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Abstract
Only	a	few	studies	on	the	nocturnal	behavior	of	African	ungulates	exist	so	far,	with	
mostly	small	sample	sizes.	For	a	comprehensive	understanding	of	nocturnal	behavior,	
the	data	basis	needs	to	be	expanded.	Results	obtained	by	observing	zoo	animals	can	
provide	clues	 for	 the	study	of	wild	animals	and	furthermore	contribute	 to	a	better	
understanding	of	animal	welfare	and	better	husbandry	conditions	 in	zoos.	The	cur-
rent	contribution	reduces	the	lack	of	data	in	two	ways.	First,	we	present	a	stand-	alone	
open-	source	software	package	based	on	deep	learning	techniques,	named	Behavioral	
Observations	by	Videos	and	Images	using	Deep-	Learning	Software	(BOVIDS).	It	can	
be	used	to	identify	ungulates	in	their	enclosure	and	to	determine	the	three	behavioral	
poses	“Standing,”	“Lying—	head	up,”	and	“Lying—	head	down”	on	11,411	h	of	video	ma-
terial	with	an	accuracy	of	99.4%.	Second,	BOVIDS	is	used	to	conduct	a	case	study	on	
25	common	elands	(Tragelaphus oryx)	out	of	5	EAZA	zoos	with	a	total	of	822	nights,	
yielding	the	first	detailed	description	of	the	nightly	behavior	of	common	elands.	Our	
results	 indicate	 that	 age	 and	 sex	 are	 influencing	 factors	 on	 the	 nocturnal	 activity	
budget,	the	length	of	behavioral	phases	as	well	as	the	number	of	phases	per	behavio-
ral	state	during	the	night	while	the	keeping	zoo	has	no	significant	influence.	It	is	found	
that	males	spend	more	time	in	REM	sleep	posture	than	females	while	young	animals	
spend	more	time	in	this	position	than	adult	ones.	Finally,	the	results	suggest	a	rhythm	
between	 the	 Standing	 and	 Lying	 phases	 among	 common	 elands	 that	 opens	 future	
research	directions.
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1  |  INTRODUC TION

1.1  |  General

The	nocturnal	behavior	of	many	African	mammals	is	poorly	studied.	
It	 is	known	that	 the	behavioral	patterns	can	vary	greatly	between	
day	and	night,	as	many	large	herbivorous	mammals	spend,	especially	
in	 winter,	 most	 of	 their	 sleeping	 time	 during	 the	 night,	 while	 the	
activity	patterns	emerge	primarily	at	daytime	 (Bennie	et	al.,	2014;	
Davimes	et	 al.,	 2018;	Gravett	 et	 al.,	 2017;	Wu	et	 al.,	 2018).	 For	 a	
comprehensive	understanding	of	diurnal	rhythms,	a	behavioral	de-
scription	of	the	entire	diurnal	cycle	is	necessary.	Currently,	there	are	
only	few	contributions	studying	the	nocturnal	behavior.	 It	 is	much	
more	accessible	to	observe	zoo	animals	at	night	rather	than	animals	
in	their	natural	habitat	due	to	much	easier	installation	options	of	the	
required	equipment	(Ryder	&	Feistner,	1995).	In	order	not	to	disturb	
the	animals,	camera	recordings	are	a	good	mean	of	data	collection	
in	this	case.	Data	collected	in	zoos	can	be	valuable	to	study	animal's	
behavior.	 In	various	species,	 there	are	no	differences	found	 in	 the	
behavior	of	animals	 in	 the	wild	and	 in	captivity	 (Hollén	&	Manser,	
2007;	Melfi	&	Feistner,	2002).	This	was	verified	 recently	 for	basic	
nocturnal	 activities	 like	 being	 in	 the	REM	 sleep	 position	 between	
giraffes	in	zoos	and	in	the	wild	(Burger	et	al.,	2020).	Therefore,	stud-
ies	conducted	 in	 zoos	can	provide	a	good	basis	 for	describing	 the	
animals’	 nocturnal	 behavior	 and	 the	 obtained	 results	 can	 subse-
quently	 serve	as	 starting	 information	 for	observations	 in	 the	 field	
(Burger	et	al.,	2020).	 In	addition,	a	deeper	knowledge	of	nocturnal	
behavior	inside	zoo	enclosures	could	contribute	information	to	fur-
ther	improve	animal	management	and	husbandry	in	zoos	(Brando	&	
Buchanan-	Smith,	2018)	and	provide	conclusions	on	animal	welfare	
(Walsh	et	al.,	2019).	One	explicit	example	is	that	REM	sleep	appears	
to	be	an	important	indicator	of	stress	in	giraffes	(Sicks,	2016),	which	
can	be	measured	by	noninvasive	methods.

To	describe	nocturnal	behavior	unambiguously,	reliable	data	are	
needed,	especially	because	there	are	few	comparisons	in	literature.	
This	means	that	it	would	be	preferable	to	observe	multiple	individ-
uals	of	a	species	over	a	longer	period	of	time	to	accurately	describe	
the	average	behavior.	Additionally,	it	is	necessary	to	obtain	data	not	
only	on	one	but	on	various	species	to	close	the	existing	knowledge	
gap.	The	extraction	of	meaningful	information	as	well	as	a	detailed	
evaluation	of	a	mass	of	recorded	data	requires	modern	techniques	to	
automate	parts	of	this	data	mining	process	(Beery	et	al.,	2020;	Lürig	
et	al.,	2021;	Norouzzadeh	et	al.,	2018).	 In	 the	 last	decade,	various	
computer	vision	and	deep	learning	techniques	found	their	way	into	
behavioral	biology	and	ecology	(Chakravarty	et	al.,	2020;	Dell	et	al.,	
2014;	Eikelboom	et	al.,	2019;	Gerovichev	et	al.,	2021;	Norouzzadeh	
et	al.,	2021;	Schneider	et	al.,	2018,	2020;	Valletta	et	al.,	2017),	fa-
cilitating	the	task	of	dealing	with	a	large	dataset.	Unfortunately,	au-
tomatization	of	the	evaluation	of	video	recordings	 is	challenging	 if	
the	video	recordings	suffer	from	a	very	low	framerate	(lower	than	5	
fps),	much	background	noise,	or	heavy	truncation	effects,	as	is	usual	
in	observations	in	stables	as	zoo	enclosures,	or	even	in	installments	
in	 the	 wild.	 More	 precisely,	 background	 noise	 appearing	 in	 such	

recordings	is,	for	instance,	due	to	light	reflections	caused	by	infrared	
emitters	and	particulate	matter	caused	by	the	hay,	while	truncation	
and	 occlusion	 effects	 appear	 if	 the	 camera	 is	 not	 able	 to	 capture	
the	whole	enclosure	or	there	are	multiple	overlapping	animals	in	one	
stable.	It	is	to	emphasize	that	those	negative	effects	are	stronger	the	
more	general	the	setup	is.	Systems	for	automatic	detection	of	flies	
or	mice	under	perfect	 laboratory	 conditions	 (Graving	 et	 al.,	 2019;	
Kabra	et	al.,	2013;	Pereira	et	al.,	2020)	need	to	be	much	less	robust	
to	such	effects	than	the	system	at	hand	for	enclosures	and	stables.	
Of	course,	 installments	 in	 the	wild,	 like	camera-	trap	 studies,	must	
deal	with	even	more	noise	and	truncation.

1.2  |  Our contribution

One	of	the	two	main	objectives	of	this	work	tackles	this	challenge	
by	making	BOVIDS	(Behavioral	Observations	by	Videos	and	Images	
using	 Deep-	Learning	 Software)	 available,	 which	 is	 a	 stand-	alone	
software	package	based	on	deep	learning	techniques.	To	the	best	
of	our	knowledge,	this	is	the	first	fully	open-	source	software	pack-
age	tackling	the	task	of	evaluating	the	nocturnal	behavior	of	stalled	
animals	 that	 contains	 functionalities	 required	 for	 data	 prepara-
tion,	training	of	the	deep	learning	parts,	data	prediction,	and	data	
presentation.	 More	 precisely,	 BOVIDS	 can	 be	 used	 to	 evaluate	
video	 recordings	of	 stalled	ungulates	 recorded	at	1	 fps	 regarding	
two	 classification	 tasks:	 “binary	 classification”	 (a	 two-	class	 classi-
fication	 task)	 and	 “total	 classification”	 (a	 three-	class	 classification	
task),	which	are	defined	by	Hahn-	Klimroth	et	al.	(2021)	as	follows.	
First,	 if	 an	animal	 is	not	present	on	an	 image,	 the	desired	 label	 is	
Out	 (being	out	of	 view)	 in	both	 tasks.	 Second,	 in	 the	 total	 classi-
fication	 task,	 the	 three	 postures	 Standing,	 Lying—	head	 up	 (LHU),	
and	Lying—	head	down	(LHD)	need	to	be	distinguished	which	will	be	
properly	defined	in	Section	2.2.	The	binary	classification	task	asks	
only	 to	distinguish	Standing	 and	Lying	 (combining	 LHU	and	LHD)	
if	the	animal	 is	present.	All	discussed	software	as	well	as	detailed	
instructions	can	be	found	in	our	GitHub	repository:	https://github.
com/Klimr	oth/BOVIDS	 and	 on	 Zenodo	 (https://doi.org/10.5281/
zenodo.6143896).

As	a	second	part	of	the	paper,	a	case	study	is	conducted	that	ex-
plains	how	BOVIDS	can	be	applied	by	behavioral	biologists	to	their	
own	data	and	which	statistical	analyses	can	be	directly	conducted	
on	 the	 output	 of	 the	 software	 package.	 In	 this	 study,	 the	 noctur-
nal	activity	budget	of	25	common	elands	is	analyzed.	To	the	best	of	
our	knowledge,	the	case	study	provides	the	first	description	of	the	
nocturnal	behavior	of	common	elands.	Over	11,000	h	(822	nights)	
of	video	material	from	five	different	EAZA	zoos	were	evaluated,	a	
task	that	seems	challenging	in	the	absence	of	automatic	evaluation	
and	 it	 is	 described	 in	 detail	 how	BOVIDS	 can	be	used	 to	observe	
and	 analyze	 several	 important	 behavioral	 biological	 key	 figures	of	
nocturnal	activity.	The	results	contain	activity	budgets,	which	show	
the	percentages	of	all	examined	behavioral	states,	a	visualization	of	
the	Standing–	Lying	rhythm	as	well	as	an	analysis	of	the	possible	in-
fluencing	factors	age,	sex,	and	zoo	husbandry.

https://github.com/Klimroth/BOVIDS
https://github.com/Klimroth/BOVIDS
https://doi.org/10.5281/zenodo.6143896
https://doi.org/10.5281/zenodo.6143896
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1.3  |  Related work

As	 mentioned	 earlier,	 several	 computational	 systems	 have	 found	
their	way	 into	 behavioral	 biology	 and	 ecology	 (Chakravarty	 et	 al.,	
2020;	Dell	et	al.,	2014;	Eikelboom	et	al.,	2019;	Norouzzadeh	et	al.,	
2021;	 Valletta	 et	 al.,	 2017).	 Such	 systems	 are	 explicitly	 designed	
with	 respect	 to	 the	underlying	data.	 In	 the	easiest	 tasks,	 cameras	
can	be	 installed	 in	a	 laboratory	such	 that	 the	 recordings	 feature	a	
high	contrast	between	animals	and	the	background	as	well	as	other	
laboratory	 conditions	 like	 a	 given	 steady	 camera	 angle	 and	 low	
background	noise.	Examples	for	such	systems	working	with	data	of	
Drosophila	flies	or	mice	are	JAABA	(Kabra	et	al.,	2013),	DeepBehavior 
(Graving	et	al.,	2019),	and	SLEAP	 (Pereira	et	al.,	2020).	When	data	
are	recorded	either	in	the	natural	habitat	or	in	different	zoo	enclo-
sures,	it	is	much	more	challenging	to	collect	appropriate	data	that	are	
amenable	to	automatic	evaluation,	for	instance	due	to	variations	in	
weather,	brightness,	and	background.	Furthermore,	different	cam-
eras	can	rarely	be	adjusted	 in	a	way	such	that	the	recording	angle	
matches	 the	given	 requirements	or	 to	ensure	 that	animals	are	not	
highly	truncated.	It	is	to	emphasize	that	there	are	examples	of	sys-
tems	that	deal	with	those	challenges.	One	approach	under	varying	
brightness	conditions	distinguishes	the	poses	“Lying”	and	“Standing”	
of	cows	 in	 free-	stall	 stables	 (Porto	et	al.,	2013).	Furthermore,	one	
success	story	is	the	work	by	Norouzzadeh	et	al.	(2018,	2021)	whose	
system	 can	 automatically	 detect	 and	 count	 different	 species,	 and	
some	shown	behaviors	using	camera	 trap	 images	of	 the	Serengeti	
dataset	 (Swanson	et	al.,	2015).	Similar	systems	working	with	cam-
era	trap	images	in	the	wild	are	presented	by	Schneider	et	al.	(2018,	
2020).

2  |  MATERIAL S AND METHODS

As	the	purpose	of	this	paper	is	two-	fold,	this	section	is	divided	into	
several	parts.	In	the	section	Data evaluation,	methods	and	material	
used	to	collect	the	data	of	the	case	study	and	to	evaluate	the	find-
ings	statistically	are	presented.	Subsequently,	the	behavioral	states	
of	 interest	 are	 defined	 properly	 in	 section	Ethogram,	whereas	 the	
section	Foundations of Deep Learning	introduces	important	concepts	
of	machine	 learning	used	by	BOVIDS.	Finally,	 the	section	BOVIDS	
introduces	and	describes	the	single	parts	of	 the	software	package	
itself	in	more	detail.

2.1  |  Data evaluation

The	 dataset	 includes	 nights	 of	 25	 common	 elands	 (Tragelaphus 
oryx),	whereas	the	number	of	nights	per	 individual	ranges	from	15	
to	49.	 In	total,	822	nights	with	11,411	h	of	video	material	are	pre-
sent.	The	data	were	collected	in	winter	seasons	between	2017	and	
2020	in	a	total	of	five	EAZA	zoos	in	Germany	(Allwetterzoo	Münster,	
Erlebnis-	Zoo	 Hannover,	 Opel-	Zoo	 Kronberg,	 Zoo	 Dortmund	 and	
Zoom	Erlebniswelt	Gelsenkirchen).	A	detailed	overview	about	 the	

used	data	 is	given	 in	Table	A1.	For	 further	analysis	 the	 individuals	
are	 categorized	 as	 follows:	 “young,”	 ranging	 from	 birth	 until	 the	
time	of	weaning	with	 about	 six	months,	 “subadult,”	 older	 than	 six	
months	until	sexual	maturity	with	about	two	years	of	age	and	“adult”	
afterwards.	These	categories	are	chosen	according	to	the	informa-
tion	distributed	across	multiple	prior	works	(Groves	&	Leslie,	2011;	
Myers	et	al.,	2021;	Puschmann	et	al.,	2009;	Tacutu	et	al.,	2013).

