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Abstract
Only a few studies on the nocturnal behavior of African ungulates exist so far, with 
mostly small sample sizes. For a comprehensive understanding of nocturnal behavior, 
the data basis needs to be expanded. Results obtained by observing zoo animals can 
provide clues for the study of wild animals and furthermore contribute to a better 
understanding of animal welfare and better husbandry conditions in zoos. The cur-
rent contribution reduces the lack of data in two ways. First, we present a stand-alone 
open-source software package based on deep learning techniques, named Behavioral 
Observations by Videos and Images using Deep-Learning Software (BOVIDS). It can 
be used to identify ungulates in their enclosure and to determine the three behavioral 
poses “Standing,” “Lying—head up,” and “Lying—head down” on 11,411 h of video ma-
terial with an accuracy of 99.4%. Second, BOVIDS is used to conduct a case study on 
25 common elands (Tragelaphus oryx) out of 5 EAZA zoos with a total of 822 nights, 
yielding the first detailed description of the nightly behavior of common elands. Our 
results indicate that age and sex are influencing factors on the nocturnal activity 
budget, the length of behavioral phases as well as the number of phases per behavio-
ral state during the night while the keeping zoo has no significant influence. It is found 
that males spend more time in REM sleep posture than females while young animals 
spend more time in this position than adult ones. Finally, the results suggest a rhythm 
between the Standing and Lying phases among common elands that opens future 
research directions.
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1  |  INTRODUC TION

1.1  |  General

The nocturnal behavior of many African mammals is poorly studied. 
It is known that the behavioral patterns can vary greatly between 
day and night, as many large herbivorous mammals spend, especially 
in winter, most of their sleeping time during the night, while the 
activity patterns emerge primarily at daytime (Bennie et al., 2014; 
Davimes et al., 2018; Gravett et al., 2017; Wu et al., 2018). For a 
comprehensive understanding of diurnal rhythms, a behavioral de-
scription of the entire diurnal cycle is necessary. Currently, there are 
only few contributions studying the nocturnal behavior. It is much 
more accessible to observe zoo animals at night rather than animals 
in their natural habitat due to much easier installation options of the 
required equipment (Ryder & Feistner, 1995). In order not to disturb 
the animals, camera recordings are a good mean of data collection 
in this case. Data collected in zoos can be valuable to study animal's 
behavior. In various species, there are no differences found in the 
behavior of animals in the wild and in captivity (Hollén & Manser, 
2007; Melfi & Feistner, 2002). This was verified recently for basic 
nocturnal activities like being in the REM sleep position between 
giraffes in zoos and in the wild (Burger et al., 2020). Therefore, stud-
ies conducted in zoos can provide a good basis for describing the 
animals’ nocturnal behavior and the obtained results can subse-
quently serve as starting information for observations in the field 
(Burger et al., 2020). In addition, a deeper knowledge of nocturnal 
behavior inside zoo enclosures could contribute information to fur-
ther improve animal management and husbandry in zoos (Brando & 
Buchanan-Smith, 2018) and provide conclusions on animal welfare 
(Walsh et al., 2019). One explicit example is that REM sleep appears 
to be an important indicator of stress in giraffes (Sicks, 2016), which 
can be measured by noninvasive methods.

To describe nocturnal behavior unambiguously, reliable data are 
needed, especially because there are few comparisons in literature. 
This means that it would be preferable to observe multiple individ-
uals of a species over a longer period of time to accurately describe 
the average behavior. Additionally, it is necessary to obtain data not 
only on one but on various species to close the existing knowledge 
gap. The extraction of meaningful information as well as a detailed 
evaluation of a mass of recorded data requires modern techniques to 
automate parts of this data mining process (Beery et al., 2020; Lürig 
et al., 2021; Norouzzadeh et al., 2018). In the last decade, various 
computer vision and deep learning techniques found their way into 
behavioral biology and ecology (Chakravarty et al., 2020; Dell et al., 
2014; Eikelboom et al., 2019; Gerovichev et al., 2021; Norouzzadeh 
et al., 2021; Schneider et al., 2018, 2020; Valletta et al., 2017), fa-
cilitating the task of dealing with a large dataset. Unfortunately, au-
tomatization of the evaluation of video recordings is challenging if 
the video recordings suffer from a very low framerate (lower than 5 
fps), much background noise, or heavy truncation effects, as is usual 
in observations in stables as zoo enclosures, or even in installments 
in the wild. More precisely, background noise appearing in such 

recordings is, for instance, due to light reflections caused by infrared 
emitters and particulate matter caused by the hay, while truncation 
and occlusion effects appear if the camera is not able to capture 
the whole enclosure or there are multiple overlapping animals in one 
stable. It is to emphasize that those negative effects are stronger the 
more general the setup is. Systems for automatic detection of flies 
or mice under perfect laboratory conditions (Graving et al., 2019; 
Kabra et al., 2013; Pereira et al., 2020) need to be much less robust 
to such effects than the system at hand for enclosures and stables. 
Of course, installments in the wild, like camera-trap studies, must 
deal with even more noise and truncation.

1.2  |  Our contribution

One of the two main objectives of this work tackles this challenge 
by making BOVIDS (Behavioral Observations by Videos and Images 
using Deep-Learning Software) available, which is a stand-alone 
software package based on deep learning techniques. To the best 
of our knowledge, this is the first fully open-source software pack-
age tackling the task of evaluating the nocturnal behavior of stalled 
animals that contains functionalities required for data prepara-
tion, training of the deep learning parts, data prediction, and data 
presentation. More precisely, BOVIDS can be used to evaluate 
video recordings of stalled ungulates recorded at 1 fps regarding 
two classification tasks: “binary classification” (a two-class classi-
fication task) and “total classification” (a three-class classification 
task), which are defined by Hahn-Klimroth et al. (2021) as follows. 
First, if an animal is not present on an image, the desired label is 
Out (being out of view) in both tasks. Second, in the total classi-
fication task, the three postures Standing, Lying—head up (LHU), 
and Lying—head down (LHD) need to be distinguished which will be 
properly defined in Section 2.2. The binary classification task asks 
only to distinguish Standing and Lying (combining LHU and LHD) 
if the animal is present. All discussed software as well as detailed 
instructions can be found in our GitHub repository: https://github.
com/Klimr​oth/BOVIDS and on Zenodo (https://doi.org/10.5281/
zenodo.6143896).

As a second part of the paper, a case study is conducted that ex-
plains how BOVIDS can be applied by behavioral biologists to their 
own data and which statistical analyses can be directly conducted 
on the output of the software package. In this study, the noctur-
nal activity budget of 25 common elands is analyzed. To the best of 
our knowledge, the case study provides the first description of the 
nocturnal behavior of common elands. Over 11,000 h (822 nights) 
of video material from five different EAZA zoos were evaluated, a 
task that seems challenging in the absence of automatic evaluation 
and it is described in detail how BOVIDS can be used to observe 
and analyze several important behavioral biological key figures of 
nocturnal activity. The results contain activity budgets, which show 
the percentages of all examined behavioral states, a visualization of 
the Standing–Lying rhythm as well as an analysis of the possible in-
fluencing factors age, sex, and zoo husbandry.

https://github.com/Klimroth/BOVIDS
https://github.com/Klimroth/BOVIDS
https://doi.org/10.5281/zenodo.6143896
https://doi.org/10.5281/zenodo.6143896
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1.3  |  Related work

As mentioned earlier, several computational systems have found 
their way into behavioral biology and ecology (Chakravarty et al., 
2020; Dell et al., 2014; Eikelboom et al., 2019; Norouzzadeh et al., 
2021; Valletta et al., 2017). Such systems are explicitly designed 
with respect to the underlying data. In the easiest tasks, cameras 
can be installed in a laboratory such that the recordings feature a 
high contrast between animals and the background as well as other 
laboratory conditions like a given steady camera angle and low 
background noise. Examples for such systems working with data of 
Drosophila flies or mice are JAABA (Kabra et al., 2013), DeepBehavior 
(Graving et al., 2019), and SLEAP (Pereira et al., 2020). When data 
are recorded either in the natural habitat or in different zoo enclo-
sures, it is much more challenging to collect appropriate data that are 
amenable to automatic evaluation, for instance due to variations in 
weather, brightness, and background. Furthermore, different cam-
eras can rarely be adjusted in a way such that the recording angle 
matches the given requirements or to ensure that animals are not 
highly truncated. It is to emphasize that there are examples of sys-
tems that deal with those challenges. One approach under varying 
brightness conditions distinguishes the poses “Lying” and “Standing” 
of cows in free-stall stables (Porto et al., 2013). Furthermore, one 
success story is the work by Norouzzadeh et al. (2018, 2021) whose 
system can automatically detect and count different species, and 
some shown behaviors using camera trap images of the Serengeti 
dataset (Swanson et al., 2015). Similar systems working with cam-
era trap images in the wild are presented by Schneider et al. (2018, 
2020).

2  |  MATERIAL S AND METHODS

As the purpose of this paper is two-fold, this section is divided into 
several parts. In the section Data evaluation, methods and material 
used to collect the data of the case study and to evaluate the find-
ings statistically are presented. Subsequently, the behavioral states 
of interest are defined properly in section Ethogram, whereas the 
section Foundations of Deep Learning introduces important concepts 
of machine learning used by BOVIDS. Finally, the section BOVIDS 
introduces and describes the single parts of the software package 
itself in more detail.

2.1  |  Data evaluation

The dataset includes nights of 25 common elands (Tragelaphus 
oryx), whereas the number of nights per individual ranges from 15 
to 49. In total, 822 nights with 11,411 h of video material are pre-
sent. The data were collected in winter seasons between 2017 and 
2020 in a total of five EAZA zoos in Germany (Allwetterzoo Münster, 
Erlebnis-Zoo Hannover, Opel-Zoo Kronberg, Zoo Dortmund and 
Zoom Erlebniswelt Gelsenkirchen). A detailed overview about the 

used data is given in Table A1. For further analysis the individuals 
are categorized as follows: “young,” ranging from birth until the 
time of weaning with about six months, “subadult,” older than six 
months until sexual maturity with about two years of age and “adult” 
afterwards. These categories are chosen according to the informa-
tion distributed across multiple prior works (Groves & Leslie, 2011; 
Myers et al., 2021; Puschmann et al., 2009; Tacutu et al., 2013).

