
Towards Correctness of Program Transformations Through
Unification and Critical Pair Computation

Conrad Rau and Manfred Schmidt-Schauß

Institut für Informatik
Johann Wolfgang Goethe-Universität

Postfach 11 19 32
D-60054 Frankfurt, Germany

{rau,schauss}@ki.informatik.uni-frankfurt.de

Technical Report Frank-41

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

June 12, 2010

Abstract. Correctness of program transformations in extended lambda-calculi with a contextual
semantics is usually based on reasoning about the operational semantics which is a rewrite semantics.
A successful approach is the combination of a context lemma with the computation of overlaps
between program transformations and the reduction rules, which results in so-called complete sets
of diagrams. The method is similar to the computation of critical pairs for the completion of term
rewriting systems. We explore cases where the computation of these overlaps can be done in a first
order way by variants of critical pair computation that use unification algorithms. As a case study of
an application we describe a finitary and decidable unification algorithm for the combination of the
equational theory of left-commutativity modelling multi-sets, context variables and many-sorted
unification. Sets of equations are restricted to be almost linear, i.e. every variable and context
variable occurs at most once, where we allow one exception: variables of a sort without ground
terms may occur several times. Every context variable must have an argument-sort in the free part
of the signature. We also extend the unification algorithm by the treatment of binding-chains in
let- and letrec-environments and by context-classes. This results in a unification algorithm that can
be applied to all overlaps of normal-order reductions and transformations in an extended lambda
calculus with letrec that we use as a case study.

1 Introduction and Motivation

Programming languages are often described by their syntax and their operational semantics, which in
principle enables the implementation of an interpreter and compiler in order to put the language into use.
Of course, also optimizations and transformations into low-level constructs are part of the implementation.
The justification of correctness is in many cases either omitted, informal or by intuitive reasoning. Inherent
obstacles are that programming languages are usually complex, use operational features that are not
deterministic like parallel execution, concurrent threads, and effects like input and output, and may even
be modified or extended in later releases.
Here we want to pursue the approach using contextual semantics for justifying the correctness of optimiza-
tions and compilation and to look for methods for automating the correctness proofs of transformations
and optimizations.
We assume given the syntax of programs P, a deterministic reduction relation→ that represents a single
execution step on programs (perhaps with environment), and values that represent the successful end
of program execution. The reduction of a program may be non-terminating due to language constructs
that allow iteration or recursive definitions. For a program P ∈ P we write P⇓ if there is a sequence of
reductions to a value, and say P converges (or terminates successfully) in this case. Then equivalence of

2 C. Rau and M. Schmidt-Schauß

programs can be defined by P1 ∼ P2 ⇐⇒
(

for all C : C[P1]⇓ ⇐⇒ C[P2]⇓
)
, where C[·] is a context, i.e.

a program with a hole at a single position.
Justifying the correctness of a program transformation P ; P ′ means to provide a proof that P ∼ P ′.
Unfortunately, the quantification is over an infinite set: the set of all contexts, and the criterion is
termination, which is undecidable in general. Well-known tools to ease the proofs are context lemmas
[Mil77], ciu-lemmas [FH92] and bisimulation, see e.g. [How89]. A context lemma usually shows that
R[P1]⇓ ⇐⇒ R[P2]⇓ for a restricted set of reduction contexts R is sufficient to show equivalence of P1

and P2.
The reduction relation ∗−→ is often given as a set of rules li → ri, where li, ri are like rewriting rules, but
extended with pattern variables and some other constructs, together with a strategy determining when
to use which rule and at which position. In order to prove correctness of a program transformation that is
also given in a rule form s1 → s2, we have to show that σ(s1) ∼ σ(s2) for all possible rule instantiations
σ(s1 → s2), i.e. C[σ(s1)]⇓ ⇐⇒ C[σ(s2)]⇓ for all contexts C[·]. Using the details of the reduction steps
and induction on the length of reductions, the hard part is to look for conflicts between instantiations of
s1 and some li, i.e. to compute all the overlaps of li and s1, and the possible completions under reduction
and transformation. This method is reminiscent of the Knuth-Bendix method [KB70], but has to be
adapted to an asymmetric situation, to extended instantiations and to higher-order terms. How to apply
this method (with ad-hoc arguments) to an extended lambda-calculus is worked out e.g. in [SSSS08]

2 Application to a Small Extended Lambda-Calculus

In this section we introduce the syntax and semantics of a small call-by-need lambda calculus and use it
as a case-study. Based on the definition of the small-step reduction semantics of the calculus we define
our central semantic notion of contextual equivalence of calculi expressions and correctness of program
transformations. We illustrate a method to prove the correctness of program transformations which uses
a context lemma and complete sets of reduction diagrams.

2.1 The Call-by-Need Calculus Lneed

We define a simple call-by-need lambda calculus Lneed which is exactly the call-by-need calculus of
[SS07]. Calculi that are related are in [SSSM10a,SSSM10b]. Also the paper [AF97] contains a related
letrec-calculus.
The set E of Lneed -expressions is as follows where x, xi are variables:

si, s, t ∈ E ::= x | (s t) | (λx.s) | (letrec x1 = s1, . . . , xn = sn in t)

We assign the names application, abstraction, or letrec-expression to the expressions (s t), (λx.s),
(letrec x1 = s1, . . . , xn = sn in t), respectively. A group of letrec bindings is abbreviated as Env.
We assume that variables xi in letrec-bindings are all distinct, that letrec-expressions are identified
up to reordering of binding-components (i.e. the binding-components can be interchanged), and that,
for convenience, there is at least one binding. letrec-bindings are recursive, i.e., the scope of xj in
(letrec x1 = s1, . . . , xn−1 = sn−1 in sn) are all expressions si with 1 ≤ i ≤ n. Free and bound variables
in expressions and α-renamings are defined as usual. The set of free variables in t is denoted as FV (t). We
use the distinct variable convention, i.e., all bound variables in expressions are assumed to be distinct, and
free variables are distinct from bound variables. The reduction rules are assumed to implicitly α-rename
bound variables in the result if necessary.
A context C is an expression from Lneed extended by a symbol [·], the hole, such that [·] occurs exactly
once (as subexpression) in C. A formal definition is:

Definition 2.1. Contexts C are defined by the following grammar:

C ∈ C ::= [·] | (C s) | (s C) | (λx.C) | (letrec x1 = s1, . . . , xn = sn in C)
| (letrec Env , x = C in s)

Given a term t and a context C, we write C[t] for the Lneed -expression constructed from C by plugging t
into the hole, i.e, by replacing [·] in C by t, where this replacement is meant syntactically, i.e., a variable
capture is permitted.

Critical Pairs and Combination of Unification 3

(lbeta) ((λx.s) r)→ (letrec x = r in s)
(cp-in) (letrec x = s,Env in C[x])→ (letrec x = s,Env in C[s])

where s is an abstraction or a variable
(cp-e) (letrec x = s,Env , y = C[x] in r) → (letrec x = s,Env , y = C[s] in r)

where s is an abstraction or a variable
(llet-in) (letrec Env1 in (letrec Env2 in r))→ (letrec Env1,Env2 in r)
(llet-e) (letrec Env1, x = (letrec Env2 in sx) in r)

→ (letrec Env1,Env2, x = sx in r)
(lapp) ((letrec Env in t) s)→ (letrec Env in (t s))

Fig. 1. Reduction rules of Lneed

Definition 2.2. The reduction rules for the calculus Lneed are defined in Fig. 1. Several reduction rules
are denoted by their name prefix, e.g. the union of (llet-in) and (llet-e) is called (llet). The union of (llet)
and (lapp) is called (lll).