All	collected	data	are	in	the	form	of	video	recordings.	The	cam-
eras	used	are	capable	of	night	vision	due	 to	built-	in	 infrared	emit-
ters	(Lupus	LE139HD	or	Lupus	LE338HD	with	the	recording	device	
LUPUSTEC	LE800HD	or	TECHNAXX	PRO	HD	720P).	The	record-
ings	are	made	with	a	frame	rate	of	1	fps	and	the	resolution	ranges	
from	704	×	576	px	to	1920	×	1080	px.	Recording	takes	place	in	the	
stable	during	night,	the	time	of	the	absence	of	animal	keepers,	which	
mostly	ranges	from	17:00	to	07:00	(14	h).	In	some	cases,	the	record-
ing	time	is	18:00	to	07:00	(13	h).

The	 data	were	 recorded	 continuously	 providing	 an	 exact	 time	
span	 for	 every	 behavior	 with	 a	 start	 and	 an	 end	 time	 (Martin	 &	
Bateson,	2015).	The	manually	annotation	was	governed	by	the	open-	
source	 program	BORIS,	 Version	 7.7.3	 (Friard	&	Gamba,	 2016)	 and	
consists	of	2374	h	of	video	material	out	of	170	nights.	BOVIDS	re-
quires	the	use	of	multiple	deep	neural	networks	for	object	detection	
(OD)	and	action	classification	 (AC)	 as	explained	by	Hahn-	Klimroth	
et	al.	 (2021)	and	 in	 the	 following	section.	To	 train	an	 initial	object	
detection	network,	at	least	400	images	of	every	enclosure	were	an-
notated	using	LabelImg	(Tzutalin,	2015)	resulting	 in	11,326	images	
of	common	elands	and	49,437	images	of	various	African	ungulates	
as	already	elaborated	by	Hahn-	Klimroth	et	al.	(2021).	Following	the	
prescribed	approach,	the	initial	action	classification	networks	were	
not	only	 trained	using	170	recordings	 (66,466	 images)	of	common	
elands	but	also	113,407	images	of	other	African	ungulates	with	com-
parable	postures.	Furthermore,	two	rounds	of	offline	hard	example	
mining	 (OHEM)	were	 conducted	 using	 additionally	 14,381	 images	
of	 common	elands	 and	50,262	 images	of	 other	African	ungulates.	
Finally,	 the	 action	 classifiers	 used	 for	 common	 elands	 stalled	 to-
gether	were	fine-	tuned	by	24,304	images	stemming	from	manually	
annotated	video	files	and	7377	 images	generated	through	OHEM.	
Detailed	information	can	be	found	in	Table	A1.

All	 statistical	 analyses	 are	 conducted	 with	 R	 Studio	 (R	 Core	
Team,	2014)	and	 the	 figures,	which	are	not	given	by	BOVIDS,	are	
produced	 using	 the	 core	 functionalities	 of	 R	 and	 the	 package	 gg-
plot2	 (Wickham,	 2016).	 Statistical	 tests	 are	 performed	 differently	
for	continuous	and	ordinal	data.	To	conduct	a	two-	factor	analysis	of	
variance	(ANOVA)	on	continuous	data,	normality	is	required	which	is	
tested	by	Shapiro–	Wilk	test	for	any	behavior	class.	In	case	of	signif-
icant	deviation	from	normality	(p <	.05),	a	normality	transformation	
is	applied	 to	 the	data	by	R’s	 “bestNormalize”	package	 (Peterson	&	
Cavanaugh,	2020).	To	analyze	differences	between	multiple	groups	
on	ordinal	data,	a	Kruskal-	Wallis	test	is	applied.	Finally,	as	post	hoc	
tests	on	all	pairs	of	potentially	significant	factors,	a	collection	of	un-
paired	t-	tests	is	applied	in	the	continuous	case	and,	respectively,	a	
collection	of	Wilcoxon	 tests	 in	 the	ordinal	case.	The	alpha	 level	 is	
adjusted	by	the	Bonferroni–	Holm	adjustment	in	each	case.
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2.2  |  Ethogram

The	focus	of	this	paper	is	to	distinguish	between	three	postures:	
Standing,	 Lying—	head	 up	 (LHU),	 and	 Lying—	head	 down	 (LHD).	
Finally,	 if	 there	 is	no	animal	present,	 the	assigned	 label	 is	out	of	
view	(Out).	The	latter	label	can	also	be	given	if	only	a	small	part	of	
the	animal	 is	visible,	from	which	the	posture	cannot	be	inferred.	
Furthermore,	the	class	Lying	 is	defined	as	the	union	of	LHU	and	
LHD.	The	binary	classification	task	which	distinguishes	Standing,	
Lying,	 and	Out	 allows	 to	 analyze	 rhythms	 over	 the	 night	 as	 the	
categories	 “activity”	 and	 “rest”	 are	 the	most	 prominently	meas-
ured	behavior	stages	to	examine	diurnal	rhythms	(Merrow	et	al.,	
2005).	In	the	following	ethogram,	based	on	that	of	Hahn-	Klimroth	
et	al.	 (2021),	 the	 three	behavioral	 states	are	defined	and	shown	
in	Figure	1.

Standing:	 The	 animal	 stands	 in	 an	 upright	 position	 on	 all	 four	
hooves.	The	exact	behavior	is	neglected,	thus	the	animal	could	
be,	for	instance,	feeding,	resting,	or	ruminating.
Lying—	head	up	(LHU):	The	animal	lies	down,	and	its	head	is	lifted.	
The	behavioral	state	does	not	distinguish	if	the	animal	is	awake	or	
in	non-	REM	sleep.	As	before,	the	precise	behavior	is	neglected.
Lying—	head	down	(LHD):	The	animal	is	lying	with	its	head	resting	
on	the	ground.	The	head's	position	is	beside	the	body	or	some-
times	in	front	of	it.

It	 is	 crucial	 to	 notice	 that	 LHD	 is	 the	 typical	 REM	 (rapid	 eye	
movement)	sleep	posture.	REM	sleep	is	recognized	through	various	
behavioral	components	as	the	animal	 is	 lying	with	 its	head	resting	
due	to	postural	atonia	(Lima	et	al.,	2005;	Zepelin	et	al.,	2005).	This	
characteristically	REM	sleep	position	 can	be	used	 to	 estimate	 the	
REM	sleep,	a	common	approach	in	the	study	of	behavior	of	common	
elands	(Zizkova	et	al.,	2013)	and	cows	(Ternman	et	al.,	2014).

2.3  |  Foundations of Deep Learning

In	 supervised	machine	 learning	 tasks,	 one	 is	 usually	 interested	 to	
design	a	system	that	allows	automatic	prediction	of	new	data	based	
on	manually	 annotated	 examples	 (Russell	 &	Norvig,	 2016).	 In	 this	

contribution,	two	excessively	studied	supervised	learning	tasks	are	
employed:	object	detection	and	action	classification.

In	 the	easiest	variant	of	 the	object	detection	 task,	 an	 image	 is	
given	as	an	input	and	the	system	is	asked	to	draw	a	bounding	box	
around	the	objects	appearing	in	the	image	(bounding	box	regression)	
and	to	assign	a	class	label	that	describes	the	content	of	each	bound-
ing	box	 (classification).	On	a	 very	high-	level	 description,	 there	 are	
two	different	approaches	to	this	task.	In	one-	step	object-	detection	
a	 bounding	 box	 is	 drawn,	 and	 the	 corresponding	 label	 is	 assigned	
simultaneously	while	 in	two-	step	object-	detection,	those	tasks	are	
conducted	sequentially	 (Jiao	et	al.,	2019).	Well-	known	representa-
tives	of	one-	step	solutions	are	yolo	and	SSD	while	there	are	various	
well-	known	 two-	step	 architectures	 like	 FasterRCNN,	MaskRCNN,	
or	EfficientDet.	Without	going	 into	much	detail,	comparably	mod-
ern	one-	step	architectures	are	mostly	faster	at	the	task	as	two-	step	
architectures	 but	 perform	 slightly	 worse	 in	 the	 classification	 part	
(Ouchra	&	Belangour,	2021).

Similarly,	there	is	a	huge	set	of	deep	learning	architectures	de-
signed	 for	 the	 action	 classification	 task.	 In	 the	 easiest	 variant,	 an	
image	is	given,	and	the	system	needs	to	assign	one	unique	class	label	
out	of	a	given	set	of	labels	(Lu	&	Weng,	2007).	Prominent	architec-
tures	are	ResNet	(He	et	al.,	2016),	EfficientNet	(Tan	&	Le,	2019),	or	
CoAtNet	 (Dai	et	al.,	2021).	The	performance	of	such	a	classifier	 is	
measured	by	two	important	metrics:	the	accuracy	as	well	as	the	f-	
score	(Tharwat,	2021).

Suppose	 a	 sequence	 of	 n	 images	 is	 predicted	 and	 image	 i 
gets	 label	 si	 assigned	 by	 the	 classifier	 while	 its	 correct	 label,	
called	 ground-	truth,	 was	 ti.	 Suppose	 furthermore	 that	 classes	
0,	 1,	 …,	 k	 exist.	 Therefore,	 there	 are	 two	 sequences	 of	 labels	
s = (ti)i=1…n, t = (ti)i=1…n ∈ {0,…, k}n	 which	 represent	 the	 classifica-
tion	by	the	neural	network	and	the	ground-	truth,	respectively.

The	accuracy	 is	defined	as	 the	proportion	of	 correctly	 labeled	
images	among	all	images,	or	formally,

The	accuracy	is	a	good	indicator	on	how	well	a	model	performs	
on	 average,	 but	 if	 there	 are	 some	 underrepresented	 classes,	 the	
model's	performance	on	those	classes	is	not	properly	described	by	

accuracy(s, t) =

|
|
|
{
i: si = ti

}||
|

n
.

F I G U R E  1 The	three	observed	behavioral	states:	Standing,	Lying—	head	up,	Lying—	head	down,	from	left	to	right	of	common	elands
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the	accuracy.	The	f-	score,	the	harmonic	mean	of	precision	and	recall,	
is	 a	measure	 that	describes	 the	performance	of	 a	model	per	 class	

quite	well.	To	this	end,	let	tp (c, s, t) =
|
|
|
{
i: si = ti = c

}|
|
|
	be	the	number	

of	 true	 positives	 classified	 by	 the	 model	 of	 class	 c	 and	

fp (c, s, t) =
|
|
|
{
i: si = c, ti ≠ c

}|
|
|
	be	the	number	of	false	positives,	respec-

tively.	Analogously,	define	fn (c, s, t) =
|
|
|
{
i: si ≠ c, ti = c

}|
|
|
	as	 the	num-

ber	of	false	negatives	of	class	c.	Then,	the	f-	score	of	class	c	can	be	
expressed	as

While	accuracy	and	f-	score	capture	important	aspects	of	a	deep	
learning	model,	only	optimizing	with	respect	to	those	metrics	might	
not	be	sufficient	in	certain	applications.	Video	action	classification	
is	such	an	example.	Given	a	video	file,	 the	task	 is	to	train	a	model	
that	can	accurately	predict	the	observed	action	at	each	time-	step	of	
the	video	file.	Very	short	misclassified	sequences	in	a	long	video	are	
clearly	not	captured	by	the	f-	score	or	the	accuracy	but	it	causes	clas-
sification	flickering	which	might	be	problematic	if	one	is	interested	
in	key	quantities	like	the	average	length	of	certain	activities.	There	
are	various	recent	developments	in	video	action	classification,	most	
building	up	on	so-	called	“recurrent	neural	networks,”	which	have	in	
common	 that	multiple	 dimensions	 of	 the	 data	 given	 in	 the	 videos	
are	used	(Xu	et	al.,	2016).	First,	there	is	a	spatial	dimension	which	is	
the	evaluation	of	a	single	frame	of	the	video	file	by	classical	action	
classification.	 Second,	 there	 is	 a	 temporal	 dimension	 given	 as	 the	
single	frames	are	coming	as	a	sequence	and	the	evolution	over	time	
contains	information.	Capturing	the	temporal	dimension	with	state-	
of-	the-	art	approaches	becomes	hard	if	the	framerate	of	the	video	is	
very	low	(See	&	Rahman,	2015).	A	more	classical	approach	toward	
employing	the	temporal	dimension	is	the	“multiple-	frame	encoding”	
(Franche	&	 Coulombe,	 2012;	 Ji	 et	 al.,	 2013)	 in	which	 subsequent	
frames	are	merged	 into	one	 image	that	 is	 fed	 into	the	model.	This	
approach	allows	capturing	the	temporal	dimension	even	given	a	low	
framerate,	but	it	is	inferior	to	more	involved	strategies	as	soon	as	the	
framerate	increases	(Xu	et	al.,	2016).	This	multiple-	frame	encoding	
will	also	be	used	in	the	present	contribution,	as	the	available	video	
material	is	recorded	with	1	frame	per	second.

In	supervised	learning	tasks,	a	user	presents	the	model	a	set	of	
examples	and	the	model	 is	built	upon	those	examples.	This	proce-
dure	is	called	training.	More	precisely,	it	 is	usual	to	split	this	set	of	
examples	into	two	parts:	a	training	set	and	a	validation	set.	During	
training,	 the	 accuracies	 of	 the	model	with	 respect	 to	 the	 training	
set	as	well	as	to	the	validation	set	are	constantly	measured	and	the	
model	is	optimized	regarding	the	performance	on	the	training	set.	In	
the	survey	by	Wang	et	al.	(2020),	different	metrics	as	the	accuracy	
as	target	functions	of	this	optimization	process	are	discussed.	While	
the	performance	on	the	training	and	validation	data	is	of	great	the-
oretical	 interest,	 in	 applications,	 one	 is	 interested	 in	 the	 so-	called	
generalization	 accuracy.	 To	measure	 this	 accuracy,	 a	 third	 dataset	
of	 manually	 annotated	 data	 points	 is	 required,	 the	 test	 set.	 The	

important	difference	between	training	and	validation	set	is	that	the	
images	in	the	test	set	were	not	presented	to	the	model	during	train-
ing	and,	therefore,	the	model's	performance	on	these	data	is	a	good	
indicator	on	how	well	the	model	will	perform	in	an	application.	It	is	
well-	known	that	the	performance	on	the	test	set	is	better,	the	more	
similar	the	testing	images	are	to	the	images	presented	during	train-
ing.	 The	 discrepancy	 between	 the	 distribution	 of	 training	 images	
and	 testing	 images	 is	 called	 distribution	 shift	 and	 machine	 learn-
ing	models	are	known	to	be	brittle	even	to	small	distribution	shifts	
(Quiñonero-	Candela	et	al.,	2008)	and,	therefore,	one	tries	to	find	a	
set	of	training	images	that	represents	the	images	in	the	application	
as	best	as	possible.

