependent difference between
σ2
bare and σ2

wσ
2
y shows up. Substantial corrections to the analytic theory are to be

expected in this case. To this extend we measured the cross-correlation C(yi, yj),
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Fig 6. Size dependence of correlation. Comparison between the variance σ2
bare of

the bare recurrent input xbare =
∑
jWijyj with σ2

wσ
2
y. Equality is given when the

presynaptic activities are statistically independent. This can be observed in the limit of
large network sizes N for uncorrelated input data streams (homogeneous and
heterogeneous Gaussian input protocols), but not for correlated inputs (homogeneous
and heterogeneous binary input protocols). Compare Sect. Input protocols for the input
protocols. Parameters are σext =0.5, Ra =1 and µt=0.05.

defined as

C̄ =
1

N(N − 1)

∑
i 6=j

|C(yi, yj)|, C(yi, yj) =
Cov(yi, yj)√

Cov(yi, yi)Cov(yj , yj)
, (24)

with the covariance given by Cov(yi, yj) = 〈(yi − 〈yi〉t)(yj − 〈yj〉t)〉t. For a system of 277

N = 500 neurons the results for the averaged absolute correlation C̄ are presented in 278

Fig. 7 (see S4 Fig in the supplementary material for homogeneous input protocols). 279

Autonomous echo-state layers are in chaotic states when supporting a finite activity 280

level, which implies that correlations vanish in the thermodynamic limit N →∞. The 281

case σext = 0, as included in Fig. 7, serves consequently as a yardstick for the 282

magnitude of correlations that are due to the finite number of neurons. 283

Input correlations are substantially above the autonomous case for correlated binary 284

inputs, with the magnitude of C̄ decreasing when the relative contribution of the 285

recurrent activity increases. This is the case for increasing Rt. The effect is opposite for 286

the Gaussian protocol, for which the input does not induce correlations, but contributes 287

to decorrelating neural activity. The mean absolute correlation C̄ is in this case 288

suppressed when the internal activity becomes small in the limit Rt → 0. Finite-size 289

effects are relevant only when the internal activity is of the order of the input-induced 290

activity, viz for increasing Rt. 291

Discussion 292

The mechanisms for tuning the spectral radius via a local homeostatic adaption rule 293

introduced in the present study require neurons to have the ability to distinguish and 294

measure locally both external and recurrent input contributions. For flow control, 295

neurons need to be able to compare the recurrent membrane potential with their own 296

activity, as assumed in Sect. Autonomous spectral radius regulation. On the other hand, 297
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Fig 7. Input induced activity correlations. For heterogeneous binary and
Gaussian inputs (A/B), the dependency of mean activity cross correlations C̄, see
Eq. (24). C̄ is shown as a function of the target spectral radius Ra. Results are
obtained for N=500 sites by averaging over five trials, with shadows indicating the
accuracy. Correlations are due to finite-size effect for the autonomous case σext =0.

variance control directly measures the variance of the external input and derives the 298

activity target variance accordingly. The limiting factor to a successful spectral radius 299

control is the amount of cross-correlation induced by external driving statistics. As such, 300

the functionality and validity of the proposed mechanisms depended on the ratio 301

between external input, i.e. feed-forward or feedback connections, with respect to 302

recurrent, or lateral connections. In general, it is not straightforward to directly connect 303

experimental evidence regarding the ratio between recurrent and feed-forward 304

contributions to the effects observed in the model. It is, however, worthwhile to note 305

that the fraction of synapses associated with interlaminar loops and intralaminar lateral 306

connections are estimated to make up roughly 50% [40]. Relating this to our model, it 307

implies that the significant interneural correlations that we observed when external 308

input strengths were of the same order of magnitude as the recurrent inputs, can not 309

generally be considered an artifact of biologically implausible parameter choices. In fact, 310

synchronization is a widely observed phenomenon in the brain and is even considered 311

important for information processing [41,42]. 312

Overall, we found flow control to be generally more robust than variance control in 313

the sense that, while still being affected by the amount of correlations within the neural 314

reservoir, the task performance was less so prone to changes in the external input 315

strength. Comparatively stable network performance could be observed, in spite of 316

significant deviations from the desired spectral radius (see Fig. 4). A possible 317

explanation may be that flow control uses a distribution of samples from only a 318

restricted part of phase space, that is, from the phase space regions that are actually 319

visited or “used” for a given input. Therefore, while a spectral radius of unity ensures 320