The reduction rules of Lneed contain different kinds of meta-variables. The meta-variables r, s, sx, t denote
arbitrary Lneed -expressions. Env,Env1, Env2 represent letrec-environments and x, y denote (meta-)
bound variables. All meta-variables can be instantiated by a Lneed -expression of the appropriate sort.
A reduction rule ρ = l → r is applicable to an expression e if l can be matched to e, i.e., there is a
substitution σ such that σ(l) = e. The result of the reduction is σ(r). Note that an expression may
contain several sub-expressions that can be reduced according to the reduction rules of Fig. 1.
A standardizing order of reduction is the normal order reduction (see definitions below) where reduction
takes place only inside reduction contexts.

Definition 2.3. Reduction contexts R and application context A are defined by the following grammar:

R ∈ R := A | letrec Env in A
| letrec x1 = A1, x2 = A2[x1], . . . , xn = An[xn−1],Env in A[xn]

A ∈ A := [·] | (A s) where s is an expression.

where xi are variables, A2, . . . , An are not the empty context and A,Ai are A-contexts.

Definition 2.4. Normal order reduction no−→ (called no-reduction for short) is defined by the reduction
rules in Fig. 2.

(lbeta) R[(λx.s) r]→ R[letrec x = r in s]
(cp-in) letrec y = s,Env in A[y]→ letrec y = s,Env in A[s]

where s is an abstraction or a variable
(cp-e) letrec y1 = s, y2 = A2[y1], . . . , yn = An[yn−1],Env in A[yn]

→ letrec y1 = s, y2 = A2[s], . . . , yn = An[yn−1],Env in A[yn]
where s is an abstraction or a variable, and A2, . . . , An are non-empty A-contexts

(llet-in) (letrec Env1 in (letrec Env2 in r))→ (letrec Env1,Env2 in r)
(llet-e) letrec y1 = (letrec Env1 in r), y2 = A2[y1], . . . , yn = An[yn−1],Env2 in A[yn]

→ letrec y1 = r,Env1, y2 = A2[y1], . . . , yn = An[yn−1],Env2 in A[yn]
where A2, . . . , An are non-empty A-contexts

(lapp) R[((letrec Env in r) t)]→ R[(letrec Env in (r t))]

Fig. 2. Normal order reduction rules of Lneed

The transitive closure of the reduction relation→ is denoted as +−→ and the transitive and reflexive closure
of → is denoted as ∗−→. Respectively we use

no,+−−−→ for the transitive closure of the normal order reduction
relation and

no,∗−−−→ for its reflexive-transitive closure.
Note that the normal order reduction is unique. A weak head normal form in Lneed (WHNF) is either an
abstraction λx.s, or an expression (letrec Env in λx.s).
If for an expression t there exists a (finite) sequence of normal order reductions t

no,∗−−−→ t′ to a WHNF t′,
we say that the reduction converges and denote this as t ⇓ t′ or as t⇓ if t′ is not important. Otherwise the
reduction is called divergent and we write t⇑.

4 C. Rau and M. Schmidt-Schauß

The semantic foundation of our calculus Lneed is the equality of expressions defined by contextual equiv-
alence.

Definition 2.5 (Contextual Preorder and Equivalence). Let s, t be Lneed -expressions. Then:

s ≤c t iff ∀C[·] : C[s]⇓⇒ C[t]⇓
s ∼c t iff s ≤c t ∧ t ≤c s

Definition 2.6. A program transformation T ⊆ Lneed ×Lneed is a binary relation on Lneed -expressions.
A program transformation is called correct iff T ⊆ ∼c.

Program transformations are usually given in a format similarly to reduction rules (see Fig. 1 and Fig. 2).
A program transformation T is written as s T−→ t where s, t are “meta-expressions” i.e. expression that
contain meta-variables. Note that in this setting the reduction rules of Fig. 1 are also regarded as program
transformations, where the application is in any context. If necessary, the context in which a reduction
rule is applied is annotated at the transformation. For example,

R,T−−−→ indicates that the transformation
T is applied in a reduction context.
Proving that a program transformation s

T−→ t is not correct is often an easy task: It is sufficient to give
a context C that distinguishes the termination behavior of s and t.

Example 2.7. A simple example for an incorrect transformation in Lneed is η-reduction: (λx.(s x))
η−→ s

where x is not a free variable in s and s is a Lneed -expression. We define an expression Ω which is divergent
as Ω := (λy.(y y)) (λz.(z z)) and we instantiate s in the η-reduction as Ω. Then we have (λx.(Ω x))

η−→ Ω
where the two expressions are distinguished by the empty context [·], because the expression (λx.(Ω x))
is a WHNF, which is convergent by definition and Ω is a divergent expression.

An important tool to prove contextual equivalence is a context lemma (see for example [Mil77],
[SSS10],[SSSS08]), which allows to restrict the class of contexts that have to be considered in the definition
of the contextual equivalence from general C to R contexts.

Lemma 2.8. Let s, t be Lneed -expressions. If for all reduction contexts R: (R[s]⇓ ⇒ R[t]⇓), then ∀C :
(C[s]⇓⇒ C[t]⇓); i.e. s ≤c t.

To prove the correctness of a transformation s T−→ t one has to prove that s ∼c t⇔ s ≤c t ∧ t ≤c s which
by Definition 2.5 amounts to showing ∀C[·] : C[s]⇓⇒ C[t]⇓ ∧ C[t]⇓⇒ C[s]⇓. The context lemma yields
that it is sufficient to show ∀R[·] : R[s]⇓⇒ R[t]⇓ ∧ R[t]⇓⇒ R[s]⇓. To prove s ∼c t we assume that s T−→ t

and R[s]⇓ holds, i.e. there is a WHNF s′, such that R[s]
no,∗−−−→ s′ (respectively s T−→ t and R[t]⇓ holds, i.e.

there is a WHNF t′, such that R[t]
no,∗−−−→ t′). This situation is illustrated in Fig. 3.

R[s]

no,∗

��

T // R[t]

s′

(a) Forking situation
in the proof of s ≤c t

R[s]
T // R[t]

no,∗

��
t′

(b) Commuting sit-
uation in the proof
of t ≤c s

Fig. 3. The situation in the correctness proof of s
T−→ t

It remains to show that there also exists a sequence of normal order reductions from R[t] (respectively
from R[s]) to a WHNF. This can often be done by induction on the length of the given normal order
reduction sequence using sets of complete reduction diagrams.

2.2 Complete Sets of Forking and Commuting Diagrams

Reduction diagrams describe transformations on reduction sequences. They are used to prove the cor-
rectness of program transformations.

Critical Pairs and Combination of Unification 5

Non-normal order reduction steps for the language Lneed are called internal and denoted by a label i. An
internal reduction in a reduction context is marked by iR, and an internal reduction in a surface context
by iS, where surface contexts are defined as follows:

S ∈ S ::= [·] | (S s) | (s S) | (letrec x1 = s1, . . . , xn = sn in S)
| (letrec Env , x = S in s)

In the following we use a slightly weaker context lemma for S-contexts: to show equivalence s ∼c t, it is
sufficient to show ∀S[·] : S[s]⇓ ⇒ S[t]⇓ ∧ S[t]⇓ ⇒ S[s]⇓ for all surface contexts S. This will be helpful
in closing the forking diagrams, since there are cases where the forking w.r.t. R-contexts can only be
closed with transformations in S-contexts. The situation in the proof using surface contexts is illustrated
in Fig. 4.