2.4  |  BOVIDS

BOVIDS	 is	 an	 end-	to-	end	 software	 package	 which	 automatically	
identifies	individuals	of	ungulates	and	their	postures	in	videos.	The	
detection	 itself	 is	 based	 on	 a	 sequential	 application	 of	 object	 de-
tection	 and	 video	 action	 classification	 governed	 by	 state-	of-	the-	
art	 deep	 neural	 networks,	 yolov4	 (Bochkovskiy	 et	 al.,	 2020),	 and	
EfficientNet-	B3	(Tan	&	Le,	2019),	see	Figure	2.	As	explained,	there	
are	two	classification	tasks	(total	classification	and	binary	classifica-
tion).	The	object	detector	is	used	uniformly	for	both	tasks	while	dif-
ferent	sets	of	action	classifiers	are	trained	for	either	recognition	of	
three	classes	or	two	classes,	respectively.

It	 is	 important	 to	 emphasize	 that	 the	 following	 description	 is	
meant	to	present	one	possible	way	of	using	a	deep-	learning	pipe-
line,	 starting	 from	data	preparation,	over	 training	and	evaluation,	
and	ending	with	 the	preparation	of	 real	data	 for	 statistical	analy-
ses.	Hereby,	the	used	deep	learning	models	perform	well	on	testing	
sets	and	are	known	to	be	fast	(Bochkovskiy	et	al.,	2020;	Tan	&	Le,	
2019).	The	description	is	not	meant	to	be	the	single	possible	way	of	
implementing	such	a	system.	As	will	be	shown,	the	system	is	easy	
to	apply,	and	the	results	are	satisfactory	from	a	biologist's	point	of	
view.

2.4.1  |  Overview

This	 section	 is	 devoted	 to	 give	 a	 short	 overview	 about	 BOVIDS’	
functionality.	The	system	is	designed	to	achieve	a	good	performance	
in	 long-	term	studies	using	video	 recordings	 in	enclosures.	This	 in-
cludes	observation	of	zoo	animals	as	well	as	farm	animal	husbandry.	
The	goal	is	to	tell	the	posture	(Standing,	LHU,	LHD)	of	the	observed	
animals	at	any	time	in	the	video	with	high	precision	to	describe	its	
fundamental	behavior	as	well	as	possible.

Manual	annotation	of	a	video	file	of	one	night	(14	h)	by	a	trained	
person	requires	roughly	about	two	hours	which	indicates	that	only	a	
few	video	files	out	of	a	longer	observation	period	can	be	evaluated	
manually.	This	is	a	challenge	as	one	is	confronted	with	two	problems	
in	designing	a	valid	training	set	for	a	deep	learning	model.	First,	the	
postures	Standing,	LHU,	and	LHD	are	highly	 imbalanced	such	that	

f - score (c, s, t) =
tp (c, s, t)

tp (c, s, t) + 0.5 ⋅ (fp (c, s, t) + fn (c, s, t))
.
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out	of	14	h	of	video	material,	only	a	small	portion	can	be	easily	used	
in	a	training	set.	It	is	of	course	possible	to	train	on	imbalanced	data,	
but	even	this	has	limitations	(Liu	et	al.,	2019).	Second,	on	different	
nights,	 the	 video	 recordings	may	 vary	 due	 to	 changes	 in	 external	
conditions,	 like	 brightness	 or	 positioning	 of	 hay.	 Therefore,	 data	
recorded	 on	 different	 nights	 undergo	 a	mild	 distribution	 shift.	 As	
manual	annotation	of	many	nights	 is	very	time-	consuming	and	an-
notation	of	random	periods	of	each	night	might	cause	an	even	more	
severe	class	imbalance,	this	contribution	suggests	an	adaptation	of	
a	process	called	“offline	hard	example	mining”	(Felzenszwalb	et	al.,	
2010).	This	approach	tries	to	minimize	human	working	load	by	the	
cost	of	higher	computational	cost	in	an	iterative	process.	Miao	et	al.	
(2021)	 conducted	 an	 extensive	 study	 on	 such	 iterative	 processes	
and	analyzed	its	performance	with	respect	to	deep-	learning	models	
that	evaluate	camera-	trap	images.

In	the	following	section,	a	high-	level	sketch	of	the	functionalities	
of	BOVIDS	is	given	and	the	details	can	be	found	in	the	subsequent	
sections.	BOVIDS	is	divided	into	four	components:

BOV	1.	Data	collection,
BOV	2.	Object	detection	(OD),
BOV	3.	Action	classification	(AC),
BOV	4.	Data	prediction.

While	a	part	of	BOV	4	is	a	significantly	improved	and	extended	
version	of	work	presented	in	an	earlier	contribution	(Hahn-	Klimroth	
et	al.,	2021),	the	newly	developed	components	BOV	1–	BOV	3	allow	
an	interested	user	to	apply	the	complete	system	comfortably	to	their	
own	data.	 The	 software	package	 consists	 of	 various	 small	 python	
scripts	 that	 allow	 to	handle	 large	datasets	more	 conveniently	 and	

F I G U R E  2 Visualization	of	the	sequential	application	of	the	yolov4	object	detector	and	the	EfficientNet-	B3	action	classifier

F I G U R E  3 Overview	of	the	System	BOVIDS	and	all	its	categories
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prepare	the	data	in	a	way	that	can	be	used	to	apply	the	prediction	
pipeline	BOV	4.

BOV	 1	 allows	 to	 convert	 video	 recordings	 directly	 from	 the	
LUPUS	 observation	 system.	 To	 annotate	 new	 data	 automatically,	
the	prediction	pipeline	of	BOVIDS	(BOV	4)	 is	used.	The	necessary	
scripts	to	prepare	the	training	and	validation	set	and	to	conduct	the	
training	are	presented	in	BOV	2	for	the	object	detector,	while	BOV	
3	provides	these	functionalities	with	regard	to	the	action	classifier.	
Furthermore,	those	sections	contain	a	description	of	one	possibility	
to	 fine-	tune	 the	models	 and	 achieve	 a	 good	 performance.	 Finally,	
multiple	tools	to	measure	the	accuracy	of	the	prediction	and	to	de-
tect	systematic	errors	by	BOVIDS	are	provided	in	BOV	4.	Also,	tools	
to	 represent	 and	 visualize	 the	 data	 that	 are	 a	 good	 starting	 point	
to	apply	further	statistical	methods	are	presented	in	this	section.	A	
visualization	of	the	complete	process	is	given	in	Figure	3.

2.4.2  |  BOV	1:	Data	preparation

BOVIDS	creates	a	collection	of	video	files,	one	per	night	automati-
cally	if	the	data	are	recorded	by	the	LUPUS	observation	system.	If	
some	data	are	missing	due	to	power	failure,	the	missing	frames	can	
be	filled	with	a	sequence	of	black	frames	to	ensure	a	joint	observa-
tion	time	over	all	video	files.	Such	sequences	of	black	frames	will	be	
labeled	as	Out	by	BOVIDS	during	prediction	and,	therefore,	repre-
sent	reality	quite	well.

2.4.3  |  BOV	2:	Training	an	object	detector	(OD)

The	 final	 object	 detector	 is	 trained	 following	 the	 subsequent	
procedure:

OD	1.	Manual	annotation	of	images.
OD	2.	Train	a	first	version	of	the	object	detector.
OD	3.	Offline	hard	example	mining	(OHEM).

a.	Automatic	annotation	of	unseen	data.
b.	Evaluation	of	the	suggested	bounding	boxes.
c.	Retrain	the	deep	neural	network.

In	the	initial	annotation	task	(OD	1),	between	400	and	800	im-
ages	are	sampled	stemming	from	multiple	videos	per	enclosure	over	
the	 observation	 period	 to	 increase	 the	 data	 variability.	 The	 num-
ber	 of	 images	 sampled	 in	 total	 depends	 on	 how	much	 data	 there	
are	overall,	how	difficult	the	detection	appears	to	be,	and	whether	
individuals	 need	 to	 be	 distinguished.	 Those	 images	 are	 annotated	
manually	by	a	 freely	available	 third-	party	 software	package	called	
LabelImg	(Tzutalin,	2015)	and	the	initial	training	can	be	performed	
(OD	2).	Hereby,	5%	of	the	data	is	used	as	the	validation	set	while	95%	
of	the	data	is	used	for	training.

To	run	an	adapted	version	of	the	so-	called	“offline	hard	example	
mining”	(Felzenszwalb	et	al.,	2010),	in	short	OHEM	(OD	3),	the	object	
detector	is	used	to	automatically	annotate	300–	600	images	out	of	

unseen	videos	of	the	same	set	of	enclosures	(OD	3a).	The	quality	of	
each	such	automatically	drawn	bounding	box	is	evaluated.	Hereby,	
a	human	assigns	one	out	of	four	classes	(good,	okay,	poor,	swapped)	
to	each	bounding	box	(OD	3b)	which	is	visualized	in	Figure	4.	If	the	
bounding	boxes	are	satisfyingly	accurate,	the	procedure	stops	at	this	
point.	Otherwise,	the	bounding	boxes	evaluated	as	poor	or	swapped	
are	corrected	manually	using	LabelImg.	Those	bounding	boxes	can	
be	seen	as	“hard	examples”	as	the	current	version	of	the	object	de-
tector	struggles	at	prediction.	The	freshly	corrected	annotations	to-
gether	with	the	well-	evaluated	bounding	boxes	are	used	to	increase	
the	 training	 set	 of	 the	 object	 detector	 and	 the	 object	 detector	 is	
trained	on	 this	 new,	 extended	 set.	Again,	 5%	of	 the	 existing	 data	
is	used	for	validation.	This	procedure	can	be	repeated	until	satisfy-
ing	results	are	achieved.	In	the	conducted	case	study,	one	iteration	
sufficed	to	achieve	a	decent	accuracy.	After	having	trained	an	accu-
rately	working	object	detector,	this	object	detector	is	one	ingredient	
required	to	generate	a	training	set	for	the	action	classifiers.

2.4.4  |  BOV	3:	Action	classification	(AC)

The	action	classifier's	goal	is	to	predict	the	pose	of	an	individual	on	
a	single	image	(single-	frame,	SF)	to	capture	the	spatial	dimension	of	
the	video,	 respectively,	on	 four	subsequent	 images	placed	next	 to	
each	other	(multiple-	frame,	MF)	to	capture	the	temporal	dimension.	
The	 case	 study	 suggests	 that	 the	 following	 iterative	 process	 gen-
erates	a	well-	performing	action	classifier	and	finds	a	good	balance	
between	accuracy	of	the	deep	 learning	model	and	human	annota-
tion	time.

AC	1.	Annotation	of	few	video	files.
AC	2.	Training	of	a	first	version	of	the	ACs.

a.	Preparation	of	an	initial	training	set.
b.	Training	of	the	ACs.

AC	3.	One	or	multiple	rounds	of	OHEM
a.	Prediction	of	many	new	video	files.
b.	Extracting	hard	as	well	as	random	examples	as	sin-
gle	images.

c.	 Manually	 evaluating	 the	 performance	 on	 those	
examples.

d.	Retrain	the	network	based	on	the	evaluated	images.

When	starting	from	scratch,	it	is	most	convenient	to	annotate	
the	 behavior	 of	 each	 single	 frame	 of	 a	 video	 by	 annotating	 the	
whole	 video	 (AC	 1),	 for	 instance	 using	 the	 third-	party	 software	
package	 BORIS	 (Friard	 &	 Gamba,	 2016).	 In	 the	 conducted	 case	
study,	video	material	corresponding	to	170	nights	was	annotated	
manually,	see	Table	A1.	To	generate	the	training	set,	equally	many	
images	(single-	frame	and	multiple-	frame	encoded)	of	each	posture	
(Standing,	LHU	and	LHD)	are	extracted	from	the	annotated	video	
files	by	using	the	previously	trained	object	detector.	This	balanc-
ing	is	one	possible	way	to	ensure	that	training	of	the	action	clas-
sifiers	works	 decently	 (Japkowicz	&	 Stephen,	 2002).	 The	 reader	
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should	 be	 aware	 that	 there	 are	 different	 strategies	 to	 deal	with	
class	imbalance	that	will	not	be	discussed	in	this	contribution	(Liu	
et	al.,	2019).	Due	to	the	class	balancing	and	the	underrepresenta-
tion	of	LHD	in	the	video	data,	it	is	possible	to	extract	roughly	500	
images	per	 class	and	per	14-	hour	video	on	our	dataset.	To	 start	
training,	a	training	set	with	90%	of	those	images	and	a	validation	
set	 with	 10%	 of	 those	 images	 are	 created	 (AC	 2a).	 Finally,	 four	
EfficientNet-	B3	CNNs,	namely	the	single-	frame	classifier	and	the	
multiple-	frame	classifier	 for	both	 (binary	and	 total)	 classification	
tasks	(AC	2b)	are	trained.

These	 first	 versions	 of	 the	 action	 classifiers	 are	 supposed	 to	
work	quite	decently	on	the	videos	used	for	the	training,	but	it	is	likely	
that	the	classification	accuracy	is	worse	on	different	videos	of	the	
same	animal	 in	which	the	arrangement	of	the	enclosure	as	well	as	
the	light	conditions	might	be	quite	different	due	to	the	already	dis-
cussed	distribution	shift	(Quiñonero-	Candela	et	al.,	2008).	For	this	
reason,	 it	 seems	sensible	 to	 reduce	 the	distribution	shift	between	
the	training	set	and	the	data	required	to	be	predicted	by	increasing	
the	variability	of	the	training	data.	To	this	end,	we	adapt	the	classical	
offline	hard	example	mining	to	the	setting	at	hand	(AC	3)	as	follows.	
First,	a	fairly	large	number	of	momentarily	not	annotated	video	files	
will	be	predicted	by	BOVIDS	(AC	3a).	The	accuracy	of	this	prediction	
is	expected	to	be	at	least	90%	as	Hahn-	Klimroth	et	al.	(2021)	already	
discussed.	Therefore,	BOVIDS	provides	an	educated	guess	on	 the	
labels	of	each	time	interval	of	many	video	files	that	could	not	have	
been	annotated	manually	without	spending	too	much	human	anno-
tation	time.	Based	on	those	predicted	labels,	one	samples	a	decent	
number	of	 images	 in	 almost	 balanced	 classes	 distributed	over	 the	
whole	observation	time	(AC	3b).	In	the	conducted	case	study,	72,020	
images	were	sampled	that	way.	These	images	are	close	to	a	uniform	
sample	of	the	data	on	balanced	classes	of	the	whole	underlying	data	
and	 can,	 therefore,	 be	 referred	 to	 as	 “random”	 examples.	 These	

examples	can	now	be	evaluated	by	a	human	observer	in	a	moderate	
amount	of	time	(AC	3c).	It	is	to	be	stressed	at	this	point	that	a	decent	
classifier	is	a	critical	ingredient:	As	the	classes	are	highly	unbalanced,	
random	sampling	without	an	educated	guess	would	result	in	a	set	of	
images	with	almost	no	LHD,	therefore,	this	simple	process	would	not	
be	possible	to	be	used	for	generating	a	balanced	training	set.