All collected data are in the form of video recordings. The cam-
eras used are capable of night vision due to built-in infrared emit-
ters (Lupus LE139HD or Lupus LE338HD with the recording device 
LUPUSTEC LE800HD or TECHNAXX PRO HD 720P). The record-
ings are made with a frame rate of 1 fps and the resolution ranges 
from 704 × 576 px to 1920 × 1080 px. Recording takes place in the 
stable during night, the time of the absence of animal keepers, which 
mostly ranges from 17:00 to 07:00 (14 h). In some cases, the record-
ing time is 18:00 to 07:00 (13 h).

The data were recorded continuously providing an exact time 
span for every behavior with a start and an end time (Martin & 
Bateson, 2015). The manually annotation was governed by the open-
source program BORIS, Version 7.7.3 (Friard & Gamba, 2016) and 
consists of 2374 h of video material out of 170 nights. BOVIDS re-
quires the use of multiple deep neural networks for object detection 
(OD) and action classification (AC) as explained by Hahn-Klimroth 
et al. (2021) and in the following section. To train an initial object 
detection network, at least 400 images of every enclosure were an-
notated using LabelImg (Tzutalin, 2015) resulting in 11,326 images 
of common elands and 49,437 images of various African ungulates 
as already elaborated by Hahn-Klimroth et al. (2021). Following the 
prescribed approach, the initial action classification networks were 
not only trained using 170 recordings (66,466 images) of common 
elands but also 113,407 images of other African ungulates with com-
parable postures. Furthermore, two rounds of offline hard example 
mining (OHEM) were conducted using additionally 14,381 images 
of common elands and 50,262 images of other African ungulates. 
Finally, the action classifiers used for common elands stalled to-
gether were fine-tuned by 24,304 images stemming from manually 
annotated video files and 7377 images generated through OHEM. 
Detailed information can be found in Table A1.

All statistical analyses are conducted with R Studio (R Core 
Team, 2014) and the figures, which are not given by BOVIDS, are 
produced using the core functionalities of R and the package gg-
plot2 (Wickham, 2016). Statistical tests are performed differently 
for continuous and ordinal data. To conduct a two-factor analysis of 
variance (ANOVA) on continuous data, normality is required which is 
tested by Shapiro–Wilk test for any behavior class. In case of signif-
icant deviation from normality (p < .05), a normality transformation 
is applied to the data by R’s “bestNormalize” package (Peterson & 
Cavanaugh, 2020). To analyze differences between multiple groups 
on ordinal data, a Kruskal-Wallis test is applied. Finally, as post hoc 
tests on all pairs of potentially significant factors, a collection of un-
paired t-tests is applied in the continuous case and, respectively, a 
collection of Wilcoxon tests in the ordinal case. The alpha level is 
adjusted by the Bonferroni–Holm adjustment in each case.
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2.2  |  Ethogram

The focus of this paper is to distinguish between three postures: 
Standing, Lying—head up (LHU), and Lying—head down (LHD). 
Finally, if there is no animal present, the assigned label is out of 
view (Out). The latter label can also be given if only a small part of 
the animal is visible, from which the posture cannot be inferred. 
Furthermore, the class Lying is defined as the union of LHU and 
LHD. The binary classification task which distinguishes Standing, 
Lying, and Out allows to analyze rhythms over the night as the 
categories “activity” and “rest” are the most prominently meas-
ured behavior stages to examine diurnal rhythms (Merrow et al., 
2005). In the following ethogram, based on that of Hahn-Klimroth 
et al. (2021), the three behavioral states are defined and shown 
in Figure 1.

Standing: The animal stands in an upright position on all four 
hooves. The exact behavior is neglected, thus the animal could 
be, for instance, feeding, resting, or ruminating.
Lying—head up (LHU): The animal lies down, and its head is lifted. 
The behavioral state does not distinguish if the animal is awake or 
in non-REM sleep. As before, the precise behavior is neglected.
Lying—head down (LHD): The animal is lying with its head resting 
on the ground. The head's position is beside the body or some-
times in front of it.

It is crucial to notice that LHD is the typical REM (rapid eye 
movement) sleep posture. REM sleep is recognized through various 
behavioral components as the animal is lying with its head resting 
due to postural atonia (Lima et al., 2005; Zepelin et al., 2005). This 
characteristically REM sleep position can be used to estimate the 
REM sleep, a common approach in the study of behavior of common 
elands (Zizkova et al., 2013) and cows (Ternman et al., 2014).

2.3  |  Foundations of Deep Learning

In supervised machine learning tasks, one is usually interested to 
design a system that allows automatic prediction of new data based 
on manually annotated examples (Russell & Norvig, 2016). In this 

contribution, two excessively studied supervised learning tasks are 
employed: object detection and action classification.

In the easiest variant of the object detection task, an image is 
given as an input and the system is asked to draw a bounding box 
around the objects appearing in the image (bounding box regression) 
and to assign a class label that describes the content of each bound-
ing box (classification). On a very high-level description, there are 
two different approaches to this task. In one-step object-detection 
a bounding box is drawn, and the corresponding label is assigned 
simultaneously while in two-step object-detection, those tasks are 
conducted sequentially (Jiao et al., 2019). Well-known representa-
tives of one-step solutions are yolo and SSD while there are various 
well-known two-step architectures like FasterRCNN, MaskRCNN, 
or EfficientDet. Without going into much detail, comparably mod-
ern one-step architectures are mostly faster at the task as two-step 
architectures but perform slightly worse in the classification part 
(Ouchra & Belangour, 2021).

Similarly, there is a huge set of deep learning architectures de-
signed for the action classification task. In the easiest variant, an 
image is given, and the system needs to assign one unique class label 
out of a given set of labels (Lu & Weng, 2007). Prominent architec-
tures are ResNet (He et al., 2016), EfficientNet (Tan & Le, 2019), or 
CoAtNet (Dai et al., 2021). The performance of such a classifier is 
measured by two important metrics: the accuracy as well as the f-
score (Tharwat, 2021).

Suppose a sequence of n images is predicted and image i 
gets label si assigned by the classifier while its correct label, 
called ground-truth, was ti. Suppose furthermore that classes 
0, 1, …, k exist. Therefore, there are two sequences of labels 
s = (ti)i=1…n, t = (ti)i=1…n ∈ {0,…, k}n which represent the classifica-
tion by the neural network and the ground-truth, respectively.

The accuracy is defined as the proportion of correctly labeled 
images among all images, or formally,

The accuracy is a good indicator on how well a model performs 
on average, but if there are some underrepresented classes, the 
model's performance on those classes is not properly described by 

accuracy(s, t) =

|
|
|
{
i: si = ti

}||
|

n
.

F I G U R E  1 The three observed behavioral states: Standing, Lying—head up, Lying—head down, from left to right of common elands
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the accuracy. The f-score, the harmonic mean of precision and recall, 
is a measure that describes the performance of a model per class 

quite well. To this end, let tp (c, s, t) =
|
|
|
{
i: si = ti = c

}|
|
|
 be the number 

of true positives classified by the model of class c and 

fp (c, s, t) =
|
|
|
{
i: si = c, ti ≠ c

}|
|
|
 be the number of false positives, respec-

tively. Analogously, define fn (c, s, t) =
|
|
|
{
i: si ≠ c, ti = c

}|
|
|
 as the num-

ber of false negatives of class c. Then, the f-score of class c can be 
expressed as

While accuracy and f-score capture important aspects of a deep 
learning model, only optimizing with respect to those metrics might 
not be sufficient in certain applications. Video action classification 
is such an example. Given a video file, the task is to train a model 
that can accurately predict the observed action at each time-step of 
the video file. Very short misclassified sequences in a long video are 
clearly not captured by the f-score or the accuracy but it causes clas-
sification flickering which might be problematic if one is interested 
in key quantities like the average length of certain activities. There 
are various recent developments in video action classification, most 
building up on so-called “recurrent neural networks,” which have in 
common that multiple dimensions of the data given in the videos 
are used (Xu et al., 2016). First, there is a spatial dimension which is 
the evaluation of a single frame of the video file by classical action 
classification. Second, there is a temporal dimension given as the 
single frames are coming as a sequence and the evolution over time 
contains information. Capturing the temporal dimension with state-
of-the-art approaches becomes hard if the framerate of the video is 
very low (See & Rahman, 2015). A more classical approach toward 
employing the temporal dimension is the “multiple-frame encoding” 
(Franche & Coulombe, 2012; Ji et al., 2013) in which subsequent 
frames are merged into one image that is fed into the model. This 
approach allows capturing the temporal dimension even given a low 
framerate, but it is inferior to more involved strategies as soon as the 
framerate increases (Xu et al., 2016). This multiple-frame encoding 
will also be used in the present contribution, as the available video 
material is recorded with 1 frame per second.

In supervised learning tasks, a user presents the model a set of 
examples and the model is built upon those examples. This proce-
dure is called training. More precisely, it is usual to split this set of 
examples into two parts: a training set and a validation set. During 
training, the accuracies of the model with respect to the training 
set as well as to the validation set are constantly measured and the 
model is optimized regarding the performance on the training set. In 
the survey by Wang et al. (2020), different metrics as the accuracy 
as target functions of this optimization process are discussed. While 
the performance on the training and validation data is of great the-
oretical interest, in applications, one is interested in the so-called 
generalization accuracy. To measure this accuracy, a third dataset 
of manually annotated data points is required, the test set. The 

important difference between training and validation set is that the 
images in the test set were not presented to the model during train-
ing and, therefore, the model's performance on these data is a good 
indicator on how well the model will perform in an application. It is 
well-known that the performance on the test set is better, the more 
similar the testing images are to the images presented during train-
ing. The discrepancy between the distribution of training images 
and testing images is called distribution shift and machine learn-
ing models are known to be brittle even to small distribution shifts 
(Quiñonero-Candela et al., 2008) and, therefore, one tries to find a 
set of training images that represents the images in the application 
as best as possible.