S[s]

no,∗

��

T // S[t]

s′

(a) Forking situation
in the proof of s ≤c t

S[s]
T // S[t]

no,∗

��
t′

(b) Commuting
situation in the
proof of s ≤c t

Fig. 4. part of the correctness proof for S of s
T−→ t

A reduction sequence is of the form t1 → . . . → tn, where ti are Lneed -expressions and ti → ti+1 is a
reduction as defined in Definition 2.2. In the following definition we describe transformations on reduction
sequences. Therefore we use the notation

iX,T−−−→ .
no,a1−−−→ . . .

no,ak−−−→ ;
no,b1−−−→ . . .

no,bm−−−−→ .
iX,T1−−−−→ . . .

iX,Th−−−−→

for transformations on reduction sequences. Here the notation
iX,T−−−→ means a reduction with iX ∈

{iC, iR, iS}, and T is a reduction from Lneed .
In order for the above transformation rule to be applied to the prefix of the reduction sequence RED,
the prefix has to be s

iX,T−−−→ t1
no,a1−−−→ . . . tk

no,ak−−−→ t. Since we will use sets of transformation rules, it may
be the case that there is a transformation rule in the set, where the pattern matches a prefix, but it is
not applicable, since the right hand side cannot be constructed.
We will say the transformation rule

iX,T−−−→ .
no,a1−−−→ . . .

no,ak−−−→ ;
no,b1−−−→ . . .

no,bm−−−−→ .
iX,T1−−−−→ . . .

iX,Th−−−−→

is applicable to the prefix s
iX,T−−−→ t1

no,a1−−−→ . . . tk
no,ak,−−−−→ t of the reduction sequence RED iff the following

holds:

∃y1, . . . , ym, z1, . . . , zh−1 : s
no,b1−−−→ y1 . . .

no,bm−−−−→ ym
iX,T1−−−−→ z1 . . . zh−1

iX,Th−−−−→ t

The transformation consists in replacing this prefix with the result:

s
no,b1−−−→ t′1 . . . t

′
m−1

no,bm−−−−→ t′m
iX,T1−−−−→ t′′1 . . . t

′′
h−1

iX,Th−−−−→ t

where the terms in between are appropriately constructed.

Definition 2.9.
• A complete set of forking diagrams for the reduction

iX,T−−−→ is a set of transformation rules on reduction
sequences of the form

no,a1←−−− . . . no,ak←−−− . iX,T−−−→ ;
iX,T1−−−−→ . . .

iX,Tk′−−−−→ .
no,b1←−−− . . . no,bm←−−−−,

6 C. Rau and M. Schmidt-Schauß

where k, k′ ≥ 0,m ≥ 1, h > 1, such that for every reduction sequence th
no←− . . . t2

no←− t1
iX,T−−−→ t0,

where th is a WHNF, at least one of the transformation rules from the set is applicable to a suffix of the
sequence.
The case h = 1 must be treated separately in the induction base.
• A complete set of commuting diagrams for the reduction

iX,T−−−→ is a set of transformation rules on
reduction sequences of the form

iX,red−−−−→ .
no,a1−−−→ . . .

no,ak−−−→ ;
no,b1−−−→ . . .

no,bm−−−−→ .
iX,red1−−−−−→ . . .

iX,redk′−−−−−→,

where k, k′ ≥ 0,m ≥ 1, h > 1, such that for every reduction sequence t0
iX,T−−−→ t1

no−→ . . .
no−→ th, where th

is a WHNF, at least one of the transformation rules is applicable to a prefix of the sequence.

In the proofs below using the complete sets of commuting diagrams, the case h = 1 must be treated
separately in the induction base.

The two different kinds of diagrams are required for two different parts of the proof of the contextual
equivalence of two terms.
In most of the cases, the same diagrams can be drawn for a complete set of commuting and a complete
set of forking diagrams, though the interpretation is different for the two kinds of diagrams. The starting
term is in the northwestern corner, and the normal order reduction sequences are always downwards.
where the deviating reduction is pointing to the east. There are rare exceptions for degenerate diagrams,
which are self explaining.
For example, the forking diagram

no,a←−−− · iC,llet−−−−→ ;
iC,llet−−−−→ · no,a←−−− is represented as

· iC,llet //

no,a

��

·
no,a

���
�
�

· iC,llet //___ ·

The solid arrows represent given reductions and dashed arrows represent existential reductions. A common
representation is without the dashed arrows, where the interpretation depends on whether the diagram
is interpreted as a forking or a commuting diagram. We may also use the * and +-notation of regular
expressions for the diagrams. The interpretation is obvious and is intended to stand for an infinite set
accordingly constructed.
Note that the selection of the reduction label is considered to occur outside the transformation rule, i.e.
if

no,a−−−→ occurs on both sides of the transformation rule the label a is considered to be the same on both
sides.

Example 2.10. An example of a single forking diagram is
no,llet−in←−−−−−−− .

iS,llet−e−−−−−−→ ;
iS,llet−e−−−−−−→ .

no,llet−in←−−−−−−−
which we usually present as

· iS,llet−e //

no,llet−in
��

·
no,llet−in

���
�
�

· iS,llet−e //______ ·

where the dashed lines indicate existentially quantified reductions.
By application of the diagram a fork between a (no,llet-e) an internal (llet-in) reduction can be closed.
The forking diagram specifies two reduction sequences such that a common expression is eventually
reached. The following illustrates an example application of the above diagram.

(letrec Env1, x = (letrec Env2 in s) in (letrec Env3 in r))
no,llet−in−−−−−−−→ (letrec Env1,Env3, x = (letrec Env2 in s) in r)

iS∨no,llet−e−−−−−−−−→ (letrec Env1,Env3,Env2, x = s in r)
the last reduction is either a no reducion if r = A[x], otherwise it is a internal reduction
iS,llet−e−−−−−−→ (letrec Env1,Env2, x = s in (letrec Env3 in r))
no,llet−in−−−−−−−→ (letrec Env1,Env2,Env3, x = s in r)

Critical Pairs and Combination of Unification 7

One can view the diagram as a description of local confluence.
Notice the following: By means of the Context Lemma 2.8 it is sufficient to consider only internal reduc-
tions in R-context. Nevertheless to close the fork in the above example it is in some cases necessary to
apply a (llet-e) reduction in an S-context. Therefore we often treat the slightly more general situation
where a internal reduction occurs in a surface context to be able to close all diagrams.

The generation of a complete set of diagrams by hand is cumbersome and error-prone. Nevertheless the
diagram sets are essential for proving correctness of a large set of program transformations in this setting.
For this reason we are interested in automatic computation of complete diagram sets. We restrict our
attention here to complete sets of forking diagrams because complete sets of commuting diagrams can
usually be derived from them. Another reason for this restriction is that the fork of the internal reduction
(or program transformation) with a no-reduction can be described by an overlap and all overlaps can be
computed by (a variant of) critical pair computation via unification.