–statistically speaking– the desired scaling properties in all phase-space directions, it 321

seem to be enough to control the correct scaling for the subspace of activities that is 322

actually used for a given set of input patters. Variance control, on the other hand, relies 323

more strictly on the assumptions regarding the statistical independence of neural 324

activities. In consequence, the desired results could only be achieved under a rather 325

narrow set of input statistics (independent Gaussian input with small variance). In 326

addition, the approximate expression derived for the nonlinear transformation appearing 327

in the mean field approximation adds another layer of potential source of systematic 328

error to the control mechanism. This aspect also speaks in favor of flow control, since 329

its rules are mathematically more simple. In contrast to variance control, the 330
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stationarity condition stated in Eq. (13) is independent of the actual nonlinear 331

activation function used and could easily be adopted in a modified neuron model. It 332

should be noted, however, that the actual target Rt giving optimal performance might 333

then also be affected. 334

Interestingly, flow control distinguishes itself from a conventional local activity-target 335

perspective of synaptic homeostasis: There is no predefined set point in Eq. (3). This 336

allows heterogeneities of variances of neural activity to develop across the network, 337

while retaining the average neural activity at a fixed predefined level. 338

Conclusion 339

Apart from being relevant from a theoretical perspetive, we propose that the 340

separability of recurrent and external contributions to the membrane potential is an 341

aspect that is potentially relevant for the understanding of local homeostasis in 342

biological networks. While homeostasis in neural compartments has been a subject of 343

experimental research [43,44], to our knowledge, it has not yet been further investigated 344

on a theoretical basis. Given that the neural network model used in this study lacks 345

some features characterizing biological neural networks (e.g. strict positivity of the 346

neural firing rate, Dale’s law), future research should therefore investigate whether the 347

here presented framework of local flow control can be implemented within more realistic 348

biological neural network models. A particular concern regarding our findings is that 349

biological neurons are spiking. The concept of an underlying instantaneous firing rate is, 350

strictly speaking, a theoretical construct, let alone the definition of higher moments, 351

such as the “variance of neural activity”. However, it is important to note that 352

real-world biological control mechanims, e.g. of the activity, rely on physical quantities 353

that serve as measurable correlates. A well-known example is the intracellular calcium 354

concentration, which is essentially a linearly filtered version of the neural spike 355

train [32]. On a theoretical level, Cannon and Miller showed that dual homeostasis can 356

successfully control the mean and variance of this type of spike-averaging physical 357

quantities [26]. An extension of the flow control to filtered spike trains of spiking 358

neurons could be an interesting subject of further investigations. However, using spiking 359

neuron models would have shifted the focus of our research towards the theory of liquid 360

state machines [45,46], exceeding the scope of this publication. We therefore leave the 361

extension to more realistic network/neuron models to future work. 362

Materials and methods 363

Model 364

We implemented an echo state network with N neurons, receiving Din inputs. The 365

neural activity is yi ∈ [−1, 1], xi the membrane potential, ui the input activities, Wij 366

the internal synaptic weights and Ii the external input received. The output layer will 367

be specified later. The dynamics 368

xi(t) = ai

N∑
j=1

Wijyj(t− 1) + Ii(t), yi(t) = tanh (xi(t)− bi) (25)

is discrete in time, where the input Ii is treated instantaneously. A tanh-sigmoidal has 369

been used as a nonlinear activation function. 370

The synaptic renormalization factor ai in (25) can be thought of as a synaptic 371

scaling parameter that neurons use to regulate the overall strength of the recurrent 372
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Table 1. Standard values for model parameters

N pr σw µt εb εa εµ εσ

500 0.1 1 0.05 10−3 10−3 10−4 10−3

inputs. The strength of the inputs Ii is unaffected, which is biologically plausible if 373

external and recurrent signals arrive at separate branches of the dendritic tree [44]. 374

The Wij are the bare synaptic weights, with aiWij being the components of the 375

effective weight matrix Ŵa. Key to our approach is that the propagation of activity is 376

determined by Ŵa, which implies that the spectral radius of the effective, and not of the 377

bare weight matrix needs to be regulated. 378

The bare synaptic matrix Wij is sparse, with a connection probability pr = 0.1. The 379

non-zero elements are drawn from a Gaussian with standard deviation 380

σ =
σw√
Npr

, (26)

and vanishing mean µ. Here Npr corresponds to the mean number of afferent internal 381

synapses, with the scaling ∼ 1/
√
Npr enforcing size-consistent synaptic-weight 382

variances. 383

As introduced in the introduction, we applied the following adaptation mechanisms: 384

bi(t) = bi(t− 1) + εb [yi(t)− µt] . (27)