2.4  |  BOVIDS

BOVIDS is an end-to-end software package which automatically 
identifies individuals of ungulates and their postures in videos. The 
detection itself is based on a sequential application of object de-
tection and video action classification governed by state-of-the-
art deep neural networks, yolov4 (Bochkovskiy et al., 2020), and 
EfficientNet-B3 (Tan & Le, 2019), see Figure 2. As explained, there 
are two classification tasks (total classification and binary classifica-
tion). The object detector is used uniformly for both tasks while dif-
ferent sets of action classifiers are trained for either recognition of 
three classes or two classes, respectively.

It is important to emphasize that the following description is 
meant to present one possible way of using a deep-learning pipe-
line, starting from data preparation, over training and evaluation, 
and ending with the preparation of real data for statistical analy-
ses. Hereby, the used deep learning models perform well on testing 
sets and are known to be fast (Bochkovskiy et al., 2020; Tan & Le, 
2019). The description is not meant to be the single possible way of 
implementing such a system. As will be shown, the system is easy 
to apply, and the results are satisfactory from a biologist's point of 
view.

2.4.1  |  Overview

This section is devoted to give a short overview about BOVIDS’ 
functionality. The system is designed to achieve a good performance 
in long-term studies using video recordings in enclosures. This in-
cludes observation of zoo animals as well as farm animal husbandry. 
The goal is to tell the posture (Standing, LHU, LHD) of the observed 
animals at any time in the video with high precision to describe its 
fundamental behavior as well as possible.

Manual annotation of a video file of one night (14 h) by a trained 
person requires roughly about two hours which indicates that only a 
few video files out of a longer observation period can be evaluated 
manually. This is a challenge as one is confronted with two problems 
in designing a valid training set for a deep learning model. First, the 
postures Standing, LHU, and LHD are highly imbalanced such that 

f - score (c, s, t) =
tp (c, s, t)

tp (c, s, t) + 0.5 ⋅ (fp (c, s, t) + fn (c, s, t))
.
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out of 14 h of video material, only a small portion can be easily used 
in a training set. It is of course possible to train on imbalanced data, 
but even this has limitations (Liu et al., 2019). Second, on different 
nights, the video recordings may vary due to changes in external 
conditions, like brightness or positioning of hay. Therefore, data 
recorded on different nights undergo a mild distribution shift. As 
manual annotation of many nights is very time-consuming and an-
notation of random periods of each night might cause an even more 
severe class imbalance, this contribution suggests an adaptation of 
a process called “offline hard example mining” (Felzenszwalb et al., 
2010). This approach tries to minimize human working load by the 
cost of higher computational cost in an iterative process. Miao et al. 
(2021) conducted an extensive study on such iterative processes 
and analyzed its performance with respect to deep-learning models 
that evaluate camera-trap images.

In the following section, a high-level sketch of the functionalities 
of BOVIDS is given and the details can be found in the subsequent 
sections. BOVIDS is divided into four components:

BOV 1. Data collection,
BOV 2. Object detection (OD),
BOV 3. Action classification (AC),
BOV 4. Data prediction.

While a part of BOV 4 is a significantly improved and extended 
version of work presented in an earlier contribution (Hahn-Klimroth 
et al., 2021), the newly developed components BOV 1–BOV 3 allow 
an interested user to apply the complete system comfortably to their 
own data. The software package consists of various small python 
scripts that allow to handle large datasets more conveniently and 

F I G U R E  2 Visualization of the sequential application of the yolov4 object detector and the EfficientNet-B3 action classifier

F I G U R E  3 Overview of the System BOVIDS and all its categories
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prepare the data in a way that can be used to apply the prediction 
pipeline BOV 4.

BOV 1 allows to convert video recordings directly from the 
LUPUS observation system. To annotate new data automatically, 
the prediction pipeline of BOVIDS (BOV 4) is used. The necessary 
scripts to prepare the training and validation set and to conduct the 
training are presented in BOV 2 for the object detector, while BOV 
3 provides these functionalities with regard to the action classifier. 
Furthermore, those sections contain a description of one possibility 
to fine-tune the models and achieve a good performance. Finally, 
multiple tools to measure the accuracy of the prediction and to de-
tect systematic errors by BOVIDS are provided in BOV 4. Also, tools 
to represent and visualize the data that are a good starting point 
to apply further statistical methods are presented in this section. A 
visualization of the complete process is given in Figure 3.

2.4.2  |  BOV 1: Data preparation

BOVIDS creates a collection of video files, one per night automati-
cally if the data are recorded by the LUPUS observation system. If 
some data are missing due to power failure, the missing frames can 
be filled with a sequence of black frames to ensure a joint observa-
tion time over all video files. Such sequences of black frames will be 
labeled as Out by BOVIDS during prediction and, therefore, repre-
sent reality quite well.

2.4.3  |  BOV 2: Training an object detector (OD)

The final object detector is trained following the subsequent 
procedure:

OD 1. Manual annotation of images.
OD 2. Train a first version of the object detector.
OD 3. Offline hard example mining (OHEM).

a. Automatic annotation of unseen data.
b. Evaluation of the suggested bounding boxes.
c. Retrain the deep neural network.

In the initial annotation task (OD 1), between 400 and 800 im-
ages are sampled stemming from multiple videos per enclosure over 
the observation period to increase the data variability. The num-
ber of images sampled in total depends on how much data there 
are overall, how difficult the detection appears to be, and whether 
individuals need to be distinguished. Those images are annotated 
manually by a freely available third-party software package called 
LabelImg (Tzutalin, 2015) and the initial training can be performed 
(OD 2). Hereby, 5% of the data is used as the validation set while 95% 
of the data is used for training.

To run an adapted version of the so-called “offline hard example 
mining” (Felzenszwalb et al., 2010), in short OHEM (OD 3), the object 
detector is used to automatically annotate 300–600 images out of 

unseen videos of the same set of enclosures (OD 3a). The quality of 
each such automatically drawn bounding box is evaluated. Hereby, 
a human assigns one out of four classes (good, okay, poor, swapped) 
to each bounding box (OD 3b) which is visualized in Figure 4. If the 
bounding boxes are satisfyingly accurate, the procedure stops at this 
point. Otherwise, the bounding boxes evaluated as poor or swapped 
are corrected manually using LabelImg. Those bounding boxes can 
be seen as “hard examples” as the current version of the object de-
tector struggles at prediction. The freshly corrected annotations to-
gether with the well-evaluated bounding boxes are used to increase 
the training set of the object detector and the object detector is 
trained on this new, extended set. Again, 5% of the existing data 
is used for validation. This procedure can be repeated until satisfy-
ing results are achieved. In the conducted case study, one iteration 
sufficed to achieve a decent accuracy. After having trained an accu-
rately working object detector, this object detector is one ingredient 
required to generate a training set for the action classifiers.

2.4.4  |  BOV 3: Action classification (AC)

The action classifier's goal is to predict the pose of an individual on 
a single image (single-frame, SF) to capture the spatial dimension of 
the video, respectively, on four subsequent images placed next to 
each other (multiple-frame, MF) to capture the temporal dimension. 
The case study suggests that the following iterative process gen-
erates a well-performing action classifier and finds a good balance 
between accuracy of the deep learning model and human annota-
tion time.

AC 1. Annotation of few video files.
AC 2. Training of a first version of the ACs.

a. Preparation of an initial training set.
b. Training of the ACs.

AC 3. One or multiple rounds of OHEM
a. Prediction of many new video files.
b. Extracting hard as well as random examples as sin-
gle images.

c. Manually evaluating the performance on those 
examples.

d. Retrain the network based on the evaluated images.

When starting from scratch, it is most convenient to annotate 
the behavior of each single frame of a video by annotating the 
whole video (AC 1), for instance using the third-party software 
package BORIS (Friard & Gamba, 2016). In the conducted case 
study, video material corresponding to 170 nights was annotated 
manually, see Table A1. To generate the training set, equally many 
images (single-frame and multiple-frame encoded) of each posture 
(Standing, LHU and LHD) are extracted from the annotated video 
files by using the previously trained object detector. This balanc-
ing is one possible way to ensure that training of the action clas-
sifiers works decently (Japkowicz & Stephen, 2002). The reader 
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should be aware that there are different strategies to deal with 
class imbalance that will not be discussed in this contribution (Liu 
et al., 2019). Due to the class balancing and the underrepresenta-
tion of LHD in the video data, it is possible to extract roughly 500 
images per class and per 14-hour video on our dataset. To start 
training, a training set with 90% of those images and a validation 
set with 10% of those images are created (AC 2a). Finally, four 
EfficientNet-B3 CNNs, namely the single-frame classifier and the 
multiple-frame classifier for both (binary and total) classification 
tasks (AC 2b) are trained.

These first versions of the action classifiers are supposed to 
work quite decently on the videos used for the training, but it is likely 
that the classification accuracy is worse on different videos of the 
same animal in which the arrangement of the enclosure as well as 
the light conditions might be quite different due to the already dis-
cussed distribution shift (Quiñonero-Candela et al., 2008). For this 
reason, it seems sensible to reduce the distribution shift between 
the training set and the data required to be predicted by increasing 
the variability of the training data. To this end, we adapt the classical 
offline hard example mining to the setting at hand (AC 3) as follows. 
First, a fairly large number of momentarily not annotated video files 
will be predicted by BOVIDS (AC 3a). The accuracy of this prediction 
is expected to be at least 90% as Hahn-Klimroth et al. (2021) already 
discussed. Therefore, BOVIDS provides an educated guess on the 
labels of each time interval of many video files that could not have 
been annotated manually without spending too much human anno-
tation time. Based on those predicted labels, one samples a decent 
number of images in almost balanced classes distributed over the 
whole observation time (AC 3b). In the conducted case study, 72,020 
images were sampled that way. These images are close to a uniform 
sample of the data on balanced classes of the whole underlying data 
and can, therefore, be referred to as “random” examples. These 

examples can now be evaluated by a human observer in a moderate 
amount of time (AC 3c). It is to be stressed at this point that a decent 
classifier is a critical ingredient: As the classes are highly unbalanced, 
random sampling without an educated guess would result in a set of 
images with almost no LHD, therefore, this simple process would not 
be possible to be used for generating a balanced training set.