By Definition 2.9 a complete set of forking diagrams for an internal reduction
iX,T−−−→ comprises a set of

transformation rules on reduction sequences, such that for every reduction sequence th
no←− . . . t2

no←−
t1

iX,T−−−→ t0, where th is a WHNF, at least one of the transformation rules from the set is applicable to
a suffix of the sequence. Therefore to compute a complete set of forking diagrams for a fixed internal
reduction (transformation) T we have to determine all forks of the form

no,red←−−−− · T−→ where a is an no-
reduction. The forks of this form are given by overlaps between no-reductions and the internal reduction.
Informally we say that two reductions (transformations) red and T overlap in an expression s if s contains
a red and a T redex. To find an overlap between a no-reduction red and an internal reduction T we have to
determine all positions in red where a T -redex can occur (this follows from the uniqueness of the normal
order reduction). For the computation of forks it is sufficient to consider only critical overlaps where
an overlap does not occur at a variable position because forks described by such non-critical overlaps
can always be closed by standard diagrams (Example 2.10 illustrates such a critical overlap). All critical
overlaps between no-reductions red and a given internal reduction T can be computed by unification.
The employed unification procedure will be explained in the next section.

3 A Unification Algorithm for Terms in a Combination of Sorted Equational
Theories and Context

In this section we develop a unification method to compute the proper overlaps between left hand sides
of normal-order reduction rules from Fig. 2 and left hand sides of transformation rules from Fig. 1.
According to the context lemma for surface contexts we restrict the overlaps to the transformations in
surface contexts. A complete description of the overlap is the unification equation S[lT,i]

.= lno,j , where
lT,i is a left hand side in Fig. 1, and lno,j a left hand side in Fig. 2, and S means a surface context.
We develop a unification algorithm that is applicable to terms in a combination of (restricted) equational
theories with free function symbols in a many-sorted signature. The terms to be unified may contain
context variables. In addition there will be context-classes which are partially ordered. As a condition
for the soundness and completeness several service algorithms for context-classes are required. We will
develop this in a general way in order to be able to apply this method also to other extended lambda-
calculi.
The combination algorithms in [SS89,BS92] could be used. However, we only consider the theory LC that
models multi-sets of bindings in letrec environments of our calculus. This theory is very special and thus
there is more information on unifiers, which allows to design specialized unification rules.

3.1 Signatures, Terms and Equational Theories

Let S = S1]S2 be a set of theory-sorts S1 and free sorts S2. Let Σ = Σ1]Σ2 be a many-sorted signature
of (theory- and free) function symbols, where every function symbol comes with a fixed arity and with a
single sort-arity of the form f : S1 × . . . × Sn → Sn+1, where Si for i = 1, . . . , n are the argument-sorts
and Sn+1 is called resulting sort. For every f ∈ Σi for i = 1, 2 the resulting sort must be in Si. Note,
however, that there may be function symbols f ∈ Σi that have argument-sorts from Sj , for i 6= j. There
is a set V0 of first-order variables that are 0-ary and have a fixed sort and are ranged over by x, y, z, . . .,
perhaps with indices. There is also a set V1 of context-variables which are unary and are ranged over by
X,Y, Z, perhaps with indices. We assume that for every sort S, there is an infinite number of variables

8 C. Rau and M. Schmidt-Schauß

of this sort, and for all sorts S1, S2, there is an infinite number of context variables of sort S1 → S2. Let
V = V0 ∪ V1. The set of terms T (S, Σ,V) is the set of terms built according to the grammar

x | f(t1, . . . , tn) | X(t),

where sort conditions are obeyed. Let Var(t) be the set of first-order variables that occur in t and let
Var1(t) be the set of context variables that occur in t. A context C is a term in T (S, Σ ∪ H,V) where
H := {[·]S | S ∈ S}, such that there is exactly one occurrence of a hole in the context. If C is of sort S2

and has a hole of sort S1, then C :: S1 → S2.
A substitution σ is a mapping σ : V → T (S, Σ,V), such that σ(xS) is a term of sort S and σ(X) is
a context of the same sort as X. Usually, we also write σ also for the mapping on terms, where every
variable x in a term is replaced by σ(x).
A term s without occurrences of variables is called ground. We also allow sorts without any ground term,
also called empty sorts, since this is required in our encoding of bound variables. The term s is called
almost ground, if for every variable x in s, there is no function symbol in Σ where the resulting sort is
the sort of x.
An equational theory E is a congruence relation on T (S, Σ,V), which is denoted as =E . It could also be
restricted to parts of the signature. The equational theory is given by a (finite) set of axioms, which are
pairs of terms of the same sort. We assume that the axioms do not contain context variables. In the usual
way, the relation =E is defined as the equivalence-closure of the rewrite relation defined by the axioms.
We also do not distinguish notationally between the axioms and the equational theory.

Definition 3.1. The pure equational theory is defined as restricted to the local signature, i.e. to the
terms T (S ′, Σ1,V ′}, where S ′ is the set of sorts that occurs as sort of subterms in the arities of theory-
symbols and where V ′ is the set of variables of sorts in S ′.
The combined equational theory is defined on the set of terms T (S, Σ,V), using the same set of axioms.
Note that the combination is disjoint on the function symbols, but not on the sort-structure. The encoding
of expression in Subsection 4.1 for example has a non-disjoint sort-structure.

Since the unification method only works with the special theory of left-commutativity for representing
multi-sets, we restrict equational theories now to to left-commutativity.

Assumption 3.2 The equational theory E that we will use in the algorithm below is left-commutativity
(LC) with the following sorts, symbols and axioms:

– The sorts are Env, and Bind, for environment and binding, where S1 = {Env}.
– There are the symbols

emptyEnv :: Env
env :: Bind × Env → Env

– There is only one axiom: the left-commutativity axiom

env(x, env(y, z)) = env(y, env(x, z))

which is of theory sort Env.
– The signature of free symbols may be extended, but there is one restriction: free function symbol with

resulting sort Env are forbidden.
Note that we allow free function symbols that map from Env to other sorts.

It is convenient to have a notation for nested env -expressions: env∗(t1, . . . , tm, r) denotes the term
env(t1, env(t2, . . . , env(tm, r)) . . .)), where r is not of the form env(s, t). Due to our assumptions on
terms of sort Env , only the constant emptyEnv , variables and terms of the form X(s) are possible.
The following facts can easily be verified for the theory LC:

Lemma 3.3. Let E = LC. Then

– The terms in the LC-axioms are built only from Σ1-symbols and variables, and the axioms relate two
terms of equal sort which must be in S1.

– For every equation s =E t, the equality Var(s) = Var(t) holds.
– There is no equation s =E t, where s is a proper subterm of t.
– The equation x =E y for variables x, y implies that x and y are the same variable.

Critical Pairs and Combination of Unification 9

– The equational theory E is non-collapsing, i.e, there is no equation of the form x =E t, where t is
not the variable x.

– The occurs-check is applicable in unification problems, i.e. x .= t for t 6= x is not solvable, i.e. there
is no substitution σ with σ(x) =E σ(t).

– The equational theory has a finitary and decidable unification problem (see [DPR06,DPR98,DV99]).

A unification problem is a set of equations Γ = {s1
.= t1, . . . , sn

.= tn}, such that si and ti are of the same
sort for every i. A unifier σ of Γ = {s1

.= t1, . . . , sn
.= tn} is a substitution σ, such that σ(si) =E σ(ti)

for all i. It is called a solution, when σ(si), σ(ti) are almost ground, i.e.: only variables of sorts that have
no ground terms are permitted.