Besides	mining	such	random	examples,	it	is	also	possible	to	ex-
tract	“hard”	examples	easily.	In	this	contribution,	a	hard	example	is	
defined	as	an	image	for	which	either	the	certainty	of	classification	by	
the	action	classifier	is	small	or	if	it	belongs	to	a	time	interval	of	which	
the	predictions	of	the	single-	frame	and	multiple-	frame	action	clas-
sifier	disagree.	It	is	supposed	that	neural	networks	can	be	finetuned	
efficiently	by	hard	examples	(Felzenszwalb	et	al.,	2010).	Therefore,	
instead	of	 only	 generating	 random	 samples	 distributed	 across	 the	
observation	time,	it	is	possible	to	nudge	the	training	set	into	a	direc-
tion	 such	 that	 information	 from	momentarily	hard	 to	 classify	data	
gets boosted.

Based	on	 the	 human	 evaluation	of	 the	 single	 images	 it	 is	 now	
possible	to	retrain	the	action	classifiers	on	a	much	broader	dataset	
that	really	represents	the	distribution	of	the	data	that	needs	to	be	
classified.	At	this	point,	the	training	classes	might	get	slightly	unbal-
anced	if	the	human	annotation	deviates	strongly	from	the	automatic	
one.	In	this	case	standard	techniques	like	random	upsampling	might	
be	considered	(Branco	et	al.,	2016)	and	are	provided	by	BOVIDS,	of	
course,	different	ways	to	deal	with	this	 imbalance	can	also	be	em-
ployed	(Liu	et	al.,	2019).	Once	a	decent	object	detector	and	a	well-	
performing	action	classifier	are	generated,	all	data	can	be	predicted	
once	more	and	the	performance	of	BOVIDS	can	be	measured.

At	this	point,	we	want	to	emphasize	that	training	and	validation	
data	are	generated	as	usual	 in	machine	 learning	for	the	object	de-
tection	and	the	action	classification	tasks.	However,	generation	of	a	
suitable	testing	set	and	choosing	a	decent	evaluation	metric	is	more	

F I G U R E  4 Example	of	the	four	classes	
that	can	be	given	in	evaluation,	good	
(green),	okay	(yellow),	bad	(red),	and	
swapped	(blue)
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involved	as	the	performances	of	the	object	detector	and	the	action	
classifiers	as	single	systems	are	subordinate	to	the	outcome	of	their	
sequential	 application.	 This	 will	 be	 discussed	 in	 detail	 in	 Section	
2.4.5.2.

2.4.5  |  BOV	4:	Data	prediction

The	data	prediction	step	consists	of	three	major	parts	(DP	1–	DP	3)	
that	are	discussed	in	this	section	and	are	read	as:

DP	1:	Prediction
P	1.	Object	detection	phase
P	2.	Action	classification	phase
P	3.	Postprocessing	phase.

DP	2:	Data	evaluation
DP	3:	Data	presentation.

DP 1: The prediction pipeline
The	 system	of	Hahn-	Klimroth	et	 al.	 (2021)	predicts	 a	 video	 file	 in	
three	phases:

P	1.	Object	detection	phase
P	2.	Action	classification	phase
P	3.	Postprocessing	phase.

These	phases	must	not	be	confused	with	BOV	2	and	BOV	3	that	
describe	 how	 to	 train	 the	 required	 deep	 neural	 networks	while	 P	
1–	P	3	 are	phases	within	 the	prediction	pipeline	of	Hahn-	Klimroth	
et	 al.	 (2021)	 that	 require	 the	 previously	 trained	 networks.	 These	
phases	are	briefly	explained	below,	and	improvements	and	new	fea-
tures	provided	by	BOVIDS,	 in	 contrast	 to	 the	original	 system,	 are	
highlighted.

In	the	object	detection	phase	(P	1),	the	system	will	first	decom-
pose	a	video	file	into	so-	called	“time	intervals”.	This	is	a	discretiza-
tion	of	the	continuous	data	into	packages	of	seven	seconds	each.	
More	precisely,	for	each	time	interval	the	prediction	pipeline	will	
collect	four	images.	Then,	the	object	detector	is	used	to	identify	
the	animal	present	in	the	images	or,	respectively,	declare	that	no	
animal	 is	 present.	While	 this	 step	 is	 governed	 by	 a	Mask-	RCNN	
network	 by	 Hahn-	Klimroth	 et	 al.	 (2021)	 in	 the	 current	 version	
the	architecture	is	changed	to	the	much	more	recent	yolov4	net-
work	 as	 implemented	 by	 Taipingeric	 (2020)	 which	 improves	 the	
classification	accuracy	(Bochkovskiy	et	al.,	2020)	and	significantly	
speeds	up	the	complete	prediction	pipeline	by	approximately	40%	
on	the	same	hardware.	The	merit	of	this	step	is	two-	fold.	First,	as	
pointed	out	by	Yosinski	et	al.	(2014),	it	increases	the	similarity	be-
tween	 images	 taken	 from	different	enclosures.	This	dramatically	
improves	 the	 chance	 of	 meaningful	 learning	 of	 the	 poses	 from	
various	videos.	Second,	it	 is	used	to	distinguish	between	distinct	
individuals	within	 the	 same	 enclosure.	 At	 the	 end	 of	 the	 object	
detection	phase,	each	time	interval	is	represented	in	two	ways	for	
every	individual:	As	a	sequence	of	single	images	(single-	frame)	and	

additionally	as	one	 image	 in	which	 these	 images	are	placed	next	
to	each	other	(multiple-	frame	encoded	representation	(Franche	&	
Coulombe,	2012;	Ji	et	al.,	2013)).

The	subsequent	step,	the	action	classification	phase	(P	2)	to	de-
termine	the	behavioral	classes,	is	a	classical	image	classification	task.	
For	both,	the	single-		and	multiple-	frame	representations,	this	task	is	
governed	by	 two	 independently	 trained	EfficientNetB3	CNNs	per	
time	interval.	The	final	prediction	for	any	time	interval	is	calculated	
as	 the	 average	 over	 both	 outcomes.	 Hahn-	Klimroth	 et	 al.	 (2021)	
already	 describe	 that	 the	 “total	 classification”	 task	 (distinguishing	
Standing,	LHU,	LHD)	might	be	much	more	difficult	than	the	“binary	
classification”	task	(distinguishing	Standing	and	Lying)	and	gives	the	
possibility	to	map	the	final	prediction	from	LHU	and	LHD	to	Lying.	
The	approach	of	BOVIDS	toward	this	binary	task	is	slightly	different.	
It	 is	necessary	 to	 train	a	 set	of	 independent	networks	 that	purely	
govern	 this	 binary	 classification	 such	 that	 possible	 features	 can	
eventually	be	better	learned.

To	 reduce	 classification	 flickering,	Hahn-	Klimroth	 et	 al.	 (2021)	
propose	a	set	of	postprocessing	rules	(P	3)	which	are	applied	to	the	
sequence	of	classifications	of	time	intervals.	Those	postprocessing	
rules	dismiss	very	short	sequences	of	a	specific	action	as	those	se-
quences	are	likely	to	stem	from	short	periods	of	false	classifications.	
In	 the	current	 setting	 the	set	of	postprocessing	 rules	 is	extended.	
It	 is	now	possible	 to	handle	 flickering	between	Out	and	a	specific	
behavior	more	smoothly	to	 incorporate	short	periods	 in	which	the	
object	detector	failed	to	detect	or	identify	the	present	individual.	Of	
course,	such	a	postprocessing	step	might	dismiss	short	phases	which	
are	present	 in	 the	data.	Therefore,	choosing	an	appropriate	set	of	
rules	is	a	trade-	off	between	a	stronger	methodological	error	(errors	
made	by	BOVIDS	 through	misclassification	of	 short	 events)	 and	 a	
systematic	error	 (errors	caused	by	dismissing	short	phases	on	real	
data).	BOVIDS	contains	tools	for	a	systematic	study	of	both	types	of	
errors.	If	the	systematic	error	is	appropriate	for	the	application,	one	
can	compare	BOVIDS’	prediction	with	the	postprocessed	real	data	
to	describe	the	methodological	error.

In	 the	 present	 work,	 the	 chosen	 set	 of	 postprocessing	 rules	
varies	 significantly	 between	 the	 binary	 and	 the	 total	 classifi-
cation	 task.	 Indeed,	 as	 the	 binary	 classification	 task	 is	meant	 to	
study	longer	periods	of	Standing	and	Lying,	phases	up	to	5	min	are	
dismissed.	 Furthermore,	 in	 the	 total	 classification	 task,	 it	 is	 dis-
tinguished	between	adult	common	elands	and	nonadult	common	
elands	as	the	 latter	show	shorter	phases	than	the	adult	 individu-
als.	A	detailed	overview	over	the	used	postprocessing	rules	can	be	
found	in	Table	A2.

DP 2: Data evaluation
As	the	prediction	of	a	deep	learning-	based	system	works,	in	the	end,	
as	a	black	box,	it	is	very	important	to	assure	the	quality	of	the	pre-
diction	regarding	all	quantities	of	interest.	Therefore,	it	is	crucial	to	
define	a	valid	testing	set	and	appropriate	evaluation	metrics.	Due	to	
the	iterative	process	on	how	the	training	set	was	found,	the	images	
used	for	training	the	action	classifiers	are	an	almost	uniform	sample	
from	 the	whole	observation	period.	Thus,	 any	 specific	 video	 is	 an	
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adequate	sample	to	determine	the	expected	accuracy	which	implies	
that	a	good	testing	set	 is	given	by	the	already	manually	annotated	
videos.	Observe	 that	during	 training	only	 the	object	detector	 and	
the	action	classifiers	as	single	systems	were	evaluated	with	respect	
to	a	validation	set	but	ultimately,	it	is	more	important	that	the	pre-
diction	of	a	complete	video	is	accurate	with	respect	to	biologically	
interesting	quantities.

To	 quantify	 the	 accuracy	 of	 the	 prediction	 on	 the	 testing	 set,	
performance	indicators	from	machine	learning	theory	as	well	as	bio-
logical	key	figures	are	evaluated	by	the	following	four	quality	criteria.

QC	 1.	 Analysis	 of	 the	 object	 detector	 per	 night	 (“detection	
density”).
QC	2.	Accuracy	and	f-	score	as	well	as	a	comparison	of	the	num-
ber	 of	 phases,	 the	 median	 phase	 length,	 and	 the	 overall	 per-
centage	per	activity	class	between	BOVIDS’	prediction	and	the	
manual	annotation.
QC	3.	Number,	length,	and	type	of	misclassified	sequences.
QC	4.	Visual	checking	for	outliers.

While	QC	2	and	QC	3	are	quality	criteria	which	can	be	only	eval-
uated	with	respect	to	the	testing	set,	QC	1	and	QC	4	can	be	applied	
to	all	predicted	data.

In	the	first	step	(QC	1),	the	performance	of	the	object	detector	
should	be	checked	 in	detail.	 It	may	happen	 that	 the	object	detec-
tor	fails	to	detect	the	individual	in	certain	videos	quite	often,	which	
could	be	due	to	different	light	conditions	or	maybe	because	of	heavy	
truncation.	Of	course,	it	is	also	possible	that	the	individuals	are	Out	
for	a	longer	period.	To	check	the	performance,	BOVIDS	outputs	an	
overview	 that	 reports	 the	percentage	of	 detections	of	 an	 individ-
ual	 by	 the	object	detector	per	 video.	 If	 this	 value	 turns	out	 to	be	
noticeably	low,	one	should	check	the	original	data	to	see	if	this	low	
“detection	density”	can	be	explained.

Second,	 if	 the	 object	 detector	 works	 satisfactorily	 well	 and	 a	
good	 set	of	postprocessing	 rules	was	defined,	 the	performance	of	
the	 classification	 part	 of	 BOVIDS	 needs	 to	 be	 analyzed.	 Accuracy	
and	f-	score	(QC	2)	are	standard	tools	to	measure	the	performance	of	
a	deep	learning	system.	Those	metrics	are	applied	with	respect	to	the	
postprocessed	data	 in	comparison	 to	 the	manually	annotated	data	
to	which	the	postprocessing	rules	were	also	applied.	Further	highly	
relevant	biological	quantities	are	the	percentage	per	behavioral	class	
and	the	median	phase	length	where	the	latter	is	not	evaluated	appro-
priately	by	accuracy	and	f-	score.	Finally,	it	is	important	to	understand	

which	kind	of	misclassifications	occur	and	to,	potentially,	derive	pat-
terns.	To	analyze	QC	2	and	QC	3,	BOVIDS	contains	a	tool	that	allows	
to	report	the	accuracy,	f-	score,	deviation	in	the	number	of	phases	as	
well	as	a	detailed	description	of	misclassified	sequences.

If	 QC	 1–	QC	 3	 are	 satisfactorily	 met,	 BOVIDS	 can	 be	 used	 to	
generate	a	final	prediction	of	the	unlabeled	videos.	Of	course,	QC	
1	should	be	applied	to	unlabeled	videos	as	well	as	it	is	a	good	indi-
cator	whether	 the	object	detector	works	well	on	a	 specific	video.	
But	even	if	the	object	detector	detects	an	object	quite	frequently,	it	
might	happen	that	BOVIDS	provides	poor	quality	on	a	specific	night	
if	 there	 are	problems	 in	 the	original	data:	 for	 instance,	 individuals	
could	be	heavily	truncated	on	a	specific	night.	 In	those	cases,	 it	 is	
reasonable	to	assume	that	the	activity	budget	of	the	individual	looks	
significantly	different	as	in	other	videos	which	can	be	checked	rather	
easily	visually	by	searching	 for	such	outliers	 (QC	4).	To	 this	end,	a	
short	 graphical	 representation	of	 the	 activity	budget	 in	 a	 video	 is	
generated	by	BOVIDS	(see	Figure	5)	which	can	be	used	to	identify	
those	outliers.	If	the	graphical	representation	of	a	night	is	conspicu-
ous,	one	can	check	the	original	data	on	a	sample	basis	to	investigate	
BOVIDS’	performance.