Besides mining such random examples, it is also possible to ex-
tract “hard” examples easily. In this contribution, a hard example is 
defined as an image for which either the certainty of classification by 
the action classifier is small or if it belongs to a time interval of which 
the predictions of the single-frame and multiple-frame action clas-
sifier disagree. It is supposed that neural networks can be finetuned 
efficiently by hard examples (Felzenszwalb et al., 2010). Therefore, 
instead of only generating random samples distributed across the 
observation time, it is possible to nudge the training set into a direc-
tion such that information from momentarily hard to classify data 
gets boosted.

Based on the human evaluation of the single images it is now 
possible to retrain the action classifiers on a much broader dataset 
that really represents the distribution of the data that needs to be 
classified. At this point, the training classes might get slightly unbal-
anced if the human annotation deviates strongly from the automatic 
one. In this case standard techniques like random upsampling might 
be considered (Branco et al., 2016) and are provided by BOVIDS, of 
course, different ways to deal with this imbalance can also be em-
ployed (Liu et al., 2019). Once a decent object detector and a well-
performing action classifier are generated, all data can be predicted 
once more and the performance of BOVIDS can be measured.

At this point, we want to emphasize that training and validation 
data are generated as usual in machine learning for the object de-
tection and the action classification tasks. However, generation of a 
suitable testing set and choosing a decent evaluation metric is more 

F I G U R E  4 Example of the four classes 
that can be given in evaluation, good 
(green), okay (yellow), bad (red), and 
swapped (blue)
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involved as the performances of the object detector and the action 
classifiers as single systems are subordinate to the outcome of their 
sequential application. This will be discussed in detail in Section 
2.4.5.2.

2.4.5  |  BOV 4: Data prediction

The data prediction step consists of three major parts (DP 1–DP 3) 
that are discussed in this section and are read as:

DP 1: Prediction
P 1. Object detection phase
P 2. Action classification phase
P 3. Postprocessing phase.

DP 2: Data evaluation
DP 3: Data presentation.

DP 1: The prediction pipeline
The system of Hahn-Klimroth et al. (2021) predicts a video file in 
three phases:

P 1. Object detection phase
P 2. Action classification phase
P 3. Postprocessing phase.

These phases must not be confused with BOV 2 and BOV 3 that 
describe how to train the required deep neural networks while P 
1–P 3 are phases within the prediction pipeline of Hahn-Klimroth 
et al. (2021) that require the previously trained networks. These 
phases are briefly explained below, and improvements and new fea-
tures provided by BOVIDS, in contrast to the original system, are 
highlighted.

In the object detection phase (P 1), the system will first decom-
pose a video file into so-called “time intervals”. This is a discretiza-
tion of the continuous data into packages of seven seconds each. 
More precisely, for each time interval the prediction pipeline will 
collect four images. Then, the object detector is used to identify 
the animal present in the images or, respectively, declare that no 
animal is present. While this step is governed by a Mask-RCNN 
network by Hahn-Klimroth et al. (2021) in the current version 
the architecture is changed to the much more recent yolov4 net-
work as implemented by Taipingeric (2020) which improves the 
classification accuracy (Bochkovskiy et al., 2020) and significantly 
speeds up the complete prediction pipeline by approximately 40% 
on the same hardware. The merit of this step is two-fold. First, as 
pointed out by Yosinski et al. (2014), it increases the similarity be-
tween images taken from different enclosures. This dramatically 
improves the chance of meaningful learning of the poses from 
various videos. Second, it is used to distinguish between distinct 
individuals within the same enclosure. At the end of the object 
detection phase, each time interval is represented in two ways for 
every individual: As a sequence of single images (single-frame) and 

additionally as one image in which these images are placed next 
to each other (multiple-frame encoded representation (Franche & 
Coulombe, 2012; Ji et al., 2013)).

The subsequent step, the action classification phase (P 2) to de-
termine the behavioral classes, is a classical image classification task. 
For both, the single- and multiple-frame representations, this task is 
governed by two independently trained EfficientNetB3 CNNs per 
time interval. The final prediction for any time interval is calculated 
as the average over both outcomes. Hahn-Klimroth et al. (2021) 
already describe that the “total classification” task (distinguishing 
Standing, LHU, LHD) might be much more difficult than the “binary 
classification” task (distinguishing Standing and Lying) and gives the 
possibility to map the final prediction from LHU and LHD to Lying. 
The approach of BOVIDS toward this binary task is slightly different. 
It is necessary to train a set of independent networks that purely 
govern this binary classification such that possible features can 
eventually be better learned.

To reduce classification flickering, Hahn-Klimroth et al. (2021) 
propose a set of postprocessing rules (P 3) which are applied to the 
sequence of classifications of time intervals. Those postprocessing 
rules dismiss very short sequences of a specific action as those se-
quences are likely to stem from short periods of false classifications. 
In the current setting the set of postprocessing rules is extended. 
It is now possible to handle flickering between Out and a specific 
behavior more smoothly to incorporate short periods in which the 
object detector failed to detect or identify the present individual. Of 
course, such a postprocessing step might dismiss short phases which 
are present in the data. Therefore, choosing an appropriate set of 
rules is a trade-off between a stronger methodological error (errors 
made by BOVIDS through misclassification of short events) and a 
systematic error (errors caused by dismissing short phases on real 
data). BOVIDS contains tools for a systematic study of both types of 
errors. If the systematic error is appropriate for the application, one 
can compare BOVIDS’ prediction with the postprocessed real data 
to describe the methodological error.

In the present work, the chosen set of postprocessing rules 
varies significantly between the binary and the total classifi-
cation task. Indeed, as the binary classification task is meant to 
study longer periods of Standing and Lying, phases up to 5 min are 
dismissed. Furthermore, in the total classification task, it is dis-
tinguished between adult common elands and nonadult common 
elands as the latter show shorter phases than the adult individu-
als. A detailed overview over the used postprocessing rules can be 
found in Table A2.

DP 2: Data evaluation
As the prediction of a deep learning-based system works, in the end, 
as a black box, it is very important to assure the quality of the pre-
diction regarding all quantities of interest. Therefore, it is crucial to 
define a valid testing set and appropriate evaluation metrics. Due to 
the iterative process on how the training set was found, the images 
used for training the action classifiers are an almost uniform sample 
from the whole observation period. Thus, any specific video is an 
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adequate sample to determine the expected accuracy which implies 
that a good testing set is given by the already manually annotated 
videos. Observe that during training only the object detector and 
the action classifiers as single systems were evaluated with respect 
to a validation set but ultimately, it is more important that the pre-
diction of a complete video is accurate with respect to biologically 
interesting quantities.

To quantify the accuracy of the prediction on the testing set, 
performance indicators from machine learning theory as well as bio-
logical key figures are evaluated by the following four quality criteria.

QC 1. Analysis of the object detector per night (“detection 
density”).
QC 2. Accuracy and f-score as well as a comparison of the num-
ber of phases, the median phase length, and the overall per-
centage per activity class between BOVIDS’ prediction and the 
manual annotation.
QC 3. Number, length, and type of misclassified sequences.
QC 4. Visual checking for outliers.

While QC 2 and QC 3 are quality criteria which can be only eval-
uated with respect to the testing set, QC 1 and QC 4 can be applied 
to all predicted data.

In the first step (QC 1), the performance of the object detector 
should be checked in detail. It may happen that the object detec-
tor fails to detect the individual in certain videos quite often, which 
could be due to different light conditions or maybe because of heavy 
truncation. Of course, it is also possible that the individuals are Out 
for a longer period. To check the performance, BOVIDS outputs an 
overview that reports the percentage of detections of an individ-
ual by the object detector per video. If this value turns out to be 
noticeably low, one should check the original data to see if this low 
“detection density” can be explained.

Second, if the object detector works satisfactorily well and a 
good set of postprocessing rules was defined, the performance of 
the classification part of BOVIDS needs to be analyzed. Accuracy 
and f-score (QC 2) are standard tools to measure the performance of 
a deep learning system. Those metrics are applied with respect to the 
postprocessed data in comparison to the manually annotated data 
to which the postprocessing rules were also applied. Further highly 
relevant biological quantities are the percentage per behavioral class 
and the median phase length where the latter is not evaluated appro-
priately by accuracy and f-score. Finally, it is important to understand 

which kind of misclassifications occur and to, potentially, derive pat-
terns. To analyze QC 2 and QC 3, BOVIDS contains a tool that allows 
to report the accuracy, f-score, deviation in the number of phases as 
well as a detailed description of misclassified sequences.

If QC 1–QC 3 are satisfactorily met, BOVIDS can be used to 
generate a final prediction of the unlabeled videos. Of course, QC 
1 should be applied to unlabeled videos as well as it is a good indi-
cator whether the object detector works well on a specific video. 
But even if the object detector detects an object quite frequently, it 
might happen that BOVIDS provides poor quality on a specific night 
if there are problems in the original data: for instance, individuals 
could be heavily truncated on a specific night. In those cases, it is 
reasonable to assume that the activity budget of the individual looks 
significantly different as in other videos which can be checked rather 
easily visually by searching for such outliers (QC 4). To this end, a 
short graphical representation of the activity budget in a video is 
generated by BOVIDS (see Figure 5) which can be used to identify 
those outliers. If the graphical representation of a night is conspicu-
ous, one can check the original data on a sample basis to investigate 
BOVIDS’ performance.