Definition 3.4. A unification problem Γ is called almost linear, if the following holds

1. every context variable occurs at most once,
2. every variable of a non-empty sort occurs at most once,

Complete sets of unifiers and sets of most general unifiers are defined as usual, but only covering the
unifiers such that σ(si), σ(ti) are almost ground (see handbook articles like [BS01]).

3.2 Properties of the Equational Theory

The analysis of the pure and combined equational theory E = LC can be done by elementary methods
like induction on the number of equational rewriting steps. It is also possible to adapt the construction
of the amalgamated product of two equational theories (see [SS89,BS92]).
First we analyze the combined equational theory. Terms with top symbol from Σi are called i-terms for
i = 1, 2. Variables are neither 1-terms nor 2-terms. A maximal (w.r.t. the subterm-ordering) i-subterm in
a j-term t where i 6= j is called an alien subterm. The equational theory according to the conditions above
has the following properties, which are provable by induction on the length of equational deductions.

1. If s =E t, then s, t are either both the same variable, or s, t are i-terms for some i ∈ {1, 2}.
2. If s =E t, and s, t are not variables, then the sets of alien subterms are equal modulo =E : I.e. for

every alien subterm r of s, there is an alien subterm r′ of t with r =E r′ and vice versa.
3. The combined theory =LC permits an occurs-check, since the pure equational theory permits an

occurs-check.
4. If C[s] =E t and s is a 2-term, i.e. with a free function symbol as top symbol, then there is a context
C ′ and a term s′ such that C[s] =E C ′[s′], C ′ =E C, s =E s′ and C ′[s′] = t. This follows from the
properties of LC, in particular the linearity of axioms of LC is required. Note that contexts remain
contexts under equational reasoning w.r.t. LC.

3.3 Context-Subclasses and Unification

A context-class and subclass mechanism is required for a wide-range application of our combined unifi-
cation algorithm.
There is a set of context class-symbols, say C1, . . . , Cn, where the semantics is a set of contexts, usually
defined syntactically, such that for every (almost ground) context C it can be decided whether C belongs
to Ci. We also assume that there is a partial order on the context classes. Of course, the order on the
symbols must be consistent with their set-semantics. For the unification problems we assume that context
variables are labelled with a unique context class. If X is labeled with a context class Ci, then σ(X) must
be a context that belongs to Ci. The following conditions must hold in combination with the equational
theory:

Assumption 3.5

1. Equational deduction using the theory LC must not change the context class of almost ground contexts.
2. Prefix contexts C ′ of almost ground contexts C have the same context class as C or a smaller one.

The following service algorithms are required with the mentioned conditions:

Assumption 3.6

10 C. Rau and M. Schmidt-Schauß

1. Matching a context and a term: Given a context variable X of context class D, a term t and a position
p in t, then there must be an algorithm that decides the question whether p is a permitted position for
the context class D. If this is the position of a variable z in t, and if σ(X) is a prefix of the cotext
σ(t[[·|/p), then the following replacement of must be complete: X 7→ t[X ′/p] and z

.= X ′[z′], where
the context class of X ′ is to be determined by the service algorithm. The sort of z and X ′ must also
be determined by the sub-algorithm.

2. Common prefix-computation of several context variables: The following algorithm must be correct and
complete: Given context variables X1, . . . , Xm of context class D1, . . . ,Dm, respectively. If there is no
greatest lower bound of the Di, then fail.
Otherwise, let D be the greatest lower bound. Then the following selections can be made and may lead
to a forking of the unification algorithm:
(a) Guess that one context variable is a prefix of the others: I.e. guess that Xj is a prefix of all others.

The replacement is Xj 7→ X ′j and Xi 7→ X ′jX
′
i where X ′i is of context class Di for all i 6= j and

X ′j has context class D. The context variables X ′i are fresh ones.
(b) Guess a common prefix: Let X be a fresh context variable of context class D. Let f be a

function symbol in the signature and select an index ji for every i. The replacement is then
Xi 7→ X(f(z1, . . . zji−1, X

′
i, zji+1, . . . , zk) where X ′i is of context class Di, where zi are fresh first

order variables and X,X ′i are fresh context variables. The sorts of zi and X ′i must also be de-
termined by the service algorithm. There may be selections of f and ji that cannot be taken,
depending on the context classes.

3.4 Unification Algorithm LCSX for Left-Commutativity, Sorts and Context-Variables

We show that there is a complete unification algorithm for unification problems Γ where context classes
are permitted with the properties as given above, and where Γ is restricted to be almost linear.
It is also assumed that Γ does not contain any context variable with an argument-sort in the equational
sorts S1.
Given a unification problem Γ = {s1

.= t1, . . . , sn
.= tn}, the following (non-deterministic) unification

algorithm will compute unifiers of Γ , where we implicitly use symmetry of .=.

Failure rules We will use the following failure rules whenever possible, where both failure rules can only
be applied, if (Guess-Empty-Context) has been applied to all context variables in Γ .

1. (occurs-check failure) If there is a chain of equations x1
.= t1, . . . , xn

.= tn in Γ , such that xi occurs
in ti−1 for i = 2, . . . , n, x1 occurs in tn and at least one of the terms ti is not a variable, then fail.

2. (sort-consistency check) If there is a context variable X :: S1 → S2 in Γ , and there is no almost
ground context of sort S1 → S2, then fail.

Standard unification rules The following rules may operate on the unification problem:

1. (Decomposition)
{f(s1, . . . , sn) .= f(t1, . . . , tn)} ∪ Γ
{s1

.= t1, . . . , sn
.= tn)} ∪ Γ

if f is a free function symbol.

2. (Solve-Variable)
{x .= t} ∪ Γ

Γ
if x is of a non-empty sort. The instantiation {x .= t} will be part of

the computed unifier.

3. (Empty-Variable)
{x .= y} ∪ Γ

[x 7→ y]Γ
if x is of an empty sort. The instantiation {x .= y} will be part of the

computed unifier.

Instantiation of Context Variables The following rules operate on the context variables at any
position:

1. (Guess-Empty-Context) If X is a context variable of sort S → S, then it is possible to guess that
X is the empty context and to remove the context variable. In this case the instantiation is X 7→ [·].

Critical Pairs and Combination of Unification 11

2. (Theory-Contexts) If X is a context variable with Env as resulting sort, then instantiate X as
follows: X 7→ env(X ′, z) where X ′, z are fresh.
After application of these rules we can assume that there are no context variables with resulting sort
Env .

Solving equations with context variables The rules for terms with contexts as top symbol are as
follows:

1. Given an equation X(s) .= t, where the top symbol of t is not a context variable, guess a non-trivial
position p in t that is not in an argument of a context variable, and such that the context class of X
is compatible with the position p. Then

{X(s) .= t} ∪ Γ
{X ′(s) .= t|p} ∪ Γ

and the instantiation is X 7→ t[X ′/p] where X ′ is a fresh context variable. The context class of X ′ is
determined by the service algorithm.

2. Given an equation X(s) .= Y (t), select one of the following two possibilities:
(a)

{X(s) .= Y (t)} ∪ Γ
{s .= Y ′(t)} ∪ Γ

if there is a greatest lower bound D3 of the context classes D1, D2 of X and Y , and if the service
algorithm for context classes tells us that this is possible. The instantiation is Y 7→ ZY ′, X 7→ Z,
where Y ′ is a fresh context variable of the same context classes as Y , and Z has context class D3.