DP 3: Data presentation
BOVIDS	 provides	 further	 functionalities	 to	 present	 the	 produced	
data	 elegantly	 which	 will	 be	 briefly	 described	 in	 this	 section	 and	
shown	in	more	detail	with	the	data	of	the	case	study	in	the	results’	
section.	Next	to	the	graphical	representation	(see	QC	4)	of	each	night,	
BOVIDS	produces	a	document	that	contains	an	overview	of	the	most	
important	statistical	key	quantities,	for	instance,	the	percentages	of	
the	single	behaviors	 in	the	activity	budget.	Finally,	BOVIDS	can	be	
used	to	generate	an	overview	about	an	individual's	behavior	over	all	
evaluated	nights	or	even	about	a	species’	average	behavior	over	all	
nights	of	all	individuals.	Furthermore,	first	graphical	representations	
of	the	nightly	activity	are	given	as	can	be	seen	in	Figure	6.

3  |  RESULTS

3.1  |  BOVIDS' performance in the case study

This	 section	 is	 devoted	 to	 reporting	 the	 validity	 of	 postprocess-
ing	 rules	 and	 the	 quality	 criteria	 QC	 1–	QC	 4	 in	 the	 case	 study.	
Subsequently,	 in	 the	 next	 section,	 the	 nocturnal	 behavior	 of	 the	
common	elands	is	presented.

F I G U R E  5 Example	of	one	night	of	one	
common	eland	with	the	plotted	phases	
of	the	three	behavioral	states	of	the	
total	system	given	by	BOVIDS	to	look	for	
quality	criteria	QC	4



    |  11 of 23GÜBERT ET al.

A	 set	 of	 postprocessing	 rules	 can	 be	 considered	 as	 valid	 if	 the	
systematic	error	 induced	by	these	rules	 is	negligible	for	the	quanti-
ties	of	interest.	In	the	dataset	at	hand	and	in	both	classification	tasks,	
the	accuracy	of	the	postprocessed	data	ranges	from	99.6%	to	100%	
and	even	the	f-	score	of	all	activity	classes	lies	constantly	over	99.2%.	
Accordingly,	 the	 percentage	 per	 night	 per	 individual	 of	 all	 behav-
ioral	classes	under	both	classification	 tasks	are	approximated	up	 to	
an	error	of	0.02%	in	the	worst	case.	Moreover,	the	average	median	
phase	 length	per	 individual	 is	overshot	by	21s	of	1796s	 (Standing),	
34s	of	1375s	(LHU)	and	24s	of	322s	(LHD)	in	the	total	classification	
task	while	 those	 values	 are	 130s	 of	 1834s	 (Standing)	 and	 239s	 of	
4226s	(Lying)	under	binary	classification.	The	number	of	phases	per	
activity	class	 is	underestimated,	more	precisely,	the	mean	deviation	
over	all	individuals	is	−0.29	of	8.2	(Standing),	−1.02	of	23.0	(LHU),	and	
−0.67	of	14.6	(LHD)	in	the	total	classification	task	while	it	is	−1.4	of	8.9	
(Standing)	and	−0.9	of	8.5	(Lying)	in	the	binary	classification	system.

To	 analyze	 the	 quality	 criteria,	 the	 predictions	 of	 BOVIDS	 are	
compared	to	the	manually	annotated	and	postprocessed	nights.	All	
nights	in	which	individuals	were	at	least	20%	of	the	time	Out,	either	
by	 BOVIDS’	 prediction,	 or,	 if	 manually	 annotated	 by	 the	 humans’	
prediction,	were	dismissed	as	such	nights	do	not	yield	good	evidence	
on	the	individual's	activity	budget.	The	results	of	all	quality	criteria	
are	presented	in	this	section.

On	 the	 analysis	 of	 the	 accuracy	 (QC	2)	 of	BOVIDS’	 prediction	
with	 respect	 to	 the	 manually	 annotated	 postprocessed	 data,	 the	

following	 results	 are	 found.	The	median	accuracy	per	night	 lies	at	
99.4%	with	a	0.25-	quantile	of	99.1%	and	a	0.75-	quantile	of	99.4%	
in	 the	 total	 classification	 task.	 Furthermore,	 the	 median	 f-	scores	
turn	 out	 to	 be	 99.6%	 (Standing),	 99.5%	 (LHU),	 and	 96.3%	 (LHD)	
with	minima	 94.4%	 (Standing),	 95.4%	 (LHU),	 and	 93.2%	 (LHD).	 In	
the	binary	classification	task,	the	corresponding	values	read	as	fol-
lows.	The	median	accuracy	is	99.8%	with	a	0.25-	quantile	of	99.4%	
and	a	0.75-	quantile	of	99.8%	while	the	f-	scores	are	at	 least	93.1%	
(Standing)	 and	 97.1%	 (Lying)	 with	 a	 median	 of	 99.5%	 and	 99.8%.	
Furthermore,	the	percentage	of	each	behavioral	class	per	individual	
is	approximated	up	to	at	most	0.03%	in	both	classification	tasks.	In	
the	total	classification	system,	the	mean	deviation	in	the	number	of	
phases	is	0.34	of	7.9	(Standing),	0.53	of	22.0	(LHU),	and	0.37	of	13.9	
(LHD).	 The	 values	 in	 the	 binary	 classification	 task	 are	 0.05	 of	 7.5	
(Standing)	and	0.03	of	7.6	(Lying).	Finally,	the	median	phase	length	
per	individual	is	underestimated	by	−22.6s	of	1817.6s	(Standing),	by	
−117.0s	of	1409.9s	(LHU),	and	−1.8s	of	345.6s	(LHD)	in	the	total	clas-
sification	task.	In	the	binary	classification	system,	those	values	turn	
out	to	be	−2.87s	of	1970.9s	(Standing)	and	−14.7s	of	4464.5s	(Lying).

The	next	 quality	 criteria	 to	 analyze	 is	 the	number,	 length,	 and	
type	 of	 misclassified	 sequences	 (QC3).	 In	 the	 total	 classification	
task,	 we	 find,	 overall,	 179	 misclassified	 sequences	 in	 62	 nights	
(thus,	on	average,	2.9	sequences	per	night).	Out	of	179	sequences,	
49	 sequences	 are	 misclassifications	 between	 a	 real	 behavior	 and	
being	Out	and	in	65	cases,	BOVIDS	predicted	LHD	while	the	actual	

F I G U R E  6 Timeline	containing	the	
percentage	of	all	behavioral	states	and	
their	means	over	all	nights	of	all	analyzed	
individuals	of	common	elands.	The	
visualization	is	smoothed	by	a	rolling	
average	over	3	min.	(a)	is	the	binary	
classification	and	contains	822	nights	
of	25	individuals,	and	(b)	is	the	total	
classification	containing	589	nights	of	16	
individuals
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behavior	was	LHU.	The	remaining	65	sequences	were	mostly	short	
confusions	 between	 Standing	 and	 LHU.	 In	 contrast,	 in	 the	 binary	
classification	 task,	 there	 are	 181	 misclassified	 sequences	 in	 170	
nights	(on	average	1.1	sequences	per	night)	out	of	which	78	are	con-
fusions	between	a	behavioral	 class	and	Out,	 in	78	cases,	BOVIDS	
predicts	Standing	while	the	human	label	is	Lying	and	in	27	cases	vice	
versa.	Furthermore,	out	of	the	181	sequences,	46	misclassifications	
are	sequences	of	length	at	most	1	min	and	47	additional	misclassifi-
cations	are	below	5	min.

Quality	criteria	QC	1	and	QC	4	are	with	respect	to	all	predicted	
nights.	Hereby,	QC	1	checks	the	performance	of	the	object	detec-
tor.	The	detection	density	per	individual	ranges	from	87.2%	to	100%	
while	its	median	turns	out	to	be	99.8%	with	a	0.25-	quantile	of	97.5%	
and	a	0.75-	quantile	of	100%.	To	analyze	the	last	quality	criteria	(QC	
4),	namely,	 to	 look	for	apparent	outliers,	BOVIDS	creates	one	plot	
per	 predicted	 night	 (for	 the	 binary	 and	 for	 the	 total	 classification	
task,	 respectively)	 representing	 the	 timely	 course	 of	 the	 behav-
ioral	phases	(see	Figure	5).	There	are	few	apparent	outliers	on	data	
which	were	not	manually	labeled,	and	the	automatic	annotation	was	
checked	 randomly.	 In	most	cases,	 it	was	 found	 that	BOVIDS’	pre-
diction	is	correct	even	if	it	seemed	to	be	suspicious.	The	observed	
misclassifications	during	this	step	fit	exactly	into	the	description	of	
the	errors	in	QC	3	and	the	frequency	is	comparable.

3.2  |  The nocturnal behavior of common elands

The	data	presentation	tools	of	BOVIDS	give	a	first	visual	result	re-
garding	the	relative	distribution	of	the	behavioral	states,	their	means	
over	all	nights,	and	the	rhythm	of	phases	of	behavioral	states	 (see	
Figure	 6).	 The	 underlying	 data	 are	 normalized	 to	 the	 behavioral	

states	 excluding	 Out.	 The	 optically	 conjectured	 increase	 of	 Lying	
over	the	night	between	19:00	and	06:00	in	the	binary	classification	
task	 is	confirmed	by	a	 linear	regression	(R2 =	 .799	and	p <	 .0001).	
In	addition	to	the	visual	representation,	BOVIDS’	output	consists	of	
tables,	including	a	summary	table	for	every	individual	containing	rel-
evant	statistical	key	values	as	well	as	a	list	of	the	number	of	phases,	
durations,	 and	 the	percentage	of	behaviors	per	night.	This	 signifi-
cantly	 facilitates	 the	 creation	 of	 an	 activity	 budget	 (see	 Figure	 7)	
and	provides	a	first	insight	into	the	nocturnal	behavior	of	common	
elands.	 The	 graphical	 representation	 yields	 to	 the	 conjecture	 that	
there	might	be	differences	in	the	total	duration	of	the	behaviors	per	
night	between	certain	groups	of	 individuals.	Those	differences	are	
analyzed	rigorously	in	the	following.

The	data	with	 respect	 to	Standing	and	LHU	can	be	assumed	to	
be	normally	distributed	(p_Standing	=	0.9524	and	p_LHU	=	0.2715)	
while	the	total	duration	per	night	of	LHD	deviates	significantly	from	
normality	 (p_LHD	=	 0.0015)	 and	 is	 transformed.	 First,	 adult	 male	
and	adult	female	 individuals	are	compared	to	 investigate	sex	differ-
ences.	 Afterwards,	 age-	specific	 analyses’	 will	 be	 conducted	 within	
the	group	of	 female	 individuals	 as	 there	 is	 only	one	nonadult	male	
individual	in	the	sample.	To	investigate	the	differences	based	on	sex	
and	 to	account	 for	possible	 influences	by	 the	housing	conditions,	a	
two-	factor	ANOVA	is	conducted	with	the	factors	keeping	zoo	and	sex	
between	the	adult	animals	for	each	behavior	of	the	total	classification	
system	(n =	9	individuals	with	328	nights	consisting	of	4	males	with	
151	nights	and	5	 females	with	177	nights).	The	holding	zoo	can	be	
withdrawn	as	a	significant	factor	(p >	 .37),	but	the	sex	has	a	signifi-
cant	influence	on	LHD	(p =	.0281),	whereby	the	males’	values	exceed	
the	females’,	see	Figure	8(a).	Finally,	a	two-	factor	ANOVA	with	factors	
keeping	zoo	and	age	within	all	female	individuals	in	the	total	classifica-
tion	system	(n	=	11	individuals	with	411	nights	consisting	of	3	young	

F I G U R E  7 Activity	budgets	of	all	
analyzed	common	elands:	(a)	is	the	
binary	classification	with	822	nights	
of	25	individuals,	and	(b)	is	the	total	
classification	with	589	nights	of	16	
individuals.	T.oryx_01 to T.oryx_05	are	
male	adult	individuals	and	T.oryx_06 to 
T.oryx_17	are	female	adult	individuals,	
while T.oryx_18 to T.oryx_21	are	subadults	
and	T.oryx_22 to T.oryx_25	are	young	
individuals



    |  13 of 23GÜBERT ET al.

F I G U R E  8 Comparison	with	respect	
to	the	total	duration	of	each	behavior	
per	night	in	the	total	system.	(a)	Sex	
comparison	(with	n =	9	individuals	with	
328	nights,	consisting	of	4	males	with	
151	nights	and	5	females	with	177	nights)	
in	which	significant	differences	in	LHD	
(p =	.0281)	arise.	(b)	Age	comparison	
with	(n =	11	individuals	with	411	nights,	
consisting	of	3	young	individuals	with	
118,	3	subadults	with	116	and	5	adults	
with	177	nights)	that	yields	significant	
differences	in	Standing	(p_young-	
adult	=	.0038)	and	LHD	(p_young-	adult	= 
.0009;	p_subadult-	adult	=	.0136)

F I G U R E  9 (a)	For	all	25	common	elands,	the	distribution	of	the	length	of	phases	is	in	minutes	of	Standing	and	Lying	from	the	binary	
classification	task	plotted	and	the	animals	are	classified	as	adult	male	(n =	5	individuals	with	179	nights),	adult	female	(n =	12	individuals	with	
360	nights)	and	nonadult	animals	(n =	8	with	280	nights).	(b)	Only	the	16	common	elands	evaluated	by	the	total	classification	system	are	
used.	The	length	of	phases	in	minutes	of	LHD	are	plotted	and	the	animals	are	classified	as	adult	male	(n =	4	individuals	with	151	nights),	adult	
female	(n =	5	individuals	with	177	nights),	and	nonadult	animals	(n =	7	individuals	with	261	nights)
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with	118,	3	subadults	with	116	and	5	adults	with	177	nights)	is	con-
ducted.	Again,	the	holding	zoo	can	be	withdrawn	as	a	factor	(p >	.58),	
but	the	age	influences	the	total	duration	of	Standing	(p_young-	adult	
=	 0.0038)	 and	 LHD	 (p_young-	adult	 =	 0.0009;	 p_subadult-	adult	 = 
0.0136)	 significantly	 as	 a	 corresponding	 post	 hoc	 analysis	 verifies.	
Hereby,	 nonadult	 individuals	 spend	 more	 time	 on	 LHD	 than	 adult	
ones,	whereby	adult	ones	spend	more	time	Standing,	see	Figure	8(b).	
While	the	age	comparison	could	only	be	carried	out	for	female	indi-
viduals,	it	is	an	advantageous	circumstance	that	one	individual	could	
be	 recorded	 once	 as	 the	 subadult	 male	 individual	 (T.oryx_18)	 and	
moved	during	the	observation	phase	to	a	different	zoo	in	which	it	was	
observed	as	an	adult	male	(T.oryx_01).	This	allows	for	a	direct	compar-
ison	of	the	behavior	between	the	subadult	and	adult	age	of	this	indi-
vidual	as	the	husbandry	conditions	in	the	zoos	studied	were	already	
considered	negligible.	An	unpaired	t-	test	shows	that	the	total	amount	
of	Standing	(p <	.0001)	and	LHD	(p =	.0001)	differs	significantly	be-
tween	the	two	observation	periods	of	this	individual,	confirming	the	
previously	found	results	in	differences	due	to	age.