For the gains, using flow control: 385

ai(t) = ai(t− 1)
[
1 + εa∆Ri(t)

]
, ∆Ri(t) = R2

t |yi(t− 1)|2 − |xr,i(t)|2 . (28)

For variance control:

ai(t) = ai(t− 1) + εa

[
σ2
t,i(t)− (yi(t)− µy

i (t))
2
]

(29)

σ2
t,i(t) = 1−

√
1 + 2R2

tyi(t)
2 + 2σ2

ext,i(t) (30)

µy
i (t) = µy

i (t− 1) + εµ [yi(t)− µy
i (t− 1)] (31)

σ2
ext,i(t) = σ2

ext,i(t− 1) + εσ

[
(Ii(t)− µext,i(t))

2 − σ2
ext,i(t− 1)

]
(32)

µext,i(t) = µext,i(t− 1) + εµ [Ii(t)− µext,i(t− 1)] . (33)

For a summary of model parameters, see Table 1. 386

Input protocols 387

Overall, we examined four distinct input protocols. 388

� Homogeneous Gaussian. Nodes receive inputs Ii(t) that are drawn individually 389

from a Gaussian with vanishing mean and standard deviation σext. 390

� Heterogeneous Gaussian. Nodes receive stochastically independent inputs Ii(t) 391

that are drawn from Gaussian distributions with vanishing mean and node specific 392

standard deviations σi,ext. The individual σi,ext are normal distributed, as drawn 393

from the positive part of a Gaussian with mean zero and variance σ2
ext. 394

� Homogeneous binary. Sites receive identical inputs Ii(t) = σextu(t), where 395

u(t) = ±1 is a binary input sequence. 396
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� Heterogeneous binary. We define with 397

Ii = W u
i u(t), uj(t) = ±1 (34)

the afferent synaptic weight vector W u
i , which connects the binary input sequence 398

u(t) to the network. All W u
i are drawn independently from a Gaussian with mean 399

zero and standard deviation σext. 400

The Gaussian input variant simulates external noise. We used it in particular to test 401

predictions of the theory developed in Sect. S2 Appendix. In order to test the 402

performance of the echo state network with respect to the delayed XOR task, the binary 403

input protocols are employed. A generalization of the here defined protocols to the case 404

of vectorial input signals would be straightforward. 405

Supporting information 406

S1 Fig. 407

408

Convergence of Lyapunov Spectrum. Convergence of eigenvalues of 409

ln
(
(Ŵn)†Ŵn

)
/(2n) for different n, as discussed in Sect. . Ŵ is a random Gaussian 410

matrix which was rescaled to a spectral radius of one. Colors from blue to orange 411

encode the exponent n ranging between 1 and 30. Green dots show the theoretical limit 412

of ln‖λi‖, where λi is the ith eigenvalue of Ŵ . 413
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S2 Fig. 414

415

XOR performance for flow control, homogeneous input. Numerical results for 416

the network performance under a time-delayed XOR task, as defined in 417

Sect. XOR-memory recall, using homogeneous binary/Gaussian input. Shown are 418

color-coded performance sweeps for the XOR-performance (22), averaged over five trials. 419

The input has variance σ2
ext and the target for the spectral radius Rt. A/B panels are 420

for binary/Gaussian input protocols. Optimal performance for a given σext is given by 421

yellow solid lines, measured value of Ra = 1 by white dashed lines. 422

S3 Fig. 423

424

XOR performance for variance control, homogeneous input. Numerical results 425

for the network performance under a time-delayed XOR task, as defined in 426

Sect. XOR-memory recall, using homogeneous binary/Gaussian input. Shown are 427

color-coded performance sweeps for the XOR-performance (22), averaged over five trials. 428

The input has variance σ2
ext and the target for the spectral radius Rt. A/B panels are 429

for binary/Gaussian input protocols. Optimal performance for a given σext is given by 430

yellow solid lines, measured value of Ra = 1 by white dashed lines. 431
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S4 Fig. 432

433

Input induced activity correlations. For homogeneous binary and Gaussian inputs 434

(A/B), the dependency of mean activity cross correlations C̄, see Eq. (24). C̄ is shown 435

as a function of the target spectral radius Ra. Results are obtained for N=500 sites by 436

averaging over five trials, with shadows indicating the accuracy. Correlations are due to 437

finite-size effect for the autonomous case σext =0. 438

S1 Appendix. 439

Extended theory of flow control for independent neural activity 440

We would like to show that the stationarity condition in Eq. (13) results in the 441

correct spectral radius, under the special case of independently identically distributed 442

neural activities with zero mean. 443

We start with Eq. (13) as a stationarity condition for a given Rt: 444〈
||xr(t)||2