(b)
{X(s) .= Y (t)} ∪ Γ

Γ

if there is a greatest lower bound of the context classes of X and Y , and if the service algorithm
for context classes tells us that the choice of the instantiation is possible. The instantiation is
{X 7→ Zf(z1, . . . , X ′, . . . , zn), Y 7→ Zf(z1, . . . , Y ′, . . . , zn) whereX ′, Y ′ are fresh context variables
of the same context class as X,Y , respectively, where Z is a fresh context variable of a context
class determined by the service algorithm, and where f is a function symbol in the permitted
signature of arity at least 2, and the positions of X ′ and Y ′ are different. The instantiation must
be provided by the service algorithm for the context classes.
If there is no such possibility, then fail.

Solving multi-set equations The following additional (non-deterministic) unification rules are suffi-
cient to solve equations of type Env , i.e. proper multi-set-equations [DPR06,DPR98,DV99]. In the terms
env∗(s1, . . . , sn, t), we can assume that t is not of the form env(. . .). It is also not of the form X(. . .),
since these context variables can be instantiated using the rule Theory-Contexts. Other free function
symbols are disallowed, hence t can only be a variable or the constant emptyEnv .

– If there is an equation env∗(s1, . . . , sn, z1) .= env∗(t1, . . . , tm, z2), where m,n ≥ 1, then select one of
the following possibilities:
• Select i, j and then apply the rule

{env∗(s1, . . . , sn, z1) .= env∗(t1, . . . , tm, z2)} ∪ Γ
{si

.= tj , env∗(s1, . . . , si−1, si+1, . . . , sn, z1) .= env∗(t1, . . . , tj−1, tj+1, . . . , tm, z2)} ∪ Γ
.

• {env∗(s1, . . . , sn, z1) .= env∗(t1, . . . , tm, z2)} ∪ Γ
Γ

.

where the instantiation is {z1 7→ env∗(t1, . . . , tm, z3), z2 7→ env∗(s1, . . . , sn, z3)}
– If there is an equation env∗(s1, . . . , sn, emptyEnv) .= env∗(t1, . . . , tm, z), where m,n ≥ 1, then select
i, j and apply the rule

{env∗(s1, . . . , sn, emptyEnv) .= env∗(t1, . . . , tm, z)} ∪ Γ
{si

.= tj , env∗(s1, . . . , si−1, si+1, . . . , sn, emptyEnv) .= env∗(t1, . . . , tj−1, tj+1, . . . , tm, z)} ∪ Γ
.

12 C. Rau and M. Schmidt-Schauß

– If there is an equation env∗(s1, . . . , sn, emptyEnv) .= env∗(t1, . . . , tm, emptyEnv), where m,n ≥ 1,
then select i, j and apply the rule

{env∗(s1, . . . , sn, emptyEnv) .= env∗(t1, . . . , tm, emptyEnv)} ∪ Γ
{si

.= tj , env∗(s1, . . . , si−1, si+1, . . . , sn, emptyEnv) .= env∗(t1, . . . , tj−1, tj+1, . . . , tm, emptyEnv)} ∪ Γ
.

–
{env∗(s1, . . . , sn, t)

.= emptyEnv ∪ Γ
Fail

if n ≥ 1.

We use the following convention in the conclusions of the rules state above: If in an environment
env∗(s1, . . . , sn, z) (where z is either a variable or emptyEnv) the sequence s1, . . . , sn is empty, then

we identify env∗(s1, . . . , sn, z) with z. E.g.
env∗(s1, z1) .= env∗(t1, t2, z2)
s1

.= t1, z1
.= env∗(t2, z2)

.

3.5 Properties of the LCSX-Unification Algorithm

Lemma 3.7. The non-deterministic rule-based unification algorithm LCSX if applied to unification prob-
lems that are almost linear and where context variables have only free sorts as arguments will terminate.
Moreover, there are only finitely many forking possibilities.

Proof. The main measure µ is a tuple of several measures, where the tuples are compared lexicographically.
µ1 is the number of context variables, µ2 is the number of context variables of sort Env , µ3 is the number
of variables, µ4 is the size of the problem,i.e. the sum of the sizes of the terms, µ4 is the sum of the sizes
of env∗-terms. It is an easy task to verify that the measure is strictly decreased in every step. Also, there
are only finitely many possibilities in every step.

Lemma 3.8. The non-deterministic rule-based unification algorithm LCSX is sound and complete, i.e.
every computed substitution is a unifier and every solution of the initial equation is represented by one
final unifier.

Proof. Soundness can be proved by standard methods, since rules are either instantiations or instantia-
tions using the theory LC.
The assumptions on the service algorithms for context classes are required for the completeness.

Theorem 3.9. The rule-based algorithm LCSX terminates if applied to unification problems that are
almost linear and where context variables have only free sorts as arguments. Thus it decides unifiability of
these sets of equations. Since it is sound and complete, the algorithm also computes a finite set of unifiers
by gathering all possible results.

Using this combination algorithm and the encoding below, for example all the overlaps with the normal-
order rules (cp-in) and (llet-in) can be computed, but nit is not possible to compute all the overlaps. In
order to compute all overlaps between all rules and transformations, a treatment of binding-chains (of
the form y2 = A2[y1], . . . , yn = An[yn−1] which are introduced by reduction context) is required. This is
done in the next section.

4 Applying the Combined Unification Algorithm to the Example-Calculus

In this section we adapt the combination algorithm in the last section to develop a method to compute
the necessary overlaps for our calculus in the case study. We compute the proper overlaps between left
hand sides of normal-order reduction rules (see Fig. 2) and left hand sides of transformation rules from
Fig. 1. The overlap is always the full left hand side of a transformation with a sub-expression in a surface
context of a normal-order reduction rule. Overlaps where only a single meta-variable of the normal-order
reduction rule is concerned can be treated without using unification. In the general case of proper overlaps
the left hand sides are translated into equational problems between first-order terms: S[lT,i]

.= lno,j , where
lT,i is a left hand side of transformation rule and lno,j is a left hand side of a normal-order reduction rule.
The following adaptations are required: Sorts, the equational theory of left-commutativity for the letrec-
environments, context variables, context classes (of context variables), and binding-chains in letrec-
environments. The latter occurs in reduction contexts and for example in the rule (cp-e). The unification
algorithm LCSX has to be extended to further free function symbols and to the binding-chains. It will
turn out that only the binding-chains will add new rules to the algorithm.

Critical Pairs and Combination of Unification 13

4.1 Encoding of Expressions as Terms

The sort and term structure according to the expression structure of the lambda calculus as given in
Section 2 is as follows. There are the following sorts: Bind ,Env ,Exp,BV , for binding, environment,
expression and bound variable, respectively; where S1 = {Env} and S2 = {Bind ,Exp,BV }. There are
the following function symbols:

theory function symbols free function symbols

emptyEnv :: Env
env :: Bind × Env → Env

bind :: BV × Exp → Bind
var :: BV → Exp
let :: Env × Exp → Exp
app :: Exp × Exp → Exp
lam :: BV × Exp → Exp

Note that there are free function symbols that map from Env to Exp, but there is no free function symbol
that maps to Env . Note also that there is no function symbol with resulting sort BV , hence this is an
empty sort, and every term of sort BV is a variable.
As an example the expression (letrec x = λy.y, z = x x in z) is encoded as

let(env(bind(x, lam(y, var(y))),
env(bind(z, app(var(x), var(z))),

emptyEnv)),
var(z))

where x, y, z are variables of sort BV .
The first-order form of environment-expressions that are of the form {x1 = t1, . . . , xk = tk,Env} is
denoted by env∗(b1, . . . , bm, z) in the following, where bi are bindings and z is an environment variable.