A	 second	 variable	 of	 interest	 is	 the	 length	 of	 each	 behavioral	
phase.	 Regarding	 this	 quantity,	 the	 binary	 classification	 system	
(Standing	and	Lying)	was	used	for	the	analysis	as	well	as	the	dura-
tion	of	LHD	from	the	total	classification	system	as	one	Lying	phase	
might	be	interrupted	by	several	events	of	LHD.	A	Wilcoxon	test	re-
veals	 that	 there	 are	 significant	differences	 (p =	 .0003)	 in	 the	me-
dian	 length	 of	 phases	 per	 individual	 within	 Lying	 between	 males	
and	females	(n =	17	individuals	with	539,	consisting	of	5	males	with	
179	nights	and	12	females	with	360	nights).	For	this	reason,	these	
two	groups	were	analyzed	 separately.	Within	 the	 females	 (n =	 19	
individuals	with	613	nights,	consisting	of	4	young	with	137	nights,	
3	 subadults	 with	 116	 and	 12	 adults	 with	 360	 nights),	 a	 post	 hoc	
analysis	shows	significant	differences	in	the	median	duration	of	the	
Standing	phases	between	young	and	adult	 individuals	 (p_Standing	

=	0.0033)	and	no	significant	differences	between	young	and	sub-
adult	animals	(p_Standing	=	0.1143,	p_Lying	=	0.629).	Therefore,	a	
detailed	analysis	is	made	after	splitting	into	three	categories,	adult	
male,	adult	 female,	and	nonadult	 (young	and	subadult)	 individuals.	
Figure	 9	 visualizes	 the	 distribution	 of	 the	 phase	 length	 regarding	
these	categories.	In	median,	the	adult	males	exhibit	the	longest	Lying	
phases	with	89.6	min,	followed	by	the	nonadult	animals	(78.5	min)	
while	 the	 females	show,	with	59.3	min,	 the	shortest	Lying	phases.	
While	 this	 is	 also	 true	 for	 the	 first	 and	 third	 quartile,	 the	 longest	
Lying	 event	 is	 achieved	 by	 the	 nonadults	 with	 369.7	 min.	Within	
Standing,	nonadult	individuals	seem	to	show	a	shorter	median	phase	
length	(21.2	min)	than	adults	(35.5	female,	30.8	male).	With	respect	
to	 phases	of	 LHD,	 adult	male	 individuals	 and	nonadult	 individuals	
show,	with	a	median	value	of	4.6	min	and,	 respectively,	4.4	min	a	
slightly	longer	duration	than	adult	females	with	a	median	of	3.7	min.	
Nevertheless,	the	longest	observed	phase	of	LHD	was	by	nonadult	
individuals	(47.8	min)	followed	by	the	male	adults	(32.9	min)	and	the	
female	adults	(14.8	min).

Beside	the	length	of	the	phases,	the	number	of	phases	per	night	
is	also	an	interesting	parameter.	Figure	10	visualizes	the	number	of	
Lying	phases	(binary	classification	system)	as	well	as	the	number	of	
LHD	phases	 (total	 classification	 system).	Note	 that	 the	number	of	
Standing	phases	equals	the	number	of	Lying	phases	±1.	The	above	
illustration	 highlights	 the	 different	 age	 categories	 of	 young,	 sub-
adults,	and	adults,	with	sex	being	distinguished	in	the	adult	category.	
The	phases	in	Lying	(see	Figure	10(a))	appear	to	be	constant	across	
individuals	and	differences	between	sex	and	age	groups	are	not	ev-
ident.	The	situation	 is	different	when	 it	comes	to	LHD,	where	 the	
young	animals	have	a	significantly	higher	number	of	phases	than	the	
adults.	The	subadults	tend	to	have	slightly	more	LHD	phases	than	
the	adults,	 but	 they	are	already	closer	 to	 the	values	of	 the	adults	
than	to	those	of	the	young.

F I G U R E  1 0 Number	of	phases	for	
every	individual	marked	are	the	groups,	
adult	male,	adult	female,	subadult,	and	
young	for	(a)	lying	and	(b)	LHD
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4  |  DISCUSSION

4.1  |  BOVIDS

4.1.1  |  Performance	in	the	case	study

In	 this	 section,	 the	 validity	 of	 the	 postprocessing	 rules	 as	well	 as	
the	 four	 quality	 criteria	 are	 discussed.	 As	 can	 be	 seen	 in	 section	
BOVIDS’ performance in the case study,	only	very	few	activity	phases	
are	dismissed	on	manually	annotated	nights	when	the	selected	post-
processing	rules	are	applied.	Furthermore,	both	the	accuracy	and	the	
f-	scores	are	close	to	100%,	so	that	overall,	the	set	of	postprocess-
ing	rules	seems	to	be	valid	from	a	computer	science	point	of	view.	
Furthermore,	 the	percentage	of	 each	behavioral	 class	 is	 very	well	
approximated	in	both	classification	tasks,	so	that	no	mentionable	er-
rors	occur.	Not	very	 surprisingly,	 the	postprocessed	data	 contains	
few	 phases	 less	 and	 slightly	 longer	median	 phase	 lengths	 as	 very	
short	events	are	dismissed,	so	the	postprocessing	rules	imply	almost	
no	bias	in	the	real	data.	These	values	are	of	course	a	bit	higher	in	the	
binary	classification	task,	since	longer	phases	up	to	five	minutes	are	
not	 considered.	 But	 firstly,	 even	 this	 choice	 does	 not	 imply	much	
bias	in	the	data,	and	secondly,	the	few	short	events	of	Standing	and	
Lying	do	not	significantly	affect	the	animals’	rhythms.	Of	course,	ne-
glecting	 the	 short	 events	 also	 increases	 the	median	phase	 length.	
However,	this	happens	only	very	moderately,	by	a	factor	of	between	
5.6%	(Standing)	and	7.5%	(LHD).	It	will	be	seen	later	that	the	meth-
odological	error	will	underestimate	those	quantities	with	respect	to	
the	postprocessed	data	slightly.	Therefore,	the	errors	partly	account	
for	each	other.

The	object	detector	seems	to	work	very	well	(QC	1)	as	the	me-
dian	object	detection	density	 is	very	high.	On	nights	with	a	 lower	
detection	density,	the	video	material	was	checked	manually,	and	it	
can	be	observed	that	the	individuals	were	mostly	Out	if	the	object	
detector	did	not	find	them,	or	only	small	parts	are	visible	at	the	bor-
der	of	the	video	recording.

Subsequently,	quality	criteria	QC	2	and	QC	3	are	discussed.	Since	
the	number	of	phases	per	activity	class	and	the	phase	length	analy-
sis	refer	to	Standing	and	Lying	from	the	binary	classification	task	as	
well	as	LHD	from	the	total	classification	task,	the	discussion	focuses	
on	the	reliability	of	these	quantities.	Overall,	the	accuracy	and	the	
f-	score	of	BOVIDS’	prediction	are	very	high	 for	machine	 learning-	
based	predictions.	Recent	studies	on	comparable	hard	data,	such	as	
that	of	Porto	et	al.	(2013)	on	the	discrimination	of	Standing	and	Lying	
behavior	on	video	recordings	of	cows	in	stables,	achieve	an	average	
accuracy	of	92%.	Our	accuracies	of	99.8%	in	the	binary	classifica-
tion	task	and	99.4%	in	the	total	classification	task	clearly	exceed	this	
value.	 Furthermore,	 even	 the	median	 f-	score	 of	 the	 highly	 under-
represented	class	LHD	is,	with	96.4%,	astonishingly	high	for	a	deep	
learning	system.	These	values	directly	show	that	the	percentage	of	
each	behavioral	class	is	predicted	very	accurately	and	that	there	is	
no	methodological	bias	in	the	expected	activity	budget.

Moreover,	 video	 action	 classifiers	 tend,	 normally,	 to	 so-	called	
classification	flickering,	thus	very	short	phases	of	misclassifications	

which	do	not	really	influence	the	accuracy	and	the	f-	score	of	the	pre-
diction	system	but	have	huge	influence	on	the	number	of	phases	per	
activity.	The	postprocessing	rules	are	meant	to	take	care	of	this	ef-
fect	(Hahn-	Klimroth	et	al.,	2021).	The	results	show	that	BOVIDS	suc-
ceeds	 in	underestimating	or	overestimating	 the	number	of	phases	
per	activity	class	only	very	slightly	on	average.	More	precisely,	the	
number	of	LHD	phases	is	overestimated	by	2.7%	on	average	and	the	
number	of	Standing	and	Lying	phases	is	only	overestimated	by	less	
than	1%.	The	median	phase	length	is	approximated	very	accurately	
as	well,	as	it	is	only	underestimated	by	at	most	0.5%	on	average.	It	
can	be	noted	that	even	in	enclosures	containing	two	different	indi-
viduals,	 BOVIDS’	 prediction	 does	 not	 become	 significantly	worse.	
This	has	two	reasons:	First,	and	most	 importantly,	the	used	object	
detector	 seems	 to	 be	 able	 to	 discriminate	 between	 two	 individu-
als	very	accurately.	Secondly,	the	action	classifier	seems	to	be	very	
robust	against	truncation	effects	when,	for	example,	the	bounding	
boxes	of	the	two	animals	overlap.

In	summary,	 the	activity	budget	per	night	 is	predicted	without	
any	bias,	 as	 expected,	while	 the	median	phase	 length	per	 activity	
class	 is	 overestimated	 due	 to	 postprocessing	 rules	 by	 a	moderate	
factor	of	no	more	than	7.0%.	Thus,	the	automatic	prediction	is	very	
precise	with	 respect	 to	 the	postprocessed	data.	 Furthermore,	 the	
overall	accurate	description	of	the	three	poses	Standing,	LHU,	and	
LHD	by	BOVIDS	can	be	seen	in	connection	with	the	types	of	mis-
classifications	 occurring	 on	 the	 testing	 data.	 All	 misclassifications	
between	Out	and	a	real	activity	class	are	due	to	heavy	truncation	
or	occluding	effects	in	which	a	human	annotator	might	see	hooves	
or	 small	 parts	 of	 the	 animal	 and	 is	 able	 to	 safely	 infer	 the	behav-
ior,	but	a	machine	cannot.	 In	 this	case,	 it	 is	 favorable	 if	 the	object	
detector	 does	 not	 find	 the	 animal	 in	 the	 first	 place.	 Furthermore,	
almost	all	misclassifications	between	LHU	and	LHD	can	be	explained	
by	the	fact	that	common	elands	show,	from	time	to	time,	a	groom-
ing	 behavior	 at	 their	 hind	 leg	which	 is,	 on	 a	 single	 image,	 hard	 to	
distinguish	 from	 LHD.	 Such	 errors	 need	 to,	 of	 course,	 be	 consid-
ered	and	analyzed,	but	do	not	seem	to	be	fixable	by	more	training	
data	or	fine-	tuning	the	networks	if	the	input	data	format	does	not	
change	significantly.	As	mentioned	earlier,	the	median	phase	length	
as	well	as	the	median	number	of	phases	per	night	are	only	slightly	
overestimated.	In	the	binary	classification	task,	there	are	some	short	
misclassifications	with	respect	to	the	postprocessed	data	less	than	
five	minutes	in	length.	These	errors	are	just	delayed	transitions	be-
tween	the	behavioral	states	due	to,	for	instance,	the	applied	rolling	
average	during	postprocessing.	 Therefore,	 these	misclassifications	
neither	 influence	the	number	of	phases	of	Standing	and	Lying	nor	
the	 animal's	 rhythms,	 but	 only	 slightly	 change	 the	 total	 duration	
of	 a	 specific	 phase.	 Finally,	 there	 are	 few	 misclassifications	 that	
are,	probably,	unavoidable	in	a	deep	learning	classification	task.	Of	
course,	accuracy	can,	in	principle,	always	be	improved	by	additional	
rounds	of	example	mining	and	fine-	tuning	the	action	classifiers,	but	
it	is	questionable	whether	an	even	higher	median	accuracy	of	99.4%	
can	be	reached	on	a	three-	class	classification	task.

A	natural	question,	of	course,	is	how	well	the	findings	from	the	
test	series	can	be	generalized	to	unseen	data	of	the	same	enclosures.	
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Recall	that	the	action	classifiers	are,	in	the	end,	trained	on	a	random	
collection	of	images	over	the	whole	observation	time	due	to	offline	
hard	example	mining.	Therefore,	the	testing	set	can	be	considered	
an	almost	 random	sample	which	 includes	a	 few	more	difficult	 im-
ages	as	expected	on	a	random	balanced	sample.	Thus,	the	analysis	
of	 the	performance	on	 the	manually	annotated	nights	 (the	 testing	
set)	 yields	 a	 very	good	approximation	of	 the	overall	 performance.	
This	claim	is	also	supported	by	the	analysis	of	QC	4.	The	type	and	
frequency	of	errors	on	randomly	selected,	nonmanually	annotated	
nights	were	found	to	be	comparable	to	those	in	the	test	set.

Finally,	even	if	BOVIDS	makes	a	small	number	of	mistakes	that	
would	not	occur	if	a	trained	observer	manually	annotated	the	data,	
the	very	large	dataset	overcompensates	those	few	errors.	Another	
approach	to	generating	a	 large	dataset	 is	to	have	different,	proba-
bly	untrained,	human	observers	annotate	a	comparable	number	of	
nights.	Apart	from	the	much	higher	cost,	it	is	supposed	that	the	in-
terobserver	reliability	might	be	worse	than	the	reliability	of	BOVIDS.	
Overall,	our	findings	show	that	BOVIDS	performs	very	accurately	in	
the	case	study	and	its	predictions	can	be	safely	used	to	generate	a	
large	amount	of	annotated	data,	which	would	not	have	been	easily	
possible	without	automation.