DP 3: Data presentation
BOVIDS provides further functionalities to present the produced 
data elegantly which will be briefly described in this section and 
shown in more detail with the data of the case study in the results’ 
section. Next to the graphical representation (see QC 4) of each night, 
BOVIDS produces a document that contains an overview of the most 
important statistical key quantities, for instance, the percentages of 
the single behaviors in the activity budget. Finally, BOVIDS can be 
used to generate an overview about an individual's behavior over all 
evaluated nights or even about a species’ average behavior over all 
nights of all individuals. Furthermore, first graphical representations 
of the nightly activity are given as can be seen in Figure 6.

3  |  RESULTS

3.1  |  BOVIDS' performance in the case study

This section is devoted to reporting the validity of postprocess-
ing rules and the quality criteria QC 1–QC 4 in the case study. 
Subsequently, in the next section, the nocturnal behavior of the 
common elands is presented.

F I G U R E  5 Example of one night of one 
common eland with the plotted phases 
of the three behavioral states of the 
total system given by BOVIDS to look for 
quality criteria QC 4
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A set of postprocessing rules can be considered as valid if the 
systematic error induced by these rules is negligible for the quanti-
ties of interest. In the dataset at hand and in both classification tasks, 
the accuracy of the postprocessed data ranges from 99.6% to 100% 
and even the f-score of all activity classes lies constantly over 99.2%. 
Accordingly, the percentage per night per individual of all behav-
ioral classes under both classification tasks are approximated up to 
an error of 0.02% in the worst case. Moreover, the average median 
phase length per individual is overshot by 21s of 1796s (Standing), 
34s of 1375s (LHU) and 24s of 322s (LHD) in the total classification 
task while those values are 130s of 1834s (Standing) and 239s of 
4226s (Lying) under binary classification. The number of phases per 
activity class is underestimated, more precisely, the mean deviation 
over all individuals is −0.29 of 8.2 (Standing), −1.02 of 23.0 (LHU), and 
−0.67 of 14.6 (LHD) in the total classification task while it is −1.4 of 8.9 
(Standing) and −0.9 of 8.5 (Lying) in the binary classification system.

To analyze the quality criteria, the predictions of BOVIDS are 
compared to the manually annotated and postprocessed nights. All 
nights in which individuals were at least 20% of the time Out, either 
by BOVIDS’ prediction, or, if manually annotated by the humans’ 
prediction, were dismissed as such nights do not yield good evidence 
on the individual's activity budget. The results of all quality criteria 
are presented in this section.

On the analysis of the accuracy (QC 2) of BOVIDS’ prediction 
with respect to the manually annotated postprocessed data, the 

following results are found. The median accuracy per night lies at 
99.4% with a 0.25-quantile of 99.1% and a 0.75-quantile of 99.4% 
in the total classification task. Furthermore, the median f-scores 
turn out to be 99.6% (Standing), 99.5% (LHU), and 96.3% (LHD) 
with minima 94.4% (Standing), 95.4% (LHU), and 93.2% (LHD). In 
the binary classification task, the corresponding values read as fol-
lows. The median accuracy is 99.8% with a 0.25-quantile of 99.4% 
and a 0.75-quantile of 99.8% while the f-scores are at least 93.1% 
(Standing) and 97.1% (Lying) with a median of 99.5% and 99.8%. 
Furthermore, the percentage of each behavioral class per individual 
is approximated up to at most 0.03% in both classification tasks. In 
the total classification system, the mean deviation in the number of 
phases is 0.34 of 7.9 (Standing), 0.53 of 22.0 (LHU), and 0.37 of 13.9 
(LHD). The values in the binary classification task are 0.05 of 7.5 
(Standing) and 0.03 of 7.6 (Lying). Finally, the median phase length 
per individual is underestimated by −22.6s of 1817.6s (Standing), by 
−117.0s of 1409.9s (LHU), and −1.8s of 345.6s (LHD) in the total clas-
sification task. In the binary classification system, those values turn 
out to be −2.87s of 1970.9s (Standing) and −14.7s of 4464.5s (Lying).

The next quality criteria to analyze is the number, length, and 
type of misclassified sequences (QC3). In the total classification 
task, we find, overall, 179  misclassified sequences in 62 nights 
(thus, on average, 2.9 sequences per night). Out of 179 sequences, 
49  sequences are misclassifications between a real behavior and 
being Out and in 65 cases, BOVIDS predicted LHD while the actual 

F I G U R E  6 Timeline containing the 
percentage of all behavioral states and 
their means over all nights of all analyzed 
individuals of common elands. The 
visualization is smoothed by a rolling 
average over 3 min. (a) is the binary 
classification and contains 822 nights 
of 25 individuals, and (b) is the total 
classification containing 589 nights of 16 
individuals
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behavior was LHU. The remaining 65 sequences were mostly short 
confusions between Standing and LHU. In contrast, in the binary 
classification task, there are 181  misclassified sequences in 170 
nights (on average 1.1 sequences per night) out of which 78 are con-
fusions between a behavioral class and Out, in 78 cases, BOVIDS 
predicts Standing while the human label is Lying and in 27 cases vice 
versa. Furthermore, out of the 181 sequences, 46 misclassifications 
are sequences of length at most 1 min and 47 additional misclassifi-
cations are below 5 min.

Quality criteria QC 1 and QC 4 are with respect to all predicted 
nights. Hereby, QC 1 checks the performance of the object detec-
tor. The detection density per individual ranges from 87.2% to 100% 
while its median turns out to be 99.8% with a 0.25-quantile of 97.5% 
and a 0.75-quantile of 100%. To analyze the last quality criteria (QC 
4), namely, to look for apparent outliers, BOVIDS creates one plot 
per predicted night (for the binary and for the total classification 
task, respectively) representing the timely course of the behav-
ioral phases (see Figure 5). There are few apparent outliers on data 
which were not manually labeled, and the automatic annotation was 
checked randomly. In most cases, it was found that BOVIDS’ pre-
diction is correct even if it seemed to be suspicious. The observed 
misclassifications during this step fit exactly into the description of 
the errors in QC 3 and the frequency is comparable.

3.2  |  The nocturnal behavior of common elands

The data presentation tools of BOVIDS give a first visual result re-
garding the relative distribution of the behavioral states, their means 
over all nights, and the rhythm of phases of behavioral states (see 
Figure 6). The underlying data are normalized to the behavioral 

states excluding Out. The optically conjectured increase of Lying 
over the night between 19:00 and 06:00 in the binary classification 
task is confirmed by a linear regression (R2 =  .799 and p <  .0001). 
In addition to the visual representation, BOVIDS’ output consists of 
tables, including a summary table for every individual containing rel-
evant statistical key values as well as a list of the number of phases, 
durations, and the percentage of behaviors per night. This signifi-
cantly facilitates the creation of an activity budget (see Figure 7) 
and provides a first insight into the nocturnal behavior of common 
elands. The graphical representation yields to the conjecture that 
there might be differences in the total duration of the behaviors per 
night between certain groups of individuals. Those differences are 
analyzed rigorously in the following.

The data with respect to Standing and LHU can be assumed to 
be normally distributed (p_Standing = 0.9524 and p_LHU = 0.2715) 
while the total duration per night of LHD deviates significantly from 
normality (p_LHD = 0.0015) and is transformed. First, adult male 
and adult female individuals are compared to investigate sex differ-
ences. Afterwards, age-specific analyses’ will be conducted within 
the group of female individuals as there is only one nonadult male 
individual in the sample. To investigate the differences based on sex 
and to account for possible influences by the housing conditions, a 
two-factor ANOVA is conducted with the factors keeping zoo and sex 
between the adult animals for each behavior of the total classification 
system (n = 9 individuals with 328 nights consisting of 4 males with 
151 nights and 5 females with 177 nights). The holding zoo can be 
withdrawn as a significant factor (p >  .37), but the sex has a signifi-
cant influence on LHD (p = .0281), whereby the males’ values exceed 
the females’, see Figure 8(a). Finally, a two-factor ANOVA with factors 
keeping zoo and age within all female individuals in the total classifica-
tion system (n = 11 individuals with 411 nights consisting of 3 young 

F I G U R E  7 Activity budgets of all 
analyzed common elands: (a) is the 
binary classification with 822 nights 
of 25 individuals, and (b) is the total 
classification with 589 nights of 16 
individuals. T.oryx_01 to T.oryx_05 are 
male adult individuals and T.oryx_06 to 
T.oryx_17 are female adult individuals, 
while T.oryx_18 to T.oryx_21 are subadults 
and T.oryx_22 to T.oryx_25 are young 
individuals



    |  13 of 23GÜBERT et al.

F I G U R E  8 Comparison with respect 
to the total duration of each behavior 
per night in the total system. (a) Sex 
comparison (with n = 9 individuals with 
328 nights, consisting of 4 males with 
151 nights and 5 females with 177 nights) 
in which significant differences in LHD 
(p = .0281) arise. (b) Age comparison 
with (n = 11 individuals with 411 nights, 
consisting of 3 young individuals with 
118, 3 subadults with 116 and 5 adults 
with 177 nights) that yields significant 
differences in Standing (p_young-
adult = .0038) and LHD (p_young-adult = 
.0009; p_subadult-adult = .0136)

F I G U R E  9 (a) For all 25 common elands, the distribution of the length of phases is in minutes of Standing and Lying from the binary 
classification task plotted and the animals are classified as adult male (n = 5 individuals with 179 nights), adult female (n = 12 individuals with 
360 nights) and nonadult animals (n = 8 with 280 nights). (b) Only the 16 common elands evaluated by the total classification system are 
used. The length of phases in minutes of LHD are plotted and the animals are classified as adult male (n = 4 individuals with 151 nights), adult 
female (n = 5 individuals with 177 nights), and nonadult animals (n = 7 individuals with 261 nights)
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with 118, 3 subadults with 116 and 5 adults with 177 nights) is con-
ducted. Again, the holding zoo can be withdrawn as a factor (p > .58), 
but the age influences the total duration of Standing (p_young-adult 
= 0.0038) and LHD (p_young-adult = 0.0009; p_subadult-adult = 
0.0136) significantly as a corresponding post hoc analysis verifies. 
Hereby, nonadult individuals spend more time on LHD than adult 
ones, whereby adult ones spend more time Standing, see Figure 8(b). 
While the age comparison could only be carried out for female indi-
viduals, it is an advantageous circumstance that one individual could 
be recorded once as the subadult male individual (T.oryx_18) and 
moved during the observation phase to a different zoo in which it was 
observed as an adult male (T.oryx_01). This allows for a direct compar-
ison of the behavior between the subadult and adult age of this indi-
vidual as the husbandry conditions in the zoos studied were already 
considered negligible. An unpaired t-test shows that the total amount 
of Standing (p < .0001) and LHD (p = .0001) differs significantly be-
tween the two observation periods of this individual, confirming the 
previously found results in differences due to age.