〉
t

!
= R2

t

〈
||y(t− 1)||2

〉
t
. (35)

We can express the left side of the equation as 445

E
[
y†(t)Ŵ †a Ŵay(t)

]
t
. (36)

We define Ûa ≡= Ŵ †a Ŵa with {σ2
k} being the set of eigenvalues, which are also the

squared singular values of Ŵa, and {uk} the respective set of orthonormal (column)

eigenvectors. We insert the identity
∑N
k=1 uku

†
k and find

E

[
y†(t)Ûa

N∑
k=1

uku
†
ky(t)

]
t

(37)

=E

[
N∑
k=1

σ2
ky
†(t)uku

†
ky(t)

]
t

(38)

=
N∑
k=1

σ2
ku
†
kE
[
y(t)y†(t)

]
t
uk (39)

=
N∑
k=1

σ2
ku
†
kĈyyuk (40)

=Tr
(
D̂σ2 Ŝ†uĈyyŜu

)
. (41)
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Given zero mean neural activity, Ĉyy = E[y(t)y†(t)]t is the covariance matrix of neural 446

activities. D̂σ2 is a diagonal matrix holding the {σ2
k} and Ŝu is a unitary matrix whose 447

columns are {uk}. Ŝ†uĈyyŜu is expressing Ĉyy in the diagonal basis of Ûa. 448

Including the right hand side of the equation, we get 449

Tr
(
D̂σ2 Ŝ†uĈyyŜu

)
= R2

tTr
(
Ĉyy

)
. (42)

However, since the trace is invariant under a change of basis, we find 450

Tr
(
D̂σ2 Ŝ†uĈyyŜu

)
= R2

tTr
(
Ŝ†uĈyyŜu

)
. (43)

Defining Ĉu ≡= Ŝ†uĈyyŜu, we get 451

N∑
k=1

σ2
kC

u
kk = R2

t

N∑
k=1

Cu
kk . (44)

If we assume that the node activities are independently identically distributed with zero 452

mean, we get (Ĉyy)ij = (Ĉu)ij =
〈
y2
〉
t
δij . In this case, which was also laid out in 453

Sect. , the equation reduces to 454

N∑
k=1

σ2
k = R2

tN . (45)

The Frobenius norm of a square Matrix Â is given by ‖Â‖
2

F ≡=
∑
i,j Â

2
ij . Furthermore, 455

the Frobenius norm is linked to the singular values via ‖Â‖
2

F =
∑
k σ

2
k(Â) [36, 37]. This 456

allows us to state 457∑
i,j

(
Ŵa

)2
ij

= R2
tN (46)

which, by using (11), gives 458

R2
a = R2

t . (47)

A slightly less restrictive case is that of uncorrelated but inhomogeneous activity, that is 459

(Ĉyy)ij =
〈
y2i
〉
t
δij . The statistical properties of the diagonal elements Cu

kk then 460

determine to which degree one can still claim that Eq. (44) leads to Eq. (45). Fig. 8 461

shows an example of a randomly generated realization of (Ĉyy)ij =
〈
y2i
〉
t

and the 462

resulting diagonal elements of Ĉu, where the corresponding orthonormal basis Ŝu was 463

generated from the SVD of a random Gaussian matrix. 464

As one can see, the basis transformation has a strong smoothing effect on the 465

diagonal entries, while the mean over the diagonal elements is preserved. Note that this 466

effect was not disturbed by introducing random row-wise multiplications to the random 467

matrix from which the orthonormal basis was derived. The smoothing of the diagonal 468

entries allows us to state that Cu
kk u

〈
y2
〉

is a very good approximation in the case 469

considered, which therefore reduces (44) to the homogeneous case previously described. 470

We can conclude that the adaptation mechanism also gives the desired spectral radius 471

under uncorrelated inhomogeneous activity. 472

In the most general case, we can still state that if Cu
kk and σ2

k are uncorrelated, for 473

large N , Eq. (44) will tend towards 474

N
〈
σ2
〉
〈Cu〉 = NR2

t 〈Cu〉 (48)

which would also lead to Eq. (45). However, we can not generally guarantee statistical 475

independence since the recurrent contribution on neural activities and the resulting 476

entries of Ĉyy and thus also Cu
kk are linked to Ŝ and σ2

k, being the SVD of the recurrent 477

weight matrix. 478
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Fig 8. Diagonal Elements of a randomly generated covariance matrix and
its representation in the Ŝu basis. Ĉyy is a diagonal matrix with diagonal entries

randomly drawn from [0, 1], Ŝu is the orthonormal eigenbasis of Ŵ †a Ŵa, where Ŵa is a
random Gaussian matrix. The black dashed line denotes the average over the diagonal
entries of Ĉyy.