4.1.2  |  Challenges	and	limitations

As	 for	 any	 deep	 learning-	based	 classifier,	 there	 are	 various	 chal-
lenges	 to	overcome	during	 fine-	tuning	 the	underlying	model.	Even	
after	extensive	fine-	tuning,	there	will	be	cases	in	which	the	system	
fails.	While	the	last	paragraph	already	discussed	that	small	errors	are	
overcompensated	by	evaluation	of	much	data,	this	section	is	devoted	
to	exploring	typical	misclassifications	that	arise	if	BOVIDS	is	used.

A	major	 challenge	 is	 given	 by	 highly	 truncated	 sequences	 of	
video	material.	 In	many	 applications,	 it	 is	 not	 possible	 to	 install	
cameras	in	a	way	that	allows	recording	of	every	edge	of	the	enclo-
sure.	This	can	cause	misclassifications	during	action-	classification.	
Indeed,	 if	only	small	parts	of	an	animal	can	be	seen,	 like	only	 its	
hoofs	or	its	head,	and	the	object	detector	draws	a	decent	bound-
ing	 box,	 it	 is	 even	 for	 trained	 humans	 hard	 or	 even	 impossible	
to	 classify	 the	behavior.	To	overcome	 this	 issue,	 it	 is	possible	 to	
classify	 bounding	 boxes	 that	 are	 close	 to	 the	 image's	 border	 by	
a	deterministic	rule.	A	natural	choice	might	be	Out	but	in	special	
cases	one	might	use	information	about	the	recorded	enclosure	to	
infer	the	behavior	in	the	truncated	area.	In-	depth	observation	of	
own	data	is	necessary	to	identify	those	regions	of	the	enclosure	in	
which	severe	truncation	effects	might	occur	and	to	define	proper	
rules	on	how	to	deal	with	them.

Another	 challenge	 arises	 if	 the	 animal	 is	 not	 present	 in	 a	 se-
quence	of	images.	It	is	possible	that	an	object	in	the	enclosure	like	
a	 trough	might	 be	 falsely	 classified	 as	 an	 animal	 in	 this	 case.	 This	
issue	can	be	addressed	by	more	training	steps	of	the	object	detector	
or	by	increasing	the	so-	called	minimum	confidence	score:	an	object	
detector	does	not	only	suggest	a	bounding	box	and	a	class	label	but	
also	returns	a	confidence	score	between	zero	and	one.	If	a	threshold	

of	this	value	is	defined	near	one,	misclassifications	are	expected	to	
be	very	rare,	but	the	bounding	boxes	of	animals	are	also	more	easily	
discarded.	Finding	a	good	threshold	depends	highly	on	the	applica-
tion	and	should,	therefore,	be	tested.

A	 third	 type	of	errors	might	occur	 in	enclosures	 in	which	mul-
tiple	 individuals	 are	 stalled	 together	 as	 the	 object	 detector	might	
swap	 the	 individual's	 labels.	 In	 this	 case,	 short	 sequences	 of	 the	
proposed	behavior	can	be	false	because	the	wrong	individual	is	ob-
served.	There	 is	no	direct	way	to	overcome	this	 issue.	 In	 the	case	
study,	the	object	detector	was	tested	excessively	and	worked	very	
decently.	But	it	is	crucial	to	test	the	object	detector's	performance	in	
the	described	fashion	(see	OD	3b).	In	future,	implementations,	one	
could	extend	BOVIDS	to	track	bounding	boxes	from	frame	to	frame.	
But	on	the	technical	side,	the	changes	between	consecutive	frames	
might	be	too	severe	on	recordings	with	1fps	to	apply	classical	track-
ing	methods.	One	possibility	to	deal	with	this	problem	would	be	to	
increase	the	recording's	quality.	This	might	give	a	second	improve-
ment.	For	instance,	one	could	record	with	a	much	higher	framerate	
that	allows	to	use	modern	deep	 learning	techniques	 like	recurrent	
neural	networks	 to	capture	 the	 temporal	dimension	of	 the	behav-
ioral	states	more	precisely.	This	comes	with	two	challenges	that	may	
not	be	forgotten.	First,	it	would	require	significantly	more	memory	
space.	Second,	 it	would	also	 increase	 the	computational	cost.	The	
current	 implementation	predicts	one	hour	of	video	material	 in	ap-
proximately	 5	min	 on	mediocre	 hardware	 (RTX	2060	GPU)	which	
would	be	exceeded	significantly	 if	more	 frames	per	second	would	
need	 to	be	evaluated.	 If	many	video	 files	 need	 to	be	predicted	 in	
large-	scale	studies,	this	might	be	a	limiting	factor.	It	is	moreover	to	
emphasize	that	under	the	described	classification	tasks	the	accuracy	
achieved	by	BOVIDS	 is	highly	satisfactory	and	 it	 is	unlikely	 that	 it	
can	be	much	 further	 improved.	Nevertheless,	 techniques	 that	use	
more	temporal	information	might	be	able	to	capture	short	phases	of	
certain	behaviors	more	reliably.	Behaviors	that	cannot	be	identified	
on	 a	 single	 image,	 or,	more	precisely,	 on	 four	 consecutive	 frames,	
cannot	be	detected	in	the	current	version.	In	the	case	study,	groom-
ing	events	at	the	hind	legs	(LHU)	were	sometimes	predicted	as	LHD	
because	the	poses	are	close	to	each	other.	While	normally	misclas-
sifications	can	be	reduced	by	more	rounds	of	offline	hard	example	
mining,	 it	 is	presumably	not	possible	to	distinguish	short	grooming	
events	and	LHD	within	 the	given	system.	 In	 the	case	study,	 these	
events	were	rare	and	therefore	tolerable,	but	such	analyses	need	to	
be	conducted	if	the	system	should	be	applied	to	new	data.	During	
manual	 checking	 of	 samples,	 even	 trained	 humans	 were	 not	 able	
to	reliably	distinguish	between	those	events	and	LHD	on	the	given	
data.	Of	course,	if	the	raw	video	material	is	used,	this	task	is	much	
easier,	and	one	might	hope	to	describe	such	events	even	more	accu-
rately	using	different	architectures.

4.1.3  |  Universality	and	future	directions

A	major	strength	of	BOVIDS	might	be	 its	adjustability	to	different	
settings.	If	the	three	positions	Standing,	LHU,	and	LHD	need	to	be	
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detected	from	video	files,	the	system	can	be	used	on	data	of	ungu-
lates.	Furthermore,	in	principle,	any	pose	that	is	reliably	detectable	
on	 single	 images	 can	be	predicted	by	 the	discussed	deep	 learning	
framework.	BOVIDS	 is	 tested	extensively	on	 the	data	of	 common	
elands	and	other	African	bovids	stemming	from	various	zoo	enclo-
sures.	 It	 is,	 therefore,	 reasonable	 to	 assume	 that,	 given	 sufficient	
training	material,	its	performance	is	equally	high	under	varying	con-
ditions.	For	instance,	it	is	likely	to	perform	well	in	the	observation	of	
various	ungulates	of	different	sizes	from	multiple	continents	in	zoo	
enclosures	or	the	analysis	of	livestock's	behavior	in	stables.	Since	the	
present	data	are	 recorded	 in	very	different	enclosures	with	partly	
high	 degrees	 of	 truncation	 and	 background	 noise,	 BOVIDS	might	
perform	well	in	outdoor	enclosures	as	well	if	the	camera	installment	
is	flawlessly	possible	in	the	sense	that	the	whole	outdoor	enclosure	
can	be	recorded	which	would	extend	the	set	of	research	questions	
that	can	be	tackled	with	this	technique.

A	further	research	direction	would	be	the	analysis	of	BOVIDS’	
performance	on	data	of	larger	groups	of	ungulates.	While	technically	
the	detection	of	individuals	works	the	same,	it	is	clearly	a	much	more	
difficult	 task	 to	distinguish	many	 individuals	 from	each	other	 than	
it	is	to	identify	two	individuals	reliably.	It	might	be	tempting	to	ex-
tend	BOVIDS’	functionality	in	cases	in	which	reliable	distinguishing	
between	different	 individuals	 is	not	possible.	This	might	be	due	to	
the	number	of	 individuals	and	their	optical	similarity.	For	 instance,	
if	 individual	detection	fails	 in	 large	groups,	one	could	 implement	a	
scan-	sampling	method	that	allows	to	at	least	report	an	average	be-
havior	of	all	the	individuals.

Moreover,	 the	 object	 detection	 phase	 can	 be	 used	 to	 identify	
different	behavioral	classes.	If	during	a	phase	of	Standing	the	bound-
ing	box's	positions	exhibit	strong	variability,	this	is	a	good	indication	
for	movement	of	the	animal.	Furthermore,	it	is	possible	to	describe	
the	 individual's	 favorite	positions	within	 its	enclosure	and	 to	keep	
track	of	the	probability	of	the	presence	of	the	individuals	at	different	
spatial	 positions	which	 can	 help	 to	 improve	 housing	 conditions	 in	
zoos.	Both	extensions	suffer	one	technical	challenge.	Normally,	one	
camera	records	an	enclosure	and,	therefore,	one	can	only	work	with	
a	two-	dimensional	projection	of	the	actual	positions.	Depending	on	
the	camera	positioning,	movements	 into	certain	directions	 cannot	
be	 captured	 correctly.	 The	 same	 challenge	 applies	 to	 the	descrip-
tion	of	the	probability	of	the	presence	at	spatial	positions.	If	due	to	
the	camera's	angle	the	bounding	boxes	are	quite	large	in	comparison	
to	 the	whole	 image,	 such	a	description	becomes	meaningless.	But	
overall,	we	believe	that	in	many	enclosures	this	approach	can	be	im-
plemented	within	the	current	deep	learning	system	and	can	deliver	
more	information	on	ungulate's	behavior.

Furthermore,	it	is	to	discuss	whether	the	iterative	process	used	
to	create	a	reasonable	training	set	could	be	 improved.	The	degree	
of	automation	of	the	system	at	hand	resembles	more	the	one	of	a	
“machine-	assisted”	evaluation	of	video	material	than	the	one	of	an	
autonomous	deep	learning	system.	Such	iterative	processes	to	ob-
tain	reliable	machine	learning	models	is	extensively	studied	in	a	re-
cent	publication	of	Miao	et	al.	(2021)	at	the	example	of	camera-	trap	
images.	The	 findings	of	 the	aforementioned	publication	as	well	 as	

the	 findings	of	 the	current	paper	 indicate	 that	such	a	partly	auto-
mated	system	reduces	the	time	required	by	a	researcher	to	evaluate	
data	dramatically.

A	 similar	 question	 arises	 regarding	 the	 technical	 details	 of	 the	
training	step	of	the	action	classifiers.	To	conquer	data	imbalance,	the	
current	contribution	employs	upsampling	and	downsampling	tech-
niques	(Branco	et	al.,	2016)	and	achieves	good	results.	Nevertheless,	
it	 is	 tempting	 to	 try	different	 training	procedures	 to	deal	with	 the	
imbalance,	as	recently	suggested	by	Liu	et	al.	(2019).

Finally,	 it	 was	 already	 discussed	 that	 the	 deep	 learning	 archi-
tectures	yolov4	and	EfficientNet-	B3	are	used	because	they	are	fast	
and	show	state-	of-	the-	art	performance	on	testing	sets.	In	principle,	
those	architectures	can	be	easily	replaced	if	a	novel	approach	per-
forms	even	better.	 It	 is	 important	 to	emphasize	 that	 the	 technical	
main	contribution	of	BOVIDS	is	the	sequential	application	of	an	ob-
ject	detector	and	a	pair	of	action	classifiers	that	capture	the	spatial	
and	temporal	dimension	of	the	video	data	in	the	described	fashion.	
The	explicit	implementation	of	these	classifiers	is	independent	from	
this	approach	and,	therefore,	it	might	be	tempting	to	conduct	com-
parative	studies	regarding	the	performance	of	different	recent	deep	
learning	architectures	within	the	proposed	system.

4.2  |  The nocturnal behavior of common elands

A	 first	 finding	 is	 that	 independent	 from	 the	 factors	 age,	 sex,	 and	
keeping	zoo,	all	individuals	exhibit	a	higher	percentage	of	Lying	than	
Standing	during	the	night.	As	the	night	progresses,	the	percentage	
of	Lying	 increases	significantly.	This	 is	 in	 line	 to	 findings	of	similar	
studies	 on	African	 elephants	 (Loxodonta africana),	 blue	wildebeest	
(Connochaetes taurinus),	or	Arabian	oryx	(Oryx leucoryx),	where	the	
observed	animals	also	show	most	of	the	sleeping	behavior	or	inac-
tivity	in	the	second	part	of	the	night	(Davimes	et	al.,	2018;	Gravett	
et	al.,	2017;	Malungo	et	al.,	2021).

When	considering	the	LHD,	it	should	be	noted	that	this	posture	
most	 likely	 corresponds	 to	 the	 typical	REM	 (rapid	eye	movement)	
sleep	posture.	As	mentioned	in	the	ethogram	section,	a	behavioral	
component	to	recognize	REM	sleep	is	the	head	being	down	due	to	
postural	atonia	(Lima	et	al.,	2005;	Zepelin	et	al.,	2005).	In	this	study,	
we	use	this	characteristically	REM	sleep	posture	to	determine	REM	
sleep.	This	approach	is	in	line	with	the	study	by	Zizkova	et	al.	(2013)	
on	common	elands	and	the	study	by	Ternman	et	al.	(2014)	on	cows,	
which	 shows	 that	REM	sleep	 can	be	detected	with	 sufficient	 cer-
tainty	based	on	behavioral	surveys.	This	procedure	is	also	supported	
by	a	study	on	lesser	mouse-	deer	(Tragulus kanchil),	which	shows	that	
REM	sleep	can	be	divided	into	two	categories,	one	of	which	is	the	
most	common,	where	the	head	lies	down	most	of	the	time,	making	
this	a	valid	 indicator	 to	 recognize	REM	sleep	 in	behavioral	 studies	
(Lyamin	et	al.,	2021).