A second variable of interest is the length of each behavioral 
phase. Regarding this quantity, the binary classification system 
(Standing and Lying) was used for the analysis as well as the dura-
tion of LHD from the total classification system as one Lying phase 
might be interrupted by several events of LHD. A Wilcoxon test re-
veals that there are significant differences (p  =  .0003) in the me-
dian length of phases per individual within Lying between males 
and females (n = 17 individuals with 539, consisting of 5 males with 
179 nights and 12 females with 360 nights). For this reason, these 
two groups were analyzed separately. Within the females (n = 19 
individuals with 613 nights, consisting of 4 young with 137 nights, 
3  subadults with 116 and 12 adults with 360 nights), a post hoc 
analysis shows significant differences in the median duration of the 
Standing phases between young and adult individuals (p_Standing 

= 0.0033) and no significant differences between young and sub-
adult animals (p_Standing = 0.1143, p_Lying = 0.629). Therefore, a 
detailed analysis is made after splitting into three categories, adult 
male, adult female, and nonadult (young and subadult) individuals. 
Figure 9 visualizes the distribution of the phase length regarding 
these categories. In median, the adult males exhibit the longest Lying 
phases with 89.6 min, followed by the nonadult animals (78.5 min) 
while the females show, with 59.3 min, the shortest Lying phases. 
While this is also true for the first and third quartile, the longest 
Lying event is achieved by the nonadults with 369.7  min. Within 
Standing, nonadult individuals seem to show a shorter median phase 
length (21.2 min) than adults (35.5 female, 30.8 male). With respect 
to phases of LHD, adult male individuals and nonadult individuals 
show, with a median value of 4.6 min and, respectively, 4.4 min a 
slightly longer duration than adult females with a median of 3.7 min. 
Nevertheless, the longest observed phase of LHD was by nonadult 
individuals (47.8 min) followed by the male adults (32.9 min) and the 
female adults (14.8 min).

Beside the length of the phases, the number of phases per night 
is also an interesting parameter. Figure 10 visualizes the number of 
Lying phases (binary classification system) as well as the number of 
LHD phases (total classification system). Note that the number of 
Standing phases equals the number of Lying phases ±1. The above 
illustration highlights the different age categories of young, sub-
adults, and adults, with sex being distinguished in the adult category. 
The phases in Lying (see Figure 10(a)) appear to be constant across 
individuals and differences between sex and age groups are not ev-
ident. The situation is different when it comes to LHD, where the 
young animals have a significantly higher number of phases than the 
adults. The subadults tend to have slightly more LHD phases than 
the adults, but they are already closer to the values of the adults 
than to those of the young.

F I G U R E  1 0 Number of phases for 
every individual marked are the groups, 
adult male, adult female, subadult, and 
young for (a) lying and (b) LHD
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4  |  DISCUSSION

4.1  |  BOVIDS

4.1.1  |  Performance in the case study

In this section, the validity of the postprocessing rules as well as 
the four quality criteria are discussed. As can be seen in section 
BOVIDS’ performance in the case study, only very few activity phases 
are dismissed on manually annotated nights when the selected post-
processing rules are applied. Furthermore, both the accuracy and the 
f-scores are close to 100%, so that overall, the set of postprocess-
ing rules seems to be valid from a computer science point of view. 
Furthermore, the percentage of each behavioral class is very well 
approximated in both classification tasks, so that no mentionable er-
rors occur. Not very surprisingly, the postprocessed data contains 
few phases less and slightly longer median phase lengths as very 
short events are dismissed, so the postprocessing rules imply almost 
no bias in the real data. These values are of course a bit higher in the 
binary classification task, since longer phases up to five minutes are 
not considered. But firstly, even this choice does not imply much 
bias in the data, and secondly, the few short events of Standing and 
Lying do not significantly affect the animals’ rhythms. Of course, ne-
glecting the short events also increases the median phase length. 
However, this happens only very moderately, by a factor of between 
5.6% (Standing) and 7.5% (LHD). It will be seen later that the meth-
odological error will underestimate those quantities with respect to 
the postprocessed data slightly. Therefore, the errors partly account 
for each other.

The object detector seems to work very well (QC 1) as the me-
dian object detection density is very high. On nights with a lower 
detection density, the video material was checked manually, and it 
can be observed that the individuals were mostly Out if the object 
detector did not find them, or only small parts are visible at the bor-
der of the video recording.

Subsequently, quality criteria QC 2 and QC 3 are discussed. Since 
the number of phases per activity class and the phase length analy-
sis refer to Standing and Lying from the binary classification task as 
well as LHD from the total classification task, the discussion focuses 
on the reliability of these quantities. Overall, the accuracy and the 
f-score of BOVIDS’ prediction are very high for machine learning-
based predictions. Recent studies on comparable hard data, such as 
that of Porto et al. (2013) on the discrimination of Standing and Lying 
behavior on video recordings of cows in stables, achieve an average 
accuracy of 92%. Our accuracies of 99.8% in the binary classifica-
tion task and 99.4% in the total classification task clearly exceed this 
value. Furthermore, even the median f-score of the highly under-
represented class LHD is, with 96.4%, astonishingly high for a deep 
learning system. These values directly show that the percentage of 
each behavioral class is predicted very accurately and that there is 
no methodological bias in the expected activity budget.

Moreover, video action classifiers tend, normally, to so-called 
classification flickering, thus very short phases of misclassifications 

which do not really influence the accuracy and the f-score of the pre-
diction system but have huge influence on the number of phases per 
activity. The postprocessing rules are meant to take care of this ef-
fect (Hahn-Klimroth et al., 2021). The results show that BOVIDS suc-
ceeds in underestimating or overestimating the number of phases 
per activity class only very slightly on average. More precisely, the 
number of LHD phases is overestimated by 2.7% on average and the 
number of Standing and Lying phases is only overestimated by less 
than 1%. The median phase length is approximated very accurately 
as well, as it is only underestimated by at most 0.5% on average. It 
can be noted that even in enclosures containing two different indi-
viduals, BOVIDS’ prediction does not become significantly worse. 
This has two reasons: First, and most importantly, the used object 
detector seems to be able to discriminate between two individu-
als very accurately. Secondly, the action classifier seems to be very 
robust against truncation effects when, for example, the bounding 
boxes of the two animals overlap.

In summary, the activity budget per night is predicted without 
any bias, as expected, while the median phase length per activity 
class is overestimated due to postprocessing rules by a moderate 
factor of no more than 7.0%. Thus, the automatic prediction is very 
precise with respect to the postprocessed data. Furthermore, the 
overall accurate description of the three poses Standing, LHU, and 
LHD by BOVIDS can be seen in connection with the types of mis-
classifications occurring on the testing data. All misclassifications 
between Out and a real activity class are due to heavy truncation 
or occluding effects in which a human annotator might see hooves 
or small parts of the animal and is able to safely infer the behav-
ior, but a machine cannot. In this case, it is favorable if the object 
detector does not find the animal in the first place. Furthermore, 
almost all misclassifications between LHU and LHD can be explained 
by the fact that common elands show, from time to time, a groom-
ing behavior at their hind leg which is, on a single image, hard to 
distinguish from LHD. Such errors need to, of course, be consid-
ered and analyzed, but do not seem to be fixable by more training 
data or fine-tuning the networks if the input data format does not 
change significantly. As mentioned earlier, the median phase length 
as well as the median number of phases per night are only slightly 
overestimated. In the binary classification task, there are some short 
misclassifications with respect to the postprocessed data less than 
five minutes in length. These errors are just delayed transitions be-
tween the behavioral states due to, for instance, the applied rolling 
average during postprocessing. Therefore, these misclassifications 
neither influence the number of phases of Standing and Lying nor 
the animal's rhythms, but only slightly change the total duration 
of a specific phase. Finally, there are few misclassifications that 
are, probably, unavoidable in a deep learning classification task. Of 
course, accuracy can, in principle, always be improved by additional 
rounds of example mining and fine-tuning the action classifiers, but 
it is questionable whether an even higher median accuracy of 99.4% 
can be reached on a three-class classification task.

A natural question, of course, is how well the findings from the 
test series can be generalized to unseen data of the same enclosures. 
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Recall that the action classifiers are, in the end, trained on a random 
collection of images over the whole observation time due to offline 
hard example mining. Therefore, the testing set can be considered 
an almost random sample which includes a few more difficult im-
ages as expected on a random balanced sample. Thus, the analysis 
of the performance on the manually annotated nights (the testing 
set) yields a very good approximation of the overall performance. 
This claim is also supported by the analysis of QC 4. The type and 
frequency of errors on randomly selected, nonmanually annotated 
nights were found to be comparable to those in the test set.

Finally, even if BOVIDS makes a small number of mistakes that 
would not occur if a trained observer manually annotated the data, 
the very large dataset overcompensates those few errors. Another 
approach to generating a large dataset is to have different, proba-
bly untrained, human observers annotate a comparable number of 
nights. Apart from the much higher cost, it is supposed that the in-
terobserver reliability might be worse than the reliability of BOVIDS. 
Overall, our findings show that BOVIDS performs very accurately in 
the case study and its predictions can be safely used to generate a 
large amount of annotated data, which would not have been easily 
possible without automation.