S2 Appendix 479

Mean field theory for echo state layers 480

In the following, we deduce analytic expressions allowing to examine the state of 481

echo-state layers subject to a continuous timeline of inputs. Our approach is similar to 482

the one presented by Massar [47]. 483

The recurrent part of the input xi received by a neuron is a superposition of Npr
terms, which are assumed here to be uncorrelated. Given this assumption, the
self-consistency equations

σ2
y,i =

∫ ∞
−∞

dx tanh2(x)Nµi,σi
(x)− µ2

y,i (49)

µy,i =

∫ ∞
−∞

dx tanh(x)Nµi,σi(x) (50)

σ2
i = a2iσ

2
w

〈
σ2
y,j

〉
j

+ σ2
ext,i, µi = µext,i − bi (51)

determine the properties of the stationary state. We recall that σw parameterizes the 484

distribution of bare synaptic weights via (26). The general expressions (49) and (50) 485

hold for all neurons, with the site-dependency entering exclusively via ai, bi, σext,i and 486

µext,i, as in (51), with the latter characterizing the standard deviation and the mean of 487

the input. Here, a2iσ
2
wσ

2
y is the variance of the recurrent contribution to the membrane 488

potential, x, and σ2 the respective total variance. The membrane potential is Gaussian 489

distributed, as Nµ,σ(x), with mean µ and variance σ2, which are both to be determined 490

self-consistently. Variances are additive for stochastically independent processes, which 491

has been assumed in (51) to be the case for recurrent activities and the external inputs. 492

The average value for the mean neural activity is µi. 493
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Fig 9. Variance control for the spectral radius. The spectral radius Ra, given by
the approximation R2

a =
∑
i a

2
i /N , for the four input protocols defined in Sect. Input

protocols. Lines show the numerical self-consistency solution of (49), symbols the full
network simulations. Note the instability for small σy and σext. A: Homogeneous
independent Gaussian input. B: Homogeneous identical binary input. C: Heterogeneous
independent Gaussian input. D: Heterogeneous identical binary input.

For a given set of ai, σext,i and bi, the means and variances of neural activities, σ2
y,i 494

and µy,i, follow implicitly. 495

We compared the numerically determined solutions of (49) and (50) against full 496

network simulations using, as throughout this study, N = 500, pr = 0.1, σw = 1, 497

µt = 0.05. In Fig. 9, the spectral radius Ra is given for the four input protocols defined 498

in Sect. Input protocols. The identical ensemble of input standard deviations σext,i 499

enters both theory and simulations. 500

Theory and simulations are in good accordance for vanishing input. Here, the reason 501

is that finite activity levels are sustained in an autonomous random neural network when 502

the ongoing dynamics is chaotic and hence decorrelated. For reduced activity levels, viz 503

for small variances σ2
y, the convergence of the network dynamics is comparatively slow, 504

which leads to a certain discrepancy with the analytic prediction (see Fig. 9). 505

Gaussian approximation The integral occurring in the self-consistency condition 506

(49) can be evaluated explicitly when a tractable approximation to the squared transfer 507

function tanh2() is available. A polynomial approximation would capture the leading 508

behavior close to the origin, however without accounting for the fact that tanh2() 509

converges to unity for large absolute values of the membrane potential. Alternatively, an 510

approximation incorporating both conditions, the correct second-order scaling for small, 511
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and the correct convergence for large arguments, is given by the Gaussian approximation 512

tanh2(x) ≈ 1− exp
(
−x2

)
. (52)

With this approximation the integral in (49) can be evaluated explicitly. The result is

1

1− σ2
y − µ2

y

=
√

1 + 2σ2/ exp
(
−µ2/

(
1 + 2σ2

))
(53)

=
√

1 + 2a2σ2
wσ

2
y + 2σ2

ext/ exp
(
−µ2/

(
1 + 2a2σ2

wσ
2
y + 2σ2

ext

))
.

Assuming that µ ≈ 0 and µy ≈ 0, inverting the first equation yields a relatively simple 513

analytic approximation for the variance self-consistency equation: 514

σ2
y = 1− 1√

1 + 2a2σ2
wσ

2
y + 2σ2

ext

. (54)

This equation was then used for the approximate update rule in (6) and (18). 515
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