4.2 Context-Subclasses and Unification

Context-subclasses are required to correctly model the normal-order reduction of our calculus. In Fig. 1
of the transformations there are only C-contexts, whereas in Fig. 2 there are also A- and R-contexts and
also chains of bindings with parameter n. Also surface contexts S are required.
Grammars for A and R are A ::= [·] | (A s) and R ::= A | (letrec Env in A) | (letrec y1 = A1, y2 =
A2[y1], . . . , yn = An[yn−1],Env in A[yn]), where A,Ai are A-contexts. Thus we can replace R-contexts
by expressions containing only A-contexts, where perhaps the rules of Fig. 2 may be splitted into several
rules. Hence it is sufficient to invent procedures to deal with context variables of classes A, S and C and
with the binding-chains as introduced by this replacement. The partial order is A < S < C. It would also
be possible to have a context class R, but for our calculus it can be omitted.
There are only the following necessary operations (here for A and C-class, but it is similar for the S-
class). (i) common prefix-computation; (ii) common prefix-computation plus the first forking term. (iii)
Overlapping of a context of class A with a term. The following observation is sufficient to design the
required sub-algorithms:
C[s] = A[t] for non-empty contexts C,A holds iff one of the following cases holds:

1. C is a prefix of A,A = CA′, C,A′ are A-contexts, s = A′[t].
2. A is a prefix of C, C = AC ′, t = C ′[s].
3. C = A′[(r1 C ′)], A = A′[(A′′ r2)], r1 = A′′[t], r2 = C ′[s]. Note that the function symbols and the

possible positions of A′′ are restricted.

If A1[s] = A2[t] then only the prefix-cases are possible for A1, A2.
If C1[s] = C2[t] then all cases are possible.
It is obvious how to translate this into a unification procedure that covers all cases.
The context classes A, S and C are stable under equational rewriting using the left-commutativity axiom.
This is trivial for C. For the class A this follows, since the LC-axiom does not change application nodes,
and for S this holds, since lam-nodes are neither removed nor added.

14 C. Rau and M. Schmidt-Schauß

4.3 Treatment of Binding-Chains

In this subsection we argue that a small set of extra rules is sufficient to remove binding-chains from
unification problems S[lT,i]

.= lno,j , where lT,i is a left hand side in Fig. 1, and lno,j a left hand side in
Fig. 2.
We use BChain(yi = Ai[yi−1], k1, k2,Rel]) as a notation for a partial environment consisting of all the
bindings yi = Ai[yi−1], where i = k1 + 1, . . . , k2 for positive integers k1, k2. If k1 ≥ k2, then the envi-
ronment is empty. In unification problems we also use the notation with variables and denote this as
BChain(yi = Ai[yi−1], N1 + k,N2,Rel]), where Ni are variables standing for positive integers, k is a non-
negative integer constant, and Rel ∈ {<,≤}. Here we always assume that the instantiations σ satisfy
σ(N1+k) Rel σ(N2). We will use the notation env∗(BChain(. . .) ++ L, z) where L is an letrec-environment
that does not contain a variable of sort Env and ++ denotes the union of two environments. We will
use that L allows multi-set operations like reorderings.
The following unification step will be used for the unification of an environment expression with a binding-
chain. An invariant is that the variables Ni may appear at most twice: at most once on the first position
and at most once on the right position in a BChain-construct.
UnifBindingChain: Given an equation where one side is of the form env∗(t1, . . . , tm, z1) .= env∗(L, z2),
where L contains a BChain-expression, then select one of the following rules for application.

1. Select an expression BChain(yi = Ai[yi−1], N1 + k,N2,≤) from L and select one of the following two
possibilities:
(a) remove the selected BChain-expression from L. The instantiation is N2 7→ N1 + k, which also has

to be applied to L.
(b) replace the relation symbol ≤ by < in the BChain-expression BChain(yi = Ai[yi−1], N1+k,N2,≤).

2. Select an expression t from L that is not a BChain-expression. Let L′ be L \ {t}.
{env∗(t1, . . . , tm, z1) .= env∗(L, z2)} ∪ Γ

{t .= t1, env∗(t2, . . . , tm, z1) .= env∗(L′, z2)} ∪ Γ

3. Select an expression BChain(yi = Ai[yi−1], N1 + k,N2, <) from L:
{env∗(t1, . . . , tm, z1) .= env∗(BChain(yi = Ai[yi−1], N1 + k,N2) ++ L′, z2)} ∪ Γ
{t1

.= (yN3+1 = AN3+1[yN3]),
env∗(t2, . . . , tm, z1) .= env∗(BChain(yi = Ai[yi−1], N1 + k,N3,≤) ++

BChain(yi = Ai[yi−1], N3 + 1, N2,≤) ++ L′, z2)} ∪ Γ

4.
{env∗(t1, . . . , tm, z1) .= env∗(L, z2)} ∪ Γ
{env∗(t2, . . . , tm, z1) .= env∗(L, z3)} ∪ Γ
plus the instantiation z2 7→ env(t1, z3).

Finally the equation with the BChain-expressions will be eliminated and an equation z = t will be
generated which can be removed, since it is then part of the partial solution.

Definition 4.1 (LCSXBV: Unification Algorithm with BChain). The unification algorithm LCSX
together with the additional rule UnifBindingChain is called LCSXBV.

Note that the unification algorithms LCSX and LCSXBV in our example calculus may produce unifiers
leading to illegal terms (see the example below), thus those unifiers have to be discarded.
The addition of the UnifBindingChain-rule to the LCSX unification algorithm is sufficient for the
computation of all overlaps of the example calculus in section 2.8 because

– the unification problems that have to be solved by overlapping left hand sides of the rules in Fig. 1
with left hand sides of normal-order reductions in Fig. 2 are linear if we ignore the variables of sort
BV and

– the BChain-construct occurs only on one side of an equation (in normal-order reductions) in the
restricted form env∗(BChain(yi = Ai[si], N1, N2,≤), t1, . . . , tn, z).

Theorem 4.2. The computation of all overlaps between the rules in Fig. 1 and left hand sides of normal-
order reductions in Fig. 2 can be done using the algorithm LCSXBV. The unification algorithm terminates
in all of these cases and computes a finite set of unifiers.