4.1.2  |  Challenges and limitations

As for any deep learning-based classifier, there are various chal-
lenges to overcome during fine-tuning the underlying model. Even 
after extensive fine-tuning, there will be cases in which the system 
fails. While the last paragraph already discussed that small errors are 
overcompensated by evaluation of much data, this section is devoted 
to exploring typical misclassifications that arise if BOVIDS is used.

A major challenge is given by highly truncated sequences of 
video material. In many applications, it is not possible to install 
cameras in a way that allows recording of every edge of the enclo-
sure. This can cause misclassifications during action-classification. 
Indeed, if only small parts of an animal can be seen, like only its 
hoofs or its head, and the object detector draws a decent bound-
ing box, it is even for trained humans hard or even impossible 
to classify the behavior. To overcome this issue, it is possible to 
classify bounding boxes that are close to the image's border by 
a deterministic rule. A natural choice might be Out but in special 
cases one might use information about the recorded enclosure to 
infer the behavior in the truncated area. In-depth observation of 
own data is necessary to identify those regions of the enclosure in 
which severe truncation effects might occur and to define proper 
rules on how to deal with them.

Another challenge arises if the animal is not present in a se-
quence of images. It is possible that an object in the enclosure like 
a trough might be falsely classified as an animal in this case. This 
issue can be addressed by more training steps of the object detector 
or by increasing the so-called minimum confidence score: an object 
detector does not only suggest a bounding box and a class label but 
also returns a confidence score between zero and one. If a threshold 

of this value is defined near one, misclassifications are expected to 
be very rare, but the bounding boxes of animals are also more easily 
discarded. Finding a good threshold depends highly on the applica-
tion and should, therefore, be tested.

A third type of errors might occur in enclosures in which mul-
tiple individuals are stalled together as the object detector might 
swap the individual's labels. In this case, short sequences of the 
proposed behavior can be false because the wrong individual is ob-
served. There is no direct way to overcome this issue. In the case 
study, the object detector was tested excessively and worked very 
decently. But it is crucial to test the object detector's performance in 
the described fashion (see OD 3b). In future, implementations, one 
could extend BOVIDS to track bounding boxes from frame to frame. 
But on the technical side, the changes between consecutive frames 
might be too severe on recordings with 1fps to apply classical track-
ing methods. One possibility to deal with this problem would be to 
increase the recording's quality. This might give a second improve-
ment. For instance, one could record with a much higher framerate 
that allows to use modern deep learning techniques like recurrent 
neural networks to capture the temporal dimension of the behav-
ioral states more precisely. This comes with two challenges that may 
not be forgotten. First, it would require significantly more memory 
space. Second, it would also increase the computational cost. The 
current implementation predicts one hour of video material in ap-
proximately 5 min on mediocre hardware (RTX 2060 GPU) which 
would be exceeded significantly if more frames per second would 
need to be evaluated. If many video files need to be predicted in 
large-scale studies, this might be a limiting factor. It is moreover to 
emphasize that under the described classification tasks the accuracy 
achieved by BOVIDS is highly satisfactory and it is unlikely that it 
can be much further improved. Nevertheless, techniques that use 
more temporal information might be able to capture short phases of 
certain behaviors more reliably. Behaviors that cannot be identified 
on a single image, or, more precisely, on four consecutive frames, 
cannot be detected in the current version. In the case study, groom-
ing events at the hind legs (LHU) were sometimes predicted as LHD 
because the poses are close to each other. While normally misclas-
sifications can be reduced by more rounds of offline hard example 
mining, it is presumably not possible to distinguish short grooming 
events and LHD within the given system. In the case study, these 
events were rare and therefore tolerable, but such analyses need to 
be conducted if the system should be applied to new data. During 
manual checking of samples, even trained humans were not able 
to reliably distinguish between those events and LHD on the given 
data. Of course, if the raw video material is used, this task is much 
easier, and one might hope to describe such events even more accu-
rately using different architectures.

4.1.3  |  Universality and future directions

A major strength of BOVIDS might be its adjustability to different 
settings. If the three positions Standing, LHU, and LHD need to be 
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detected from video files, the system can be used on data of ungu-
lates. Furthermore, in principle, any pose that is reliably detectable 
on single images can be predicted by the discussed deep learning 
framework. BOVIDS is tested extensively on the data of common 
elands and other African bovids stemming from various zoo enclo-
sures. It is, therefore, reasonable to assume that, given sufficient 
training material, its performance is equally high under varying con-
ditions. For instance, it is likely to perform well in the observation of 
various ungulates of different sizes from multiple continents in zoo 
enclosures or the analysis of livestock's behavior in stables. Since the 
present data are recorded in very different enclosures with partly 
high degrees of truncation and background noise, BOVIDS might 
perform well in outdoor enclosures as well if the camera installment 
is flawlessly possible in the sense that the whole outdoor enclosure 
can be recorded which would extend the set of research questions 
that can be tackled with this technique.

A further research direction would be the analysis of BOVIDS’ 
performance on data of larger groups of ungulates. While technically 
the detection of individuals works the same, it is clearly a much more 
difficult task to distinguish many individuals from each other than 
it is to identify two individuals reliably. It might be tempting to ex-
tend BOVIDS’ functionality in cases in which reliable distinguishing 
between different individuals is not possible. This might be due to 
the number of individuals and their optical similarity. For instance, 
if individual detection fails in large groups, one could implement a 
scan-sampling method that allows to at least report an average be-
havior of all the individuals.

Moreover, the object detection phase can be used to identify 
different behavioral classes. If during a phase of Standing the bound-
ing box's positions exhibit strong variability, this is a good indication 
for movement of the animal. Furthermore, it is possible to describe 
the individual's favorite positions within its enclosure and to keep 
track of the probability of the presence of the individuals at different 
spatial positions which can help to improve housing conditions in 
zoos. Both extensions suffer one technical challenge. Normally, one 
camera records an enclosure and, therefore, one can only work with 
a two-dimensional projection of the actual positions. Depending on 
the camera positioning, movements into certain directions cannot 
be captured correctly. The same challenge applies to the descrip-
tion of the probability of the presence at spatial positions. If due to 
the camera's angle the bounding boxes are quite large in comparison 
to the whole image, such a description becomes meaningless. But 
overall, we believe that in many enclosures this approach can be im-
plemented within the current deep learning system and can deliver 
more information on ungulate's behavior.

Furthermore, it is to discuss whether the iterative process used 
to create a reasonable training set could be improved. The degree 
of automation of the system at hand resembles more the one of a 
“machine-assisted” evaluation of video material than the one of an 
autonomous deep learning system. Such iterative processes to ob-
tain reliable machine learning models is extensively studied in a re-
cent publication of Miao et al. (2021) at the example of camera-trap 
images. The findings of the aforementioned publication as well as 

the findings of the current paper indicate that such a partly auto-
mated system reduces the time required by a researcher to evaluate 
data dramatically.

A similar question arises regarding the technical details of the 
training step of the action classifiers. To conquer data imbalance, the 
current contribution employs upsampling and downsampling tech-
niques (Branco et al., 2016) and achieves good results. Nevertheless, 
it is tempting to try different training procedures to deal with the 
imbalance, as recently suggested by Liu et al. (2019).

Finally, it was already discussed that the deep learning archi-
tectures yolov4 and EfficientNet-B3 are used because they are fast 
and show state-of-the-art performance on testing sets. In principle, 
those architectures can be easily replaced if a novel approach per-
forms even better. It is important to emphasize that the technical 
main contribution of BOVIDS is the sequential application of an ob-
ject detector and a pair of action classifiers that capture the spatial 
and temporal dimension of the video data in the described fashion. 
The explicit implementation of these classifiers is independent from 
this approach and, therefore, it might be tempting to conduct com-
parative studies regarding the performance of different recent deep 
learning architectures within the proposed system.

4.2  |  The nocturnal behavior of common elands

A first finding is that independent from the factors age, sex, and 
keeping zoo, all individuals exhibit a higher percentage of Lying than 
Standing during the night. As the night progresses, the percentage 
of Lying increases significantly. This is in line to findings of similar 
studies on African elephants (Loxodonta africana), blue wildebeest 
(Connochaetes taurinus), or Arabian oryx (Oryx leucoryx), where the 
observed animals also show most of the sleeping behavior or inac-
tivity in the second part of the night (Davimes et al., 2018; Gravett 
et al., 2017; Malungo et al., 2021).

When considering the LHD, it should be noted that this posture 
most likely corresponds to the typical REM (rapid eye movement) 
sleep posture. As mentioned in the ethogram section, a behavioral 
component to recognize REM sleep is the head being down due to 
postural atonia (Lima et al., 2005; Zepelin et al., 2005). In this study, 
we use this characteristically REM sleep posture to determine REM 
sleep. This approach is in line with the study by Zizkova et al. (2013) 
on common elands and the study by Ternman et al. (2014) on cows, 
which shows that REM sleep can be detected with sufficient cer-
tainty based on behavioral surveys. This procedure is also supported 
by a study on lesser mouse-deer (Tragulus kanchil), which shows that 
REM sleep can be divided into two categories, one of which is the 
most common, where the head lies down most of the time, making 
this a valid indicator to recognize REM sleep in behavioral studies 
(Lyamin et al., 2021).