Sex	has	been	found	to	have	an	influence	on	the	total	amount	
of	LHD	during	the	night.	The	REM	sleep	periods	of	adult	females	
last	slightly	longer	than	those	of	adult	males,	a	fact	which	is	also	
known	across	multiple	phylogenetic	states,	for	birds	and	mammals	
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(Cajochen	et	al.,	2006;	Rattenborg	et	al.,	2017;	Steinmeyer	et	al.,	
2010).	However,	other	studies	show	that	there	are	no	sex	differ-
ences	when	individuals	are	similar	sized	between	the	sexes,	while	
dissimilar-	sized	 animals	 should	 have	 differences	 (Ruckstuhl	 &	
Kokko,	 2002).	 In	 common	 elands,	males	 are	 larger	 than	 females	
(Leslie,	2011;	Myers	et	al.,	2021),	confirming	the	differences	found	
between	 the	 sexes.	 In	 addition,	 Standing	was	 found	 to	 increase	
with	age.	Interestingly,	this	finding	is	supported	by	the	recording	
of	a	male	individual	at	both	subadult	and	adult	age,	which	shows	
a	 significant	 increase	 in	 the	 total	 amount	 of	 Standing	 per	 night.	
Our	results	are	in	line	with	previous	results	on	different	mammals,	
as	 age	 is	 known	 to	 be	 an	 influencing	 factor	 for	 activity/rest	 cy-
cles	(Ruckstuhl	&	Neuhaus,	2009;	Siegel,	2005;	Steinmeyer	et	al.,	
2010).	Moreover,	age	also	influences	REM	sleep	behavior	in	mam-
mals	 and	 birds	 (Cajochen	 et	 al.,	 2006;	 Rattenborg	 et	 al.,	 2017;	
Ruckstuhl	&	Kokko,	2002;	Steinmeyer	et	al.,	2010).	This	effect	was	
also	observed	in	the	common	elands	in	this	study,	where	the	extent	
of	LHD	differs	between	the	three	age	classes—	young,	subadults,	
and	adults.	A	study	on	Giraffes	(Giraffa camelopardalis)	also	shows	
that	age	and	sex	have	an	influence	on	the	behavior	Standing,	while	
only	age	has	an	influence	on	REM	sleep	(Burger	et	al.,	2021).	The	
study	by	Burger	et	al.	 (2021)	 further	 reveals	 that	housing	condi-
tions	can	be	discarded	as	an	influencing	factor	for	both	behaviors.	
These	 results	 correspond	 to	 the	 results	 in	 this	 study	with	 com-
mon	elands,	where	the	keeping	zoo	and	thus	housing	conditions	
can	also	be	discarded	as	influencing	factors.	Of	course,	the	factor	
housing	condition	consists	of	several	factors	such	as,	among	oth-
ers,	enclosure	size,	and	the	presence	or	absence	of	other	types	of	
animals	 in	the	vicinity	or	 lighting	conditions.	While	the	recorded	
data	do	not	allow	to	evaluate	each	possibly	influencing	factor	indi-
vidually,	our	study	reveals	that	the	sum	of	those	effects	is	negligi-
ble	and	can	be	discarded.

Besides	 the	 total	 amount	of	 time	during	 the	night,	 the	dura-
tion	of	the	single	phases	is	also	of	interest.	Here,	the	males	differ	
from	the	females	within	Lying,	whereby	males	show	longer	Lying	
phases	 than	 females.	 This	 fits	 with	 the	 result	 that	 adult	 males	
have	a	higher	amount	of	LHD.	Also,	 the	age	has	an	 influence	on	
the	 lengths	 of	 the	 phases.	 The	 nonadult	 animals	 exhibit	 shorter	
periods	 of	 Standing	 and	 longer	 periods	 of	 Lying	 than	 the	 adult	
ones.	This	also	matches	with	the	results	 regarding	the	nocturnal	
activity	budgets.	Within	LHD	the	number	of	phases	vary	between	
the	different	categories	of	individuals.	The	mean	phase	length	of	
LHD	 in	 all	 adult	 common	 elands	 is	 9.5	min	 on	 average,	with	 fe-
males	 slightly	 below	 this	 at	 8.8	min	 and	males	 slightly	 above	 at	
10.2	min.	These	phase	lengths	are	consistent	with	those	of	male	
Arabian	oryx	(Oryx leucoryx),	which	have	a	mean	phase	length	of	
7 ±	2	min	in	the	dark	in	winter,	and	10.5	±	1.5	min	over	the	24-	h	
cycle	(Davimes	et	al.,	2018).

Finally,	the	number	of	phases	is	an	interesting	key	figure	in	behav-
ioral	analysis.	Within	Lying	and	Standing	it	is	noticeable	that	almost	
all	animals	show	a	very	similar	number	of	phases.	Here,	of	the	25	an-
imals	observed,	23	have	a	median	between	7	and	9	phases	per	night	
with	quite	a	little	variation	per	individual.	The	other	two	animals	are	

moderate	outliers	downward.	In	addition,	the	mean	ranges	between	
6.6	and	9.1	within	22	individuals	and	within	all	individuals,	the	SEM	
is	at	most	0.36	indicating	a	constant	behavior	within	the	single	in-
dividuals.	This	result	suggests	that	certain	rhythms	are	present	and	
should	be	investigated	in	more	detail	in	further	analyses,	because	the	
course	over	the	night	also	suggests	certain	rhythms.	Within	LHD,	a	
different	picture	of	the	underlying	distributions	emerges.	Here,	the	
adult	individuals	show	a	lower	proportion	than	the	nonadult	individ-
uals,	and	within	the	nonadult	individuals	there	are	also	strong	differ-
ences	between	the	young	and	the	subadult	individuals.	Only	a	few	
exceptions	are	evident,	which	can	be	explained	as	follows.	T.oryx_22 
is	clearly	different	from	the	veined	young	and	is	closer	to	the	values	
of	the	subadult	individuals.	However,	T.oryx_22	is	also	the	oldest	an-
imal	among	the	group	of	young	ones.	Furthermore,	T.oryx_17,	which	
is	the	oldest	animal	in	the	case	study,	has	a	higher	median	number	
of	phases	than	the	other	adult	animals,	especially	the	female	ones.	
Excluding	these	exceptions,	young	individuals	have	a	median	of	40–	
42	phases	of	 LHD	and	 subadults	 show	13–	15	phases.	 In	 contrast,	
adult	females	have	7–	9	phases	of	LHD	and	adult	males	9–	11	phases.	
This	 again	 indicates	differences	between	 the	 sexes	and	high	 simi-
larities	within	each	group	of	individuals.	Again,	it	seems	that	certain	
rhythms	 are	present	depending	on	 the	 sex	 and	 the	 age	but	being	
independent	of	the	specific	individual.	This	observation	might	be	the	
starting	point	of	a	much	more	detailed	analysis	of	rhythms	in	African	
ungulates’	behavior.
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POS TPROCE SSING RULE S
This	section	contains	the	post-	processing	rules	applied	to	BOVIDS’	
prediction	 for	 both	 classification	 tasks.	With	 respect	 to	 the	 total	
classification	task,	different	sets	of	rules	are	applied	for	adult	com-
mon	elands	 and	nonadult	 common	elands,	 because	nonadult	 indi-
viduals	show	shorter	phases.
The	order	of	the	applied	rolling	average	varies	between	the	three	

sets	of	rules.	A	higher	order	reduces	flickering	but	is	likely	to	dismiss	

(very)	short	events.	Therefore,	the	order	of	the	rolling	average	was	
set	to	3	in	the	total	classification	task	for	nonadult	individuals,	to	4	in	
the	total	classification	task	for	adult	individuals	and	to	5	in	the	binary	
classification	task.
Regarding	dismissing	short	phases,	the	quantity	“minimum	length”	

is	introduced	followed	by	a	three-	character	code.	If	this	code	is	XYZ,	
this	is	meant	to	be	read	as	follows.	Suppose	a	phase	of	behavior	Y	lies	

TA B L E  A 1 The	common	elands	observed	in	this	study	and	their	individual	factors	age	(categorical:	young,	subadult	and	adult)	and	sex

Individual Age Sex Keeping Stabling Nights
Duration 
(h)

Nights per 
hand Pictures Binary Total

T.oryx_01 Adult m Zoo_1 Single 49 17–	7 2 404 x x

T.oryx_02 Adult m Zoo_4 Single 29 17–	7 10 544 x x

T.oryx_03 Adult m Zoo_3 Single 38 18–	7 2 517 x x

T.oryx_04 Adult m Zoo_5 Single 28 17–	7 15 860 x —	

T.oryx_05 Adult m Zoo_2 Single 35 17–	7 4 519 x x

T.oryx_06 Adult f Zoo_1 Single 49 17–	7 2 404 x x

T.oryx_07 Adult f Zoo_4 Single 29 17–	7 10 487 x —	

T.oryx_08 Adult f Zoo_4 Single 29 17–	7 10 519 x —	

T.oryx_09 Adult f Zoo_4 Single 29 17–	7 10 504 x —	

T.oryx_10 Adult f Zoo_4 Single 15 17–	7 10 512 x —	

T.oryx_11 Adult f Zoo_3 Single 21 18–	7 2 550 x x

T.oryx_12 Adult f Zoo_5 Single 28 17–	7 11 513 x —	

T.oryx_13 Adult f Zoo_5 Single 28 17–	7 14 541 x —	

T.oryx_14 Adult f Zoo_2 Together 35 17–	7 2 604 x x

T.oryx_15 Adult f Zoo_2 Together 34 17–	7 2 604 x x

T.oryx_16 Adult f Zoo_4 Single 25 17–	7 10 557 x —	

T.oryx_17 Adult f Zoo_3 Single 38 18–	7 2 511 x x

T.oryx_18 Subadult m Zoo_5 Together 27	(28) 17–	7 17	(18) 502 x x

T.oryx_19 Subadult f Zoo_1 Together 49 17–	7 2 636 x x

T.oryx_20 Subadult f Zoo_2 Single 34 17–	7 4 519 x x

T.oryx_21 Subadult f Zoo_2 Single 33 17–	7 4 519 x x

T.oryx_22 Young f Zoo_1 Together 49 17–	7 2 636 x x

T.oryx_23 Young f Zoo_5 Together 22	(28) 17–	7 15	(18) 502 x —	

T.oryx_24 Young f Zoo_2 Together 35 17–	7 2 604 x x

T.oryx_25 Young f Zoo_2 Together 34 17–	7 2 604 x x

Note: Further,	the	housing	zoo	and	the	given	stabling	conditions	(standing	single	or	together),	are	contained.	The	duration	gives	the	recording	start	
and	end	time	and	the	totally	recorded	number	of	nights	as	well	as	the	manually	annotated	number	of	nights	are	listed,	if	nights	had	to	be	removed	
because	of	an	object	detection	density	score	smaller	than	80%	the	used	number	of	nights	are	listed	with	the	real	number	of	nights	in	parentheses.	
Finally,	the	number	of	pictures	describes	the	number	of	annotated	images	in	the	object	detection	training	set	after	OHEM.	Observe	that	T.oryx_01 
and	T.oryx_18	is	the	same	individual	recorded	at	different	times	after	moving	from	one	zoo	to	another.	Also,	it	is	marked	if	the	individuals	are	
evaluated	with	the	total	or	binary	classification	system.

APPENDIX A

OVERVIE W DATA
A	 detailed	 overview	 about	 the	 used	 data	 is	 given	 in	 Table	 A1.	
Hereby,	for	every	individual	the	categories	age,	sex,	and	the	keeping	
zoo	as	well	as	the	stabling	conditions	are	contained.	The	exact	age	
of	 the	observed	 individuals	 ranges	 from	one	month	 to	16.5	 years	

categorized	as	follows:	“young”	ranges	from	birth	until	the	time	of	
weaning	with	 about	 6	months,	 then	 the	 individuals	 become	 “sub-
adult”	until	sexual	maturity	with	about	2	years	of	age	and	after	that	
they	are	listed	as	“adult.”
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in	between	a	phase	of	behavior	X	and	behavior	Z,	then	the	event	will	
be	dismissed	(marked	as	X)	if	 it	consists	of	 less	time-	intervals	than	
indicated	by	the	minimum	length	of	XYZ.	In	those	codes,	Standing	is	
abbreviated	to	“A,”	LHU	to	“L”	and	LHD	to	“S”	in	the	total	classifica-
tion	task.	 In	 the	binary	classification	task,	 “A”	means	Standing	and	
“L”	means	Lying.	 “O”	stands	for	Out	 in	both	tasks.	*X*	 is	meant	 to	
be	read	as	any	combination	YXZ	where	Y	and	Z	do	not	equal	X.	The	
applied	rules	of	dismissing	short	phases	can	be	found	in	Table	A2.
Regarding	the	special	state	Out,	the	post-	processing	rules	are	a	

bit	more	elaborated.	If	flickering	between	Out	and	a	real	behavioral	
state	occurs,	this	is	very	likely	due	to	a	failure	of	the	object	detector	
if	an	animal	is	occluded	or	truncated.	Therefore,	if	a	sequence	of	a	
specific	 behavioral	 state	X	 (Standing,	 Lying,	 LHU	or	 LHD)	 is	 inter-
rupted	by	phases	of	Out,	 the	Out	phases	are	dismissed	under	 the	
following	conditions.	First,	each	single	phase	of	Out	must	be	shorter	
than	27	time-	intervals	(total)	or	135	time-	intervals	(binary).	Second,	
the	total	percentage	of	X	in	the	sequence	needs	to	exceed	20%.

TA B L E  A 2 Overview	about	the	minimum	length	a	specific	
behavioral	phase	needs	to	have	in	order	not	to	be	dismissed	in	the	
post-	processing	step

Behavior code
Total 
adult

Total 
nonadult Binary

SLS 3 2 —	

SLA 3 3 —	

ALS 3 3 —	

ALA 6 6 45

OLA 6 6 45

OLS 6 6 —	

ALO 6 6 45

SLO 6 6 —	

SAS 25 6 —	

SAL 25 6 —	

LAS 25 6 —	

LAL 25 6 45

LAO 25 6 45

OAL 25 6 45

OAS 25 6 —	

SAO 25 6 —	

ASA 9 9 —	

ASL 6 6 —	

LSA 6 6 —	

LSL 2 2 —	

LSO 9 9 —	

OSL 9 9 —	

ASO 9 9 —	

OSA 9 9 —	

*O* 9 9 45

Note: The	value	is	to	be	read	as	time-	intervals	where	1	time-	interval	
consists	of	7	seconds.	Standing	is	abbreviated	to	“A,”	LHU	to	“L”	and	
LHD	to	“S”	in	the	total	classification	task.	In	the	binary	classification	
task,	“A”	means	Standing	and	“L”	means	Lying.	“O”	stands	for	Out	in	
both	tasks.