Critical Pairs and Combination of Unification 15

4.4 Applying the Combined Unification Algorithm

As an example for the unification algorithm without binding-chains consider the overlap of (lapp) and
(cp-in) as a part of the proof that (cp-in) is a correct program transformation in any context. This means
to find overlaps of (letrec x = v,Env in C[x]) within the expressions ((letrec Env′ in s) t). First we
use an informal view: Seen as first-order terms, x, s,Env , C, t have to be treated as meta-variables, with
the following restrictions: x can only be instantiated by a language-variable, s, t by expressions, Env by a
sequence of bindings, C by a context. Similar as for Knuth-Bendix overlaps, the overlaps below a variable
can be treated in a general way. One of the unification problems is that (letrec x = v,Env in C[x]) should
be made equal to (letrec Env′ in s), which gives the following instantiation: {Env ′ 7→ {x = v,Env}, s 7→
C[x]}. The reductions are: ((letrec x = v,Env in C[x]) t)

(no,lapp)−−−−−−→ (letrec x = v,Env in (C[x] t)),

and ((letrec x = v,Env in C[x]) t)
(cp−in)−−−−−→ ((letrec x = v,Env in C[v]) t). It is easy to see that

((letrec x = v,Env in C[v]) t)
(no,lapp)−−−−−−→ (letrec x = v,Env in (C[v] t)) and that (letrec x =

v,Env in (C[x] t))
(cp−in)−−−−−→ (letrec x = v,Env in (C[v] t)), which shows the complete reasoning for the

forking diagram in this particular case. Note that a complete check for this constellation includes also
applications of the rules in contexts.
Now we encode the expressions as terms: In order to overlap (letrec x = v,Env in C[x])
with (letrec Env′ in s), the following encoded unification problem is obtained:
let(env(bind(x , v),Env),C (var(x))) .= let(Env ′, s), where the first-order variables are x , v ,Env ,Env ′, s,
and C is a context variable. This gives two equations by decomposition: env(bind(x , v),Env)) .= Env ′

and C (var(x)) .= s, and we only have to check whether the sort structure can instantiate C.
Another example is the overlap of a normal-order (cp-in)-left hand side with a program transformation
(cp-in): (letrec y = s,Env in A[y]) and (letrec y = s,Env in C[y]) which results in the unification
problem: let(env(bind(y1 , s1),Env1),A(var(y1))) .= let(env(bind(y2 , s2),Env2),C (var(y2))). This gives
two equations: env(bind(y1 , s1),Env1) .= env(bind(y2 , s2),Env2) and A(var(y1))) .= C (var(y2))).
There are several possible computation paths:

– One is that the terms match syntactically: I.e. y1 = y2, s1 = s2,Env1 = Env2,C = A1.
– Another possibility is that the environment matches syntactically, but A and C are differently in-

stantiated. That A is instantiated as a prefix of C or vice versa, which is not possible due to the
sort structure, since there are no proper terms of sort BV . The other possibility is that there is a
fork. The A-context variables are restricted to applications. Hence only the function symbol app is
possible for the fork.
1. One possibility is A 7→ A′(app([·], z1)) and that C 7→ A′(app(z2, C ′)). This implies the instantia-

tions z1 7→ C ′(var(y2)) and z2 7→ var(y1).
The instantiated term is (letrec y = s,Env in A[(y C ′[y])]), which represents the possibility of
different targets of the copy-rules in the in-expression.

2. The possibility that A is instantiated differently is ruled out.
– The environments are unified w.r.t. left-commutativity of env . Here it is sufficient to assume

the instantiation Env1 7→ env(bind(y2 , s2),Env ′) and Env2 7→ env(bind(y1 , s1),Env ′). These
possibilities can be combined with the possibilities of the unification of the equation A(var(y1))) .=
C (var(y2))).
A possible instantiated expression is (letrec y1 = s1, y2 = s2,Env in A[y1 C[y2]]).
As an example of a unifier that may lead to syntactically wrong expressions, we may obtain y1 7→ y2,
which leads to the ill-formed expression: (letrec y1 = s1, y1 = s2,Env in A[y1]).

A further example how to deal with binding-chains is:

Example 4.3. The most complex example is the overlap of a (cp-e)-rule with a normal-order variant of
the (cp-e)-rule. The unification problem is to unify the environment env∗(x = s, y = C[x],Env) with
env∗(y1 = s′, BChain(yi = Ai[yi−1], 1, N,<),Env2). One possibility for the first step is: x = s

.= yN1+1 =
AN1+1[yN1], env∗(y = C[x],Env) .= env∗(y1 = s′, (BChain(yi = Ai[yi−1], 1, N1,≤) ++ BChain(yi =
Ai[yi−1], N1 + 1, N,≤),Env2). The next step would remove the binding y = C[x]. The number of possi-
bilities in eliminating the eqaution is 2 + 4 + 3 = 9. It remains to compute the closing reduction of the
forking diagram, which is out of the scope of this paper

16 C. Rau and M. Schmidt-Schauß

5 Conclusion

We have provided an effective method using first-order unification with equational theories, sorts and
context variables and context classes to compute all critical overlaps between a set of transformation
rules and a set of normal-order rules in a call-by-need lambda-calculus with letrec-environments. Further
work is to extend this method to further lambda-calculi, in particular to lambda-calculi like in [SSSS08],
where variable-variable bindings are transparent in the normal-order rules, and to calculi with data
structures and case-expressions.

References

[AF97] Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. J. Funct. Programming, 7(3):265–301,
1997.

[BS92] Franz Baader and Klaus U. Schulz. Unification in the union of disjoint equational theories: Combining
decision procedures. In Proceedings of the 11th International Conference on Automated Deduction,
volume 607 of Lecture Notes in Computer Science, pages 50–65. Springer-Verlag, 1992.

[BS01] Franz Baader and Wayne Snyder. Unification theory. In J. A. Robinson and A.Voronkov, editors,
Handbook of Automated Reasoning, pages 445–532. Elsevier and MIT Press, 2001.

[DPR98] Agostino Dovier, Alberto Policriti, and Gianfranco Rossi. A uniform axiomatic view of lists, multisets,
and sets, and the relevant unification algorithms. Fundam. Inform., 36(2-3):201–234, 1998.

[DPR06] Agostino Dovier, Enrico Pontelli, and Gianfranco Rossi. Set unification. TPLP, 6(6):645–701, 2006.
[DV99] Evgeny Dantsin and Andrei Voronkov. A nondeterministic polynomial-time unification algorithm for

bags, sets and trees. In FoSSaCS, pages 180–196, 1999.
[FH92] Matthias Felleisen and R. Hieb. The revised report on the syntactic theories of sequential control and

state. Theoret. Comput. Sci., 103:235–271, 1992.
[How89] D. Howe. Equality in lazy computation systems. In 4th IEEE Symp. on Logic in Computer Science,

pages 198–203, 1989.
[KB70] D. Knuth and P. B. Bendix. Simple word problems in universal algebra. In J. Leech, editor, Compu-

tational problems in abstract algebra, pages 263–297. Pergamon Press, 1970.
[Mil77] R. Milner. Fully abstract models of typed λ-calculi. Theoret. Comput. Sci., 4:1–22, 1977.
[SS89] Manfred Schmidt-Schauß. Unification in a combination of arbitrary disjoint equational theories. J.

Symbolic Computation, 8(1,2):51–99, 1989.
[SS07] Manfred Schmidt-Schauß. Correctness of copy in calculi with letrec. In Term Rewriting and Applica-

tions (RTA-18), volume 4533 of LNCS, pages 329–343. Springer, 2007.
[SSS10] Manfred Schmidt-Schauß and David Sabel. On generic context lemmas for higher-order calculi with

sharing. Theoret. Comput. Sci., 411(11-13):1521 – 1541, 2010.
[SSSM10a] Manfred Schmidt-Schauß, David Sabel, and Elena Machkasova. Simulation in the call-by-need lambda-

calculus with letrec. Frank report 40, Institut für Informatik. Fachbereich Informatik und Mathematik.
J. W. Goethe-Universität Frankfurt am Main, April 2010.

[SSSM10b] Manfred Schmidt-Schauß, David Sabel, and Elena Machkasova. Simulation in the call-by-need lambda-
calculus with letrec. In Proc. of RTA 2010, 2010. to appear.

[SSSS08] Manfred Schmidt-Schauß, Marko Schütz, and David Sabel. Safety of Nöcker’s strictness analysis. J.
Funct. Programming, 18(04):503–551, 2008.