Sex has been found to have an influence on the total amount 
of LHD during the night. The REM sleep periods of adult females 
last slightly longer than those of adult males, a fact which is also 
known across multiple phylogenetic states, for birds and mammals 
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(Cajochen et al., 2006; Rattenborg et al., 2017; Steinmeyer et al., 
2010). However, other studies show that there are no sex differ-
ences when individuals are similar sized between the sexes, while 
dissimilar-sized animals should have differences (Ruckstuhl & 
Kokko, 2002). In common elands, males are larger than females 
(Leslie, 2011; Myers et al., 2021), confirming the differences found 
between the sexes. In addition, Standing was found to increase 
with age. Interestingly, this finding is supported by the recording 
of a male individual at both subadult and adult age, which shows 
a significant increase in the total amount of Standing per night. 
Our results are in line with previous results on different mammals, 
as age is known to be an influencing factor for activity/rest cy-
cles (Ruckstuhl & Neuhaus, 2009; Siegel, 2005; Steinmeyer et al., 
2010). Moreover, age also influences REM sleep behavior in mam-
mals and birds (Cajochen et al., 2006; Rattenborg et al., 2017; 
Ruckstuhl & Kokko, 2002; Steinmeyer et al., 2010). This effect was 
also observed in the common elands in this study, where the extent 
of LHD differs between the three age classes—young, subadults, 
and adults. A study on Giraffes (Giraffa camelopardalis) also shows 
that age and sex have an influence on the behavior Standing, while 
only age has an influence on REM sleep (Burger et al., 2021). The 
study by Burger et al. (2021) further reveals that housing condi-
tions can be discarded as an influencing factor for both behaviors. 
These results correspond to the results in this study with com-
mon elands, where the keeping zoo and thus housing conditions 
can also be discarded as influencing factors. Of course, the factor 
housing condition consists of several factors such as, among oth-
ers, enclosure size, and the presence or absence of other types of 
animals in the vicinity or lighting conditions. While the recorded 
data do not allow to evaluate each possibly influencing factor indi-
vidually, our study reveals that the sum of those effects is negligi-
ble and can be discarded.

Besides the total amount of time during the night, the dura-
tion of the single phases is also of interest. Here, the males differ 
from the females within Lying, whereby males show longer Lying 
phases than females. This fits with the result that adult males 
have a higher amount of LHD. Also, the age has an influence on 
the lengths of the phases. The nonadult animals exhibit shorter 
periods of Standing and longer periods of Lying than the adult 
ones. This also matches with the results regarding the nocturnal 
activity budgets. Within LHD the number of phases vary between 
the different categories of individuals. The mean phase length of 
LHD in all adult common elands is 9.5 min on average, with fe-
males slightly below this at 8.8 min and males slightly above at 
10.2 min. These phase lengths are consistent with those of male 
Arabian oryx (Oryx leucoryx), which have a mean phase length of 
7 ± 2 min in the dark in winter, and 10.5 ± 1.5 min over the 24-h 
cycle (Davimes et al., 2018).

Finally, the number of phases is an interesting key figure in behav-
ioral analysis. Within Lying and Standing it is noticeable that almost 
all animals show a very similar number of phases. Here, of the 25 an-
imals observed, 23 have a median between 7 and 9 phases per night 
with quite a little variation per individual. The other two animals are 

moderate outliers downward. In addition, the mean ranges between 
6.6 and 9.1 within 22 individuals and within all individuals, the SEM 
is at most 0.36 indicating a constant behavior within the single in-
dividuals. This result suggests that certain rhythms are present and 
should be investigated in more detail in further analyses, because the 
course over the night also suggests certain rhythms. Within LHD, a 
different picture of the underlying distributions emerges. Here, the 
adult individuals show a lower proportion than the nonadult individ-
uals, and within the nonadult individuals there are also strong differ-
ences between the young and the subadult individuals. Only a few 
exceptions are evident, which can be explained as follows. T.oryx_22 
is clearly different from the veined young and is closer to the values 
of the subadult individuals. However, T.oryx_22 is also the oldest an-
imal among the group of young ones. Furthermore, T.oryx_17, which 
is the oldest animal in the case study, has a higher median number 
of phases than the other adult animals, especially the female ones. 
Excluding these exceptions, young individuals have a median of 40–
42 phases of LHD and subadults show 13–15 phases. In contrast, 
adult females have 7–9 phases of LHD and adult males 9–11 phases. 
This again indicates differences between the sexes and high simi-
larities within each group of individuals. Again, it seems that certain 
rhythms are present depending on the sex and the age but being 
independent of the specific individual. This observation might be the 
starting point of a much more detailed analysis of rhythms in African 
ungulates’ behavior.
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POS TPROCE SSING RULE S
This section contains the post-processing rules applied to BOVIDS’ 
prediction for both classification tasks. With respect to the total 
classification task, different sets of rules are applied for adult com-
mon elands and nonadult common elands, because nonadult indi-
viduals show shorter phases.
The order of the applied rolling average varies between the three 

sets of rules. A higher order reduces flickering but is likely to dismiss 

(very) short events. Therefore, the order of the rolling average was 
set to 3 in the total classification task for nonadult individuals, to 4 in 
the total classification task for adult individuals and to 5 in the binary 
classification task.
Regarding dismissing short phases, the quantity “minimum length” 

is introduced followed by a three-character code. If this code is XYZ, 
this is meant to be read as follows. Suppose a phase of behavior Y lies 

TA B L E  A 1 The common elands observed in this study and their individual factors age (categorical: young, subadult and adult) and sex

Individual Age Sex Keeping Stabling Nights
Duration 
(h)

Nights per 
hand Pictures Binary Total

T.oryx_01 Adult m Zoo_1 Single 49 17–7 2 404 x x

T.oryx_02 Adult m Zoo_4 Single 29 17–7 10 544 x x

T.oryx_03 Adult m Zoo_3 Single 38 18–7 2 517 x x

T.oryx_04 Adult m Zoo_5 Single 28 17–7 15 860 x —

T.oryx_05 Adult m Zoo_2 Single 35 17–7 4 519 x x

T.oryx_06 Adult f Zoo_1 Single 49 17–7 2 404 x x

T.oryx_07 Adult f Zoo_4 Single 29 17–7 10 487 x —

T.oryx_08 Adult f Zoo_4 Single 29 17–7 10 519 x —

T.oryx_09 Adult f Zoo_4 Single 29 17–7 10 504 x —

T.oryx_10 Adult f Zoo_4 Single 15 17–7 10 512 x —

T.oryx_11 Adult f Zoo_3 Single 21 18–7 2 550 x x

T.oryx_12 Adult f Zoo_5 Single 28 17–7 11 513 x —

T.oryx_13 Adult f Zoo_5 Single 28 17–7 14 541 x —

T.oryx_14 Adult f Zoo_2 Together 35 17–7 2 604 x x

T.oryx_15 Adult f Zoo_2 Together 34 17–7 2 604 x x

T.oryx_16 Adult f Zoo_4 Single 25 17–7 10 557 x —

T.oryx_17 Adult f Zoo_3 Single 38 18–7 2 511 x x

T.oryx_18 Subadult m Zoo_5 Together 27 (28) 17–7 17 (18) 502 x x

T.oryx_19 Subadult f Zoo_1 Together 49 17–7 2 636 x x

T.oryx_20 Subadult f Zoo_2 Single 34 17–7 4 519 x x

T.oryx_21 Subadult f Zoo_2 Single 33 17–7 4 519 x x

T.oryx_22 Young f Zoo_1 Together 49 17–7 2 636 x x

T.oryx_23 Young f Zoo_5 Together 22 (28) 17–7 15 (18) 502 x —

T.oryx_24 Young f Zoo_2 Together 35 17–7 2 604 x x

T.oryx_25 Young f Zoo_2 Together 34 17–7 2 604 x x

Note: Further, the housing zoo and the given stabling conditions (standing single or together), are contained. The duration gives the recording start 
and end time and the totally recorded number of nights as well as the manually annotated number of nights are listed, if nights had to be removed 
because of an object detection density score smaller than 80% the used number of nights are listed with the real number of nights in parentheses. 
Finally, the number of pictures describes the number of annotated images in the object detection training set after OHEM. Observe that T.oryx_01 
and T.oryx_18 is the same individual recorded at different times after moving from one zoo to another. Also, it is marked if the individuals are 
evaluated with the total or binary classification system.

APPENDIX A

OVERVIE W DATA
A detailed overview about the used data is given in Table A1. 
Hereby, for every individual the categories age, sex, and the keeping 
zoo as well as the stabling conditions are contained. The exact age 
of the observed individuals ranges from one month to 16.5 years 

categorized as follows: “young” ranges from birth until the time of 
weaning with about 6 months, then the individuals become “sub-
adult” until sexual maturity with about 2 years of age and after that 
they are listed as “adult.”
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in between a phase of behavior X and behavior Z, then the event will 
be dismissed (marked as X) if it consists of less time-intervals than 
indicated by the minimum length of XYZ. In those codes, Standing is 
abbreviated to “A,” LHU to “L” and LHD to “S” in the total classifica-
tion task. In the binary classification task, “A” means Standing and 
“L” means Lying. “O” stands for Out in both tasks. *X* is meant to 
be read as any combination YXZ where Y and Z do not equal X. The 
applied rules of dismissing short phases can be found in Table A2.
Regarding the special state Out, the post-processing rules are a 

bit more elaborated. If flickering between Out and a real behavioral 
state occurs, this is very likely due to a failure of the object detector 
if an animal is occluded or truncated. Therefore, if a sequence of a 
specific behavioral state X (Standing, Lying, LHU or LHD) is inter-
rupted by phases of Out, the Out phases are dismissed under the 
following conditions. First, each single phase of Out must be shorter 
than 27 time-intervals (total) or 135 time-intervals (binary). Second, 
the total percentage of X in the sequence needs to exceed 20%.

TA B L E  A 2 Overview about the minimum length a specific 
behavioral phase needs to have in order not to be dismissed in the 
post-processing step

Behavior code
Total 
adult

Total 
nonadult Binary

SLS 3 2 —

SLA 3 3 —

ALS 3 3 —

ALA 6 6 45

OLA 6 6 45

OLS 6 6 —

ALO 6 6 45

SLO 6 6 —

SAS 25 6 —

SAL 25 6 —

LAS 25 6 —

LAL 25 6 45

LAO 25 6 45

OAL 25 6 45

OAS 25 6 —

SAO 25 6 —

ASA 9 9 —

ASL 6 6 —

LSA 6 6 —

LSL 2 2 —

LSO 9 9 —

OSL 9 9 —

ASO 9 9 —

OSA 9 9 —

*O* 9 9 45

Note: The value is to be read as time-intervals where 1 time-interval 
consists of 7 seconds. Standing is abbreviated to “A,” LHU to “L” and 
LHD to “S” in the total classification task. In the binary classification 
task, “A” means Standing and “L” means Lying. “O” stands for Out in 
both tasks.


